WO2012017713A1 - 方向性結合器 - Google Patents

方向性結合器 Download PDF

Info

Publication number
WO2012017713A1
WO2012017713A1 PCT/JP2011/059158 JP2011059158W WO2012017713A1 WO 2012017713 A1 WO2012017713 A1 WO 2012017713A1 JP 2011059158 W JP2011059158 W JP 2011059158W WO 2012017713 A1 WO2012017713 A1 WO 2012017713A1
Authority
WO
WIPO (PCT)
Prior art keywords
directional coupler
line
sub
terminal
main line
Prior art date
Application number
PCT/JP2011/059158
Other languages
English (en)
French (fr)
Inventor
育生 田丸
浩和 矢▲崎▼
博志 増田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201180037434.3A priority Critical patent/CN103038937B/zh
Priority to JP2012527624A priority patent/JP5482901B2/ja
Publication of WO2012017713A1 publication Critical patent/WO2012017713A1/ja
Priority to US13/754,956 priority patent/US8536956B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines

Definitions

  • the present invention relates to a directional coupler for a communication device.
  • a directional coupler described in Patent Document 1 As a conventional directional coupler, for example, a directional coupler described in Patent Document 1 is known. Specifically, as shown in FIG. 9, a plurality of dielectric layers on which electrode patterns are formed are laminated.
  • the directional coupler includes a first main line 33, a second main line 34, and a first sub line 35 formed of strip lines, and the first and second main lines 33 and 34 are both first. Are connected to the sub-line 35.
  • the directional coupler even if the roles of the main line and the sub line are interchanged, the basic operation can be realized in the same way, and the same can be said for the problems and solving means described later.
  • an object of the present invention is to provide a directional coupler having excellent isolation between main lines (or sub-lines).
  • the present invention provides a directional coupler configured as follows.
  • a directional coupler includes a main line having a first terminal and a second terminal, a first line having a third terminal and a fourth terminal, electromagnetically coupled to the main line.
  • the fourth terminal and the fifth terminal are each terminated with a load.
  • the isolation characteristic between the first and second sub-lines in the directional coupler can be improved.
  • the directional coupler according to the present invention preferably includes a laminated body formed by laminating a plurality of insulator layers, and the main line, the sub line, and the capacitive element are provided in the laminated body. It is comprised by the conductor layer currently formed.
  • the isolation characteristic between the first and second sub-lines in the directional coupler can be improved, and the directional coupler can be reduced in size.
  • the directional coupler according to the present invention is preferably configured such that the first main surface of the directional coupler is a mounting surface, and the capacitive element is included in the multilayer body, the main line, the sub line, and the first main surface. It is formed between the surfaces.
  • the directional coupler according to the present invention is preferably mounted on a substrate having a shielding effect.
  • the ground layer of the directional coupler can be omitted, and the directional coupler can be downsized.
  • FIG. 1 is a circuit diagram of a directional coupler 10 according to an embodiment
  • FIG. 2 is an external view
  • FIG. 3 is an exploded perspective view.
  • the circuit configuration of the directional coupler 10 will be described.
  • the directional coupler 10 includes external electrodes (terminals) 1 to 6, a main line M, sub-lines S1, S2, termination resistors R1, R2, and a capacitive element C1.
  • the main line M is connected between the external electrodes 1 and 2.
  • the sub line S1 is connected between the external electrodes 3 and 4 and is electromagnetically coupled to the main line M.
  • the sub line S2 is connected between the external electrodes 5 and 6, and is electromagnetically coupled to the main line M.
  • Each of the termination resistors R1 and R2 is connected to the external electrodes 4 and 5, and the other is grounded.
  • the capacitive element C1 is connected between the external electrodes 4 and 5.
  • the signal transmitted through the main line M of the directional coupler 10 includes a forward signal that enters from the external electrode 1 and exits from the external electrode 2, and the forward signal is reflected by the circuit in the subsequent stage, There is a signal in the reverse direction that returns to the electrode 2 and exits from the external electrode 1.
  • the external electrode 1 serves as an input port and the external electrode 2 serves as an output port.
  • the external electrode 2 serves as an input port and the external electrode 1 serves as an output port.
  • the external electrode 3 functions as a forward signal coupling port, and the external electrode 6 functions as a backward signal coupling port.
  • the external electrodes 4 and 5 are used as terminator ports each terminated with 50 ⁇ .
  • a signal having power proportional to the power of the forward signal is output from the external electrode 3 due to electromagnetic coupling between the main line M and the sub line S1.
  • a signal having power proportional to the power of the reverse signal is output from the external electrode 6 due to the electromagnetic coupling between the main line M and the sub line S2.
  • the predetermined frequency of these signals is, for example, a signal having a frequency of 824 MHz to 915 MHz (GSM800 / 900) or a signal having a frequency of 1710 MHz to 1910 MHz (GSM1800 / 1900), and the external electrode 3 of the directional coupler. , 6 are input signals to an automatic gain control device (not shown).
  • the coupling characteristic, the isolation characteristic, and the directional characteristic are used as the main characteristics representing the performance of the directional coupler.
  • the coupling characteristic is a ratio of power between a signal input to the input port and a signal output from the coupling port (that is, attenuation S (3,1)), and a frequency relationship.
  • the isolation characteristic is the relationship between the power ratio between the signal input from the output port and the signal output from the coupling port (that is, the attenuation S (3, 2)) and the frequency.
  • the directivity characteristic is a relationship between a coupling degree characteristic and an isolation characteristic (that is, attenuation S (3,2) / S (3,1)) and a frequency.
  • FIG. 2A is an external perspective view of the directional coupler 10
  • FIG. 2B is a top view
  • FIG. 3 is an exploded perspective view of the laminate 11 of the directional coupler 10 according to the embodiment.
  • the stacking direction is defined as the z-axis direction
  • the long side direction of the directional coupler 10 when viewed in plan from the z-axis direction is defined as the x-axis direction
  • the directionality when viewed in plan from the z-axis direction.
  • the short side direction of the coupler 10 is defined as the y-axis direction.
  • the x-axis, y-axis, and z-axis are orthogonal to each other.
  • the laminated body 11 includes external electrodes 14 (14a to 14f), a main line M, sub-lines S1, S2, and a capacitor element C1.
  • the laminated body 11 has a rectangular parallelepiped shape as shown in FIG. 2.
  • the insulator layer 12 (12a to 12g) is moved from the positive direction side in the z-axis direction to the negative direction side. It is configured by stacking them in order.
  • the mounting surface 15 of the directional coupler 10 is the back side of the laminated surface of the insulator layer 12g that is the lowest layer.
  • the insulator layer 12 is a dielectric ceramic and has a rectangular shape.
  • the external electrodes 14a, 14e, and 14b are provided on the side surface on the negative direction side in the y-axis direction of the multilayer body 11 so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side. Is formed so as to penetrate all layers.
  • the external electrodes 14c, 14f, and 14d are provided on the side surface on the positive side in the y-axis direction of the multilayer body 11 so as to be arranged in this order from the negative direction side in the x-axis direction to the positive direction side. Is formed so as to penetrate all layers.
  • the main line M is composed of a line portion 21 as shown in FIG.
  • the line portion 21 is a linear conductor layer provided on the insulator layer 12e, and is connected to the external electrodes 14a and 14b.
  • the sub-line S1 includes line portions 22a, 22b, and 22c and via-hole conductors b1 and b2.
  • the sub-line S1 rotates counterclockwise as it goes from the positive side to the negative side in the z-axis direction. It has a spiral shape.
  • the counterclockwise upstream end is referred to as an upstream end
  • the counterclockwise downstream end is referred to as a downstream end.
  • the line portion 22a is a linear conductor layer formed on the insulator layer 12b, and its upstream end is connected to the external electrode 14d.
  • the line portion 22b is a linear conductor layer formed on the insulator layer 12c.
  • the line portion 22c is a linear conductor layer formed on the insulator layer 12d, and its downstream end is connected to the external electrode 14e.
  • the via-hole conductor b1 penetrates the insulator layer 12b in the z-axis direction, and connects the line portion 22a and the line portion 22b.
  • the via-hole conductor b2 passes through the insulator layer 12c in the z-axis direction, and connects the line portion 22b and the line portion 22c.
  • the sub line S1 is connected between the external electrodes 14d and 14e.
  • the main line M and the sub-line S1 are such that the main line region m11 and the sub-line regions s11, s12, and s13 face each other in parallel, and electromagnetically in these regions. Are connected.
  • the sub-line S2 includes line portions 23a, 23b, and 23c and via-hole conductors b3 to b4.
  • the sub-line S2 rotates clockwise from the positive direction side to the negative direction side in the z-axis direction. It has a spiral shape that turns.
  • the end portion on the upstream side in the clockwise direction is referred to as the upstream end
  • the end portion on the downstream side in the counterclockwise direction is referred to as the downstream end.
  • the line portion 23a is a linear conductor layer formed on the insulator layer 12b, and its upstream end is connected to the external electrode 14c.
  • the line portion 23b is a linear conductor layer formed on the insulator layer 12c.
  • the line portion 23c is a linear conductor layer formed on the insulator layer 12d, and its downstream end is connected to the external electrode 14f.
  • the via-hole conductor b3 passes through the insulator layer 12b in the z-axis direction, and connects the line portion 23a and the line portion 23b.
  • the via-hole conductor b4 passes through the insulator layer 12c in the z-axis direction, and connects the line portion 23b and the line portion 23c.
  • the sub line S2 is connected between the external electrodes 14c and 14f.
  • the main line M and the sub-line S2 have the region m21 and the regions s21, s22, and s23 facing each other in parallel, and are electromagnetically coupled in these regions.
  • the capacitive element C1 is composed of planar conductor layers 24a and 24b.
  • the planar conductor layers 24a and 24b are formed on the insulator layers 12f and 12g, respectively, and are connected to the external electrodes 14f and 14e.
  • the planar conductor layers 24a and 24b have a rectangular shape and overlap each other when viewed in plan from the Z-axis direction. As a result, a capacitance is generated between the planar conductor layers 24a and 24b.
  • the capacitive element C1 is connected between the external electrode 14f and the external electrode 14e.
  • the directional coupler 10 configured as described above can improve the isolation characteristic and the directional characteristic.
  • FIG. 4A is a graph showing the degree-of-coupling characteristic E and the isolation characteristic F of the forward direction signal of the directional coupler 10 of FIG. 1
  • FIG. FIG. 5A is a graph showing the coupling characteristic E and the isolation characteristic F of the forward signal of the conventional configuration shown as a comparative example
  • FIG. 6A is a graph showing the coupling characteristic E and the isolation characteristic F of the backward signal of the directional coupler 10 of FIG. 1
  • FIG. FIG. 7A is a graph showing the coupling characteristic E and the isolation characteristic F of the backward signal of the conventional configuration
  • the marker frequencies in each figure are m1, m5, m9 are lower limit frequencies of GSM800 / 900, m2, m6, m10 are upper limit frequencies of GSM800 / 900, m3, m7, m11 are lower limit frequencies of GSM1800 / 1900, m4, m8, m12 is the upper limit frequency of GSM1800 / 1900.
  • the isolation characteristic F and the directional characteristic G increase as the frequency increases, as shown in FIG.
  • the inductance of the sub line and the capacitance of the capacitive element cause series resonance, so that the isolation characteristic F and the directional characteristic G have a pole in the vicinity of 1.5 GHz.
  • the frequency of this pole can be adjusted by the capacitance value of the capacitive element.
  • FIG. 4 shows a case where the capacitance value is adjusted so that the isolation characteristic is most preferable for a predetermined frequency region. 4 and 5, the amount of attenuation can be increased for both the isolation characteristic and the directivity characteristic by inserting the capacitive element C1.
  • the directional coupler 10 is designed so that the line lengths are symmetrical with respect to the input / output directions, and the symmetry is maintained even by the insertion of the capacitive element C1, so that it can be obtained with respect to the forward signal.
  • the above-described effect can be obtained for a reverse signal as shown in FIGS.
  • both forward and reverse signals can be received with the same sensitivity, so that the same specification IC can be applied to both the sub-line S1 and S2 circuits. can do.
  • the directional coupler 10 is joined to the mounting substrate 13 shown in FIG. Although not shown, various electrode patterns are formed on the mounting substrate 13, and various electromagnetic waves are radiated from the electrode patterns.
  • the directional coupler 10 includes a layer in which the sub-lines S1 and S2 are formed, a layer in which the main line M is formed, and a capacitive element C1 from the positive direction side in the z-axis direction to the negative direction side.
  • the layers are arranged in this order, and the mounting surface. Accordingly, the capacitive element C1 is positioned between the main line M and the sub lines S1 and S2 that are signal lines of the directional coupler 10 and the mounting substrate.
  • the signal line of the directional coupler 10 is moved away from the mounting substrate by the amount of the capacitive element C1, so that the electromagnetic influence that the directional coupler 10 receives from various electrode patterns on the mounting substrate is reduced. It becomes possible.
  • the terminal impedances R1 and R2 of the external electrodes 4 and 5 are generally 50 ⁇ , but may be deviated from 50 ⁇ .
  • the directional coupler 10 does not have a shield conductor layer having a ground potential in the laminated body.
  • a circuit device (not shown) including a directional coupler, an electromagnetic component between the directional coupler and another electronic component or an electrode pattern in the mounting substrate is included in the circuit device. Shielding measures are taken on the electronic component and the substrate side so as not to cause mutual interference. As a result, in the directional coupler 10, it is possible to reduce the space, material, and manufacturing cost for forming the shield conductor layer and the shield terminal.

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

 方向性結合器における副線路同士(あるいは主線路同士)が電磁気的に結合し、アイソレーション特性が劣化する。アイソレーション特性が改善された方向性結合器を提供すること。 副線路S1、S2間(あるいは主線路間)に容量C1を追加することで、アイソレーション特性を有極化し、方向性結合器のアイソレーション特性を改善する。

Description

方向性結合器
 本発明は、通信機用の方向性結合器に関する。
 従来の方向性結合器としては、例えば、特許文献1に記載の方向性結合器が知られている。具体的には、図9に示すように、電極パターンが形成された複数の誘電体層が積層されて構成されている。方向性結合器は、ストリップラインからなる第1の主線路33と第2の主線路34と第1の副線路35を有し、前記第1と第2の主線路33、34が共に第1の副線路35に結合している。また、方向性結合器については、構造上、主線路及び副線路の役割を入れ替えても、同じように基本的動作を実現でき、後述する課題や解決手段についても同様のことがいえる。
特開平11-261313
 しかしながら、特許文献1に記載の方向性結合器では、2つの主線路33、34がそれぞれ副線路35の共通の部分に電磁結合しているため、第1の主線路33と第2の主線路34の間のアイソレーションが悪いという問題があった。
 本発明は、かかる実情に鑑み、主線路間(あるいは副線路間)のアイソレーションが優れた方向性結合器を提供することを目的とする。
 本発明は上記課題を解決するために、以下のように構成した方向性結合器を提供する。
 本発明による方向性結合器は、第1の端子と第2の端子を備えた主線路と、前記主線路と電磁気的に結合し、第3の端子と第4の端子を備えた第1の副線路と、前記主線路と電磁気的に結合し、第5の端子と第6の端子を備えた第2の副線路と、前記第4の端子と前記第5の端子との間に接続されている容量素子を備え、前記第4の端子と前記第5の端子はそれぞれ負荷終端されていることを特徴とする。
 上記構成によれば、方向性結合器における前記第1と第2の副線路間のアイソレーション特性を改善することができる。
 本発明による方向性結合器は、好ましくは、複数の絶縁体層が積層されて構成されている積層体を備えており、前記主線路、前記副線路及び前記容量素子は、前記積層体内に設けられている導体層により構成されている。
 上記構成によれば、方向性結合器における前記第1と第2の副線路間のアイソレーション特性を改善することができ、方向性結合器を小型化できる。
 本発明による方向性結合器は、好ましくは、前記方向性結合器の第1の主面を実装面とし、前記容量素子が前記積層体内において、前記主線路及び前記副線路と前記第1の主面との間に形成されている。
 上記構成によれば、方向性結合器が実装された際に、実装基板から受ける電磁気的な様々の影響を軽減することができる。
 本発明による回路装置は、好ましくは、本発明による方向性結合器が、シールド効果を有する基板に実装されてなる。
 上記構成によれば、方向性結合器のグランド層を省くことができ、方向性結合器を小型化できる。
 本発明によれば、方向性結合器における前記第1と第2の副線路間のアイソレーション特性を改善することができる。
本発明の方向性結合器の回路図である。 本発明の方向性結合器の外観斜視図、上面図である。 本発明の方向性結合器の積層体の分解斜視図である。 本発明の方向性結合器の特性図である。 比較例の方向性結合器の特性図である。 本発明の方向性結合器の特性図である。 比較例の方向性結合器の特性図である。 本発明の方向性結合器を搭載基板に実装した説明図である。 先行技術の方向性結合器の積層構造を示す説明図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 図1は、実施の形態に係る方向性結合器10の回路図、図2が同じく外観図、図3が同じく分解斜視図である。
 方向性結合器10の回路構成について説明する。方向性結合器10は、外部電極(端子)1~6、主線路M、副線路S1、S2、終端抵抗R1、R2及び容量素子C1を備えている。主線路Mは外部電極1、2間に接続されている。副線路S1は外部電極3、4間に接続され、主線路Mと電磁気的に結合している。副線路S2は外部電極5、6間に接続され、主線路Mと電磁気的に結合している。終端抵抗R1、R2は各々、一方が外部電極4、5に接続され、他方は接地されている。容量素子C1は外部電極4、5間に接続されている。
 方向性結合器10の主線路Mを伝わる信号には、外部電極1から入り、外部電極2より出ていく順方向の信号と、該順方向の信号がこの後段の回路で反射して、外部電極2に戻り、外部電極1から出ていく逆方向の信号がある。そして、前記順方向信号については、外部電極1が入力ポート、外部電極2が出力ポートとしてはたらき、前記逆方向信号については、外部電極2が入力ポート、外部電極1が出力ポートとしてはたらく。また、外部電極3は前記順方向信号のカップリングポートとしてはたらき、外部電極6は前記逆方向信号のカップリングポートとしてはたらく。外部電極4、5はそれぞれ50Ωで終端されるターミネートポートとして用いられる。
 以上のような方向性結合器10では、主線路Mと副線路S1の電磁気的結合により、前記順方向信号の電力に比例する電力を有する信号が、外部電極3から出力される。また、主線路Mと副線路S2の電磁気的結合により、前記逆方向信号の電力に比例する電力を有する信号が、外部電極6から出力される。それら信号の所定の周波数としては、例えば、824MHz~915MHz(GSM800/900)の周波数を有する信号または1710MHz~1910MHz(GSM1800/1900)の周波数を有する信号であり、前記方向性結合器の外部電極3、6からの出力信号は、自動利得制御装置(図示せず)の入力信号となる。
 また、方向性結合器の性能を表す主要特性として、結合度特性、アイソレーション特性及び方向性特性を用いる。結合度特性とは、入力ポートに入力される信号とカップリングポートから出力される信号との間の電力の比(すなわち、減衰量S(3,1))、及び、周波数の関係であり、アイソレーション特性とは、出力ポートから入力される信号とカップリングポートから出力される信号との間の電力の比(すなわち、減衰量S(3,2))、及び、周波数の関係である。方向性特性とは、結合度特性とアイソレーション特性の比(すなわち、減衰量S(3,2)/S(3,1))、及び、周波数の関係である。
 次に、方向性結合器10の具体的構成について説明する。図2(a)は方向性結合器10の外観斜視図、図2(b)は上面図である。図3は、実施の形態に係る方向性結合器10の積層体11の分解斜視図である。以下では、積層方向をz軸方向と定義し、z軸方向から平面視したときの方向性結合器10の長辺方向をx軸方向と定義し、z軸方向から平面視したときの方向性結合器10の短辺方向をy軸方向と定義する。なお、x軸、y軸、z軸は、互いに直交している。
 積層体11は、図2及び図3に示すように、外部電極14(14a~14f)、主線路M、副線路S1、S2、容量素子C1を備えている。積層体11は、図2に示すように、直方体状をなしており、図3に示すように、絶縁体層12(12a~12g)がz軸方向の正方向側から負方向側へとこの順に並ぶように積層されることにより構成されている。方向性結合器10の実装面15は、最下層となる絶縁体層12gの積層面の裏面側である。絶縁体層12は、誘電体セラミックであり、長方形状をなしている。
 外部電極14a,14e,14bは、積層体11のy軸方向の負方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられており、z軸方向にはすべての層を貫通するように形成されている。外部電極14c,14f,14dは、積層体11のy軸方向の正方向側の側面において、x軸方向の負方向側から正方向側へとこの順に並ぶように設けられており、z軸方向にはすべての層を貫通するように形成されている。
 主線路Mは、図3に示すように、線路部21により構成されている。線路部21は、絶縁体層12e上に設けられている線状の導体層であり、外部電極14a、14bに接続されている。
 副線路S1は、図3に示すように、線路部22a、22b、22c及びビアホール導体b1~b2により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、反時計回りに旋廻する螺線状をなしている。ここで、副線路S1において、反時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。
 線路部22aは、絶縁体層12b上に形成されている線状の導体層であり、その上流端は、外部電極14dに接続されている。線路部22bは、絶縁体層12c上に形成されている線状の導体層である。線路部22cは、絶縁体層12d上に形成されている線状の導体層であり、その下流端は、外部電極14eに接続されている。ビアホール導体b1は、絶縁体層12bをz軸方向に貫通しており、線路部22aと線路部22bを接続している。また、ビアホール導体b2は、絶縁体層12cをz軸方向に貫通しており、線路部22bと線路部22cを接続している。
 これにより、副線路S1は、外部電極14d,14e間に接続されている。z軸方向から平面視したときに、主線路Mと副線路S1とは、主線路の領域m11と副線路の領域s11、s12、s13が平行に対向しており、これらの領域で電磁気的に結合している。
 副線路S2は、図3に示すように、線路部23a、23b、23c及びビアホール導体b3~b4により構成されており、z軸方向の正方向側から負方向側にいくにしたがって、時計回りに旋廻する螺線状をなしている。ここで、副線路S2において、時計回りの上流側の端部を上流端と呼び、反時計回りの下流側の端部を下流端と呼ぶ。
 線路部23aは、絶縁体層12b上に形成されている線状の導体層であり、その上流端は、外部電極14cに接続されている。線路部23bは、絶縁体層12c上に形成されている線状の導体層である。線路部23cは、絶縁体層12d上に形成されている線状の導体層であり、その下流端は、外部電極14fに接続されている。ビアホール導体b3は、絶縁体層12bをz軸方向に貫通しており、線路部23aと線路部23bを接続している。また、ビアホール導体b4は、絶縁体層12cをz軸方向に貫通しており、線路部23bと線路部23cを接続している。
 これにより、副線路S2は、外部電極14c,14f間に接続されている。z軸方向から平面視したときに、主線路Mと副線路S2とは、領域m21と領域s21、s22、s23が平行に対向しており、これらの領域で電磁気的に結合している。
 容量素子C1は、面状導体層24a、24bにより構成されている。面状導体層24a,24bはそれぞれ、絶縁体層12f、12gに形成されており、外部電極14f,14eに接続されている。面状導体層24a,24bは、長方形状をなしており、Z軸方向から平面視したときに、互いに重なっている。これにより、面状導体層24aと24bとの間には容量が発生している。そして、容量素子C1は、外部電極14fと外部電極14eとの間に接続されている。
 以上のように構成された方向性結合器10により、アイソレーション特性並びに方向性特性を改善することができる。
 図4(a)は図1の方向性結合器10の順方向信号の結合度特性Eとアイソレーション特性F、図4(b)は同じく方向性特性Gを示すグラフである。図5(a)は比較例として示す従来構成の順方向信号の結合度特性Eとアイソレーション特性F、図5(b)は同じく方向性特性Gを示すグラフである。また、図6(a)は図1の方向性結合器10の逆方向信号の結合度特性Eとアイソレーション特性F、図6(b)は同じく方向性特性Gを示すグラフである。図7(a)は従来構成の逆方向信号の結合度特性Eとアイソレーション特性F、図7(b)は同じく方向性特性Gを示すグラフである。各図におけるマーカー周波数は、m1、m5、m9がGSM800/900の下限周波数、m2、m6、m10がGSM800/900の上限周波数、m3、m7、m11がGSM1800/1900の下限周波数、m4、m8、m12がGSM1800/1900の上限周波数である。
 従来構成の方向性結合器、すなわち図1において容量素子C1を挿入する前の回路構成では、図5に示すようにアイソレーション特性Fと方向性特性Gは周波数が高くなるにしたがって、高くなる。これに対し、図1の方向性結合器10では副線路のインダクタンスと前記容量素子のキャパシタンスが直列共振を起こすことで、アイソレーション特性Fと方向性特性Gにおいて1.5GHz付近に極を持たせることができ、加えて、この極の周波数は前記容量素子の容量値により調整が可能である。図4は、所定の周波数領域に対してアイソレーション特性が最も好ましくなるように、前記容量値を調整したときのものである。図4と図5から、容量素子C1を挿入することにより、アイソレーション特性並びに方向性特性ともに減衰量を大きくすることができている。
 方向性結合器10は入出力の向きに対して各線路長が対称に設計されており、また、容量素子C1の挿入によってもその対称性は維持されるので、順方向の信号に対して得られる前述の効果は、逆方向の信号に対しても図6、図7に示す通り、得ることができる。
 さらに、方向性結合器10が対称であることより、順方向の信号、逆方向の信号ともに同じ感度で受けることができ、よって同じ仕様のICが副線路S1、S2のどちらの回路にも適用することができる。
 方向性結合器10は、図8に示す搭載基板13に、実装面15の向きにはんだ16で接合される。この搭載基板13には、図示していないが、諸々の電極パターンが形成され、該電極パターンからは諸々の電磁波が輻射されている。
 方向性結合器10は、z軸方向の正方向側から負方向側に向かって、副線路S1、S2が形成されている層、主線路Mが形成されている層、容量素子C1が形成されている層、実装面の順に配置されている。これにより、容量素子C1は方向性結合器10の信号線路である主線路M、副線路S1、S2と搭載基板との間に位置することとなる。この結果、方向性結合器10の信号線路は容量素子C1が入る分だけ搭載基板から遠ざけられることとなり、方向性結合器10が搭載基板上の諸々の電極パターンから受ける電磁気的な影響を軽減することが可能となる。
 なお、前記外部電極4と5の終端インピーダンスR1、R2としては50Ωが一般的であるが、50Ωからずれていてもよい。
 また、方向性結合器10は、積層体内にグランド電位をもつシールド導体層を有しない。このため、方向性結合器を含む回路装置(図示せず)としては、該回路装置内で、前記方向性結合器とそれ以外の電子部品あるいは搭載基板内の電極パターンとの間で電磁気的な相互干渉を引き起こさないよう前記電子部品や前記基板の側で、シールド対策が施されている。この結果、方向性結合器10においては、シールド導体層やシールド端子を形成するためのスペースおよび材料、製造コストを削減することが可能となる。
M      主線路
S1、S2  副線路
C1     容量素子
R1、R2  終端抵抗
10     方向性結合器
11     積層体
12a~12g 絶縁体層
13     搭載基板
14a~14f  外部電極
15    実装面
21、22a~22c、23a~23c、24a、24b  導体層
m11、m21、s11~s13、s21~s23  線路部結合部
E     結合度特性
F     アイソレーション特性
G     方向性特性

Claims (3)

  1.  第1の端子と第2の端子を備えた主線路と
     前記主線路と電磁気的に結合し、第3の端子と第4の端子を備えた第1の副線路と、
     前記主線路と電磁気的に結合し、第5の端子と第6の端子を備えた第2の副線路と、
     前記第4の端子と前記第5の端子との間に接続されている容量素子を備え、
     前記第4の端子と前記第5の端子はそれぞれ負荷終端されていることを特徴とする方向性結合器。
  2.  複数の絶縁体層が積層されて構成されている積層体を備えており、
     前記主線路、前記副線路及び前記容量素子は、前記積層体内に形成されている導体層により構成されていることを特徴とする請求項1に記載の方向性結合器。
  3.  前記方向性結合器の第1の主面を実装面とし、
     前記容量素子が前記積層体内において、前記主線路及び前記副線路と前記第1の主面との間に形成されていることを特徴とする請求項2に記載の方向性結合器。
PCT/JP2011/059158 2010-08-03 2011-04-13 方向性結合器 WO2012017713A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180037434.3A CN103038937B (zh) 2010-08-03 2011-04-13 定向耦合器
JP2012527624A JP5482901B2 (ja) 2010-08-03 2011-04-13 方向性結合器
US13/754,956 US8536956B2 (en) 2010-08-03 2013-01-31 Directional coupler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-174576 2010-08-03
JP2010174576 2010-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/754,956 Continuation US8536956B2 (en) 2010-08-03 2013-01-31 Directional coupler

Publications (1)

Publication Number Publication Date
WO2012017713A1 true WO2012017713A1 (ja) 2012-02-09

Family

ID=45559227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059158 WO2012017713A1 (ja) 2010-08-03 2011-04-13 方向性結合器

Country Status (4)

Country Link
US (1) US8536956B2 (ja)
JP (1) JP5482901B2 (ja)
CN (1) CN103038937B (ja)
WO (1) WO2012017713A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173409A (ja) * 2014-03-12 2015-10-01 Tdk株式会社 方向性結合器
US11309617B2 (en) 2018-02-05 2022-04-19 Murata Manufacturing Co., Ltd. Directional coupler
US11335987B2 (en) 2018-03-29 2022-05-17 Murata Manufacturing Co., Ltd. Directional coupler
US11387536B2 (en) 2019-04-17 2022-07-12 Murata Manufacturing Co., Ltd. Mount component and module
US11664571B2 (en) 2018-12-17 2023-05-30 Murata Manufacturing Co., Ltd. Coupler module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923950B1 (fr) * 2007-11-20 2010-03-12 St Microelectronics Tours Sas Coupleur bidirectionnel integre.
US10056685B2 (en) 2014-03-06 2018-08-21 Samsung Electronics Co., Ltd. Antenna array self-calibration
US10027292B1 (en) * 2016-05-13 2018-07-17 Macom Technology Solutions Holdings, Inc. Compact dual diode RF power detector for integrated power amplifiers
KR102142520B1 (ko) * 2018-05-11 2020-08-07 삼성전기주식회사 위상보상 기능을 갖는 커플러 회로
KR20200121201A (ko) * 2019-04-15 2020-10-23 삼성전자주식회사 방향성 결합기 및 이를 포함하는 전자 장치
US11563261B2 (en) * 2020-02-28 2023-01-24 Viettel Group Four-port directional coupler having a main line and two secondary lines, where the two secondary lines are coupled to compensation circuits with attenuation regulator circuits
TWI796657B (zh) * 2021-03-24 2023-03-21 國立暨南國際大學 功率分配器/結合器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861503U (ja) * 1981-10-20 1983-04-25 日本電気株式会社 終端切替型方向性結合器
US5424694A (en) * 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH11220312A (ja) * 1998-01-30 1999-08-10 Ngk Spark Plug Co Ltd ローパスフィルタ内蔵カプラ
JP2005203824A (ja) * 2004-01-13 2005-07-28 Ngk Spark Plug Co Ltd 高周波カプラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006821A (en) * 1989-09-14 1991-04-09 Astec International, Ltd. RF coupler having non-overlapping off-set coupling lines
US5363071A (en) * 1993-05-04 1994-11-08 Motorola, Inc. Apparatus and method for varying the coupling of a radio frequency signal
JPH1022707A (ja) 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd 一方向性結合器とそれを用いた電子機器
JP3289643B2 (ja) * 1997-04-11 2002-06-10 株式会社村田製作所 方向性結合器
US5886589A (en) * 1997-05-30 1999-03-23 Analog Devices, Incorporated Balanced to unbalanced transmission line transformers
JP3664358B2 (ja) 1998-03-09 2005-06-22 日立金属株式会社 方向性結合器及び、それを用いた携帯電話
JP4360045B2 (ja) 2001-05-02 2009-11-11 株式会社村田製作所 積層型方向性結合器
KR100506728B1 (ko) 2001-12-21 2005-08-08 삼성전기주식회사 듀얼밴드 커플러
US6759922B2 (en) * 2002-05-20 2004-07-06 Anadigics, Inc. High directivity multi-band coupled-line coupler for RF power amplifier
US7394333B2 (en) * 2002-12-06 2008-07-01 Stmicroelectronics S.A. Directional coupler
JP4782562B2 (ja) * 2005-12-28 2011-09-28 東京計器株式会社 方向性結合器、空中線整合器及び送信機
JP5169844B2 (ja) * 2009-01-06 2013-03-27 三菱電機株式会社 方向性結合器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861503U (ja) * 1981-10-20 1983-04-25 日本電気株式会社 終端切替型方向性結合器
US5424694A (en) * 1994-06-30 1995-06-13 Alliedsignal Inc. Miniature directional coupler
JPH11220312A (ja) * 1998-01-30 1999-08-10 Ngk Spark Plug Co Ltd ローパスフィルタ内蔵カプラ
JP2005203824A (ja) * 2004-01-13 2005-07-28 Ngk Spark Plug Co Ltd 高周波カプラ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173409A (ja) * 2014-03-12 2015-10-01 Tdk株式会社 方向性結合器
US11309617B2 (en) 2018-02-05 2022-04-19 Murata Manufacturing Co., Ltd. Directional coupler
US11335987B2 (en) 2018-03-29 2022-05-17 Murata Manufacturing Co., Ltd. Directional coupler
US11664571B2 (en) 2018-12-17 2023-05-30 Murata Manufacturing Co., Ltd. Coupler module
US11387536B2 (en) 2019-04-17 2022-07-12 Murata Manufacturing Co., Ltd. Mount component and module

Also Published As

Publication number Publication date
CN103038937B (zh) 2015-02-11
JP5482901B2 (ja) 2014-05-07
US20130141184A1 (en) 2013-06-06
CN103038937A (zh) 2013-04-10
JPWO2012017713A1 (ja) 2013-10-03
US8536956B2 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
JP5482901B2 (ja) 方向性結合器
US9077061B2 (en) Directional coupler
KR100309656B1 (ko) 칩형트랜스
US8314663B2 (en) Directional coupler
US9000864B2 (en) Directional coupler
EP0585469A1 (en) Hybrid coupler
US7262675B2 (en) Laminated filter with improved stop band attenuation
US9119318B2 (en) Multilayer substrate module
JP2023529627A (ja) 3dB直交ハイブリッドカプラ、高周波フロントエンドモジュール及び通信端末
JP2019087832A (ja) 双方向型方向性結合器
US10637123B2 (en) Directional coupler
US7459989B2 (en) Integrated phase shifter of differential signals in quadrature
JP4783996B2 (ja) 積層型複合バラントランス
JP2840814B2 (ja) チップ型トランス
US20070188273A1 (en) Resonant circuit, filter circuit, and multilayered substrate
JP2001185972A (ja) 積層フィルタ
JP4195568B2 (ja) 積層型電子部品
CN112582770B (zh) 定向耦合器及电子部件模块
US8319575B2 (en) Magnetic resonance type isolator
US20230361447A1 (en) Directional coupler
JP4143950B2 (ja) アイソレータ内蔵高周波複合回路
JP2001006941A (ja) 高周波トランスおよびインピーダンス変換器
JP4900623B2 (ja) 複合バラン
JP3153518U (ja) 複合バラン
JP2006157094A (ja) 2ポートアイソレータの特性調整方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037434.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814344

Country of ref document: EP

Kind code of ref document: A1