WO2012014730A1 - 双極型電池 - Google Patents

双極型電池 Download PDF

Info

Publication number
WO2012014730A1
WO2012014730A1 PCT/JP2011/066386 JP2011066386W WO2012014730A1 WO 2012014730 A1 WO2012014730 A1 WO 2012014730A1 JP 2011066386 W JP2011066386 W JP 2011066386W WO 2012014730 A1 WO2012014730 A1 WO 2012014730A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
generation element
elastic metal
bipolar battery
metal portion
Prior art date
Application number
PCT/JP2011/066386
Other languages
English (en)
French (fr)
Inventor
小比賀 基治
堀江 英明
新田 芳明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MX2013000695A priority Critical patent/MX2013000695A/es
Priority to US13/812,053 priority patent/US9203073B2/en
Priority to RU2013103806/07A priority patent/RU2521075C1/ru
Priority to BR112013001935A priority patent/BR112013001935A2/pt
Priority to JP2012526439A priority patent/JP5510546B2/ja
Priority to EP11812322.3A priority patent/EP2600442B1/en
Priority to KR1020137004237A priority patent/KR101451044B1/ko
Priority to CN201180036358.4A priority patent/CN103026534B/zh
Publication of WO2012014730A1 publication Critical patent/WO2012014730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This invention relates to a bipolar battery.
  • JP-2004-319156-A discloses a bipolar battery in which a plurality of bipolar electrodes having electrode layers formed on the front and back sides of a current collector are stacked via an electrolyte layer.
  • the power generation element may overheat.
  • the electrolyte electrolytic solution
  • the internal pressure of the exterior material may increase.
  • the present invention has been made paying attention to such conventional problems, and the object of the present invention is to limit the amount of current when gas is generated and the internal pressure of the exterior material rises, and it is excessive. To provide a bipolar battery in which current is prevented from flowing.
  • the power generation element includes a plurality of bipolar electrodes having electrode layers formed on the front and back surfaces of the current collector, with the electrolyte layer interposed therebetween.
  • an elastic metal part that is provided in contact with the power generation element, contacts the power generation element with a point or a line when no external force is applied, and contacts the power generation element with a surface when the external force is applied, and the power generation element
  • a battery having an exterior material which is provided so as to accommodate the elastic metal part, and whose internal atmospheric pressure is lower than the atmospheric pressure and which makes the elastic metal part contact the power generation element on the surface by a pressure difference between the internal atmospheric pressure and the atmospheric pressure Is provided.
  • FIG. 1 is a diagram showing a first embodiment of a bipolar battery according to the present invention.
  • FIG. 2 is a diagram for explaining the operational effects of the first embodiment.
  • FIG. 3 is a diagram showing a second embodiment of a bipolar battery according to the present invention.
  • FIG. 4 is a diagram for explaining the operational effects of the second embodiment.
  • FIG. 5 is a view showing an elastic metal part of the electrode tab of the third embodiment of the bipolar battery according to the present invention.
  • FIG. 6 is a view showing an elastic metal part of the electrode tab of the fourth embodiment of the bipolar battery according to the present invention.
  • FIG. 7 is a diagram showing a fifth embodiment of a bipolar battery according to the present invention.
  • FIG. 8 is a view showing an elastic metal part of an electrode tab of another embodiment of the bipolar battery according to the present invention.
  • FIG. 9 is a view showing an elastic metal part of an electrode tab according to another embodiment of the bipolar battery according to the present invention.
  • FIG. 1 is a view showing a first embodiment of a bipolar battery according to the present invention
  • FIG. 1 (A) is a longitudinal sectional view in an assembled state
  • FIG. 1 (B) is an electrode tab in a state where no external force is applied
  • FIG. 1C is a cross-sectional view taken along the line CC of FIG. 1B.
  • the bipolar battery 1 includes a power generation element 10, an electrode tab 20, and an exterior material 30.
  • the power generation element 10 includes a bipolar electrode 11, an electrolyte layer 12, and a seal 13.
  • the bipolar electrode 11 includes a current collector 111, a positive electrode 112, and a negative electrode 113.
  • the positive electrode 112 is formed on one surface (the lower surface in FIG. 1A) of the current collector 111.
  • the negative electrode 113 is formed on the opposite surface (the upper surface in FIG. 1A) of the current collector 111.
  • the current collector 111 is formed of a conductive material such as a metal, a conductive polymer material, or a nonconductive polymer material to which a conductive filler is added.
  • a conductive material such as a metal, a conductive polymer material, or a nonconductive polymer material to which a conductive filler is added.
  • the metal suitable for the material of the current collector 111 include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plated material of a combination of these metals may be used.
  • a foil having a metal surface coated with aluminum may be used. In consideration of electronic conductivity and battery operating potential, aluminum, stainless steel, and copper are particularly preferable.
  • examples of the conductive polymer material suitable for the material of the current collector 111 include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, the manufacturing process can be facilitated, and the current collector 111 can be reduced in weight. However, a conductive filler may be added as necessary.
  • non-conductive polymer material suitable for the material of the current collector 111, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE)), polypropylene (PP) , Polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN) ), Polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), and polystyrene (PS).
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET Polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • the conductive filler is not particularly limited as long as it is a conductive substance, but if it is a metal or the like or conductive carbon, it is excellent in conductivity, potential resistance, and lithium ion blocking properties.
  • suitable metals for the conductive filler material include at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K. Examples thereof include alloys containing these metals, metal oxides containing these metals, and the like.
  • the conductive carbon suitable for the material of the conductive filler is at least selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. It is preferable that 1 type is included.
  • the amount of the conductive filler to be added is not particularly limited as long as it can impart sufficient conductivity to the current collector 111, and is generally about 5 to 35% by mass.
  • the size of the current collector 111 is set according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, the current collector 111 having a large area is used. There is no particular limitation on the thickness of the current collector 111. The thickness of the current collector 111 is usually about 1 to 100 ⁇ m.
  • the positive electrode 112 is formed on one surface (the lower surface in FIG. 1A) of the current collector 111.
  • the positive electrode 112 is a layer containing a positive electrode active material.
  • the positive electrode active material has a composition that occludes ions during discharging and releases ions during charging.
  • a preferable example is a lithium-transition metal composite oxide that is a composite oxide of a transition metal and lithium. Specifically, Li ⁇ Co-based composite oxide such as LiCoO 2, Li ⁇ Ni-based composite oxide such as LiNiO 2, Li ⁇ Mn-based composite oxide such as spinel LiMn 2 O 4, Li ⁇ such LiFeO 2 Fe-based composite oxides and those obtained by replacing some of these transition metals with other elements.
  • Lithium-transition metal composite oxides are excellent in reactivity and cycle characteristics, and are inexpensive to produce.
  • transition metal oxides such as LiFePO 4 and lithium phosphate compounds and sulfate compounds; transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , MoO 3 ; PbO 2 , AgO, NiOOH, or the like may be used.
  • Such a positive electrode active material may be used alone or in a mixture of two or more.
  • the average particle diameter of the positive electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of increasing the capacity, reactivity, and cycle durability of the positive electrode active material.
  • the secondary battery can suppress an increase in the internal resistance of the battery during charging and discharging under high output conditions, and can extract a sufficient current.
  • the positive electrode active material is secondary particles
  • the average particle diameter of the primary particles constituting the secondary particles is preferably in the range of 10 nm to 1 ⁇ m, but is not necessarily limited to the above range. There is no. However, although it depends on the manufacturing method, the positive electrode active material may not be a secondary particle formed by aggregation, agglomeration, or the like.
  • the shape which can take a positive electrode active material changes with kinds, a manufacturing method, etc., for example, there are spherical shape (powder shape), plate shape, needle shape, columnar shape, square shape, but it is not limited to these, Any shape can be used without problems.
  • spherical shape pellet shape
  • plate shape needle shape
  • columnar shape square shape
  • Any shape can be used without problems.
  • an optimal shape that can improve battery characteristics such as charge / discharge characteristics is appropriately selected.
  • the active material layer may contain other materials if necessary.
  • an electrolyte, a lithium salt, a conductive aid, and the like may be included in order to increase ionic conductivity.
  • the electrolyte examples include a solid polymer electrolyte, a polymer gel electrolyte, and a laminate of these. That is, the positive electrode can have a multi-layer structure, and on the collector side and the electrolyte side, a layer in which the type of electrolyte constituting the positive electrode, the type and particle size of the active material, and the mixing ratio thereof are changed is formed. May be.
  • the ratio (mass ratio) between the polymer constituting the polymer gel electrolyte and the electrolytic solution is 20:80 to 98: 2, and the ratio of the electrolytic solution is relatively small.
  • the polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing an electrolyte solution usually used in a lithium ion battery. Further, in the polymer skeleton having no lithium ion conductivity, In addition, those holding the same electrolytic solution are also included.
  • any electrolyte solution that is usually used in a lithium ion battery may be used.
  • LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiTaF 6 inorganic acid anion salts such as LiAlCl 4 and Li 2 B 10 Cl 10
  • organic acid anions such as LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N
  • Examples of the polymer having no lithium ion conductivity used for the polymer gel electrolyte include polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). However, it is not limited to these. Note that PAN and PMMA do not have any lithium ion conductivity, and thus can be a polymer having ion conductivity. However, here, PAN and PMMA have high lithium ion conductivity that is used for polymer gel electrolytes. Illustrated as a molecule.
  • Lithium salt for example, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 inorganic acid anion salts 10 such as Cl, Li (CF 3 SO 2 ) 2 N, Li ( Organic acid anion salts such as C 2 F 5 SO 2 ) 2 N, or a mixture thereof.
  • LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 inorganic acid anion salts 10 such as Cl, Li (CF 3 SO 2 ) 2 N, Li ( Organic acid anion salts such as C 2 F 5 SO 2 ) 2 N, or a mixture thereof.
  • LiPF 6 LiBF 4
  • LiClO 4 LiAsF 6, LiTaF 6, LiAlCl 4
  • Li 2 B 10 inorganic acid anion salts 10 such as Cl, Li (CF 3 SO 2 ) 2 N, Li ( Organic acid anion salts such as C 2 F 5 SO 2 ) 2 N
  • the conductive additive is an additive that is blended to improve the conductivity of the active material layer.
  • Examples of the conductive assistant include acetylene black, carbon black, and graphite. However, it is not limited to these.
  • the amount of the positive electrode active material, electrolyte (preferably solid polymer electrolyte), lithium salt, and conductive additive in the positive electrode is determined in consideration of the intended use of the battery (output priority, energy priority, etc.) and ion conductivity. Should. For example, if the amount of the electrolyte in the positive electrode, particularly the solid polymer electrolyte, is too small, the ionic conduction resistance and the ionic diffusion resistance in the active material layer will increase, and the battery performance will deteriorate. On the other hand, when the amount of the electrolyte in the positive electrode, particularly the solid polymer electrolyte, is too large, the energy density of the battery decreases. Therefore, in consideration of these factors, the solid polymer electrolytic mass meeting the purpose is determined.
  • the thickness of the positive electrode is not particularly limited, and may be determined in consideration of the intended use of the battery (emphasis on output, emphasis on energy, etc.) and ion conductivity, as described for the blending amount.
  • a typical positive electrode active material layer has a thickness of about 10 to 500 ⁇ m.
  • the negative electrode 113 is formed on one surface (the upper surface in FIG. 1A) of the current collector 111.
  • the negative electrode 113 is a layer containing a negative electrode active material.
  • the negative electrode active material has a composition capable of releasing ions during discharge and storing ions during charging.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium.
  • the negative electrode active material examples include metals such as Si and Sn, TiO, Ti 2 O 3 , TiO 2 , or Metal oxides such as SiO 2 , SiO, SnO 2 , complex oxides of lithium and transition metals such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN, Li—Pb alloys, Li—Al alloys , Li, or carbon materials such as natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, or hard carbon are preferable. Moreover, it is preferable that a negative electrode active material contains the element alloyed with lithium.
  • Such a negative electrode active material may be used alone or in a mixture of two or more.
  • Examples of the element that forms an alloy with lithium include Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, and Cd. , Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, and the like.
  • the particle diameter and shape of the negative electrode active material are not particularly limited, and can take the same form as the above-described positive electrode active material, and thus detailed description thereof is omitted here.
  • other substances for example, an electrolyte, a lithium salt, a conductive auxiliary agent, and the like may be included in order to increase ion conductivity.
  • the electrolyte layer 12 is, for example, a polymer gel electrolyte layer.
  • This electrolyte can also have a multilayer structure, and a layer in which the type of electrolyte and the component blending ratio are changed can be formed on the positive electrode side and the negative electrode side.
  • the ratio (mass ratio) between the polymer constituting the polymer gel electrolyte and the electrolytic solution is 20:80 to 2:98, which is a relatively large range of the electrolytic solution.
  • a solid polymer electrolyte having ion conductivity includes an electrolytic solution usually used in a lithium ion battery. Those in which the same electrolyte solution is held in the molecular skeleton are also included. Since these are the same as the polymer gel electrolyte described as one type of electrolyte contained in the positive electrode, description thereof is omitted.
  • solid polymer electrolytes or polymer gel electrolytes can be included in the positive electrode and / or the negative electrode as described above in addition to the polymer electrolyte constituting the battery, but depending on the polymer electrolyte, positive electrode, and negative electrode constituting the battery. Different polymer electrolytes may be used, the same polymer electrolyte may be used, or different polymer electrolytes may be used depending on the layer.
  • the thickness of the electrolyte constituting the battery is not particularly limited. However, in order to obtain a compact bipolar battery, it is preferable to make it as thin as possible as long as the function as an electrolyte can be secured.
  • a typical solid polymer electrolyte layer has a thickness of about 10 to 100 ⁇ m.
  • the shape of the electrolyte can be easily formed so as to cover the upper surface of the electrode (positive electrode or negative electrode) as well as the outer periphery of the side surface, taking advantage of the characteristics of the manufacturing method. It is not always necessary to have a substantially constant thickness.
  • the seal 13 is disposed between the upper and lower current collectors 111 and around the positive electrode 112, the negative electrode 113, and the electrolyte layer 12.
  • the seal 13 prevents contact between the current collectors and a short circuit at the end of the unit cell layer.
  • the material of the seal 13 is selected in consideration of insulation, sealing performance against dropping off of the solid electrolyte, sealing performance against moisture permeation from the outside (sealing performance), heat resistance under battery operating temperature, and the like.
  • acrylic resin, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber, nylon resin and the like are suitable. Of these, polyethylene resin, polypropylene resin, and acrylic resin are particularly suitable in consideration of corrosion resistance, chemical resistance, ease of production (film forming property), and economic efficiency.
  • the electrode tab 20 includes an elastic metal portion 21 that contacts the power generation element 10. One end of the electrode tab 20 is exposed to the outside of the exterior material 30.
  • the electrode tab 20 is formed of, for example, aluminum, copper, titanium, nickel, stainless steel (SUS), or an alloy thereof. Aluminum is particularly suitable in consideration of corrosion resistance, ease of production, economy, and the like.
  • the positive electrode tab 20 and the negative electrode tab 20 may be made of the same material or different materials. Further, different materials may be laminated in multiple layers.
  • the elastic metal portion 21 of the electrode tab 20 is arranged so that the vicinity of the center is away from the power generating element 10 when no external force is applied (that is, FIG. ) And FIG. 1 (C) upward).
  • the exterior material is sealed in a state where the internal pressure is lower than the atmospheric pressure, for example, in a substantially vacuum state.
  • atmospheric pressure acts on the elastic metal part 21, and the entire surface of the elastic metal part 21 contacts the power generation element 10 (contacts with the surface).
  • the elastic metal portion 21 is an elastic member that can be deformed depending on whether or not an external force acts in this way.
  • the exterior material 30 accommodates the power generation element 10.
  • the packaging material 30 is soft.
  • Various materials can be used for the packaging material 30.
  • the exterior material 30 is joined to the periphery by thermal fusion. In the assembled state shown in FIG. 1 (A), the interior of the exterior member 30 is lower than the atmospheric pressure and is almost evacuated.
  • FIG. 2 is a diagram for explaining the operation and effect of the present embodiment.
  • FIG. 2 (A) shows a normal state
  • FIG. 2 (B) shows an abnormal state.
  • the current flows uniformly over the entire surface. If there is any abnormal factor such as an external short circuit, the power generation element 10 may overheat.
  • the power generation element 10 reaches a high temperature, the electrolyte (electrolytic solution) is vaporized and the internal pressure of the exterior material increases. Then, as shown in FIG. 2B, the elastic metal portion 21 is deformed into a convex shape near the center and is separated from the power generation element 10. As a result, current flows only in the vicinity of the periphery, so the amount of current is limited and excessive current is prevented from flowing.
  • the exterior material 30 is heat-sealed around the periphery, but if a part of the heat-sealing width is reduced, that becomes a soft valve. Then, when the electrolyte (electrolyte) evaporates and the internal pressure of the exterior material rises, the internal pressure escapes from this soft valve, so the internal pressure of the exterior material is suppressed to atmospheric pressure, and the internal pressure of the exterior material increases. It can prevent becoming too much.
  • FIG. 3 is a view showing a second embodiment of the bipolar battery according to the present invention
  • FIG. 3 (A) is a longitudinal sectional view in an assembled state
  • FIG. 3 (B) is an electrode tab in a state where no external force is applied
  • FIG. 3C is a cross-sectional view taken along the line CC of FIG. 3B.
  • the elastic metal portion 21 of the electrode tab 20 of the present embodiment is directed toward the power generation element 10 when no external force is applied (FIG. 3B). And in FIG. 3C (downward), the vicinity of the center is convex.
  • the exterior material is sealed in a state where the internal pressure is lower than the atmospheric pressure, for example, in a substantially vacuum state.
  • atmospheric pressure acts on the elastic metal part 21, and the entire surface of the elastic metal part 21 contacts the power generation element 10 (contacts with the surface).
  • the elastic metal portion 21 is more strongly pressed toward the vicinity of the center of the power generation element 10.
  • gas may be generated due to the formation of a film on the surface of the negative electrode or decomposition of the electrolytic solution, particularly in the initial stage. If the generated gas stays in the electrolyte layer, the current flow is hindered. In addition, if the electrolyte layer becomes non-uniform due to the generated gas, there is a possibility that a vicious circle will occur in which further gas generation is induced.
  • the elastic metal portion 21 of the electrode tab 20 of the present embodiment is directed toward the power generation element 10 as shown in FIGS. 3B and 3C when no external force is applied ( 3B and 3C), the vicinity of the center is convex. Therefore, in the assembled state shown in FIG. 3A, the power generating element 10 receives a greater pressing force from the elastic metal portion 21 toward the center. Therefore, the gas generated in the electrolyte layer easily moves to the vicinity of the peripheral seal having a small pressing force. This prevents the current flow from being obstructed by the gas. Since no current flows in the vicinity of the seal, no trouble occurs even if gas is accumulated.
  • FIG. 4 is a diagram for explaining the operational effects of the present embodiment.
  • FIG. 4 (A) shows a normal state and
  • FIG. 4 (B) shows an abnormal state.
  • the current flows uniformly over the entire surface. If there is any abnormal factor such as an external short circuit, the power generation element 10 may overheat.
  • the power generation element 10 reaches a high temperature, the electrolyte (electrolytic solution) is vaporized and the internal pressure of the exterior material increases. Then, as shown in FIG. 4 (B), the elastic metal portion 21 is deformed into a convex shape with the vicinity of the center away from the power generation element 10, leaving the vicinity of the center, and the vicinity of the center toward the power generation element. Then, since the current only flows near the center, the amount of current is limited, and an excessive current is prevented from flowing.
  • FIG. 5 is a view showing an elastic metal part of an electrode tab of a third embodiment of the bipolar battery according to the present invention
  • FIG. 5 (A) is a perspective view of the elastic metal part of the electrode tab
  • FIG. FIG. 6 is a BB cross-sectional view of FIG.
  • the elastic metal portion 21 of the electrode tab of the present embodiment has a shape in which the vicinity of the center is convex downward and the peripheral surface 21a is arranged on one plane in a state where no external force is applied.
  • the exterior material is sealed in a state where the internal pressure is lower than the atmospheric pressure as described above. At this time, the atmospheric pressure acts on the elastic metal portion 21 of the electrode tab through the exterior material to make the elastic metal portion 21 of the electrode tab flat. At this time, there is a possibility that the peripheral end of the elastic metal portion 21 may be damaged by being hard to get into the polymer film layer of the exterior material.
  • the elastic metal portion 21 of the electrode tab has a shape in which the peripheral surface 21a is arranged on one plane in a state where no external force acts. With such a structure, at least the peripheral surface 21 a of the elastic metal portion 21 of the electrode tab always comes into contact with the exterior material 30. Therefore, when manufacturing the bipolar battery according to the present invention, it is possible to prevent the peripheral end of the elastic metal portion 21 from damaging the polymer film layer of the exterior material.
  • FIG. 6 is a diagram showing an elastic metal part of an electrode tab of a bipolar battery according to a fourth embodiment of the present invention.
  • FIG. 6 (A) is a perspective view of the elastic metal part of the electrode tab
  • FIG. FIG. 7 is a sectional view taken along line BB in FIG.
  • the elastic metal portion 21 of the electrode tab of the present embodiment is provided with a portion 21b coated with an insulating resin on the periphery.
  • the insulating resin coating portion 21b of the elastic metal portion 21 of the electrode tab always comes into contact with the exterior material 30. Therefore, when manufacturing the bipolar battery according to the present invention, it is possible to prevent the peripheral end of the elastic metal portion 21 from damaging the polymer film layer of the exterior material. Even if the polymer film layer of the exterior material is damaged, the metal layer of the exterior material and the elastic metal portion 21 of the electrode tab do not short-circuit because there is the insulating resin coating portion 21b.
  • FIG. 7 is a diagram showing a bipolar battery according to a fifth embodiment of the present invention.
  • FIG. 7 (A) is a longitudinal sectional view in an assembled state
  • FIG. 7 (B) shows a bipolar electrode and a seal around it.
  • FIG. 7C is a cross-sectional view of the elastic metal portion of the electrode tab when no external force is applied.
  • the power generation region of the power generation element 10 is divided into a plurality. Specifically, as shown in FIG. 7A and FIG. 7B, the positive electrode 112 and the negative electrode 113 are divided into two so that the power generation region is in two places.
  • the elastic metal portion 21 of the electrode tab is formed so as to protrude toward the vicinity of the center of each power generation region of the power generation element 10 when no external force is applied, as shown in FIG. 7C. Yes.
  • the peripheral surface 21a and the center surface 21c are arranged on a single plane.
  • each power generation region of the power generation element 10 receives a greater pressing force from the elastic metal portion 21 toward the center.
  • the elastic metal portion 21 presses stronger toward the vicinity of the center of the power generation region of the power generation element 10. Therefore, the gas generated in the electrolyte layer easily moves to a peripheral region (region where no electrode is formed) having a small pressing force. In such a region, no current flows from the beginning, so that no trouble occurs even if gas is accumulated.
  • the end of the elastic metal portion 21 may be curled. Even if it does in this way, when manufacturing a bipolar battery, it can prevent that the peripheral end of the elastic metal part 21 damages the polymer film layer of an exterior material.
  • the positive electrode 112 and the negative electrode 113 are divided into two so that the power generation region is in two places.
  • the elastic metal part 21 of the electrode tab was formed so that it might become convex toward the center vicinity of each electric power generation area
  • the power generation region may be formed at one location, and the elastic metal portion 21 of the electrode tab may be convex at two locations.
  • the elastic metal portion 21 may be deformed when the power generation element 10 is overheated and the electrolyte (electrolyte) is vaporized due to an abnormal factor such as an external short circuit. Deform as shown in (B). Then, the current only flows near the convex shape, so that the amount of current is limited and an excessive current is prevented from flowing.
  • the elastic metal portion 21 is formed so as to protrude downward in the vicinity of the center in a state where no external force is applied, but is formed so as to protrude linearly. May be.
  • the elastic metal portion 21 has been described as a part of the electrode tab 20. If integrally formed in this way, the number of parts does not increase, and thus the productivity is excellent. However, a separate part from the electrode tab 20 may be used.
  • the battery is not limited to a rechargeable secondary battery.
  • a primary battery that cannot be charged may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)

Abstract

 双極型電池(1)は、集電体(111)の表裏に電極層(112,113)が形成された双極型電極(11)を、電解質層(12)を介して複数積層された発電要素(10)と、発電要素(10)に当接するように設けられ、外力が作用しない状態では発電要素(10)に対して点又は線で接触し、外力がかかる状態では発電要素(10)に面で接触する弾性金属部(21)と、発電要素(10)及び弾性金属部(21)を収装するように設けられ、内部気圧が大気圧よりも低く、内部気圧と大気圧との圧力差によって弾性金属部(21)を発電要素(10)に面接触させる外装材(30)と、を含む。

Description

双極型電池
 この発明は、双極型電池に関する。
 JP-2004-319156-Aは、集電体の表裏に電極層が形成された双極型電極を、電解質層を介して複数積層された双極型電池を開示する。
 しかしながら、このような双極型電池では、万一外部短絡などの何らかの異常要因があると、発電要素が過昇温する可能性がある。発電要素が高温になると、電解質(電解液)が気化して外装材の内圧が上昇するおそれがある。
 本発明は、このような従来の問題点に着目してなされたものであり、本発明の目的は、ガスが発生して外装材の内圧が上昇した場合に、電流量が制限され、過大な電流が流れることが防止される双極型電池を提供することである。
 本発明のある態様によれば、集電体の表裏に電極層が形成された双極型電極を、電解質層を介して複数積層された発電要素を有する。そしてさらに、発電要素に当接するように設けられ、外力が作用しない状態では発電要素に対して点又は線で接触し、外力がかかる状態では発電要素に面で接触する弾性金属部と、発電要素及び弾性金属部を収装するように設けられ、内部気圧が大気圧よりも低く、内部気圧と大気圧との圧力差によって弾性金属部を発電要素に面で接触させる外装材を有する双極型電池が提供される。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、本発明による双極型電池の第1実施形態を示す図である。 図2は、第1実施形態の作用効果を説明する図である。 図3は、本発明による双極型電池の第2実施形態を示す図である。 図4は、第2実施形態の作用効果を説明する図である。 図5は、本発明による双極型電池の第3実施形態の電極タブの弾性金属部を示す図である。 図6は、本発明による双極型電池の第4実施形態の電極タブの弾性金属部を示す図である。 図7は、本発明による双極型電池の第5実施形態を示す図である。 図8は、本発明による双極型電池の他の実施形態の電極タブの弾性金属部を示す図である。 図9は、本発明による双極型電池の他のもう一つの実施形態の電極タブの弾性金属部を示す図である。
(第1実施形態)
 図1は、本発明による双極型電池の第1実施形態を示す図であり、図1(A)はアッセンブリー状態の縦断面図、図1(B)は外力が作用しない状態での電極タブの弾性金属部の斜視図、図1(C)は図1(B)のC-C断面図である。
 双極型電池1は、発電要素10と、電極タブ20と、外装材30と、を含む。
 発電要素10は、双極型電極11と、電解質層12と、シール13と、を含む。
 双極型電極11は、集電体111と、正極112と、負極113と、を含む。正極112は、集電体111の片面(図1(A)では下面)に形成される。負極113は、集電体111の反対面(図1(A)では上面)に形成される。
 集電体111は、たとえば金属や、導電性高分子材料、導電性フィラーが添加された非導電性高分子材料などの導電性材料で形成される。集電体111の材料に好適な金属としては、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅などが例示される。また、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、又はこれらの金属の組み合わせのめっき材などでもよい。さらに、金属表面にアルミニウムが被覆された箔でもよい。電子伝導性や電池作動電位を考慮すると、アルミニウム、ステンレス鋼、銅が特に好ましい。
 また集電体111の材料に好適な導電性高分子材料としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、及びポリオキサジアゾールなどが例示される。このような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性があるので、製造工程を容易にすることができ、また集電体111を軽量にすることができる。ただし必要に応じて導電性フィラーが添加されてもよい。
 さらに集電体111の材料に好適な、導電性フィラーが添加される非導電性高分子材料としては、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、及びポリスチレン(PS)などが例示される。このような非導電性高分子材料は、耐電位性及び耐溶媒性に優れる。
 導電性フィラーは、導電性のある物質であれば特に限定されることはないが、金属等や導電性カーボンなどであれば、導電性、耐電位性、リチウムイオン遮断性に優れる。導電性フィラーの材料に好適な金属等としては、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、及びKからなる群から選択される少なくとも1種の金属や、これらの金属を含む合金、又はこれらの金属を含む金属酸化物などが例示される。導電性フィラーの材料に好適な導電性カーボンとしては、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群から選択される少なくとも1種を含むことが好ましい。導電性フィラーの添加量は、集電体111に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35質量%程度である。
 集電体111の大きさは、電池の使用用途に応じて設定される。たとえば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体111が用いられる。集電体111の厚さについても特に制限はない。集電体111の厚さは、通常は1~100μm程度である。
 正極112は、上述の通り、集電体111の片面(図1(A)では下面)に形成される。正極112は、正極活物質を含む層である。正極活物質は、放電時にイオンを吸蔵し、充電時にイオンを放出する組成である。好ましい一例としては、遷移金属とリチウムとの複合酸化物であるリチウム-遷移金属複合酸化物が挙げられる。具体的には、LiCoO2などのLi・Co系複合酸化物、LiNiO2などのLi・Ni系複合酸化物、スピネルLiMn24などのLi・Mn系複合酸化物、LiFeO2などのLi・Fe系複合酸化物およびこれらの遷移金属の一部を他の元素により置換したものなどである。リチウム-遷移金属複合酸化物は、反応性、サイクル特性に優れ、製造コストが安価である。この他にも、LiFePO4などの遷移金属とリチウムのリン酸化合物や硫酸化合物;V25、MnO2、TiS2、MoS2、MoO3などの遷移金属酸化物や硫化物;PbO2、AgO、NiOOHなど、を用いてもよい。このような正極活物質は、単独で使用されても、2種以上の混合物で使用されてもよい。正極活物質の平均粒子径は、特に制限されないが、正極活物質の高容量化、反応性、サイクル耐久性の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。このような範囲であれば、二次電池は、高出力条件下での充放電時における電池の内部抵抗の増大が抑制され、十分な電流を取り出すことができる。なお、正極活物質が2次粒子である場合には、2次粒子を構成する1次粒子の平均粒子径が10nm~1μmの範囲であることが望ましいが、必ずしも上記範囲には限定されることはない。ただし、製造方法にもよるが、正極活物質が凝集、塊状などにより2次粒子化したものでなくてもよい。なお、正極活物質は、種類や製造方法等によって取り得る形状が異なり、たとえば、球状(粉末状)、板状、針状、柱状、角状などがあるがこれらに限定されるものではなく、いずれの形状であっても問題なく使用できる。好ましくは、充放電特性などの電池特性を向上し得る最適の形状を適宜選択するとよい。
 活物質層には、必要であれば、その他の物質が含まれてもよい。たとえば、イオン伝導性を高めるために、電解質、リチウム塩、導電助剤などが含まれてもよい。
 電解質としては、固体高分子電解質、高分子ゲル電解質、およびこれらを積層したものなどがある。すなわち、正極を多層構造とすることもでき、集電体側と電解質側とで、正極を構成する電解質の種類や活物質の種類や粒径、さらにはこれらの配合比を変えた層を形成してもよい。好ましくは、高分子ゲル電解質を構成するポリマーと電解液との比率(質量比)が、20:80~98:2とする、比較的電解液の比率が小さい範囲である。
 高分子ゲル電解質は、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン電池で用いられる電解液を含んだものであるが、さらに、リチウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。
 ここで、高分子ゲル電解質に含まれる電解液(電解質塩および可塑剤)としては、通常リチウムイオン電池で用いられるものであればよく、たとえば、LiPF6、LiBF4、LiClO4、LiAsF6、LiTaF6、LiAlCl4、Li210Cl10等の無機酸陰イオン塩、LiCF3SO3、Li(CF3SO22N、Li(C25SO22N等の有機酸陰イオン塩の中から選ばれる、少なくとも1種類のリチウム塩(電解質塩)を含み、プロピレンカーボネート、エチレンカーボネート等の環状カーボネート類;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくともから1種類または2種以上を混合した、非プロトン性溶媒等の有機溶媒(可塑剤)を用いたものなどが使用できる。ただしこれらに限定されることはない。
 高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子としては、たとえば、ポリフッ化ビニリデン(PVDF)、ポリビニルクロライド(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)がある。ただし、これらに限定されない。なお、PAN、PMMAは、リチウムイオン導伝性が皆無ではないので、イオン伝導性を有する高分子とすることもできるが、ここでは高分子ゲル電解質に用いられるリチウムイオン導伝性を持たない高分子として例示した。
 リチウム塩は、たとえば、LiPF6、LiBF4、LiClO4、LiAsF6、LiTaF6、LiAlCl4、Li210Cl10等の無機酸陰イオン塩、Li(CF3SO22N、Li(C25SO22N等の有機酸陰イオン塩、またはこれらの混合物などである。ただしこれらに限定されることはない。
 導電助剤とは、活物質層の導電性を向上させるために配合される添加物である。導電助剤としては、たとえばアセチレンブラック、カーボンブラック、グラファイトがある。ただし、これらに限定されることはない。
 正極における、正極活物質、電解質(好ましくは固体高分子電解質)、リチウム塩、導電助剤の配合量は、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮して決定すべきである。たとえば、正極内における電解質、特に固体高分子電解質の配合量が少なすぎると、活物質層内でのイオン伝導抵抗やイオン拡散抵抗が大きくなり、電池性能が低下してしまう。一方、正極内における電解質、特に固体高分子電解質の配合量が多すぎると、電池のエネルギー密度が低下してしまう。したがって、これらの要因を考慮して、目的に合致した固体高分子電解質量を決定する。
 正極の厚さは、特に限定するものではなく、配合量について述べたように、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮して決定すればよい。一般的な正極活物質層の厚さは10~500μm程度である。
 負極113は、上述の通り、集電体111の片面(図1(A)では上面)に形成される。負極113は、負極活物質を含む層である。負極活物質は、放電時にイオンを放出し、充電時にイオンを吸蔵できる組成である。負極活物質は、リチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、負極活物質の例としては、SiやSnなどの金属、あるいはTiO、Ti23、TiO2、もしくはSiO2、SiO、SnO2などの金属酸化物、Li4/3Ti5/34もしくはLi7MnNなどのリチウムと遷移金属との複合酸化物、Li-Pb系合金、Li-Al系合金、Li、または天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが好ましい。また、負極活物質は、リチウムと合金化する元素を含むことが好ましい。リチウムと合金化する元素を用いることにより、従来の炭素系材料に比べて高いエネルギー密度を有する高容量および優れた出力特性の電池を得ることが可能となる。このような負極活物質は、単独で使用されても、2種以上の混合物で使用されてもよい。
 上記のリチウムと合金化する元素としては、たとえば、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等がある。これらの中でも、容量およびエネルギー密度に優れた電池を構成できる観点から、炭素材料、ならびに/またはSi、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、炭素材料、Si、またはSnの元素を含むことが特に好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、負極活物質の粒子径や形状は、特に限定されることはなく、上述の正極活物質と同様の形態を取りうるので、ここでは詳細な説明を省略する。また正極活物質層と同様に、必要であれば、その他の物質、たとえばイオン伝導性を高めるために、電解質、リチウム塩、導電助剤などが含まれてもよい。
 電解質層12は、たとえば高分子ゲル電解質の層である。この電解質は多層構造とすることもでき、正極側と負極側とで、電解質の種類や成分配合比を変えた層を形成することもできる。高分子ゲル電解質を用いる場合には、高分子ゲル電解質を構成するポリマーと電解液との比率(質量比)が、20:80~2:98と比較的電解液の比率が大きい範囲である。
 このような高分子ゲル電解質としては、イオン導伝性を有する固体高分子電解質に、通常リチウムイオン電池で用いられる電解液を含んだものであるが、さらに、リチウムイオン導伝性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。これらについては、正極に含まれる電解質の1種として説明した高分子ゲル電解質と同様であるので、説明を省略する。
 これら固体高分子電解質もしくは高分子ゲル電解質は、電池を構成する高分子電解質のほか、上記したように正極および/または負極にも含まれ得るが、電池を構成する高分子電解質、正極、負極によって異なる高分子電解質を用いてもよいし、同一の高分子電解質を使用してもよいし、層によって異なる高分子電解質を用いてもよい。
 電池を構成する電解質の厚さは、特には限定されることはない。しかしながら、コンパクトな双極型電池を得るためには、電解質としての機能が確保できる範囲で極力薄くすることが好ましい。一般的な固体高分子電解質層の厚さは10~100μm程度である。ただし、電解質の形状は、製法上の特徴を生かして、電極(正極または負極)の上面ならびに側面外周部も被覆するように形成することも容易であり、機能、性能面からも部位によらず常にほぼ一定の厚さにする必要はない。
 シール13は、上下の集電体111の間であって、正極112、負極113及び電解質層12の周囲に配置される。シール13は、集電体同士の接触や単電池層の端部における短絡を防止する。シール13の材料は、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性などが考慮されて選択される。たとえば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム、ナイロン樹脂等が好適である。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性を考慮すると、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂が、特に好適である。
 電極タブ20は、発電要素10に当接する弾性金属部21を含む。電極タブ20の一端は、外装材30の外部に露出する。電極タブ20は、たとえば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金などで形成される。耐蝕性、作り易さ、経済性などを考慮すると、特にアルミニウムが好適である。正極の電極タブ20及び負極の電極タブ20は、同一の材質であっても、異なる材質であってもよい。さらに材質の異なるものを多層に積層したものであってもよい。
 電極タブ20の弾性金属部21は、図1(B)及び図1(C)に示されるように、外力が作用しない状態では、中心付近が発電要素10から離れるように(すなわち図1(B)及び図1(C)では上方に向けて)、凸である。
 また図1(A)に示されたアッセンブリー状態では、外装材は、内部気圧が大気圧よりも低い状態、たとえばほぼ真空状態で、密封される。この状態では、大気圧が弾性金属部21に作用し、弾性金属部21の全面が発電要素10に接面(面で接触)する。
 弾性金属部21は、このように外力が作用するか否かによって変形可能な弾性部材である。
 外装材30は、発電要素10を収容する。外装材30は、軟弱である。外装材30の材料は、種々考えられるが、たとえば、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)を、ポリプロピレンフィルムで被覆した高分子-金属複合ラミネートフィルムのシート材である。外装材30は、発電要素10を収容した後、周囲が熱融着にて接合される。図1(A)に示されたアッセンブリー状態では、外装材30の内部は、大気圧よりも低く、ほぼ真空にされている。
 図2は本実施形態の作用効果を説明する図であり、図2(A)は通常状態を示し、図2(B)は異常状態を示す。
 弾性金属部21の全面が発電要素10に接面(面で接触)している状態では、電流が全面的に一様に流れる。万一外部短絡などの何らかの異常要因があると、発電要素10が過昇温する可能性がある。発電要素10が高温になると、電解質(電解液)が気化して外装材の内圧が上昇する。すると、図2(B)に示されるように、弾性金属部21は、中心付近が凸の形状に変形して発電要素10から離れる。すると電流は周辺付近でしか流れなくなるので、電流量が制限され、過大な電流が流れることが防止される。
 なお外装材30は、周囲が熱融着されているが、一部分の熱融着幅を小さくしておけば、そこが軟弱弁となる。すると電解質(電解液)が気化して外装材の内部気圧が上昇したときに、この軟弱弁から内部気圧が逃げるので、外装材の内部気圧が大気圧で抑えられ、外装材の内部気圧が大きくなり過ぎることを防止できる。
 (第2実施形態)
 図3は、本発明による双極型電池の第2実施形態を示す図であり、図3(A)はアッセンブリー状態の縦断面図、図3(B)は外力が作用しない状態での電極タブの弾性金属部の斜視図、図3(C)は図3(B)のC-C断面図である。
 なお以下では前述と同様の機能を果たす部分には同一の符号を付して重複する説明を適宜省略する。
 本実施形態の電極タブ20の弾性金属部21は、図3(B)及び図3(C)に示されるように、外力が作用しない状態では、発電要素10に向けて(図3(B)及び図3(C)では下方に)、中心付近が凸である。
 また図3(A)に示されたアッセンブリー状態では、外装材は、内部気圧が大気圧よりも低い状態、たとえばほぼ真空状態で、密封される。この状態では、大気圧が弾性金属部21に作用し、弾性金属部21の全面が発電要素10に接面(面で接触)する。このようになっているので、弾性金属部21は、発電要素10の中心付近ほど強く押圧する。
 ここで、本実施形態の理解を容易にするために電池の化学反応について説明する。
 通常運転電圧範囲では、次式(1)の化学反応が生じる。
Figure JPOXMLDOC01-appb-C000001
 また過充電電圧域では、次式(2-1)~(2-4)の反応が生じる。
Figure JPOXMLDOC01-appb-C000002
 さらに過放電電圧域では、次式(3-1)又は(3-2)の反応が生じる。
Figure JPOXMLDOC01-appb-C000003
 このように、通常運転、過充電中、過放電中に、ガスが発生する。弾性金属部21の全面が発電要素10に接面(面で接触)しているので、電解質層にガスが残留していなければ、全面的に一様に電流が流れるが、このように発生したガスが電解質層にとどまっていると、電流の流れが阻害されるとともに、その周囲では電流が大きくなる。すると電流密度の高い領域が局部的に発生する。電流密度が局部的に高くなってしまうと、リチウムイオンが電析して析出する可能性がある。すると局部的に劣化する。そして劣化が周囲に拡がるといった悪循環に陥るおそれがある。
 また充電放電が繰り返されると、特に初期において、負極の表面に被膜が形成されることや電解液が分解されることなどによって、ガスが発生する可能性がある。発生したガスが電解質層にとどまっていると、電流の流れが阻害される。また発生したガスによって電解質層が不均一になるとさらなるガスの発生が誘発されるという悪循環に陥る可能性がある。
 これに対して、本実施形態の電極タブ20の弾性金属部21は、外力が作用しない状態では、図3(B)及び図3(C)に示されるように、発電要素10に向けて(図3(B)及び図3(C)では下方に)、中心付近が凸である。そのため図3(A)に示されたアッセンブリー状態では、発電要素10は、中心付近ほど弾性金属部21からの大きな押圧力を受ける。したがって、電解質層に発生したガスは、押圧力が小さい周辺のシール付近まで移動しやすくなる。これによって、ガスによって電流の流れが阻害されることが防止される。シール付近ではもともと電流が流れないので、ガスが溜まっていても不具合を生じない。
 図4は本実施形態の作用効果を説明する図であり、図4(A)は通常状態を示し、図4(B)は異常状態を示す。
 また弾性金属部21の全面が発電要素10に接面(面で接触)している状態では、電流が全面的に一様に流れる。万一外部短絡などの何らかの異常要因があると、発電要素10が過昇温する可能性がある。発電要素10が高温になると、電解質(電解液)が気化して外装材の内圧が上昇する。すると、図4(B)に示されるように、弾性金属部21は、中心付近を残して他の領域は発電要素10から離れて、中心付近が発電要素に向けて凸の形状に変形する。すると電流は中心付近でしか流れなくなるので、電流量が制限され、過大な電流が流れることが防止される。
 (第3実施形態)
 図5は、本発明による双極型電池の第3実施形態の電極タブの弾性金属部を示す図であり、図5(A)は電極タブの弾性金属部の斜視図、図5(B)は図5(A)のB-B断面図である。
 本実施形態の電極タブの弾性金属部21は、外力が作用しない状態で、下方に向けて中心付近が凸であるとともに、周縁面21aが一平面上に配置される形状である。
 外装材は、上述のように内部気圧が大気圧よりも低い状態で、密封される。このとき、大気圧が外装材を介して電極タブの弾性金属部21に作用して電極タブの弾性金属部21を平面状態にする。このとき弾性金属部21の周端が外装材の高分子フィルム層にくい込むなどして、傷つけてしまうおそれがある。
 これに対して、本実施形態では、電極タブの弾性金属部21は、外力が作用しない状態で、周縁面21aが一平面上に配置される形状である。このような構造であると、電極タブの弾性金属部21は、少なくとも周縁面21aが常に外装材30に当接することとなる。したがって本発明による双極型電池を製造する際に、弾性金属部21の周端が外装材の高分子フィルム層を傷つけてしまうことを防止できる。
 (第4実施形態)
 図6は、本発明による双極型電池の第4実施形態の電極タブの弾性金属部を示す図であり、図6(A)は電極タブの弾性金属部の斜視図、図6(B)は図6(A)のB-B断面図である。
 本実施形態の電極タブの弾性金属部21は、周縁に絶縁性の樹脂をコーティングした部位21bが設けられている。
 このような構造であると、電極タブの弾性金属部21は、少なくとも絶縁樹脂コーティング部21bが常に外装材30に当接することとなる。したがって本発明による双極型電池を製造する際に、弾性金属部21の周端が外装材の高分子フィルム層を傷つけてしまうことを防止できる。また万一外装材の高分子フィルム層が傷ついても、絶縁樹脂コーティング部21bがあるので、外装材の金属層と電極タブの弾性金属部21とが短絡しない。
 (第5実施形態)
 図7は、本発明による双極型電池の第5実施形態を示す図であり、図7(A)はアッセンブリー状態の縦断面図、図7(B)は双極型電極及びその周囲のシールを示す平面図、図7(C)は外力が作用しない状態での電極タブの弾性金属部の断面図である。
 本実施形態の双極型電池1は、発電要素10の発電領域が複数に分割されている。具体的には、図7(A)及び図7(B)に示されているように、発電領域が2箇所になるように、正極112及び負極113が2つに分割されている。
 そして電極タブの弾性金属部21は、図7(C)に示されているように、外力が作用しない状態では発電要素10の各発電領域の中心付近に向けて凸となるように形成されている。また周縁面21a及び中心面21cが一平面上に配置される形状である。
 アッセンブリー状態では図7(A)に示されるように、発電要素10の各発電領域は、中心付近ほど弾性金属部21からの大きな押圧力を受ける。換言すれば、弾性金属部21は、発電要素10の発電領域の中心付近ほど強く押圧する。したがって、電解質層に発生したガスは、押圧力が小さい周辺領域(電極が形成されていない領域)に移動しやすくなる。そのような領域ではもともと電流が流れないので、ガスが溜まっていても不具合を生じない。
 以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。
 たとえば、図8に示すように、弾性金属部21の端部をカールさせてもよい。このようにしても、双極型電池を製造する際に、弾性金属部21の周端が外装材の高分子フィルム層を傷つけてしまうことを防止できる。
 また第5実施形態では、発電領域が2箇所になるように、正極112及び負極113が2つに分割されていた。そして電極タブの弾性金属部21は、外力が作用しない状態では発電要素10の各発電領域の中心付近に向けて凸となるように形成されていた。しかしながら、図9に示されるように、発電領域が1箇所であって、電極タブの弾性金属部21が2箇所で凸となるように形成されてもよい。このような構成であっても、万一外部短絡などの何らかの異常要因があって、発電要素10が過昇温して電解質(電解液)が気化したときに、弾性金属部21は、図9(B)に示されるように変形する。すると電流は凸形状付近でしか流れなくなるので、電流量が制限され、過大な電流が流れることが防止される。
 また上記各実施形態では、弾性金属部21は、外力が作用しない状態で、下方に向けて中心付近が点状に凸となるように形成されていたが、線状に凸となるように形成されていてもよい。
 さらに上記各実施形態では、弾性金属部21は、電極タブ20の一部として説明した。このように一体形成されていれば、部品点数が増えないので、生産性に優れるが、電極タブ20とは別部品であってもよい。
 また電池は、充電可能な二次電池に限られない。充電できない一次電池であってもよい。
 その他にも上記実施形態は、適宜組み合わせ可能である。
 本願は、2010年7月26日に日本国特許庁に出願された特願2010-166858に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  集電体(111)の表裏に電極層(112,113)が形成された双極型電極(11)を、電解質層(12)を介して複数積層された発電要素(10)と、
     前記発電要素(10)に当接するように設けられ、外力が作用しない状態では発電要素(10)に対して点又は線で接触し、外力がかかる状態では発電要素(10)に面で接触する弾性金属部(21)と、
     前記発電要素(10)及び弾性金属部(21)を収装するように設けられ、内部気圧が大気圧よりも低く、内部気圧と大気圧との圧力差によって前記弾性金属部(21)を発電要素(10)に面で接触させる外装材(30)と、
    を有する双極型電池。
  2.  請求項1に記載の双極型電池において、
     前記弾性金属部(21)は、外力が作用しない状態では発電要素(10)に向けて凸であり、外力がかかる状態では発電要素(10)に面で接触する、
    双極型電池。
  3.  請求項1又は請求項2に記載の双極型電池において、
     前記発電要素(10)は、複数に分割された発電領域を含み、
     前記弾性金属部(21)は、外力が作用しない状態では発電要素(10)の各発電領域に向けて凸であり、外力がかかる状態では発電要素(10)に面で接触する、
    双極型電池。
  4.  請求項1から請求項3までのいずれか1項に記載の双極型電池において、
     前記弾性金属部(21)は、前記発電要素(10)が発電した電力を前記外装材(30)の外部に取り出すための電極タブ(20)の一部である、
    双極型電池。
  5.  請求項1から請求項4までのいずれか1項に記載の双極型電池において、
     前記弾性金属部(21)は、外力が作用しない状態で、周縁面が一平面上に配置される形状である、
    双極型電池。
  6.  請求項1から請求項4までのいずれか1項に記載の双極型電池において、
     前記弾性金属部(21)は、周縁が前記外装材(30)から離れるようにカールされている、
    双極型電池。
  7.  請求項1から請求項6までのいずれか1項に記載の双極型電池において、
     前記弾性金属部(21)は、周縁に設けられた絶縁樹脂コーティング部をさらに含む、
    双極型電池。
  8.  集電体の表裏に電極層が形成された双極型電極を、電解質層を介して複数積層された発電要素(10)と、
     前記発電要素(10)に当接するように設けられ、発電要素(10)の中心付近ほど強く押圧する弾性金属部(21)と、
     前記発電要素(10)及び弾性金属部(21)を収装するように設けられる外装材(30)と、
    を含む双極型電池。
PCT/JP2011/066386 2010-07-26 2011-07-19 双極型電池 WO2012014730A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2013000695A MX2013000695A (es) 2010-07-26 2011-07-19 Bateria bipolar.
US13/812,053 US9203073B2 (en) 2010-07-26 2011-07-19 Bipolar battery
RU2013103806/07A RU2521075C1 (ru) 2010-07-26 2011-07-19 Биполярная батарея
BR112013001935A BR112013001935A2 (pt) 2010-07-26 2011-07-19 bateria bipolar
JP2012526439A JP5510546B2 (ja) 2010-07-26 2011-07-19 双極型電池
EP11812322.3A EP2600442B1 (en) 2010-07-26 2011-07-19 Bipolar battery
KR1020137004237A KR101451044B1 (ko) 2010-07-26 2011-07-19 쌍극형 전지
CN201180036358.4A CN103026534B (zh) 2010-07-26 2011-07-19 双极型电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010166858 2010-07-26
JP2010-166858 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014730A1 true WO2012014730A1 (ja) 2012-02-02

Family

ID=45529946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066386 WO2012014730A1 (ja) 2010-07-26 2011-07-19 双極型電池

Country Status (11)

Country Link
US (1) US9203073B2 (ja)
EP (1) EP2600442B1 (ja)
JP (1) JP5510546B2 (ja)
KR (1) KR101451044B1 (ja)
CN (1) CN103026534B (ja)
BR (1) BR112013001935A2 (ja)
MX (1) MX2013000695A (ja)
MY (1) MY157141A (ja)
RU (1) RU2521075C1 (ja)
TW (1) TWI481519B (ja)
WO (1) WO2012014730A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157167A (ja) * 2012-01-30 2013-08-15 Sharp Corp 二次電池、この二次電池を用いた蓄電池システムおよびメンテナンス方法
CN104247141A (zh) * 2012-05-07 2014-12-24 株式会社Lg化学 电极层合片和包括该电极层合片的锂二次电池
JP2015005506A (ja) * 2013-06-21 2015-01-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 二次電池及びそれを含む二次電池パック
JP2017103219A (ja) * 2015-11-19 2017-06-08 三洋化成工業株式会社 電流制限構造及びリチウムイオン電池
JP2018081820A (ja) * 2016-11-16 2018-05-24 日産自動車株式会社 電池
JP2020505730A (ja) * 2017-08-01 2020-02-20 エルジー・ケム・リミテッド 電極タブ切断装置を含むパウチ形二次電池
JP2021096950A (ja) * 2019-12-17 2021-06-24 本田技研工業株式会社 固体電池および固体電池の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768968B2 (ja) * 2011-03-08 2015-08-26 日産自動車株式会社 リチウムイオン二次電池用負極活物質
WO2013153603A1 (ja) * 2012-04-09 2013-10-17 株式会社日本マイクロニクス 二次電池
US9735443B2 (en) * 2012-04-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US11522242B2 (en) 2016-03-10 2022-12-06 Nissan Motor Co., Ltd. Battery pack
KR102281373B1 (ko) 2018-04-26 2021-07-22 주식회사 엘지에너지솔루션 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
KR20210020329A (ko) * 2019-08-14 2021-02-24 현대자동차주식회사 리튬이온 이차전지 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864234A (ja) * 1994-08-23 1996-03-08 Canon Inc 二次電池及びその製造方法
JP2001135357A (ja) * 1999-11-10 2001-05-18 Matsushita Electric Ind Co Ltd 密閉型電池
JP2002008629A (ja) * 2000-06-16 2002-01-11 Tdk Corp 電気化学デバイス
JP2003208885A (ja) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd シート状電池
JP2004319156A (ja) 2003-04-14 2004-11-11 Nissan Motor Co Ltd バイポーラ電池
JP2004327047A (ja) * 1998-10-19 2004-11-18 Dainippon Printing Co Ltd ポリマー電池及びポリマー電池パック
JP2006073260A (ja) * 2004-08-31 2006-03-16 Mitsubishi Cable Ind Ltd 二次電池
JP2006147534A (ja) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd バイポーラ電池、組電池、およびこれらを搭載した車両
JP2010166858A (ja) 2009-01-23 2010-08-05 Suntory Holdings Ltd 大豆たんぱく含有粉末食品
JP2010251017A (ja) * 2009-04-13 2010-11-04 Nissan Motor Co Ltd 双極型二次電池、その双極型二次電池を用いた組電池および車両

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091186A (en) 1977-11-07 1978-05-23 Esb Incorporated Dry cell battery having electrical spring contact adhered to terminal
US5916709A (en) 1993-12-03 1999-06-29 Bipolar Power Corporation Bipolar lead-acid battery
CN1157808C (zh) 1998-02-05 2004-07-14 大日本印刷株式会社 电池盒形成片和电池组件
US6797429B1 (en) * 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell
DE19936063B4 (de) * 1999-07-30 2004-03-04 Cochlear Ltd., Lane Cove Elektrochemische Sekundärzelle
US6653018B2 (en) 2000-03-17 2003-11-25 Tdk Corporation Electrochemical device
ITVI20010240A1 (it) 2001-11-14 2003-05-14 Franco Stocchiero Gruppo valvolare di tenuta e di sfiato per accumulatori elettrici
JP4416443B2 (ja) * 2003-06-26 2010-02-17 パナソニック株式会社 電池パックとその製造方法
CN1879246A (zh) * 2003-11-05 2006-12-13 株式会社杰士汤浅 电池
DE10352046A1 (de) * 2003-11-07 2005-06-09 Daimlerchrysler Ag Batterie mit wenigstens einer elektrochemischen Speicherzelle und einer Kühleinrichtung
JP4349321B2 (ja) 2004-12-10 2009-10-21 ソニー株式会社 電池
PL2590242T3 (pl) * 2004-12-24 2020-01-31 Lg Chem, Ltd. Sposób i urządzenie do polepszania działania modułu akumulatorowego przez wyrównywanie napięcia
WO2006119289A2 (en) * 2005-05-03 2006-11-09 Randy Ogg Bi-polar rechargeable electrochemical battery
JP5017843B2 (ja) * 2005-10-26 2012-09-05 日産自動車株式会社 電池モジュール、および組電池
JP5114950B2 (ja) * 2006-02-13 2013-01-09 日産自動車株式会社 電池モジュール、組電池及びそれらの電池を搭載した車両
KR101243529B1 (ko) 2006-05-04 2013-03-20 삼성에스디아이 주식회사 리튬 이차전지
JP5456954B2 (ja) 2006-11-30 2014-04-02 日産自動車株式会社 双極型二次電池のモジュール構造
JP2008269972A (ja) * 2007-04-20 2008-11-06 Nissan Motor Co Ltd 非水溶媒二次電池
JP5217596B2 (ja) * 2007-05-24 2013-06-19 日産自動車株式会社 非水溶媒二次電池用集電体並びにこれを用いた電極および電池
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP5540588B2 (ja) * 2008-10-20 2014-07-02 日産自動車株式会社 双極型二次電池、組電池およびそれらの電池を搭載した車両
JP5459398B2 (ja) * 2010-05-19 2014-04-02 日産自動車株式会社 双極型二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864234A (ja) * 1994-08-23 1996-03-08 Canon Inc 二次電池及びその製造方法
JP2004327047A (ja) * 1998-10-19 2004-11-18 Dainippon Printing Co Ltd ポリマー電池及びポリマー電池パック
JP2001135357A (ja) * 1999-11-10 2001-05-18 Matsushita Electric Ind Co Ltd 密閉型電池
JP2002008629A (ja) * 2000-06-16 2002-01-11 Tdk Corp 電気化学デバイス
JP2003208885A (ja) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd シート状電池
JP2004319156A (ja) 2003-04-14 2004-11-11 Nissan Motor Co Ltd バイポーラ電池
JP2006073260A (ja) * 2004-08-31 2006-03-16 Mitsubishi Cable Ind Ltd 二次電池
JP2006147534A (ja) * 2004-10-22 2006-06-08 Nissan Motor Co Ltd バイポーラ電池、組電池、およびこれらを搭載した車両
JP2010166858A (ja) 2009-01-23 2010-08-05 Suntory Holdings Ltd 大豆たんぱく含有粉末食品
JP2010251017A (ja) * 2009-04-13 2010-11-04 Nissan Motor Co Ltd 双極型二次電池、その双極型二次電池を用いた組電池および車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2600442A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157167A (ja) * 2012-01-30 2013-08-15 Sharp Corp 二次電池、この二次電池を用いた蓄電池システムおよびメンテナンス方法
CN104247141A (zh) * 2012-05-07 2014-12-24 株式会社Lg化学 电极层合片和包括该电极层合片的锂二次电池
JP2015518257A (ja) * 2012-05-07 2015-06-25 エルジー・ケム・リミテッド 電極積層体及びそれを含むリチウム二次電池
US9831520B2 (en) 2012-05-07 2017-11-28 Lg Chem, Ltd. Electrode assembly and lithium secondary battery comprising the same
JP2015005506A (ja) * 2013-06-21 2015-01-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 二次電池及びそれを含む二次電池パック
JP2017103219A (ja) * 2015-11-19 2017-06-08 三洋化成工業株式会社 電流制限構造及びリチウムイオン電池
JP2018081820A (ja) * 2016-11-16 2018-05-24 日産自動車株式会社 電池
JP2020505730A (ja) * 2017-08-01 2020-02-20 エルジー・ケム・リミテッド 電極タブ切断装置を含むパウチ形二次電池
US11264636B2 (en) 2017-08-01 2022-03-01 Lg Energy Solution, Ltd. Pouch-shaped secondary battery comprising electrode-tab-cutting device
JP7037009B2 (ja) 2017-08-01 2022-03-16 エルジー エナジー ソリューション リミテッド 電極タブ切断装置を含むパウチ形二次電池
JP2021096950A (ja) * 2019-12-17 2021-06-24 本田技研工業株式会社 固体電池および固体電池の製造方法
JP7178339B2 (ja) 2019-12-17 2022-11-25 本田技研工業株式会社 固体電池および固体電池の製造方法

Also Published As

Publication number Publication date
CN103026534B (zh) 2015-09-16
RU2521075C1 (ru) 2014-06-27
BR112013001935A2 (pt) 2016-05-31
EP2600442A4 (en) 2015-05-06
US20130122333A1 (en) 2013-05-16
US9203073B2 (en) 2015-12-01
KR20130041231A (ko) 2013-04-24
MY157141A (en) 2016-05-13
CN103026534A (zh) 2013-04-03
KR101451044B1 (ko) 2014-10-15
EP2600442B1 (en) 2018-01-03
JP5510546B2 (ja) 2014-06-04
JPWO2012014730A1 (ja) 2013-09-12
TW201208910A (en) 2012-03-01
TWI481519B (zh) 2015-04-21
EP2600442A1 (en) 2013-06-05
MX2013000695A (es) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5510546B2 (ja) 双極型電池
JP6620102B2 (ja) 電極
JP5770553B2 (ja) 双極型リチウムイオン二次電池用集電体
JP5504708B2 (ja) 双極型二次電池
JP5957947B2 (ja) 双極型電極およびこれを用いた双極型リチウムイオン二次電池
JP5458605B2 (ja) 双極型二次電池
JP5532806B2 (ja) リチウムイオン二次電池の容量回復方法
JP2012009209A (ja) リチウムイオン二次電池用負極
TWI466355B (zh) A lithium ion secondary battery and a battery capacity recovery device, and a battery capacity recovery method
JP2005196971A (ja) リチウム二次電池用負極とその製造方法ならびにリチウム二次電池
WO2012161190A1 (ja) 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス
JP5418088B2 (ja) リチウムイオン二次電池用集電体
JP2008153015A (ja) 負極および電池
JP2010287481A (ja) リチウムイオン二次電池用電解質
WO2018154987A1 (ja) 二次電池およびその製造方法
JP5569229B2 (ja) リチウムイオン二次電池のニッケル含有正極用集電体
JP5803342B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池の電池容量回復方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036358.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/000695

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13812053

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012526439

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137004237

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013103806

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011812322

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013001935

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013001935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130125