WO2012014553A1 - 撮像装置及び撮像方法 - Google Patents

撮像装置及び撮像方法 Download PDF

Info

Publication number
WO2012014553A1
WO2012014553A1 PCT/JP2011/061558 JP2011061558W WO2012014553A1 WO 2012014553 A1 WO2012014553 A1 WO 2012014553A1 JP 2011061558 W JP2011061558 W JP 2011061558W WO 2012014553 A1 WO2012014553 A1 WO 2012014553A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
photoelectric conversion
exposure period
period
imaging device
Prior art date
Application number
PCT/JP2011/061558
Other languages
English (en)
French (fr)
Inventor
小林 誠
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2012526358A priority Critical patent/JP5156148B2/ja
Priority to CN201180037002.2A priority patent/CN103181160B/zh
Publication of WO2012014553A1 publication Critical patent/WO2012014553A1/ja
Priority to US13/750,467 priority patent/US8994861B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to an imaging device and an imaging method.
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 describes an imaging device including a solid-state imaging device having pixels that perform long-time exposure and pixels that start short-time exposure in the middle of a long-time exposure period.
  • the imaging apparatus combines an image obtained by long-time exposure and an image obtained by short-time exposure to expand a dynamic range.
  • Patent Document 2 includes a solid-state imaging device in which pixels performing long-time exposure and pixels performing short-time exposure a plurality of times during long-time exposure are arranged in a checkered manner.
  • An imaging device to be mounted is described.
  • the imaging device performs camera shake correction by averaging images obtained by a plurality of short exposures.
  • the imaging device combines the image after the averaging and the image obtained by the long time exposure to expand the dynamic range.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an imaging device and an imaging method capable of obtaining a plurality of types of image data having different dynamic ranges in one shooting.
  • An imaging device includes a solid-state imaging device including a plurality of first photoelectric conversion devices and a plurality of second photoelectric conversion devices arranged in a two-dimensional manner, and a plurality of first photoelectric conversion devices And exposing the plurality of second photoelectric conversion elements sequentially in a plurality of second exposure periods different in length, and the plurality of first photoelectric A first signal according to the charge stored in the conversion element, and a second signal according to the charge stored in the plurality of second photoelectric conversion elements in each of the plurality of second exposure periods And a drive unit for driving to read out, and each second exposure period has an overlap with the first exposure period.
  • At least three signals (first signal and at least two second signals) having different sensitivities can be obtained in one shooting. For this reason, for example, when there are two second exposure periods, the image data generated from the first signal and the image data generated from one of the two second signals are combined to generate the first Image data of the second dynamic range is generated by combining the image data generated from the first signal and the image data generated from the other of the two second signals. It will be possible to That is, after image capturing, it is possible to generate a plurality of image data having different dynamic ranges by image processing. Therefore, a plurality of pieces of image data having different dynamic ranges can be obtained for the same subject without performing imaging a plurality of times. As a result, the convenience of the imaging device can be improved.
  • An imaging method is an imaging method using a solid-state imaging device including a plurality of first photoelectric conversion devices and a plurality of second photoelectric conversion devices arranged in a two-dimensional manner, and the plurality of first photoelectric conversion devices While exposing the plurality of second photoelectric conversion elements sequentially in a plurality of second exposure periods having different lengths, during the first exposure period.
  • a driving step of driving to read out the second signal, and each second exposure period has an overlap with the first exposure period.
  • an imaging device and an imaging method capable of obtaining a plurality of types of image data having different dynamic ranges in one shooting.
  • FIG. 7 is a timing chart of the imaging operation of the imaging device shown in FIG.
  • FIG. 7 is a view showing a modified example of the imaging device shown in FIG. Timing chart for explaining the operation at the time of shooting of the imaging device shown in FIG. 4
  • Timing chart showing a modification of the driving method shown in FIG. 5 A diagram in which the exposure period B (2) is made the shortest period in the timing chart shown in FIG.
  • FIG. 7 shows an example of a timing chart for realizing the driving method shown in FIG. 3 by one signal readout circuit.
  • FIG. 7 shows an example of a timing chart for realizing the driving method shown in FIG. 3 by one signal readout circuit.
  • the figure which shows the modification of the solid-state image sensor shown in FIG. The figure which shows the modification of the solid-state image sensor shown in FIG.
  • a timing chart for explaining a photographing operation when the solid-state imaging device in the imaging device shown in FIG. 1 is a CCD type.
  • FIG. 1 is a functional block diagram of an imaging device 100 for explaining an embodiment of the present invention.
  • the imaging system of the imaging device 100 includes a photographing lens system 1, an aperture 2, a solid-state imaging device 5, and an analog-digital (AD) converter 6.
  • AD analog-digital
  • a diaphragm 2 is disposed at the back of the taking lens system 1.
  • the photographing lens system 1 and the stop 2 constitute a photographing optical system.
  • a solid-state image sensor 5 of CMOS type which will be described in detail later, is disposed.
  • a captured image signal corresponding to an object light image incident on the light receiving surface of the solid-state image sensor 5 through the imaging lens system 1 and the aperture stop 2 in this order is converted to digital data by the AD converter 6 and output to the bus 17 Be done.
  • the bus 17 includes a central control unit (CPU) 7 that centrally controls the entire imaging apparatus 100, an operation unit 16 including operation buttons and the like including a shutter release button, and a DSP and the like.
  • CPU central control unit
  • operation unit 16 including operation buttons and the like including a shutter release button, and a DSP and the like.
  • video encoder 15 Based on the image processing unit 9 that performs image processing on a captured image signal, a video encoder 15 that converts captured image data obtained by performing image processing on the captured image signal into data for display, and conversion by the video encoder 15
  • the driver 13 for displaying the captured image data on the display unit 14, the memory 10, and the media control unit 12 are connected.
  • a recording medium (memory card) 11 is removably attached to the media control unit 12.
  • a device control unit 8 is connected to the CPU 7.
  • the device control unit 8 performs drive control of the solid-state imaging device 5 in accordance with an instruction from the CPU 7. Further, the device control unit 8 controls the opening amount adjustment of the diaphragm 2 in accordance with an instruction from the CPU 7.
  • the device control unit 8 also performs focus position control and zoom position control of the photographing lens system 1 in accordance with an instruction from the CPU 7.
  • FIG. 2 is a schematic plan view showing a schematic configuration of the solid-state imaging device 5 in the imaging device 100 shown in FIG.
  • the solid-state imaging device 5 includes a first group including a plurality of photoelectric conversion elements 51 a (hatched), a second group including a plurality of photoelectric conversion elements 51 b, and a first group And a signal readout circuit 62b provided corresponding to the second group.
  • All photoelectric conversion elements included in the solid-state imaging device 5 are two-dimensionally arranged in the column direction Y of the surface of the semiconductor substrate and in the row direction X intersecting (in the example of FIG. 2, orthogonal) in the column direction Y.
  • the all photoelectric conversion elements are a first photoelectric conversion element row including a plurality of photoelectric conversion elements 51 a aligned in the row direction X and a second photoelectric conversion element row including a plurality of photoelectric conversion elements 51 b aligned in the row direction X And are alternately arranged at a constant pitch in the column direction Y.
  • the first photoelectric conversion element row is arranged to be shifted in the row direction X by 1/2 of the arrangement pitch of the photoelectric conversion elements of each photoelectric conversion element row in the row direction X with respect to the second photoelectric conversion element row It is done.
  • Such an arrangement can be obtained by disposing the photoelectric conversion elements 51b at a position deviated in the direction of 45 ° with respect to each photoelectric conversion element 51a disposed in a square lattice shape.
  • the photoelectric conversion elements 51b are arranged adjacent to each other in all the photoelectric conversion elements 51a in the same positional relationship.
  • Each photoelectric conversion element 51a and a photoelectric conversion element 51b adjacent to each photoelectric conversion element 51a in the same positional relationship (in the same direction) form a pair.
  • All photoelectric conversion elements included in the solid-state imaging device 5 have substantially the same configuration (design values are the same). With substantially the same configuration, the size of the photoelectric conversion region (photodiode) formed in the semiconductor substrate is substantially the same, and the opening size of the light shielding film formed above the photoelectric conversion region is also substantially the same. means.
  • a color filter R1 for transmitting red light, a color filter G1 for transmitting green light, and a color filter B1 for transmitting blue light which are arranged in a Bayer shape as a whole are provided. ing.
  • the character “R1” is attached to the photoelectric conversion element 51a provided with the color filter R1 at the upper side.
  • the character “G1” is attached to the photoelectric conversion element 51a provided with the color filter G1 at the upper side.
  • the character “B1” is attached to the photoelectric conversion element 51a provided with the color filter B1 at the upper side.
  • a color filter R2 for transmitting red light, a color filter G2 for transmitting green light, and a color filter B2 for transmitting blue light which are arranged in a Bayer shape as a whole are provided. ing.
  • the character “R2” is attached to the photoelectric conversion element 51b provided with the color filter R2 at the upper side. Further, the character “G2” is attached to the photoelectric conversion element 51b provided with the color filter G2 at the upper side. Further, the character “B2” is attached to the photoelectric conversion element 51b provided with the color filter B2 at the upper side.
  • the color filter R1 and the color filter R2 are collectively referred to as a red filter. Also, the color filter G1 and the color filter G2 are collectively referred to as a green filter. Also, the color filter B1 and the color filter B2 are collectively referred to as a blue filter.
  • the photoelectric conversion element 51a and the photoelectric conversion element 51b adjacent to each other in the same positional relationship are arranged with filters of the same color (red filter, green filter or blue filter). Therefore, in the solid-state imaging device 5, three types of pairs of filters provided in the upper side with different colors (R pair having the red filter at the top, G pair having the green filter at the top, B pair having the blue filter at the top) Is included.
  • the first photoelectric conversion element row is referred to as one line, two lines, three lines,..., N line sequentially from the top in FIG.
  • the second photoelectric conversion element row is also referred to as 1 line, 2 lines, 3 lines,..., N line in order from the top in FIG.
  • the element row is a second photoelectric conversion element row of k lines.
  • CMOS circuit (not shown) corresponding to the vicinity thereof.
  • the CMOS circuit has, for example, a 3-transistor configuration or a 4-transistor configuration.
  • the signal readout circuit 62a includes a CDS circuit 55a, a transistor 56a, an H driver 57a, a signal output line 58a, a wire 59a (only a part of which is shown), a V driver 60a and a wire 61a (only a part of which is shown). Equipped with The signal readout circuit 62a is controlled by the device control unit 8 shown in FIG.
  • a wire 61 a is connected to a CMOS circuit corresponding to a photoelectric conversion element row composed of a plurality of photoelectric conversion elements 51 a arranged in the row direction X.
  • the wiring 61a is connected to the V driver 60a.
  • the V driver 60a selects one photoelectric conversion element row consisting of a plurality of photoelectric conversion elements 51a aligned in the row direction X, and drives to read out a signal from the CMOS circuit corresponding to the selected photoelectric conversion element row to the wiring 59a. Do. Further, the V driver 60a controls the reset transistor of the CMOS circuit corresponding to the photoelectric conversion element 51a of the first group to reset the accumulated charge of the photoelectric conversion element 51a of the first group (charge of the photoelectric conversion element It also performs driving to discharge the drain of the reset transistor of the CMOS circuit.
  • the CDS circuit 55a is provided corresponding to the photoelectric conversion element row formed of the plurality of photoelectric conversion elements 51a arranged in the column direction Y.
  • the CDS circuit 55a is connected to the CMOS circuit of the photoelectric conversion element row corresponding to this via the wiring 59a.
  • the CDS circuit 55a performs correlated double sampling processing on the input signal.
  • the H driver 57a is connected to each CDS circuit 55a via the transistor 56a.
  • the H driver 57a turns on the transistor 56a to output the signal processed by the CDS circuit 55a to the signal output line 58a.
  • the signal readout circuit 62b includes a CDS circuit 55b, a transistor 56b, an H driver 57b, a signal output line 58b, a wire 59b (only a part of which is shown), a V driver 60b and a wire 61b (only a part of which is shown). Equipped with The signal readout circuit 62b is controlled by the device control unit 8 shown in FIG.
  • a wire 61 b is connected to a CMOS circuit corresponding to a photoelectric conversion element row including a plurality of photoelectric conversion elements 51 b arranged in the row direction X.
  • the wiring 61b is connected to the V driver 60b.
  • the V driver 60b selects one photoelectric conversion element row consisting of a plurality of photoelectric conversion elements 51b arranged in the row direction X one by one and reads out a signal from the CMOS circuit corresponding to the selected photoelectric conversion element row to the wiring 59b. Do. Further, the V driver 60b controls the reset transistor of the CMOS circuit corresponding to the photoelectric conversion element 51b of the second group to reset the accumulated charge of the photoelectric conversion element 51b of the second group (charge of the photoelectric conversion element It also performs driving to discharge the drain of the reset transistor of the CMOS circuit.
  • the CDS circuit 55 b is provided corresponding to the photoelectric conversion element row formed of the plurality of photoelectric conversion elements 51 b arranged in the column direction Y.
  • the CDS circuit 55b is connected to the CMOS circuit of the photoelectric conversion element row corresponding to this via the wiring 59b.
  • the CDS circuit 55b performs correlated double sampling processing on the input signal.
  • the H driver 57b is connected to each CDS circuit 55b via the transistor 56b.
  • the H driver 57b sequentially turns on the transistor 56b to output the signal processed by the CDS circuit 55b to the signal output line 58b.
  • the captured image signal can be read out simultaneously and in parallel in the first group and the second group.
  • the device control unit 8 controls the solid-state imaging element 5 to expose the photoelectric conversion elements 51a of the first group in the first exposure period, and During one exposure period, the photoelectric conversion elements 51b of the second group are sequentially exposed with a plurality of second exposure periods of different lengths.
  • the device control unit 8 converts the captured image signal corresponding to the charge stored in the photoelectric conversion element during the exposure period into the solid-state imaging element 5
  • Output from The image processing unit 9 performs image processing on at least three types of captured image signals (one obtained in the first exposure period and one obtained in the plurality of second exposure periods) output from the solid-state imaging device 5 Is performed to generate at least two types of captured image data having different sensitivities.
  • the image processing unit 9 combines the captured image data corresponding to the first exposure period and each of the plurality of types of captured image data corresponding to the second exposure period, and obtains a plurality of types of captured images having different dynamic ranges. Generate data.
  • the image processing unit 9 records a plurality of types of captured image data having different dynamic ranges in the memory card 11, and ends the shooting. By such an operation, multiple types of captured image data having different dynamic ranges can be obtained by one shooting.
  • FIG. 3 is a timing chart of the imaging operation of the imaging device 100 shown in FIG. 1, and shows the exposure period of the photoelectric conversion element 51a of the first group and the exposure period of the photoelectric conversion element 51b of the second group. Is a diagram specifically showing the relationship of. The contents of control by the device control unit 8 will be specifically described with reference to FIG. FIG. 3 shows an example in which three second exposure periods are provided during the first exposure period.
  • a quadrangle (parallelogram) marked as “first exposure period A” indicates the first exposure period of the entire first group, “B (1)”, “B (2)”,
  • the quadrangle (parallelogram) in which "B (3)" is written indicates the second exposure period of the entire second group.
  • the device control unit 8 When a photographing instruction is issued, the device control unit 8 performs rolling reset driving, which resets the accumulated charge of the photoelectric conversion element 51a of the first group by shifting the timing for each line of the photoelectric conversion element 51a, with the V driver 60a. In addition, the device control unit 8 performs rolling reset driving in which the accumulated charges of the photoelectric conversion elements 51 b of the second group are reset at different timings for each line of the photoelectric conversion elements 51 by the V driver 60 b.
  • the V driver 60a and the V driver 60b synchronize the timing of resetting the accumulated charge with the k line of the first group and the k line of the second group.
  • the photoelectric conversion elements 51a of the lines in the first group are sequentially reset and the photoelectric conversion elements 51b of the lines in the second group are sequentially reset in the period from time t1 to time t2.
  • exposure of the first exposure period A starts when reset of the accumulated charge is completed.
  • the exposure of the second exposure period B (1) starts when the reset of the accumulated charge is completed.
  • the device control unit 8 detects the charge stored in the photoelectric conversion element 51b of the second group at time t3 after a predetermined time has elapsed since exposure of one line of the first group and one line of the second group was started at time t1.
  • the signal readout circuit 62b implements a rolling readout drive that reads out a signal according to the timing of each line of the photoelectric conversion element 51b at a shifted timing.
  • a signal corresponding to the accumulated charge of the photoelectric conversion element 51b of each line of the second group is output from the solid-state imaging element 5 between time t3 and time t4.
  • exposure of the second exposure period B (1) ends when reading of a signal corresponding to the accumulated charge of the photoelectric conversion element 51b ends.
  • the device control unit 8 resets the accumulated charge of each photoelectric conversion element 51b of the line via the V driver 60b every time reading of the signal of each line is completed between time t3 and time t4. After completion, the signal readout of the next line is performed. That is, between time t3 and t4, rolling readout driving and rolling reset driving are alternately performed on the second group of photoelectric conversion elements 51b. In each line of the second group, the exposure of the second exposure period B (2) starts at the end of the reset by the rolling reset drive between the times t3 and t4.
  • the device control unit 8 performs the rolling readout drive and the rolling reset. Driving is alternately performed by the signal readout circuit 62b.
  • a signal corresponding to the accumulated charge of the photoelectric conversion element 51b of each line of the second group is output from the solid-state imaging element 5 between time t5 and time t6, and photoelectric conversion of each line of the second group is performed.
  • the accumulated charge of the conversion element 51b is reset.
  • exposure of the second exposure period B (2) is completed when readout of a signal corresponding to the accumulated charge of the photoelectric conversion element 51b is completed, and reset of the accumulated charge is completed.
  • the exposure of the second exposure period B (3) starts.
  • the device control unit 8 performs the rolling readout drive and the rolling reset. Driving is alternately performed by the signal readout circuit 62b.
  • a signal corresponding to the accumulated charge of the photoelectric conversion element 51b of each line of the second group is output from the solid-state imaging element 5 between time t7 and time t8, and photoelectric conversion of each line of the second group
  • the accumulated charge of the conversion element 51b is reset.
  • exposure of the second exposure period B (3) ends when reading of a signal corresponding to the accumulated charge of the photoelectric conversion element 51b is completed.
  • the device control unit 8 reads out a signal according to the accumulated charge of the photoelectric conversion element 51a of the first group by shifting the timing for each line of the photoelectric conversion element 51a, and performs rolling readout drive and rolling reset drive.
  • the signal read out circuit 62a alternately carries out.
  • a signal corresponding to the accumulated charge of the photoelectric conversion element 51a of each line of the first group is output from the solid-state imaging element 5 between time t7 and time t8, and photoelectric conversion of each line of the first group is performed.
  • the accumulated charge of the conversion element 51a is reset.
  • exposure of the first exposure period A ends when reading of a signal according to the accumulated charge of the photoelectric conversion element 51a is completed.
  • the V driver 60a and the V driver 60b synchronize the timing of reading out the signal according to the accumulated charge of the photoelectric conversion element between the k line of the first group and the k line of the second group during time t7 to t8.
  • the exposure of the second exposure period B (1), the second exposure period B (2), and the second exposure period B (3) is performed by the above driving. It can carry out one by one and can output four kinds of image pick-up image signals obtained by exposure of these four exposure periods from solid-state image sensing device 5.
  • the image processing unit 9 combines the captured image data corresponding to the first exposure period A and the captured image data corresponding to the second exposure period B (1) to capture an image of the first dynamic range. Generate image data. Further, the image processing unit 9 combines the captured image data corresponding to the first exposure period A and the captured image data corresponding to the second exposure period B (2) to obtain captured image data of the second dynamic range.
  • the image processing unit 9 combines the captured image data corresponding to the first exposure period A and the captured image data corresponding to the second exposure period B (3) to obtain captured image data of a third dynamic range. Generate By doing this, it is possible to easily obtain three types of captured image data having different dynamic ranges. As a result, after imaging, the user of the imaging device 100 can change the dynamic range to obtain desired imaged image data, and can reduce the chance of imaging failure.
  • FIG. 4 is a view showing a modified example of the imaging device 100 shown in FIG.
  • the imaging apparatus 200 shown in FIG. 4 is shown in FIG. 1 except that the mechanical shutter 3 is added on the light incident side of the solid-state imaging device 5 (between the diaphragm 2 and the solid-state imaging device 5 in the example of FIG. 4).
  • the configuration is the same as that of the imaging device 100.
  • the imaging apparatus 200 shown in FIG. 4 is different from the imaging apparatus 100 shown in FIG. 1 in the photographing operation.
  • the photographing operation of the imaging device 200 will be described.
  • FIG. 5 is a timing chart for explaining the operation of the imaging device 200 at the time of shooting.
  • the timing chart shown in FIG. 5 is a point at which exposure of the first exposure period A is started by performing global reset driving for simultaneously resetting the accumulated charges of all the photoelectric conversion elements 51a of the first group, and the mechanical shutter 3 is closed.
  • the point in which the driving is performed to complete the exposure in the first exposure period A is largely different from the timing chart shown in FIG.
  • the device control unit 8 When a photographing instruction is issued with the mechanical shutter 3 open, the device control unit 8 performs global reset driving with the V driver 60a, and simultaneously resets the accumulated charges of all the photoelectric conversion elements 51a.
  • exposure of the first exposure period A starts with the end of the reset.
  • the accumulated charges in the lines of the second group are sequentially reset in response to a photographing instruction, and when this reset is completed, the second exposure period B is completed.
  • the exposure of (1) starts.
  • the operation from the start of the exposure of the second exposure period B (1) to the end of the second exposure period B (2) is the same as that described with reference to FIG.
  • the device control unit 8 performs the rolling readout drive and the rolling reset. Driving is alternately performed by the signal readout circuit 62b.
  • a signal corresponding to the accumulated charge of the photoelectric conversion element 51b of each line of the second group is output from the solid-state imaging element 5 between time t7 and time t8, and photoelectric conversion of each line of the second group is performed.
  • the accumulated charge of the conversion element 51b is reset.
  • exposure of the second exposure period B (3) ends when reading of a signal corresponding to the accumulated charge of the photoelectric conversion element 51b is completed.
  • the device control unit 8 closes the mechanical shutter 3. At the time when the mechanical shutter 3 is closed, the exposure of the first exposure period A ends. After the end of the exposure in the first exposure period A, the device control unit 8 reads a captured image signal from the first group by rolling readout driving.
  • the imaging device 200 by using the mechanical shutter 3, the timing of the start and the end of the exposure can be matched for all the lines in the first group. For this reason, with respect to captured image data obtained from the first group, it is possible to eliminate distortion that occurs in a moving object specific to a CMOS sensor.
  • global reset driving can be simultaneously performed to simultaneously reset accumulated charges in all the photoelectric conversion elements 51b of the second group, and exposure of the second exposure period B (1) can also be started. Also, by closing the mechanical shutter 3, the exposure of the second exposure period B (3) can be ended. A timing chart in this case is shown in FIG.
  • the exposure time is not uniform in all the lines of the second group in the second exposure period B (1) and the second exposure period B (3).
  • the second exposure period B (1), the second exposure period B (2), and the second exposure period B (3) both The exposure time can be made uniform in all the lines of the two groups. Therefore, the image quality of a plurality of pieces of captured image data obtained from the second group can be improved.
  • FIG. 7 is a timing chart showing a modification of the driving method shown in FIG.
  • the timing chart shown in FIG. 7 starts the global reset drive and starts the exposure of the last exposure period B (3) among the plurality of second exposure periods performed during the exposure of the first exposure period A.
  • the timing chart is the same as the timing chart shown in FIG. 5 except that it is shortened in the order of B (3).
  • the operation at time t1 to t6 is the same as that described in FIG.
  • the device control unit 8 performs global reset drive for simultaneously resetting the accumulated charge of all the photoelectric conversion elements 51b. To do.
  • the exposure of the second exposure period B (3) starts when the reset of the accumulated charge of the photoelectric conversion element 51b by the global reset drive is completed.
  • the device control unit 8 drives the mechanical shutter 3 to close at time t8 after a lapse of time shorter than the second exposure period B (2) since the exposure of the third exposure period B (3) starts. I do. At the time when the mechanical shutter 3 is closed, the exposure of the first exposure period A and the exposure of the second exposure period B (3) are completed. After completion of the exposure in the first exposure period A, the device control unit 8 reads out the captured image signals from the first group and the second group by rolling readout driving.
  • the timing of the start and end of exposure in the last exposure period among the plurality of second exposure periods is made to coincide in all the lines of the second group. be able to. Therefore, distortion does not occur in the captured image data obtained in the second exposure period B (3), and the image quality can be improved.
  • the shortest period (the exposure period with the highest possibility of distortion) among the plurality of second exposure periods comes to the position of the last exposure period B (3) shown in FIG. By doing this, it is possible to minimize the image quality deterioration when shooting a moving subject.
  • the mechanical shutter 3 controls the exposure end timing in the final exposure period B (3).
  • the lower limit which can shorten the last exposure period B (3) is determined by the variation of the mechanical shutter 3. Therefore, in order to realize a shorter exposure period, it is possible to control the start and end timings of the exposure period by electrical driving, other than the last exposure period of the plurality of second exposure periods.
  • the exposure period is preferably the shortest exposure period.
  • the case where the exposure period B (2) is the shortest period in the timing chart shown in FIG. 7 corresponds to this.
  • the exposure period is extremely short, it is the same as in the case of shooting with a high speed shutter. For this reason, even for a moving subject, distortion of an image specific to a CMOS sensor is less likely to occur.
  • the photographed image data obtained from the first group is an image corresponding to the average of the image photographed at the start time of the first exposure period A and the image photographed at the end time. Therefore, as shown in FIG. 8, by bringing the exposure period B (2) to the vicinity of the middle of the first exposure period A, the captured image data obtained in the exposure period A and the exposure period B (2) are obtained.
  • the correlation with the captured image data can be enhanced. For this reason, it is particularly preferable to set the exposure period other than the first and the last exposure period among the plurality of second exposure periods as the shortest exposure period. More preferably, the half of the exposure period A coincides with the half of the shortest exposure period.
  • the signal readout circuit 62a and the signal readout circuit 62b are separately provided in the first group and the second group, but it is needless to say that they may be one to constitute a general MOS sensor. Good.
  • the second exposure after the rolling reset driving for the exposure start of the first exposure period A is ended.
  • the rolling reset drive for the exposure start of period B (1) is performed and the rolling readout drive for the exposure end of the first exposure period A is ended, the exposure completion of the second exposure period B (3) is performed. It is necessary to perform a rolling read drive for
  • the rolling reset drive for the exposure start in the second exposure period B (1) is finished, the rolling reset drive for the exposure start in the first exposure period A is performed. It is necessary to perform the rolling read drive for the end of exposure of the first exposure period A after the rolling read drive for the end of the exposure of the second exposure period B (3) is finished.
  • the first exposure period A, the second exposure period B (1), the second exposure period B (2), and the second exposure period B There is an overlap with each of 3). Therefore, the correlation between the captured image signal obtained in the first exposure period A and the captured image signal obtained in each of the second exposure periods B (1), B (2) and B (3) is sufficient. Become high. Therefore, the image quality of a plurality of types of captured image data having different dynamic ranges is not significantly affected.
  • the first or last exposure period of the plurality of second exposure periods overlaps only with the first exposure period A.
  • all the other second exposure periods overlap with the first exposure period A. Therefore, also from this point, the influence on the image quality of the plurality of types of captured image data is small.
  • all the exposures of the plurality of second exposure periods can be performed during the exposure of the first exposure period. Therefore, high image quality of captured image data can be achieved.
  • the arrangement of photoelectric conversion elements of the solid-state imaging element 5 shown in FIG. 2 can be modified as follows.
  • FIG. 11 is a view showing a modification of the solid-state imaging device shown in FIG.
  • a plurality of photoelectric conversion devices are arranged in a square lattice, and the odd rows are photoelectric conversion devices 51a, and the even rows are photoelectric conversion devices 51b.
  • FIG. 12 is a view showing a modification of the solid-state imaging device shown in FIG.
  • the solid-state imaging device of this modification has a configuration in which a plurality of photoelectric conversion elements are arranged in a square grid shape, the photoelectric conversion element 51a is disposed at one of the checkered positions, and the photoelectric conversion element 51b is disposed at the other checkered position. It is.
  • the photoelectric conversion element 51a and the photoelectric conversion element 51b have the same structure and no difference in sensitivity, but may have a difference in sensitivity.
  • the time ratio between the first exposure period and each of the plurality of second exposure periods may be determined in consideration of the sensitivity difference between the photoelectric conversion element 51a and the photoelectric conversion element 51b.
  • the solid-state imaging device 5 is a CMOS type has been described above, it may be a CCD type.
  • FIG. 13 is a timing chart for explaining a photographing operation when the solid-state imaging device 5 in the imaging device 100 shown in FIG. 1 is a CCD type, and corresponds to FIG.
  • the device control unit 8 upon receiving a photographing instruction, the device control unit 8 turns off the electronic shutter pulse (time t1). As a result, the photoelectric conversion elements 51a of the first group and the photoelectric conversion elements 51b of the second group are in a state capable of charge accumulation. Then, the first exposure period A starts in all the lines of the first group, and the second exposure period B (1) starts in all the lines of the second group.
  • the device control unit 8 reads out the accumulated charge of the photoelectric conversion element 51b of the second group to the vertical CCD, transfers this to the amplifier, and the accumulated charge from the amplifier Output a signal according to.
  • the exposure of the second exposure period B (1) is completed in all the lines of the second group, and the start second exposure period B (2) Exposure starts.
  • the device control unit 8 performs photoelectric conversion of the second group.
  • the accumulated charge of the element 51b is read out to the vertical CCD, transferred to the amplifier, and a signal corresponding to the accumulated charge is output from the amplifier.
  • the exposure of the second exposure period B (2) is completed in all the lines of the second group, and the second exposure period B (3) is completed. Exposure starts.
  • the device control unit 8 performs photoelectric conversion of the second group.
  • the accumulated charge of the element 51b is read out to the vertical CCD, transferred to the amplifier, and a signal corresponding to the accumulated charge is output from the amplifier.
  • the exposure of the second exposure period B (3) is completed in all the lines of the second group.
  • the device control unit 8 reads out the stored charge of the photoelectric conversion element 51a of the first group to the vertical CCD, transfers this to the amplifier, and causes the amplifier to output a signal corresponding to the stored charge.
  • the readout of the accumulated charge to the vertical CCD is completed, the exposure of the first exposure period A is completed in all the lines of the first group.
  • the exposure periods other than the first exposure period are stored in the vertical CCD from all the photoelectric conversion elements 51b of the second group. It is necessary to make the time longer than the signal readout time required to read out and transfer the signal to output the signal corresponding to the accumulated charge from the solid-state imaging device 5. For example, if the length of the second exposure period B (2) shown in FIG. 13 is shorter than the signal readout time, the vertical CCD is selected before the readout of the signal whose readout is started at time t2 is completed. This is because the charges accumulated in the exposure in the second exposure period B (2) are transferred, which causes a problem in signal readout.
  • the solid-state imaging device 5 is a CCD type, it is preferable to set the first exposure period of the plurality of second exposure periods as the shortest time.
  • the disclosed imaging device includes a solid-state imaging device including a plurality of first photoelectric conversion devices and a plurality of second photoelectric conversion devices arranged in a two-dimensional manner, and the plurality of first photoelectric conversion devices And exposing the plurality of second photoelectric conversion elements sequentially in a plurality of second exposure periods different in length, and the plurality of first photoelectric A first signal according to the charge stored in the conversion element, and a second signal according to the charge stored in the plurality of second photoelectric conversion elements in each of the plurality of second exposure periods And a drive unit for driving to read out, and each second exposure period has an overlap with the first exposure period.
  • the disclosed imaging device further includes a mechanical shutter provided on the light incident side of the solid-state imaging device, the solid-state imaging device is a CMOS type, and the driving unit is a part of the plurality of first photoelectric conversion devices.
  • the global reset drive for simultaneously resetting the accumulated charge is performed to start the exposure for the first exposure period, and the mechanical shutter is closed after the start of the exposure for the first exposure period for the first exposure period.
  • the rolling reset drive is performed to end exposure and reset the accumulated charges of the plurality of second photoelectric conversion elements at different timings for each line of the second photoelectric conversion elements, thereby performing the plurality of second exposure periods.
  • the exposure of the exposure period is started except at least the last second exposure period.
  • the drive unit performs global reset driving for simultaneously resetting the accumulated charges of the plurality of second photoelectric conversion elements, and the last second of the plurality of second exposure periods is performed.
  • the exposure in the exposure period is started, and the mechanical shutter is closed to complete the exposure in the last second exposure period.
  • the disclosed imaging device is one in which the last second exposure period is the shortest of the plurality of second exposure periods.
  • the shortest period of the plurality of second exposure periods is a period excluding the first second exposure period and the last second exposure period.
  • the disclosed imaging device has three second exposure periods.
  • the drive unit performs the rolling reset drive to start exposure of each second exposure period, and shifts the timing for each line of the second photoelectric conversion element to perform the second operation.
  • a rolling read drive for reading out a signal is performed to end the exposure for each second exposure period.
  • the solid-state imaging device is a CMOS type
  • the driving unit shifts the accumulated charge of the plurality of first photoelectric conversion devices at different timings for each line of the first photoelectric conversion devices.
  • a rolling reset drive for resetting is performed to start exposure in the first exposure period, and reset the accumulated charges of the plurality of second photoelectric conversion elements by shifting the timing for each line of the second photoelectric conversion elements
  • Rolling reset driving is performed to start exposure for each second exposure period
  • rolling readout driving is performed to shift the timing for each line of the first photoelectric conversion element and read out the first signal; After completion of the exposure in the first exposure period, rolling readout driving is performed to shift the timing for each line of the second photoelectric conversion element and read out the second signal, It is to terminate the exposure of the second exposure period.
  • the disclosed imaging device is such that exposure of each second exposure period is performed during the first exposure period.
  • the disclosed imaging device is one in which the solid-state imaging device is a CCD type, and the first second exposure period of the plurality of second exposure periods is the shortest period.
  • the disclosed imaging device is characterized in that the solid-state imaging device comprises a first readout circuit for reading out the first signal from the plurality of first photoelectric conversion devices, and the plurality of second photoelectric conversion devices from the plurality of second photoelectric conversion devices. And a second read out circuit provided independently of the first read out circuit for reading out the second signal.
  • the disclosed imaging method is an imaging method using a solid-state imaging device including a plurality of first photoelectric conversion devices and a plurality of second photoelectric conversion devices arranged in a two-dimensional manner, While exposing the plurality of second photoelectric conversion elements sequentially in a plurality of second exposure periods having different lengths, during the first exposure period.
  • a driving step of driving to read out the second signal, and each second exposure period has an overlap with the first exposure period.
  • the solid-state imaging device is a CMOS type
  • global reset driving is performed to simultaneously reset accumulated charges of the plurality of first photoelectric conversion devices to perform the first exposure period. Exposure is started, and after the start of exposure in the first exposure period, drive for closing the mechanical shutter provided on the light incident side of the solid-state imaging device is performed to end exposure in the first exposure period; Rolling reset driving is performed to reset the accumulated charges of the plurality of second photoelectric conversion elements at different timings for each line of the second photoelectric conversion elements, and at least the last second of the plurality of second exposure periods is performed. The exposure in the exposure period except the second exposure period is started.
  • the driving step global reset driving is performed to simultaneously reset stored charges of the plurality of second photoelectric conversion elements, and a final second of the plurality of second exposure periods is performed.
  • the exposure in the exposure period is started, and the mechanical shutter is closed to complete the exposure in the last second exposure period.
  • the disclosed imaging method makes the last second exposure period the shortest of the plurality of second exposure periods.
  • the shortest of the plurality of second exposure periods is a period excluding the first second exposure period and the last second exposure period.
  • the disclosed imaging method has three second exposure periods.
  • the drive unit performs the rolling reset drive to start exposure for each second exposure period, and shifts the timing for each line of the second photoelectric conversion element to perform the second operation.
  • a rolling read drive for reading out a signal is performed to end the exposure for each second exposure period.
  • the solid-state imaging device is a CMOS type
  • accumulated charges of the plurality of first photoelectric conversion devices are shifted in timing for each line of the first photoelectric conversion device.
  • a rolling reset drive for resetting is performed to start exposure in the first exposure period, and reset the accumulated charges of the plurality of second photoelectric conversion elements by shifting the timing for each line of the second photoelectric conversion elements
  • Rolling reset driving is performed to start exposure for each second exposure period, and rolling readout driving is performed to shift the timing for each line of the first photoelectric conversion element and read out the first signal; End the exposure in the first exposure period, and shift the timing for each line of the second photoelectric conversion element to perform the rolling readout drive that reads the second signal. Te, it is to terminate the exposure of each of the second exposure period.
  • the disclosed imaging method carries out the exposure of each second exposure period during the first exposure period.
  • the solid-state imaging device is a CCD type, and the first second exposure period of the plurality of second exposure periods is the shortest period.
  • the first signal is read using a first readout circuit, and a second readout circuit provided independently of the first readout circuit is used.
  • the second signal is read out.
  • an imaging device and an imaging method capable of obtaining a plurality of types of image data having different dynamic ranges in one shooting.
  • Imaging device 5 Solid-state imaging device 8

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 ダイナミックレンジの異なる複数種類の画像データを1回の撮影で得ることが可能な撮像装置を提供する。 二次元状に配列された複数の第一の光電変換素子51a及び複数の第二の光電変換素子bを含む固体撮像素子5を有する撮像装置100は、複数の第一の光電変換素子51aを第一の露光期間Aで露光すると共に、第一の露光期間Aと重なる期間中に複数の第二の光電変換素子51bを、長さの異なる複数の第二の露光期間B(1)、B(2)、B(3)であって各々が第一の露光期間Aと重なる第二の露光期間で順次露光し、第一の露光期間A中に第一の光電変換素子51aに蓄積された電荷に応じた第一の信号と、第二の露光期間の各々において第二の光電変換素子51bに蓄積された電荷に応じた第二の信号とを読み出す駆動を行うデバイス制御部8を備える。

Description

撮像装置及び撮像方法
 本発明は、撮像装置及び撮像方法に関する。
 被写体を撮像する固体撮像素子として、CCD(Charge Coupled Device)型やCMOS(Complementary Metal Oxide Semiconductor)型等が普及している。これらの固体撮像素子の入射光に対するダイナミックレンジは、半導体技術の進歩により着々と向上しつつある。しかしながら、実際に固体撮像素子が利用される状況において、予め設定されているダイナミックレンジを超えた入射光が発生することはそれほど珍しいことではない。このため、ダイナミックレンジを拡大するための技術が盛んに研究されている。
 例えば、特許文献1には、長時間露光を行う画素と、長時間露光を行っている期間の途中で短時間露光を開始する画素とを有する固体撮像素子を備える撮像装置が記載されている。この撮像装置は、長時間露光で得られる画像と短時間露光で得られる画像を合成してダイナミックレンジを拡大する。
 また、特許文献2には、長時間露光を行う画素と、長時間露光を行っている期間中に短時間露光を複数回行いその都度出力する画素とが市松状に配置された固体撮像素子を搭載する撮像装置が記載されている。この撮像装置は、複数の短時間露光で得られる画像を平均してカメラブレ補正を行う。そして、撮像装置は、この平均後の画像と長時間露光で得られる画像を合成して、ダイナミックレンジを拡大する。
 これらの撮像装置は、同じ被写体に対しダイナミックレンジの異なる複数種類の画像データを得るために、長時間露光と短時間露光の比を変更して撮影を複数回行う必要がある。しかし、撮影と撮影の間に被写体が動いたり、太陽が雲に隠れてしまったり等、撮影環境は刻々と変化する。このため、同一被写体に対してダイナミックレンジの異なる画像データを得ることは容易ではない。
 撮影が終わった後に、所望のダイナミックレンジ拡大倍率で画像データを生成することができれば、期待する画像データを得られるようになる。しかし、このような機能を持つ撮像装置は今まで存在していない。
日本国特開2009-302653号公報 日本国特開2010-62785号公報
 本発明は、上記事情に鑑みてなされたものであり、ダイナミックレンジの異なる複数種類の画像データを1回の撮影で得ることが可能な撮像装置及び撮像方法を提供することを目的とする。
 本発明の撮像装置は、二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子と、前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動部とを備え、各第二の露光期間は、前記第一の露光期間と重なりを有するものである。
 この構成により、感度の異なる少なくとも3つの信号(第一の信号と、少なくとも2つの第二の信号)を1度の撮影で得ることができる。このため、例えば、第二の露光期間が2つ存在するとした場合、第一の信号から生成される画像データと2つの第二の信号の一方から生成される画像データとを合成して第一のダイナミックレンジの画像データを生成し、第一の信号から生成される画像データと2つの第二の信号の他方から生成される画像データとを合成して第ニのダイナミックレンジの画像データを生成することが可能になる。つまり、撮影を行った後に、画像処理によって、ダイナミックレンジの異なる複数の画像データを生成することが可能になる。したがって、撮影を複数回行わずとも、同じ被写体に対してダイナミックレンジの異なる複数の画像データを得ることができる。この結果、撮像装置の利便性を向上させることができる。
 本発明の撮像方法は、二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子を用いた撮像方法であって、前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動ステップを備え、各第二の露光期間は、前記第一の露光期間と重なりを有するものである。
 本発明によれば、ダイナミックレンジの異なる複数種類の画像データを1回の撮影で得ることが可能な撮像装置及び撮像方法を提供することができる。
本発明の実施形態を説明するための撮像装置の機能ブロック図 図1に示した撮像装置における固体撮像素子5の概略構成を示す平面模式図 図1に示した撮像装置の撮影動作時のタイミングチャートを示す図 図1に示した撮像装置の変形例を示す図 図4に示した撮像装置の撮影時の動作を説明するためのタイミングチャート 図4に示した撮像装置の撮影時の別の動作を説明するためのタイミングチャート 図5に示した駆動方法の変形例を示すタイミングチャート 図7に示したタイミングチャートにおいて露光期間B(2)を最も短い期間にした図 1つの信号読出し回路によって図3に示した駆動方法を実現するためのタイミングチャートの一例を示す図 1つの信号読出し回路によって図3に示した駆動方法を実現するためのタイミングチャートの一例を示す図 図2に示した固体撮像素子の変形例を示す図 図2に示した固体撮像素子の変形例を示す図 図1に示した撮像装置における固体撮像素子をCCD型にしたときの撮影動作を説明するためのタイミングチャート
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の実施形態を説明するための撮像装置100の機能ブロック図である。撮像装置100の撮像系は、撮影レンズ系1と、絞り2と、固体撮像素子5と、アナログデジタル(AD)変換部6とを備える。
 撮影レンズ系1の背部には、絞り2が配置される。撮影レンズ系1と絞り2により撮影光学系を構成している。
 絞り2の背部には、詳細は後述するCMOS型の固体撮像素子5が配置されている。撮影レンズ系1及び絞り2をこの順に通って固体撮像素子5の受光面に入射した被写体光像に対応する撮像画像信号が、AD変換部6でデジタルデータに変換された後、バス17に出力される。
 バス17には、この撮像装置100の全体を統括制御する中央制御部(CPU)7と、シャッタレリーズボタンを含む操作ボタン等で構成される操作部16と、DSP等で構成されCPU7の指示の基に撮像画像信号に対して画像処理を施す画像処理部9と、撮像画像信号を画像処理して得られた撮像画像データを表示用のデータに変換するビデオエンコーダ15と、ビデオエンコーダ15で変換された撮像画像データを表示部14に表示するドライバ13と、メモリ10と、メディア制御部12とが接続される。メディア制御部12には、着脱自在に記録媒体(メモリカード)11が装着される。
 CPU7には、デバイス制御部8が接続される。デバイス制御部8は、CPU7からの指示に従い、固体撮像素子5の駆動制御を行う。また、デバイス制御部8は、CPU7からの指示に従い、絞り2の開口量調整制御を行う。また、デバイス制御部8は、CPU7からの指示に従い、撮影レンズ系1のフォーカス位置制御やズーム位置制御を行う。
 図2は、図1に示した撮像装置100における固体撮像素子5の概略構成を示す平面模式図である。
 図2に示したように、固体撮像素子5は、複数の光電変換素子51a(ハッチングを付したもの)からなる第一グループと、複数の光電変換素子51bからなる第二グループと、第一グループに対応して設けられた信号読出し回路62aと、第二グループに対応して設けられた信号読出し回路62bとを備える。
 固体撮像素子5に含まれる全ての光電変換素子は、半導体基板表面の列方向Yとこれに交差する(図2の例では直交する)行方向Xとに二次元状に配置されている。この全ての光電変換素子は、行方向Xに並ぶ複数の光電変換素子51aからなる第一の光電変換素子行と、行方向Xに並ぶ複数の光電変換素子51bからなる第二の光電変換素子行とを列方向Yに交互に一定ピッチで並べた配置となっている。さらに、第一の光電変換素子行は、第二の光電変換素子行に対して、各光電変換素子行の光電変換素子の行方向Xにおける配列ピッチの1/2だけ行方向Xにずらして配置されている。このような配列は、正方格子状に配置した各光電変換素子51aに対して斜め45°方向にずれた位置に光電変換素子51bを配置することで得ることができる。
 このように、全ての光電変換素子51aには、同一の位置関係で光電変換素子51bが隣接して配置された構成となっている。各光電変換素子51aと、各光電変換素子51aに対して同一の位置関係(同一方向)に隣接する光電変換素子51bとで、ペアを構成している。
 固体撮像素子5に含まれる全ての光電変換素子は、略同一構成(設計上の値が同一)となっている。略同一構成とは、半導体基板内に形成される光電変換領域(フォトダイオード)のサイズが略同じであり、その光電変換領域の上方に形成される遮光膜の開口サイズも略同じであることを意味する。
 各光電変換素子51aの上方には、全体としてベイヤ状に配置された赤色光を透過するカラーフィルタR1と、緑色光を透過するカラーフィルタG1と、青色光を透過するカラーフィルタB1とが設けられている。
 図2においては、カラーフィルタR1が上方に設けられた光電変換素子51aに“R1”の文字を付してある。また、カラーフィルタG1が上方に設けられた光電変換素子51aに“G1”の文字を付してある。また、カラーフィルタB1が上方に設けられた光電変換素子51aに“B1”の文字を付してある。
 各光電変換素子51bの上方には、全体としてベイヤ状に配置された赤色光を透過するカラーフィルタR2と、緑色光を透過するカラーフィルタG2と、青色光を透過するカラーフィルタB2とが設けられている。
 図2においては、カラーフィルタR2が上方に設けられた光電変換素子51bに“R2”の文字を付してある。また、カラーフィルタG2が上方に設けられた光電変換素子51bに“G2”の文字を付してある。また、カラーフィルタB2が上方に設けられた光電変換素子51bに“B2”の文字を付してある。
 以下の説明では、カラーフィルタR1とカラーフィルタR2を総称して赤色フィルタともいう。また、カラーフィルタG1とカラーフィルタG2を総称して緑色フィルタともいう。また、カラーフィルタB1とカラーフィルタB2を総称して青色フィルタともいう。
 このように、同一の位置関係で隣接する光電変換素子51a及び光電変換素子51b(図2の例では、光電変換素子51aとこれに斜め右上方向で隣接する光電変換素子51b)の各々の上方には同一色のフィルタ(赤色フィルタ、緑色フィルタ、又は青色フィルタ)が配置されている。したがって、固体撮像素子5には、上方に設けられるフィルタの色が異なる3種類のペア(赤色フィルタを上方に持つRペア、緑色フィルタを上方に持つGペア、青色フィルタを上方に持つBペア)が含まれる。
 図2に示したように、第一の光電変換素子行については、図2において一番上から順に、1ライン、2ライン、3ライン、・・・、nラインと呼ぶ。第二の光電変換素子行についても、図2において一番上から順に、1ライン、2ライン、3ライン、・・・、nラインと呼ぶ。kライン(k=1,2,3、・・・、n)の第一の光電変換素子行に含まれる各光電変換素子51aとペアを組む光電変換素子51bで構成される第二の光電変換素子行がkラインの第二の光電変換素子行となっている。
 固体撮像素子5に含まれる全ての光電変換素子の各々には、図示しないCMOS回路がその近傍に対応して設けられている。CMOS回路は、例えば3トランジスタ構成や4トランジスタ構成である。
 信号読出し回路62aは、CDS回路55aと、トランジスタ56aと、Hドライバ57aと、信号出力線58aと、配線59a(一部のみ図示)と、Vドライバ60aと、配線61a(一部のみ図示)とを備える。信号読出し回路62aは、図1に示したデバイス制御部8によって制御される。
 行方向Xに並ぶ複数の光電変換素子51aからなる光電変換素子行に対応するCMOS回路には配線61aが接続されている。この配線61aが、Vドライバ60aに接続されている。
 Vドライバ60aは、行方向Xに並ぶ複数の光電変換素子51aからなる光電変換素子行を1つずつ選択して、選択した光電変換素子行に対応するCMOS回路から配線59aに信号を読み出す駆動を行う。また、Vドライバ60aは、第一グループの光電変換素子51aに対応するCMOS回路のリセットトランジスタを制御して、第一グループの光電変換素子51aの蓄積電荷をリセットする駆動(光電変換素子の電荷をCMOS回路のリセットトランジスタのドレインに排出する駆動)も行う。
 CDS回路55aは、列方向Yに並ぶ複数の光電変換素子51aからなる光電変換素子列に対応して設けられている。CDS回路55aは、これに対応する光電変換素子列のCMOS回路に配線59aを介して接続されている。CDS回路55aは、入力された信号に相関二重サンプリング処理を施す。
 Hドライバ57aは、各CDS回路55aにトランジスタ56aを介して接続されている。Hドライバ57aは、トランジスタ56aを順次オンしていくことで、CDS回路55aで処理後の信号を信号出力線58aに出力させる。
 信号読出し回路62bは、CDS回路55bと、トランジスタ56bと、Hドライバ57bと、信号出力線58bと、配線59b(一部のみ図示)と、Vドライバ60bと、配線61b(一部のみ図示)とを備える。信号読出し回路62bは、図1に示したデバイス制御部8によって制御される。
 行方向Xに並ぶ複数の光電変換素子51bからなる光電変換素子行に対応するCMOS回路には配線61bが接続されている。この配線61bが、Vドライバ60bに接続されている。
 Vドライバ60bは、行方向Xに並ぶ複数の光電変換素子51bからなる光電変換素子行を1つずつ選択して、選択した光電変換素子行に対応するCMOS回路から配線59bに信号を読み出す駆動を行う。また、Vドライバ60bは、第二グループの光電変換素子51bに対応するCMOS回路のリセットトランジスタを制御して、第二グループの光電変換素子51bの蓄積電荷をリセットする駆動(光電変換素子の電荷をCMOS回路のリセットトランジスタのドレインに排出する駆動)も行う。
 CDS回路55bは、列方向Yに並ぶ複数の光電変換素子51bからなる光電変換素子列に対応して設けられている。CDS回路55bは、これに対応する光電変換素子列のCMOS回路に配線59bを介して接続されている。CDS回路55bは、入力された信号に相関二重サンプリング処理を施す。
 Hドライバ57bは、各CDS回路55bにトランジスタ56bを介して接続されている。Hドライバ57bは、トランジスタ56bを順次オンしていくことで、CDS回路55bで処理後の信号を信号出力線58bに出力させる。
 このような構成により、第一グループと第二グループとで同時並行して撮像画像信号を読み出すことができる。
 次に、図1に示した撮像装置100の撮影動作について説明する。
 まず概略を説明する。デバイス制御部8は、シャッタレリーズボタンが押下されて撮影指示がなされると、固体撮像素子5を制御して、第一グループの光電変換素子51aを第一の露光期間で露光すると共に、その第一の露光期間中に、第二グループの光電変換素子51bを長さの異なる複数の第二の露光期間で順次露光する。そして、第一の露光期間及び複数の第二の露光期間がそれぞれ終了すると、デバイス制御部8は、それら露光期間中に光電変換素子に蓄積された電荷に応じた撮像画像信号を固体撮像素子5から出力させる。固体撮像素子5から出力される少なくとも3種類の撮像画像信号(第一の露光期間で得られたものと複数の第二の露光期間で得られたもの)は、それぞれ画像処理部9で画像処理が施されて、感度の異なる少なくとも2種類の撮像画像データが生成される。
 画像処理部9は、第一の露光期間に対応する撮像画像データと、第二の露光期間に対応する複数種類の撮像画像データの各々とを合成して、ダイナミックレンジの異なる複数種類の撮像画像データを生成する。画像処理部9は、このダイナミックレンジの異なる複数種類の撮像画像データをメモリカード11に記録して撮影を終了する。このような動作によって、ダイナミックレンジの異なる複数種類の撮像画像データを1回の撮影で得ることができる。
 図3は、図1に示した撮像装置100の撮影動作時のタイミングチャートを示す図であり、第一グループの光電変換素子51aの露光期間と、第二グループの光電変換素子51bの露光期間との関係を具体的に示した図である。この図3を参照しながら、デバイス制御部8による制御の内容を具体的に説明する。図3では、第一の露光期間中に第二の露光期間を3つ設けた例を示している。図3において、“第一の露光期間A”と記した四角形(平行四辺形)が、第一グループ全体の第一の露光期間を示し、“B(1)”、“B(2)”、“B(3)”を記した四角形(平行四辺形)が、それぞれ第二グループ全体の第二の露光期間を示している。
 撮影指示があると、デバイス制御部8は、第一グループの光電変換素子51aの蓄積電荷を光電変換素子51aのライン毎にタイミングをずらしてリセットするローリングリセット駆動をVドライバ60aで実施する。また、デバイス制御部8は、第二グループの光電変換素子51bの蓄積電荷を光電変換素子51のライン毎にタイミングをずらしてリセットするローリングリセット駆動をVドライバ60bで実施する。Vドライバ60aとVドライバ60bは、蓄積電荷をリセットするタイミングを、第一グループのkラインと第二グループのkラインとで同期させて行う。
 図3の例では、時刻t1から時刻t2の間に、第一グループの各ラインの光電変換素子51aのリセットを順次行うと共に、第二グループの各ラインの光電変換素子51bのリセットを順次行う。第一グループの各ラインでは、蓄積電荷のリセットが終了した時点で、第一の露光期間Aの露光が開始する。第二グループの各ラインでは、蓄積電荷のリセットが終了した時点で、第二の露光期間B(1)の露光が開始する。
 時刻t1で第一グループの1ラインと第二グループの1ラインの露光を開始してから所定時間経過後の時刻t3になると、デバイス制御部8が、第二グループの光電変換素子51bの蓄積電荷に応じた信号を光電変換素子51bのライン毎にタイミングをずらして読み出すローリング読出し駆動を信号読出し回路62bで実施する。
 図3の例では、時刻t3から時刻t4の間に、第二グループの各ラインの光電変換素子51bの蓄積電荷に応じた信号が固体撮像素子5から出力される。第二グループの各ラインでは、光電変換素子51bの蓄積電荷に応じた信号の読み出しが終了した時点で、第二の露光期間B(1)の露光が終了する。
 なお、デバイス制御部8は、時刻t3から時刻t4の間で各ラインの信号の読み出しを終了する毎に、Vドライバ60bを介して当該ラインの各光電変換素子51bの蓄積電荷をリセットし、リセット終了後に、次のラインの信号読み出しを行う。つまり、時刻t3~t4の間では、第二グループの光電変換素子51bに対し、ローリング読出し駆動とローリングリセット駆動が交互に実施される。第二グループの各ラインでは、この時刻t3~t4の間のローリングリセット駆動によるリセットが終了した時点で、第二の露光期間B(2)の露光が開始する。
 第二の露光期間B(2)の露光が開始してから、第二の露光期間B(1)よりも長い時間経過後の時刻t5になると、デバイス制御部8が、ローリング読出し駆動とローリングリセット駆動を信号読出し回路62bで交互に実施する。
 図3の例では、時刻t5から時刻t6の間に、第二グループの各ラインの光電変換素子51bの蓄積電荷に応じた信号が固体撮像素子5から出力され、第二グループの各ラインの光電変換素子51bの蓄積電荷がリセットされる。第二グループの各ラインでは、光電変換素子51bの蓄積電荷に応じた信号の読み出しが終了した時点で、第二の露光期間B(2)の露光が終了し、当該蓄積電荷のリセットが終了した時点で、第二の露光期間B(3)の露光が開始する。
 第二の露光期間B(3)の露光が開始してから、第二の露光期間B(2)よりも長い時間経過後の時刻t7になると、デバイス制御部8が、ローリング読出し駆動とローリングリセット駆動を信号読出し回路62bで交互に実施する。
 図3の例では、時刻t7から時刻t8の間に、第二グループの各ラインの光電変換素子51bの蓄積電荷に応じた信号が固体撮像素子5から出力され、第二グループの各ラインの光電変換素子51bの蓄積電荷がリセットされる。第二グループの各ラインでは、光電変換素子51bの蓄積電荷に応じた信号の読み出しが終了した時点で、第二の露光期間B(3)の露光が終了する。
 また、時刻t7になると、デバイス制御部8が、第一グループの光電変換素子51aの蓄積電荷に応じた信号を光電変換素子51aのライン毎にタイミングをずらして読み出すローリング読出し駆動とローリングリセット駆動を信号読出し回路62aで交互に実施する。
 図3の例では、時刻t7から時刻t8の間に、第一グループの各ラインの光電変換素子51aの蓄積電荷に応じた信号が固体撮像素子5から出力され、第一グループの各ラインの光電変換素子51aの蓄積電荷がリセットされる。第一グループの各ラインでは、光電変換素子51aの蓄積電荷に応じた信号の読み出しが終了した時点で、第一の露光期間Aの露光が終了する。Vドライバ60aとVドライバ60bは、時刻t7~t8の間は、光電変換素子の蓄積電荷に応じた信号を読み出すタイミングを、第一グループのkラインと第二グループのkラインとで同期させて行う。
 以上のような駆動により、第一の露光期間Aの露光中に、第二の露光期間B(1)、第二の露光期間B(2)、第二の露光期間B(3)の露光を順次実施し、これら4つの露光期間の露光で得られる4種類の撮像画像信号を固体撮像素子5から出力することができる。撮影後は、画像処理部9が、第一の露光期間Aに対応する撮像画像データと第二の露光期間B(1)に対応する撮像画像データとを合成して第一のダイナミックレンジの撮像画像データを生成しする。また、画像処理部9が、第一の露光期間Aに対応する撮像画像データと第二の露光期間B(2)に対応する撮像画像データとを合成して第二のダイナミックレンジの撮像画像データを生成する。また、画像処理部9が、第一の露光期間Aに対応する撮像画像データと第二の露光期間B(3)に対応する撮像画像データとを合成して第三のダイナミックレンジの撮像画像データを生成する。このようにすることで、ダイナミックレンジの異なる3種類の撮像画像データを簡単に得ることができる。これにより、撮像装置100のユーザは、撮影を行った後に、ダイナミックレンジを変えて所望の撮像画像データを得ることができ、撮影失敗の機会を減らすことができる。
 図4は、図1に示した撮像装置100の変形例を示す図である。
 図4に示した撮像装置200は、固体撮像素子5の光入射側(図4の例では絞り2と固体撮像素子5の間)にメカニカルシャッタ3を追加した点を除いては図1に示した撮像装置100と同じ構成である。
 図4に示した撮像装置200では、撮影動作が図1に示した撮像装置100とは異なる。以下、撮像装置200の撮影動作について説明する。
 図5は、撮像装置200の撮影時の動作を説明するためのタイミングチャートである。図5に示したタイミングチャートは、第一グループの全ての光電変換素子51aの蓄積電荷を同時にリセットするグローバルリセット駆動を行って第一の露光期間Aの露光を開始する点、メカニカルシャッタ3を閉じる駆動を行って第一の露光期間Aの露光を終了する点が、図3に示したタイミングチャートとは大きく異なる。
 メカニカルシャッタ3が開の状態で撮影指示があると、デバイス制御部8は、Vドライバ60aでグローバルリセット駆動を実施し、全ての光電変換素子51aの蓄積電荷を同時にリセットする。第一グループでは、このリセットの終了を以って、第一の露光期間Aの露光が開始する。一方、第二グループでは、図3で説明したのと同様に、撮影指示に応じて第二グループの各ラインの蓄積電荷が順次リセットされ、このリセットが終了した時点で、第二の露光期間B(1)の露光が開始する。第二の露光期間B(1)の露光が開始してから、第二の露光期間B(2)の終了までの動作は、図3で説明したものと同じであるため、説明を省略する。
 第三の露光期間B(3)の露光が開始してから、第二の露光期間B(2)よりも長い時間経過後の時刻t7になると、デバイス制御部8が、ローリング読出し駆動とローリングリセット駆動を信号読出し回路62bで交互に実施する。図5の例では、時刻t7から時刻t8の間に、第二グループの各ラインの光電変換素子51bの蓄積電荷に応じた信号が固体撮像素子5から出力され、第二グループの各ラインの光電変換素子51bの蓄積電荷がリセットされる。第二グループの各ラインでは、光電変換素子51bの蓄積電荷に応じた信号の読み出しが終了した時点で、第二の露光期間B(3)の露光が終了する。
 第二グループのnラインの信号読み出しが終了した時刻t8になると、デバイス制御部8が、メカニカルシャッタ3を閉の状態にする。このメカニカルシャッタ3が閉じた時点を以って、第一の露光期間Aの露光が終了する。第一の露光期間Aの露光終了後、デバイス制御部8は、ローリング読出し駆動によって第一グループから撮像画像信号を読み出す。
 以上のように、撮像装置200によれば、メカニカルシャッタ3を用いることで、第一グループについては、全てのラインで露光の開始及び終了のタイミングを一致させることができる。このため、第一グループから得られる撮像画像データについては、CMOSセンサ特有の動く被写体に対して発生する歪みを無くすことができる。
 なお、撮像装置200では、第二グループの全ての光電変換素子51bで蓄積電荷を同時にリセットするグローバルリセット駆動を行って第二の露光期間B(1)の露光を開始することもできる。また、メカニカルシャッタ3を閉じることで、第二の露光期間B(3)の露光を終了することもできる。この場合のタイミングチャートを示したのが図6である。
 図6に示したタイミングチャートで撮影を行ったとしても、ダイナミックレンジの異なる複数種類の撮像画像データを得ることはできる。しかし、図6に示した駆動方法では、第二の露光期間B(1)と第二の露光期間B(3)において、第二グループの全てのラインにおいて露光時間が均一にならない。これに対し、図5に示した駆動方法であれば、第二の露光期間B(1)、第二の露光期間B(2)、第二の露光期間B(3)のいずれにおいても、第二グループの全てのラインにおいて露光時間を均一にすることができる。このため、第二グループから得られる複数の撮像画像データの画質を向上させることができる。
 図7は、図5に示した駆動方法の変形例を示すタイミングチャートである。図7に示したタイミングチャートは、第一の露光期間Aの露光中に実施する複数の第二の露光期間のうちの最後の露光期間B(3)の露光を、グローバルリセット駆動を行って開始し、メカニカルシャッタ3を閉じる駆動を行って終了する点、第二の露光期間の長さが、第二の露光期間B(1)、第二の露光期間B(2)、第二の露光期間B(3)の順に短くなっている点を除いては、図5に示したタイミングチャートと同じである。
 図7に示すタイミングチャートにおいて時刻t1~t6の動作は、図5で説明したものと同じである。時刻t6で、nラインの光電変換素子51bの蓄積電荷に応じた信号の読み出しを終了すると、デバイス制御部8は、全ての光電変換素子51bの蓄積電荷を同時にリセットするグローバルリセット駆動をVドライバ60bにより行う。このグローバルリセット駆動による光電変換素子51bの蓄積電荷のリセット終了を以って、第二の露光期間B(3)の露光が開始する。
 第三の露光期間B(3)の露光が開始してから、第二の露光期間B(2)よりも短い時間経過後の時刻t8になると、デバイス制御部8が、メカニカルシャッタ3を閉じる駆動を行う。このメカニカルシャッタ3が閉じた時点を以って、第一の露光期間Aの露光と、第二の露光期間B(3)の露光が終了する。第一の露光期間Aの露光終了後、デバイス制御部8は、ローリング読出し駆動によって第一グループと第二グループからそれぞれ撮像画像信号を読み出す。
 以上のように、図7に示した駆動方法によれば、複数の第二の露光期間のうちの最後の露光期間の露光の開始及び終了のタイミングを、第二グループの全てのラインで一致させることができる。このため、第二の露光期間B(3)で得られる撮像画像データには歪みが発生することがなく、画質を向上させることができる。
 なお、動く被写体に対する画像の歪みが顕著となるのは、露光期間が短い場合である。このため、複数の第二の露光期間のうち、最も短い期間(歪みの発生する可能性が最も高い露光期間)を、図7に示した最後の露光期間B(3)の位置にもってくる。このようにすることで、動く被写体を撮影した場合の画質劣化を最小限に抑えることができる。
 図7の例では、最後の露光期間B(3)の露光終了タイミングをメカニカルシャッタ3で制御している。しかし、メカニカルシャッタ3の閉じるタイミングには時間的なばらつきがある。このため、この最後の露光期間B(3)を短縮できる下限は、メカニカルシャッタ3のばらつきで決まってしまう。そこで、更に短い露光期間を実現しようとした場合には、電気的な駆動で露光期間の開始及び終了タイミングを制御することのできる、複数の第二の露光期間のうちの最後の露光期間以外の露光期間を、最も短い露光期間とすることが好ましい。
 特に好ましいのは、複数の第二の露光期間のうちの最初と最後の露光期間以外の露光期間を、最も短い露光期間とする場合である。
 例えば、図8に示したように、図7に示したタイミングチャートにおいて露光期間B(2)を最も短い期間にした場合がこれに該当する。露光期間が極端に短い場合は、高速シャッタで撮影を行う場合と同じになる。このため、動く被写体であっても、CMOSセンサ特有の画像の歪みは発生しにくくなる。また、動く被写体を撮影した場合、第一グループから得られる撮像画像データは、第一の露光期間Aの開始時点で撮影した画像と終了時点で撮影した画像の平均に相当する画像となる。そこで、図8に示したように露光期間B(2)を第一の露光期間Aの中間付近にもってくることで、露光期間Aで得られる撮像画像データと、露光期間B(2)で得られる撮像画像データとの相関性を高めることができる。このような理由から、複数の第二の露光期間のうちの最初と最後の露光期間以外の露光期間を、最も短い露光期間とすることが特に好ましい。更に好ましいのは、露光期間Aの半分の時点と、この最も短い露光期間の半分の時点とが一致していることである。
 これまでの説明では、第一グループと第二グループとで、信号読出し回路62aと信号読出し回路62bを分けて設けているが、これらは1つにして、一般的なMOSセンサの構成としても勿論よい。
 ただし、信号読出し回路を1つにした場合には、第一グループのkラインと第二グループのkラインとを同期して駆動することができない。このため、例えば、図3に示した駆動方法を実現するには、図9に示したように、第一の露光期間Aの露光開始のためのローリングリセット駆動を終了してから第二の露光期間B(1)の露光開始のためのローリングリセット駆動を行い、第一の露光期間Aの露光終了のためのローリング読出し駆動を終了してから第二の露光期間B(3)の露光終了のためのローリング読出し駆動を行う必要がある。
 または、図10に示したように、第二の露光期間B(1)の露光開始のためのローリングリセット駆動を終了してから、第一の露光期間Aの露光開始のためのローリングリセット駆動を行い、第二の露光期間B(3)の露光終了のためのローリング読出し駆動を終了してから、第一の露光期間Aの露光終了のためのローリング読出し駆動を行う必要がある。
 図9,10に示した駆動方法であっても、第一の露光期間Aと、第二の露光期間B(1)、第二の露光期間B(2)、及び第二の露光期間B(3)の各々とは重なりを有する。このため、第一の露光期間Aで得られる撮像画像信号と、第二の露光期間B(1)、B(2)、B(3)のそれぞれで得られる撮像画像信号との相関性は十分に高くなる。したがって、ダイナミックレンジの異なる複数種類の撮像画像データの画質にはさほど影響がない。特に、複数の第二の露光期間のうちの最初又は最後の露光期間については、第一の露光期間Aと一部しか重ならなくなる。しかし、その他の第二の露光期間についてはその全てが第一の露光期間Aと重なる。このため、この点からも、複数種類の撮像画像データの画質への影響は少ない。図2に示したように、信号読出し回路を2つ設ける構成にした場合には、第一の露光期間の露光中に複数の第二の露光期間の全ての露光を実施することができる。このため、撮像画像データの高画質化が可能となる。
 図2に示した固体撮像素子5の光電変換素子の配列は、次のように変形することもできる。
 図11は、図2に示した固体撮像素子の変形例を示す図である。この変形例の固体撮像素子は、複数の光電変換素子を正方格子状に配列し、そのうちの奇数行を光電変換素子51aとし、偶数行を光電変換素子51bとしたものである。
 図12は、図2に示した固体撮像素子の変形例を示す図である。この変形例の固体撮像素子は、複数の光電変換素子を正方格子状に配列し、そのうちの一方の市松位置に光電変換素子51aを配置し、他方の市松位置に光電変換素子51bを配置した構成である。
 図11及び図12に示したような配列であっても、第一グループの各光電変換素子51aに対応する画素データと、当該光電変換素子51aとペアを組む光電変換素子51bに対応する画素データとを合成することで、ダイナミックレンジを拡大したカラー画像データを生成することができる。
 なお、光電変換素子51aと光電変換素子51bは同一構造で感度差が無い構成としたが、感度差がある構成であってもよい。この場合には、光電変換素子51aと光電変換素子51bの感度差を考慮して、第一の露光期間と複数の第二の露光期間の各々との時間比を決めればよい。
 また、これまでの説明では固体撮像素子5がCMOS型である場合を示したが、CCD型であってもよい。
 図13は、図1に示した撮像装置100における固体撮像素子5をCCD型にしたときの撮影動作を説明するためのタイミングチャートであり、図3に対応する図である。
 固体撮像素子5がCCD型の場合は、撮影指示があると、デバイス制御部8が、電子シャッタパルスをオフにする(時刻t1)。これにより、第一グループの光電変換素子51aと第二グループの光電変換素子51bが電荷蓄積可能な状態となる。そして、第一グループの全てのラインにおいて第一露光期間Aが開始し、第二グループの全てのラインにおいて第二の露光期間B(1)が開始する。
 時刻t1から所定時間経過後の時刻t2になると、デバイス制御部8が、第二グループの光電変換素子51bの蓄積電荷を垂直CCDに読出し、これをアンプまで転送して、当該アンプから当該蓄積電荷に応じた信号を出力させる。この蓄積電荷の垂直CCDへの読出しが終了した時点で、第二グループの全てのラインにおいて、第二の露光期間B(1)の露光が終了すると共に、開始第二の露光期間B(2)の露光が開始する。
 第二の露光期間B(2)が開始してから、第二の露光期間B(1)の時間よりも長い時間経過後の時刻t3になると、デバイス制御部8が、第二グループの光電変換素子51bの蓄積電荷を垂直CCDに読出し、これをアンプまで転送して、当該アンプから当該蓄積電荷に応じた信号を出力させる。この蓄積電荷の垂直CCDへの読出しが終了した時点で、第二グループの全てのラインにおいて、第二の露光期間B(2)の露光が終了すると共に、第二の露光期間B(3)の露光が開始する。
 第二の露光期間B(3)が開始してから、第二の露光期間B(2)の時間よりも長い時間経過後の時刻t4になると、デバイス制御部8が、第二グループの光電変換素子51bの蓄積電荷を垂直CCDに読出し、これをアンプまで転送して、当該アンプから当該蓄積電荷に応じた信号を出力させる。この蓄積電荷の垂直CCDへの読出しが終了した時点で、第二グループの全てのラインにおいて第二の露光期間B(3)の露光が終了する。
 時刻t4では、デバイス制御部8が、第一グループの光電変換素子51aの蓄積電荷を垂直CCDに読出し、これをアンプまで転送して、当該アンプから当該蓄積電荷に応じた信号を出力させる。この蓄積電荷の垂直CCDへの読出しが終了した時点で、第一グループの全てのラインにおいて第一の露光期間Aの露光が終了する。
 以上のような駆動により、CCD型の固体撮像素子であっても、ダイナミックレンジの異なる複数種類の撮像画像データを1回の撮影で取得することができる。CCD型の場合は、全ての露光期間の露光において、第一グループ、第二グループのいずれにおいても、全てのラインの露光の開始及び終了タイミングを一致させることができる。このため、動く被写体であっても歪みのない撮像画像データを得ることができる。
 なお、固体撮像素子5をCCD型にした場合、複数の第二の露光期間のうち、最初の露光期間を除く露光期間を、第二グループの全ての光電変換素子51bから垂直CCDに蓄積電荷を読出し、これを転送して当該蓄積電荷に応じた信号を固体撮像素子5から出力させるまでに要する信号読出し時間よりも長い時間にする必要がある。例えば、図13に示した第二の露光期間B(2)の長さが、信号読出し時間よりも短いと、時刻t2で読み出しが開始された信号の読み出しが完了する前に、垂直CCDに第二の露光期間B(2)の露光で蓄積された電荷が転送されてしまい、信号読出しに支障があるためである。
 一方、複数の第二の露光期間のうちの最初の露光期間については、このような時間制限はない。例えば、図13に示した第二の露光期間B(1)は、その開始時刻t1の時点で垂直CCDには他の露光期間で発生した電荷が存在していない。このため、この露光期間B(1)をいくら短くしても問題はない。
 したがって、固体撮像素子5をCCD型にした場合には、複数の第二の露光期間のうちの最初の露光期間を、最も短い時間とすることが好ましい。
 以上説明してきたように、本明細書には次の事項が開示されている。
 開示された撮像装置は、二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子と、前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動部とを備え、各第二の露光期間は、前記第一の露光期間と重なりを有するものである。
 開示された撮像装置は、前記固体撮像素子の光入射側に設けられたメカニカルシャッタを更に備え、前記固体撮像素子がCMOS型であり、前記駆動部は、前記複数の第一の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記第一の露光期間の露光を開始し、前記第一の露光期間の露光開始後に前記メカニカルシャッタを閉じる駆動を行って前記第一の露光期間の露光を終了し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って前記複数の第二の露光期間のうちの少なくとも最後の第二の露光期間を除く露光期間の露光を開始するものである。
 開示された撮像装置は、前記駆動部は、前記複数の第二の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記複数の第二の露光期間のうちの最後の第二の露光期間の露光を開始し、前記メカニカルシャッタを閉じる駆動を行って前記最後の第二の露光期間の露光を終了するものである。
 開示された撮像装置は、前記最後の第二の露光期間が、前記複数の第二の露光期間の中で最も短い期間であるものである。
 開示された撮像装置は、前記複数の第二の露光期間のうちの最も短い期間が、最初の第二の露光期間と最後の第二の露光期間を除く期間であるものである。
 開示された撮像装置は、前記第二の露光期間が3つである。
 開示された撮像装置は、前記駆動部は、前記ローリングリセット駆動を行って各第二の露光期間の露光を開始し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了するものである。
 開示された撮像装置は、前記固体撮像素子がCMOS型であり、前記駆動部は、前記複数の第一の光電変換素子の蓄積電荷を前記第一の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、前記第一の露光期間の露光を開始し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、各第二の露光期間の露光を開始し、前記第一の光電変換素子のライン毎にタイミングをずらして前記第一の信号を読み出すローリング読出し駆動を行って、前記第一の露光期間の露光を終了し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了するものである。
 開示された撮像装置は、各第二の露光期間の露光が前記第一の露光期間中に実施されるものである。
 開示された撮像装置は、前記固体撮像素子がCCD型であり、前記複数の第二の露光期間のうちの最初の第二の露光期間が最も短い期間であるものである。
 開示された撮像装置は、前記固体撮像素子が、前記複数の第一の光電変換素子から前記第一の信号を読み出すための第一の読出し回路と、前記複数の第二の光電変換素子から前記第二の信号を読み出すための前記第一の読出し回路とは独立して設けられた第二の読出し回路とを備えるものである。
 開示された撮像方法は、二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子を用いた撮像方法であって、前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動ステップを備え、各第二の露光期間は、前記第一の露光期間と重なりを有するものである。
 開示された撮像方法は、前記固体撮像素子がCMOS型であり、前記駆動ステップでは、前記複数の第一の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記第一の露光期間の露光を開始し、前記第一の露光期間の露光開始後に、前記固体撮像素子の光入射側に設けられたメカニカルシャッタを閉じる駆動を行って前記第一の露光期間の露光を終了し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って前記複数の第二の露光期間のうちの少なくとも最後の第二の露光期間を除く露光期間の露光を開始するものである。
 開示された撮像方法は、前記駆動ステップでは、前記複数の第二の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記複数の第二の露光期間のうちの最後の第二の露光期間の露光を開始し、前記メカニカルシャッタを閉じる駆動を行って前記最後の第二の露光期間の露光を終了するものである。
 開示された撮像方法は、前記最後の第二の露光期間を、前記複数の第二の露光期間の中で最も短い期間とするものである。
 開示された撮像方法は、前記複数の第二の露光期間のうちの最も短い期間を、最初の第二の露光期間と最後の第二の露光期間を除く期間とするものである。
 開示された撮像方法は、前記第二の露光期間が3つである。
 開示された撮像方法は、前記駆動部は、前記ローリングリセット駆動を行って各第二の露光期間の露光を開始し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了するものである。
 開示された撮像方法は、記固体撮像素子がCMOS型であり、前記駆動ステップでは、前記複数の第一の光電変換素子の蓄積電荷を前記第一の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、前記第一の露光期間の露光を開始し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、各第二の露光期間の露光を開始し、前記第一の光電変換素子のライン毎にタイミングをずらして前記第一の信号を読み出すローリング読出し駆動を行って、前記第一の露光期間の露光を終了し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了するものである。
 開示された撮像方法は、各第二の露光期間の露光を前記第一の露光期間中に実施するものである。
 開示された撮像方法は、前記固体撮像素子がCCD型であり、前記複数の第二の露光期間のうちの最初の第二の露光期間を最も短い期間とするものである。
 開示された撮像方法は、前記駆動ステップでは、第一の読出し回路を用いて前記第一の信号を読出し、前記第一の読出し回路とは独立して設けられた第二の読出し回路を用いて前記第二の信号を読み出すものである。
 本発明によれば、ダイナミックレンジの異なる複数種類の画像データを1回の撮影で得ることが可能な撮像装置及び撮像方法を提供することができる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年7月28日出願の日本出願(特願2010-169799)に基づくものであり、その内容はここに参照として取り込まれる。
100 撮像装置
5 固体撮像素子
8 デバイス制御部
51a,51b 光電変換素子
62a,62b 信号読出し回路

Claims (22)

  1.  二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子と、
     前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動部とを備え、
     各第二の露光期間は、前記第一の露光期間と重なりを有する撮像装置。
  2.  請求項1記載の撮像装置であって、
     前記固体撮像素子の光入射側に設けられたメカニカルシャッタを更に備え、
     前記固体撮像素子がCMOS型であり、
     前記駆動部は、前記複数の第一の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記第一の露光期間の露光を開始し、前記第一の露光期間の露光開始後に前記メカニカルシャッタを閉じる駆動を行って前記第一の露光期間の露光を終了し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って前記複数の第二の露光期間のうちの少なくとも最後の第二の露光期間を除く露光期間の露光を開始する撮像装置。
  3.  請求項2記載の撮像装置であって、
     前記駆動部は、前記複数の第二の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記複数の第二の露光期間のうちの最後の第二の露光期間の露光を開始し、前記メカニカルシャッタを閉じる駆動を行って前記最後の第二の露光期間の露光を終了する撮像装置。
  4.  請求項3記載の撮像装置であって、
     前記最後の第二の露光期間が、前記複数の第二の露光期間の中で最も短い期間である撮像装置。
  5.  請求項3記載の撮像装置であって、
     前記複数の第二の露光期間のうちの最も短い期間が、最初の第二の露光期間と最後の第二の露光期間を除く期間である撮像装置。
  6.  請求項5記載の撮像装置であって、
     前記第二の露光期間が3つである撮像装置。
  7.  請求項2記載の撮像装置であって、
     前記駆動部は、前記ローリングリセット駆動を行って各第二の露光期間の露光を開始し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了する撮像装置。
  8.  請求項1記載の撮像装置であって、
     前記固体撮像素子がCMOS型であり、
     前記駆動部は、前記複数の第一の光電変換素子の蓄積電荷を前記第一の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、前記第一の露光期間の露光を開始し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、各第二の露光期間の露光を開始し、前記第一の光電変換素子のライン毎にタイミングをずらして前記第一の信号を読み出すローリング読出し駆動を行って、前記第一の露光期間の露光を終了し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了する撮像装置。
  9.  請求項8記載の撮像装置であって、
     各第二の露光期間の露光が前記第一の露光期間中に実施される撮像装置。
  10.  請求項1記載の撮像装置であって、
     前記固体撮像素子がCCD型であり、
     前記複数の第二の露光期間のうちの最初の第二の露光期間が最も短い期間である撮像装置。
  11.  請求項2~9のいずれか1項記載の撮像装置であって、
     前記固体撮像素子が、前記複数の第一の光電変換素子から前記第一の信号を読み出すための第一の読出し回路と、前記複数の第二の光電変換素子から前記第二の信号を読み出すための前記第一の読出し回路とは独立して設けられた第二の読出し回路とを備える撮像装置。
  12.  二次元状に配列された複数の第一の光電変換素子及び複数の第二の光電変換素子を含む固体撮像素子を用いた撮像方法であって、
     前記複数の第一の光電変換素子を第一の露光期間で露光すると共に、前記複数の第二の光電変換素子を、長さの異なる複数の第二の露光期間で順次露光し、前記第一の露光期間中に前記複数の第一の光電変換素子に蓄積された電荷に応じた第一の信号と、前記複数の第二の露光期間の各々において前記複数の第二の光電変換素子に蓄積された電荷に応じた第二の信号とを読み出す駆動を行う駆動ステップを備え、
     各第二の露光期間は、前記第一の露光期間と重なりを有するものである撮像方法。
  13.  請求項12記載の撮像方法であって、
     前記固体撮像素子がCMOS型であり、
     前記駆動ステップでは、前記複数の第一の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記第一の露光期間の露光を開始し、前記第一の露光期間の露光開始後に、前記固体撮像素子の光入射側に設けられたメカニカルシャッタを閉じる駆動を行って前記第一の露光期間の露光を終了し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って前記複数の第二の露光期間のうちの少なくとも最後の第二の露光期間を除く露光期間の露光を開始する撮像方法。
  14.  請求項13記載の撮像方法であって、
     前記駆動ステップでは、前記複数の第二の光電変換素子の蓄積電荷を同時にリセットするグローバルリセット駆動を行って前記複数の第二の露光期間のうちの最後の第二の露光期間の露光を開始し、前記メカニカルシャッタを閉じる駆動を行って前記最後の第二の露光期間の露光を終了する撮像方法。
  15.  請求項14記載の撮像方法であって、
     前記最後の第二の露光期間を、前記複数の第二の露光期間の中で最も短い期間とする撮像方法。
  16.  請求項14記載の撮像方法であって、
     前記複数の第二の露光期間のうちの最も短い期間を、最初の第二の露光期間と最後の第二の露光期間を除く期間とする撮像方法。
  17.  請求項16記載の撮像方法であって、
     前記第二の露光期間が3つである撮像方法。
  18.  請求項13記載の撮像方法であって、
     前記駆動部は、前記ローリングリセット駆動を行って各第二の露光期間の露光を開始し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了する撮像方法。
  19.  請求項12記載の撮像方法であって、
     前記固体撮像素子がCMOS型であり、
     前記駆動ステップでは、前記複数の第一の光電変換素子の蓄積電荷を前記第一の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、前記第一の露光期間の露光を開始し、前記複数の第二の光電変換素子の蓄積電荷を前記第二の光電変換素子のライン毎にタイミングをずらしてリセットするローリングリセット駆動を行って、各第二の露光期間の露光を開始し、前記第一の光電変換素子のライン毎にタイミングをずらして前記第一の信号を読み出すローリング読出し駆動を行って、前記第一の露光期間の露光を終了し、前記第二の光電変換素子のライン毎にタイミングをずらして前記第二の信号を読み出すローリング読出し駆動を行って、各第二の露光期間の露光を終了する撮像方法。
  20.  請求項19記載の撮像方法であって、
     各第二の露光期間の露光を前記第一の露光期間中に実施する撮像方法。
  21.  請求項12記載の撮像方法であって、
     前記固体撮像素子がCCD型であり、
     前記複数の第二の露光期間のうちの最初の第二の露光期間を最も短い期間とする撮像方法。
  22.  請求項13~20のいずれか1項記載の撮像方法であって、
     前記駆動ステップでは、第一の読出し回路を用いて前記第一の信号を読出し、前記第一の読出し回路とは独立して設けられた第二の読出し回路を用いて前記第二の信号を読み出す撮像方法。
PCT/JP2011/061558 2010-07-28 2011-05-19 撮像装置及び撮像方法 WO2012014553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012526358A JP5156148B2 (ja) 2010-07-28 2011-05-19 撮像装置及び撮像方法
CN201180037002.2A CN103181160B (zh) 2010-07-28 2011-05-19 成像设备和成像方法
US13/750,467 US8994861B2 (en) 2010-07-28 2013-01-25 Imaging apparatus and imaging method for obtaining plural kinds of image data with different dynamic ranges in a single photographing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169799 2010-07-28
JP2010-169799 2010-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/750,467 Continuation US8994861B2 (en) 2010-07-28 2013-01-25 Imaging apparatus and imaging method for obtaining plural kinds of image data with different dynamic ranges in a single photographing

Publications (1)

Publication Number Publication Date
WO2012014553A1 true WO2012014553A1 (ja) 2012-02-02

Family

ID=45529776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061558 WO2012014553A1 (ja) 2010-07-28 2011-05-19 撮像装置及び撮像方法

Country Status (4)

Country Link
US (1) US8994861B2 (ja)
JP (1) JP5156148B2 (ja)
CN (1) CN103181160B (ja)
WO (1) WO2012014553A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070369A (ja) * 2013-09-27 2015-04-13 富士フイルム株式会社 撮像素子の駆動方法、及び撮像装置、内視鏡装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035825A1 (ja) * 2010-09-14 2012-03-22 富士フイルム株式会社 撮像装置及び撮像方法
KR102277178B1 (ko) * 2015-03-09 2021-07-14 삼성전자 주식회사 카메라 모듈을 포함하는 전자 장치 및 전자 장치의 이미지 처리 방법
KR102368625B1 (ko) * 2015-07-23 2022-03-02 삼성전자주식회사 디지털 촬영 장치 및 그 방법
JPWO2017077775A1 (ja) * 2015-11-05 2018-08-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、及び、電子機器
CN106303269A (zh) * 2015-12-28 2017-01-04 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置、图像采集设备
US9774803B2 (en) * 2016-02-18 2017-09-26 Samsung Electronics Co., Ltd. Motion reducing methods and systems using global shutter sensors
JP6569023B2 (ja) * 2017-03-24 2019-08-28 富士フイルム株式会社 撮像装置、撮像方法、及び撮像プログラム
WO2018180257A1 (ja) * 2017-03-28 2018-10-04 富士フイルム株式会社 撮像装置、撮像方法、及び撮像プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049098A1 (ja) * 2004-11-02 2006-05-11 Matsushita Electric Industrial Co., Ltd. イメージセンサ
JP2007214832A (ja) * 2006-02-09 2007-08-23 Sony Corp 固体撮像装置
JP2008147818A (ja) * 2006-12-07 2008-06-26 Sony Corp 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2009268073A (ja) * 2008-04-01 2009-11-12 Fujifilm Corp 撮像装置及び撮像装置の信号処理方法
JP2009290613A (ja) * 2008-05-29 2009-12-10 Sharp Corp 固体撮像装置およびその駆動方法、並びに電子情報機器
JP2010130343A (ja) * 2008-11-27 2010-06-10 Fujifilm Corp 撮像装置及びその駆動制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611060B2 (en) * 2005-03-11 2009-11-03 Hand Held Products, Inc. System and method to automatically focus an image reader
US8035689B2 (en) * 2005-12-07 2011-10-11 Nokia Corporation Camera unit and method for controlling an image sensor in a camera unit
JP4823743B2 (ja) * 2006-04-03 2011-11-24 三星電子株式会社 撮像装置,及び撮像方法
US7724301B2 (en) * 2006-11-27 2010-05-25 Nokia Corporation Determination of mechanical shutter exposure time
JP2008252195A (ja) * 2007-03-29 2008-10-16 Yamaha Corp Cmos固体撮像装置
JP4887314B2 (ja) * 2008-02-28 2012-02-29 富士フイルム株式会社 撮像装置及び画像信号処理方法
JP2009302653A (ja) 2008-06-10 2009-12-24 Fujifilm Corp 撮像装置
KR101467509B1 (ko) * 2008-07-25 2014-12-01 삼성전자주식회사 이미지 센서 및 이미지 센서 동작 방법
JP4661922B2 (ja) 2008-09-03 2011-03-30 ソニー株式会社 画像処理装置、撮像装置、固体撮像素子、画像処理方法およびプログラム
KR101549404B1 (ko) * 2008-11-18 2015-09-02 삼성전자주식회사 플래시 발광 제어 방법 및 장치, 및 이을 이용한 디지털 촬영 장치
JP5458865B2 (ja) * 2009-09-18 2014-04-02 ソニー株式会社 画像処理装置、撮像装置、および画像処理方法、並びにプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049098A1 (ja) * 2004-11-02 2006-05-11 Matsushita Electric Industrial Co., Ltd. イメージセンサ
JP2007214832A (ja) * 2006-02-09 2007-08-23 Sony Corp 固体撮像装置
JP2008147818A (ja) * 2006-12-07 2008-06-26 Sony Corp 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP2009268073A (ja) * 2008-04-01 2009-11-12 Fujifilm Corp 撮像装置及び撮像装置の信号処理方法
JP2009290613A (ja) * 2008-05-29 2009-12-10 Sharp Corp 固体撮像装置およびその駆動方法、並びに電子情報機器
JP2010130343A (ja) * 2008-11-27 2010-06-10 Fujifilm Corp 撮像装置及びその駆動制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070369A (ja) * 2013-09-27 2015-04-13 富士フイルム株式会社 撮像素子の駆動方法、及び撮像装置、内視鏡装置

Also Published As

Publication number Publication date
CN103181160B (zh) 2016-06-15
US20130135506A1 (en) 2013-05-30
JPWO2012014553A1 (ja) 2013-09-12
CN103181160A (zh) 2013-06-26
JP5156148B2 (ja) 2013-03-06
US8994861B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5739640B2 (ja) 撮像素子及び撮像装置
JP4448888B2 (ja) 撮像装置及び撮像装置の信号処理方法
WO2012014553A1 (ja) 撮像装置及び撮像方法
JP5026951B2 (ja) 撮像素子の駆動装置、撮像素子の駆動方法、撮像装置、及び撮像素子
JP5150795B2 (ja) 撮像装置及び撮像方法
JP5342969B2 (ja) 撮像装置及び撮像方法
TWI644568B (zh) 攝像元件、攝像方法及攝像程式
JP5422745B2 (ja) 撮像装置及び撮像方法
JP5249136B2 (ja) 撮像装置
JP2009060342A (ja) 撮像装置及びccd型固体撮像素子の駆動方法
JP2001036920A (ja) 撮像装置及びそれを用いた撮像システム
WO2012164985A1 (ja) 撮像装置、撮像方法
JP2011061684A (ja) 固体撮像素子及びその駆動方法並びに撮像装置
JP2008278453A (ja) 撮像装置及び撮像システム
JP5033711B2 (ja) 撮像装置及び撮像装置の駆動方法
JP2007243731A (ja) シフトレジスタ、固体撮像素子及び制御方法
JP5124549B2 (ja) 固体撮像素子の動画像信号読出方法及び撮像装置
JP2010171856A (ja) 撮像装置
JP2008270832A (ja) 固体撮像素子及び撮像装置
JP6046912B2 (ja) 撮像装置及びその制御方法
JP5683985B2 (ja) 固体撮像装置および撮像装置
JP5256084B2 (ja) 撮像装置及び撮像装置の駆動方法
JP5175783B2 (ja) 撮像装置及び撮像装置の駆動方法
JP5975795B2 (ja) 撮像装置及びその駆動方法
JP2009141404A (ja) Ccd型固体撮像素子の駆動制御方法及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526358

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812148

Country of ref document: EP

Kind code of ref document: A1