WO2012014131A1 - Element de memoire magnetique - Google Patents

Element de memoire magnetique Download PDF

Info

Publication number
WO2012014131A1
WO2012014131A1 PCT/IB2011/053258 IB2011053258W WO2012014131A1 WO 2012014131 A1 WO2012014131 A1 WO 2012014131A1 IB 2011053258 W IB2011053258 W IB 2011053258W WO 2012014131 A1 WO2012014131 A1 WO 2012014131A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
current
outer layer
element according
Prior art date
Application number
PCT/IB2011/053258
Other languages
English (en)
Inventor
Gilles Louis Gaudin
Ioan Mihai Miron
Pietro Gambardella
Alain Schuhl
Original Assignee
Centre National De La Recherche Scientifique
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Universite Joseph Fourier
Institut Català De Nanotecnologia (Icn)
Institucio Catalana De Recerca I Estudis Avancats (Icrea)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Commissariat A L'energie Atomique Et Aux Energies Alternatives, Universite Joseph Fourier, Institut Català De Nanotecnologia (Icn), Institucio Catalana De Recerca I Estudis Avancats (Icrea) filed Critical Centre National De La Recherche Scientifique
Priority to KR1020137004907A priority Critical patent/KR101974149B1/ko
Priority to EP11749248.8A priority patent/EP2599085B1/fr
Priority to JP2013521266A priority patent/JP6154745B2/ja
Priority to CN201180043138.4A priority patent/CN103329204B/zh
Priority to RU2013108267/02A priority patent/RU2585578C2/ru
Publication of WO2012014131A1 publication Critical patent/WO2012014131A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic memory element of the current-induced reversal type.
  • spin transfer torque requires the presence, to manipulate the magnetization at the memory point, of at least two magnetic layers separated by a non-magnetic metal (for a spin valve structure) or by an insulator (for a magnetic tunnel junction type structure), the two layers having their non-linear magnetizations.
  • the detailed physical explanation differs according to whether one is in the presence of a spin valve structure or magnetic tunnel junction but overall the current is polarized in spin at the crossing of the first magnetic layer, then exert a torque on the magnetization of the second layer by means of the non-collinear component of the polarization of the current. When the current densities are sufficient, the magnetization of the second magnetic layer can be reversed for both the spin valves and the magnetic tunnel junctions.
  • the reversal by STT requires the presence at the memory point of at least two magnetic layers separated by a non-magnetic spacer.
  • the writing is done as indicated above by injecting a current of high density through all the stack perpendicular to the plane of the magnetic layers, while the reading is done by means of the magnetoresistance of the stack: giant magnetoresistance (GMR) ) for spin valves, and tunnel magnetoresistance (TMR) for magnetic tunnel junctions.
  • giant magnetoresistance (GMR) giant magnetoresistance
  • TMR tunnel magnetoresistance
  • MgO-based junctions is commonly greater than 100%.
  • the tunnel junctions nevertheless have the disadvantage of having significant values of the product resistance * surface (RA).
  • the voltage at the edges of the junction is 10V for an RA of ⁇ . ⁇ 2 , IV for an RA of 10 ⁇ . ⁇ 2 and 0.1 V for an RA of 1 ⁇ . ⁇ 2 .
  • the power dissipated in the junction is then significant which is detrimental both in terms of energy consumption and damage to the said junction.
  • one difficulty lies in the impossibility of independently optimizing reading and writing because, in known spin transfer devices (TWTs), the two phenomena are intrinsically linked.
  • Another difficulty is related to the fact that writing requires passing a very high density current through the stack.
  • typical magnetic stacks of MRAM cells or logic components may have more than 10 or 15 different layers of different materials. This then poses difficulties in the structuring steps and in particular in the etching step which is one of the most important locking points for the integration of these magnetic stacks.
  • the subject of the present invention is a magnetic memory element which, to invert the magnetization, requires the presence of only one magnetic layer (having a magnetization parallel or perpendicular to its plane) and which operates without the current being traversed by a stream perpendicular to the plane of the layers.
  • the invention thus relates to a writable magnetic element comprising a stack of layers having a magnetic writing layer, characterized in that the stack comprises a said magnetic writing layer, namely a central layer made of at least one magnetic material having a direction of magnetization parallel or perpendicular to the plane of the central layer, which is sandwiched between a first and a second outer layer of non-magnetic materials, the first outer layer having a first non-magnetic material and the second outer layer having a non-magnetic material; second non-magnetic material different from the first non-magnetic material, at least the second non-magnetic material being electrically conductive, comprising a device for passing a write current only through the second outer layer and the central layer and possibly through the first couch e external only in the case where the latter is electrically conductive, this writing current flowing in at least one direction of current parallel to the plane of the central layer, and a device for applying a magnetic field having a component in a direction of magnetic field is parallel or perpendicular
  • the invention thus implements a device for passing the writing current and a device distinct from the previous one for applying a magnetic field. If the first outer layer is not conductive, it is not traversed by any current during a write phase. If it is conductive and in this case only, it is crossed by the writing current.
  • the magnetic field is either parallel or perpendicular to the plane of the central layer and the direction of the current.
  • the magnetic field direction is parallel to the direction of the current and the direction of the magnetization is perpendicular to the plane of the magnetic core layer.
  • the direction of the magnetization is parallel to the direction of the current and the magnetic field direction is perpendicular to the plane of the magnetic core layer.
  • the electric current flows parallel to the magnetic layer and does not cross the stack in a direction perpendicular to the plane of the layers, it passes through the magnetic core layer and at least the second outer layer in at least one direction of current parallel to the plane of the layers, and the memory can be written by acting either on the direction of the current, or on the direction of the magnetic field.
  • the central layer advantageously has a thickness between 0.1 nm and 5 nm. In the first configuration, this value is preferably less than or equal to 2 nm. In second configuration, this value is preferably less than or equal to 3 nm.
  • the central layer may comprise an alloy having a clean perpendicular magnetic anisotropy, namely in particular FePt, FePd, CoPt or even a rare earth alloy / transition metal which also has a proper perpendicular magnetic anisotropy, such as GdCo, or TbFeCo.
  • the magnetic core layer may also comprise a metal or an alloy having in the stack a perpendicular magnetic anisotropy induced by the interfaces, in particular Co, Fe, CoFe, Ni, CoNi.
  • the central layer may comprise a metal or an alloy having in the stack a planar magnetic anisotropy including Co, Fe, CoFe, Ni, NiFe, CoNi.
  • At least one conductive outer layer is made of a non-magnetic metal, preferably Pt, W, Ir, Ru, Pd, Cu, Au, Bi or a non-magnetic alloy of these metals.
  • the thickness of such a conductive layer may be between 1 nm and 10 nm and is preferably less than or equal to 5 nm. The value of this thickness is not related to the value chosen for the thickness of the central layer.
  • a non-conductive outer layer is made of an electrical insulating material, preferably a dielectric oxide such as SiOx, AlOx, MgOx, TiOx, TaOx, HfOx or else a dielectric nitride such as SiNx, BNx.
  • the thickness of this outer layer is for example between 0.5 nm and 200 nm, more particularly between 0.5 nm and 100 nm and preferably less than 3 nm, in particular if the reading of the memory element is done by means of the signal of magnetoresistance tunnel.
  • the two outer layers may be conductive, but they are then selected in two different non-magnetic metals or metal alloys.
  • the current density is for example between 10 4 A / cm 2 and 10 9 A / cm 2 , and advantageously between 10 5 A / cm 2 and 10 8 A / cm 2 .
  • the applied magnetic field may have a value of between 0.002 T and 1 T, and advantageously between 0.005 T and 0.8 T.
  • the first outer layer (which is the one that is not traversed by said current) may be covered with a read layer of magnetic material and a reading electrode.
  • a read layer of magnetic material In the case where the first outer layer is non-magnetic metal, it forms with the reading layer, the reading electrode and the central layer a spin valve.
  • the first outer layer In the case where the first outer layer is dielectric, it forms with the reading layer, the reading electrode and the central layer a magnetic tunnel junction.
  • the thickness of the first outer layer is then preferably less than 3 nm.
  • the magnetic element may be structured so that the first outer layer and the core layer form a pad, while the second outer layer forms a pad.
  • the second outer layer may comprise a region of extra thickness which is part of the stud.
  • the invention also relates to a writable magnetic device comprising a plurality of said pads whose second outer layer is constituted by a said track which is common to them.
  • the first outer layer, the central layer and the second outer layer form a stud
  • the writable magnetic device comprises a plurality of said pads, and a conductive track bordering the second outer layer of said pads for injecting said current through the second outer layer and the central layer of each of said pads, the second outer layer being made of an electrically conductive material different from that of the conductive track.
  • FIGS. 1a to 1f illustrate the first configuration of implementation of the invention, of which FIGS. 2a to 2b represent an embodiment integrated in a magnetic memory cell of the "MRAM" type, and FIGS. 3a to 3d illustrate embodiments in which a plurality of memory elements are shown to illustrate the architecture of the memory.
  • FIGS. 4a to 4f illustrate the second implementation configuration of the invention, of which FIGS. 5a and 5b show an embodiment integrated in a "MRAM" type magnetic memory cell and of which FIGS. 6a to 6d illustrate embodiments in which a plurality of memory elements are shown to illustrate the architecture of the memory.
  • FIG. 7 is an example of integration of a magnetic element according to the invention constituting a memory cell, to form a mono or two-dimensional network.
  • the stack implemented in the context of the present invention namely a central magnetic layer, sandwiched between two non-magnetic outer layers, at least one of which is conductive, the two outer layers being of different materials, has the effect of to create an inversion asymmetry that generates an uncompensated electric field in the magnetic core layer.
  • the electrons propagating in this electric field are subjected in their specific reference to a magnetic field called Rashba H R field whose direction is perpendicular to both the current and the electric field. This magnetic field therefore applies to the conduction electrons.
  • FIGS. 1a to 1f illustrate the first implementation configuration of the invention in which the direction of the applied magnetic field is parallel to the direction of the current and the direction of the magnetization is perpendicular to the plane of the magnetic core layer.
  • the applied magnetic field is thus perpendicular to both the magnetization and the direction of the effective magnetic field
  • Reference 15 designates a substrate which is an electrical insulator, so as not to short circuit the structure. It may in particular consist of a dielectric oxide (for example SiOx, AlOx, MgOx) or of a nitride, for example SiNx. It may be alone or deposited on another substrate, for example silicon.
  • a dielectric oxide for example SiOx, AlOx, MgOx
  • a nitride for example SiNx. It may be alone or deposited on another substrate, for example silicon.
  • the reference 13 designates the planar magnetic layer whose magnetization is perpendicular to its plane.
  • Reference 16 designates the orientation of the magnetization, which may be present in one direction or in the opposite direction.
  • the references 12 and 14 respectively denote the first and second non-magnetic outer layers.
  • the second outer layer 14 is one that is traversed by a current during writing.
  • the reference 11 denotes the direction of the writing current which can be oriented in this direction or in the opposite direction
  • the reference 17 designates the orientation of the applied magnetic field, which is collinear with the direction of the current and which can be oriented in that direction or in the opposite direction.
  • Figures la and lb show an unstructured stack in which layers 12, 13 and 14 of the stack form a track.
  • FIGS. 1a-1f show a structured stack in which the layer 14 (called the second outer layer) is conductive and the magnetic 13 and non-magnetic layers 12 (referred to as the first outer layer) are only structured to form blocks ( Figures 1a and 1d) and wherein the three layers 12, 13, 14 are structured to form a stud by integrating into the stud an extra thickness 14 'of the conductive layer 14, so that the stud contains a part of the thickness of the non-magnetic material of the layer 14 ( Figures 1c and 1f).
  • the thickness to be taken into account for the second outer layer is that of the layer 14 itself and the extra thickness 14 '.
  • overthickness 14 is not necessarily in the same electrically conductive material as the layer 14 in which case it is this extra thickness alone 14' which acts as a second outer layer. magnetic and it is its material that is functional in the stack to obtain an inversion asymmetry.
  • the metallic material of the layer 14 can then be any.
  • the magnetic layer 13 has a perpendicular magnetization and has a thickness thin enough that the electric field due to the interfaces is not negligible. Its thickness does not exceed typically 2nm and it is at most 5nm. All magnetic materials having a perpendicular magnetization, due for example to their own perpendicular magnetic anisotropy (FePt alloys, FePd, CoPt .... rare earth alloys / GdCo transition metals, TbFeCo ...) or to the effect of a perpendicular magnetic anisotropy induced by the interfaces (Co, Fe, CoFe, Ni, CoNi, .... can be used.) It is also possible to take non-metallic magnetic materials such as magnetic semiconductors, such as GaMnAs ( Mn doped GaAs). It will be appreciated that known magnetic semiconductor materials are magnetic only at a temperature below ambient.
  • the perpendicular anisotropy of the magnetic material is induced by the interfaces, it is possible to obtain a magnetization perpendicular to the plane by acting on the thickness of the central layer and / or on the oxidation state of an outer layer. in oxide for example by modifying the deposition parameters of this outer layer oxide or annealing after the completion of the stack.
  • the layer 12 is AlOx. If on the other hand the dielectric used for the layer 12 is MgOx, it will be possible to obtain a perpendicular magnetization for a thickness of the central layer greater than or equal to 3 nm.
  • the two non-magnetic layers 12 and 14 must be different in order to create an inversion asymmetry in the overall structure.
  • Two different materials are advantageously chosen for each of these layers, for example a dielectric for one of the two and a metal for the other, but it is also possible to choose a metal for each of them.
  • the case where the two layers 12 and 14 are dielectric is possible only if one does not structure a pad but a track. The current can then be circulated directly in the central layer 13.
  • each of the two layers 12 and 14 may be constituted by the following materials, with the proviso that these layers are different so that the global stack (layers 12, 13, and 14) is perpendicularly magnetized: a dielectric oxide (SiO x, A10 x, MgO x, TiO x, TaO x, HfO x, ...), a dielectric nitride (SiN x, BN x, ...), a nonmagnetic metal (Pt, Pd, Cu, Au , Bi, ...) a non-magnetic alloy of these metals, an organic or non-organic semiconductor compound (for example GaAs, Si, Ge or Graphene bound, if necessary, to a growth buffer, for example a metal such as iridium .
  • a dielectric oxide SiO x, A10 x, MgO x, TiO x, TaO x, HfO x, ...)
  • a dielectric nitride SiN
  • the two outer layers must not have the same composition.
  • the thickness of the layers 12 and 14 can be chosen from a wide range of values, typically from 0.5 to 200 nm in thickness and more particularly between 0.5 nm and 100 nm.
  • the layer 12 is insulating, there is no disadvantage that its value reaches the indicated upper limit, namely 200 nm except in the case where the reading of the memory point is done by means of the signal tunnel magnetoresistance by adding, for example, a magnetic layer and a electrode above this insulating layer as shown in Figures 2a and 2b.
  • the thickness of this insulating layer will preferably be less than 3 nm.
  • metal layers 12 and / or 14 thin layers, typically less than 5 nm and generally less than 10 nm, are preferred, so as not to reduce too much the effective current flowing in the magnetic layer because of these conducting channels in parallel.
  • the thickness of this conductive layer 12 will be chosen to be typically less than 10 nm and preferably less than 5 nm.
  • These different layers can be deposited by any known technique such as: evaporation, sputtering, electrochemical deposition, chemical growth, ....
  • the layer 14 may be omitted in certain geometries.
  • the magnetic layer 13 is then deposited directly on the insulating substrate 15 and the non-magnetic layer 12 is chosen so as to have the inversion asymmetry, in a material different from that constituting the substrate 15.
  • the layer 14 must be present and made of an electrically conductive material so as to inject current into the central layer 13 of the structured pads (here 18a and 18b).
  • the overhanging portion 14 'must also be conductive in order to generate, in combination with the layer 12, the inversion asymmetry which is sought to generate a Rashba field and to enable current to be injected into the central layer. magnetic 13.
  • the element to be returned is connected in a manner known per se with conducting electrodes so as to inject into the conductive layer 14 a current in the direction 1 1 shown in Figure 1, which allows a current injection in the magnetic core layer 13.
  • a magnetic field is applied to the structure finely 17 to the direction of injection of the current 1 1.
  • the current can be applied in the direction 1 1 in the direction of the arrow 7 + or in the direction opposite to that of the arrow Similarly, the magnetic field can be applied in the direction 17 in the direction of the arrow H + or following the opposite to that of the arrow H ..
  • a pair of current and field senses stabilize a direction of magnetization.
  • the pair / + , H + stabilizes the magnetization configuration upwards as shown in FIGS.
  • Another solution is to keep the direction of the magnetic field H +, and to change the direction of the electric current L.
  • This solution is preferred because it makes it possible to use a static magnetic field, for example generated by permanent magnets, so as not to consume no energy.
  • the magnetization can be turned downward by acting on the direction of the applied field, which leads to the torque (/ +, H.), or by acting on the direction of the applied current, which leads to the torque (L, H + ), the pair (L, H + ) being preferred as indicated above.
  • the external field is not necessary that the external field is exactly parallel to the direction of the current. It is sufficient to have an external magnetic field in a plane perpendicular to the magnetization, this external magnetic field having a non-zero component parallel to the current. There is a reversal up to an angle of 60 ° between the applied field and the current.
  • the typical values of the current densities injected into the layer 14 are between 10 4 A / cm 2 and 10 9 A / cm 2 , and they are advantageously between 10 5 A / cm 2 and 10 8 A / cm 2 .
  • Typical values of the magnetic field component applied along the current direction are between 20 Oe-10 kOe, i.e., 0.002T and 1T.
  • a value between 50 Oe (0.005T) and 8000 Oe (0.8T) will be chosen. This must be maintained at a low enough value not to induce a too great reduction in the energy barrier separating the two magnetization orientations, which would cause unwanted reversals.
  • the value of the applied magnetic field is chosen much lower than the effective field of anisotropy of the magnetic layer.
  • a central Co layer between a Pt layer 14 and a MgO layer 12 has an effective anisotropy field of 0.8T (8000 Oe) and a magnetic field of 0.008 T (800 Oe) can be applied without difficulty.
  • the value of the applied magnetic field may in practice be chosen to be between 3 and 10 times less than the value of the effective anisotropy field, and more particularly between 4 and 10 times less than this value.
  • the magnetic field can be applied in different ways, for example in a simple way using a current flowing through one or more coils so as to generate a global field over the entire device; either by means of tracks traversed by a current as used in the magnetic field induced reversal MRAMs; or, preferably by permanent magnets placed in the vicinity of at least one stud to return.
  • This solution has the important advantage of not inducing energy consumption for the generation of the magnetic field.
  • These permanent magnets can be obtained by the structuring of a magnetic deposit, which facilitates the integration of this reversal technique into functional devices, for example memory or logic type.
  • FIGS. 2a and 2b are an example of a stack that can be used in a writable memory cell MRAM.
  • the reference 53 represents the magnetic central layer sandwiched between two different non-magnetic materials 52 and 54, in order to carry out the stack as described above, on an electrically insulating substrate 55.
  • Reference 57 designates the direction of the applied external magnetic field.
  • an upper electrode 59 may contain one or more conductive layers (magnetic or non-magnetic).
  • the function of the layer 58 is to allow the structure 53, 52, 58 to have different electrical resistance values in the direction of the magnetization 56 of the layer 53 (magnetoresistance signal). It intervenes only for the reading and has no effect on the manipulation of the magnetization of the layer 53.
  • writing and reading are defined independently and can be optimized separately.
  • the electrode 59 may comprise a layer or, in a manner known per se, a stack of different functional layers. It can contain for example: a stack defining a synthetic antiferromagnet so as to limit the fields radiated on the layer to be manipulated 53, for example a stack comprising a ferromagnetic layer separated from the ferromagnetic layer 58 by a very thin layer of a metallic material non-magnetic, typically 0.3 nm of ruthenium (Ru), the magnetization values of the two ferromagnetic layers being as close as possible so that the antiferromagnetic coupling between them which is due to the presence of the ruthenium layer results in a total field radiated by these three layers on the layer 53 which is zero or almost zero;
  • ruthenium ruthenium
  • an antiferromagnetic magnetic material coupled by exchange to the layer 58 so as to stabilize this so-called reference layer 58;
  • the first magnetic material is covered with one or more non-magnetic conductive layers, for example 5 nm of Ta coated with 7 nm of Ru. Examples of such combinations are found, for example, in magnetic stacks used for STT reversal described in B. DIENY et al., Int. J. Nanotechnology, vol. 7, 591 (2010).
  • Two main configurations can be distinguished according to the nature of the layer 52: if it is of non-magnetic metal, the structure 53, 52, 58 is of the spin valve type, whereas if the layer 52 is dielectric, the structure 53, 52 , 58 is of the magnetic tunnel junction type.
  • the magnetoresistance signal being much more important for these structures, it will be these which will be privileged.
  • the configuration in which the magnetization of the layer 58 is collinear, parallel or antiparallel, to that of the layer 53 is preferred in either case.
  • A, B and C ( Figure 2a and 2b) denote three electrical connection terminals.
  • a write current is injected between the terminals A and B (in an equivalent manner, a voltage is applied between these terminals so as to circulate a current).
  • the write current passes into the magnetic layer 53 and produces in this layer an effective magnetic field due to the Rashba field and the exchange interaction sd, acting on the local magnetization (see the aforementioned article by MIRON et al).
  • This effective field H eff will be denominated thereafter in an equivalent manner by spin-orbit field or effective field H eff .
  • This spin-orbit field in combination with the applied external field allows according to the invention, the manipulation of the magnetization.
  • the current injected laterally does not pass through this layer and does not damage it.
  • the reading of the stored information is as well for a structure of the tunnel junction type as of the spin valve type, by injecting a current of low intensity (for example the order of a few ⁇ or a few tens of ⁇ for the case of tunnel junction) between terminals C and B (or equivalently between terminals C and A), and by measuring the voltage between these terminals; or by applying a constant voltage between the terminals B and C, (or equivalently between the terminals C and A), and by measuring the current flowing between these terminals so as to measure in both cases the resistance between the terminals considered.
  • This will have two different values depending on whether the magnetization direction 56 is parallel or anti-parallel to that of the reference layer 58.
  • the reading current has a small value so that the tunnel barrier (in the case where the layer 52 is dielectric) can not be damaged.
  • the applied magnetic field can retain a constant direction, the reversal of the magnetization being obtained by the direction of the current through the layers 54 and 53.
  • This solution is preferred because it is easily integrable and does not involve any additional power consumption (in the case where permanent magnets are used).
  • the magnetization can of course be returned simply by reversing the direction of the applied magnetic field, keeping the direction of the injected current.
  • FIGS. 3a to 3d Examples of memory architecture are now presented in relation to FIGS. 3a to 3d, in which FIGS. 3b and 3d implement the integration of permanent magnets.
  • FIGS. 3a to 3d show four examples of implementation of a memory architecture, according to the first configuration, with implementation of the structure according to FIGS. 2a and 2b.
  • the layer 70 of magnetic material is sandwiched between a conductive layer 72 and a stack 71 comprising the layers 52, 58 and 59 Figures 2a and 2b to read the magnetization of the layer 70 by a tunnel junction (or a spin valve).
  • the read line 74 makes it possible to feed the point C of the memory points of the same line.
  • An overthick region 72 'equivalent to the region 54' is optionally present.
  • a static magnetic direction field 76 is applied parallel to the direction of the current flowing through the conductive layer 72.
  • the static field can be applied to the entire memory by one or more permanent magnets, or to each of the pads formed by the elementary stacks (3 are shown) for example by means of permanent magnets 75a and 75b arranged in screws. to each stud.
  • Two transistors for example of the metal-oxide-semiconductor or MOS type 73a and 73b, may be used for the application of the current in a direction and in the opposite direction through the conductive layer 72 (FIGS. 3a and 3b), or a only transistor 73a is used, the other end 78 being brought to a constant potential (FIGS. 3c and 3d).
  • the layer 72 is structured in the form of a current feed track. It may comprise a layer of another conductive material located on the layer 72.
  • the injection of current for writing can be done in two modes.
  • two transistors 73a and 73b operating in commutation are used, the free terminal of which is alternately grounded for one and at a voltage Vdd for the other, the voltage Vdd being chosen to circulate a current. chosen value, in one direction or the other depending on whether the transistor 73a or the transistor 73b is brought to the voltage Vdd-
  • a single transistor 73a is used, the other end of the track 72 being carried at 78 at a fixed voltage.
  • the track connected to the transistor is taken to the potential Vdd (or to the ground) while the other track connected at the end of the track 72 at 78 is connected to the ground (or to Vdd) -
  • This configuration makes it possible to generate more current than the one that follows.
  • the track connected to the end of the track 72 at 78 is brought to an intermediate potential, for example Vdd 12, while that connected to the transistor 73a is carried respectively at the potential Vdd or the mass according to the desired direction for the current.
  • Vdd 12 an intermediate potential
  • This configuration makes it possible to generate less current.
  • the current can be sent on a much smaller surface than those used in conventional techniques, and this current is sufficient to operate the device. In this embodiment, there is a consumption economy on the operation.
  • the direction 26 of the magnetization of the magnetic layer is situated in the plane thereof and is parallel to the direction of the injected current, and the constant magnetic field, for example, which is applied is perpendicular to the magnetization direction 26, as well as to the direction of the spin-orbit magnetic field (effective magnetic field).
  • the applied magnetic field does not need to be perfectly perpendicular to the direction of the magnetic field H e ff but must have a non-zero component, which will be called in the following useful component of the applied magnetic field, in the perpendicular direction H e en (or spin-orbit field) and the magnetization direction 26.
  • the angle between the applied magnetic field and the useful component of this field can reach 60 °.
  • FIGS. 1a to 1f three geometries are represented, namely in the form of a track (FIGS. 4a and 4b) and studs, the conductive track 24 running along the stud (FIGS. 4c and 4d) or having an elevated region 24 ' ( Figures 4e and 4f) which is electrically conductive (generally metallic) and which is not necessarily in the same material as the track 24, in which case it is this extra thickness 24 'which acts as a non-magnetic outer layer and c is its material which is functional in the stack to obtain a reversal asymmetry.
  • the metallic material of the layer 24 can then be any.
  • 21 represents the direction of the injected current and the direction of the useful component of the external magnetic field that is applied (based on the remarks made above for the direction). This direction is perpendicular to the plane of the layers 23 and 24 and therefore to the magnetization direction 26 of the layer 23 and the direction 21 of the injected current.
  • a layer 23 of a thin magnetic material is sandwiched between two layers of different non-magnetic materials, namely the layer 22 above and the layer 24 below, by which the current is injected.
  • the typical stack comprises an electric insulating substrate 25, for example a dielectric oxide (for example SiOx, A10 x, MgOx) or e.g. a silicon nitride for example SiN x , on which is deposited the structure forming the stack.
  • a thin layer of a magnetic material (or a combination of magnetic materials or magnetic layers 23), for example a 3 nm layer of cobalt, sandwiched between two layers 22 and 24 of different non-magnetic materials, by for example, a dielectric layer 22 and a layer 24 made of an electrically conductive material, generally made of metal, for example platinum.
  • Layers 22 and 24 may also be of two different metals.
  • the magnetization of the magnetic layer 23 is contained in the plane, oriented along the axis of the track 26.
  • the current is injected in the direction 21 which is parallel to the direction of the magnetization and an external magnetic field is applied in a plane perpendicular to the magnetization with a useful component along the direction 27 perpendicular to the plane of the interfaces (or the spin-orbit field).
  • a pad 28a or 28b (FIGS. 4c to 4f) containing the non-magnetic material 22 and the magnetic material 23 may be formed on the conductive track 24 in order to return only the magnetization contained in this pad.
  • the stud 28b (FIGS. 4e and 4f) may contain a portion 24 'of the thickness of the non-magnetic material 24.
  • the stud 28a or 28b may have all the geometries: square, rectangle, disc, ellipse, or each of these geometries deformed, the principle being that the magnetization is directed along the track. For this, we favor an elliptical shape of large axis parallel to the axis of the track.
  • the raised portion 24 ' can also be made of a different conductive material of the material of the layer 22 and the conductive track 24.
  • the material of the substrate 25 may be selected from the same materials as for the first configuration.
  • the magnetic layer 23 is introduced to the difference of the layer 13, a planar magnetization and having a thickness thin enough so that the effective magnetic field H eff due to the injected current and acting on the local magnetization is not negligible.
  • the layers 22 and 24 are non-magnetic conductive, it is sought to have a layer 23 having a thickness such that the magnetic anisotropy is in the plane. This thickness is typically greater than that of the layer 13 surrounded by two layers 12 and 14 ( Figures 1a-lf) identical to 22 and 24.
  • one of the two layers typically 22 is an electrical insulating material, typically an oxide such as AlOx, MgOx, TiOx, TaOx
  • the thickness of this magnetic layer may in certain cases, depending on the oxidation and / or annealing parameters, be identical to that used in the first configuration described above, while the magnetization is perpendicular in this first configuration. and planar in that described here.
  • This thickness for the second configuration typically does not exceed 5 nm, and is preferably less than or equal to 3 nm. All magnetic materials with planar magnetization (Co, Fe, CoFe, NiFe, CoNi, ...) can be used. It is also possible to use non-metallic magnetic materials such as, for example, magnetic semiconductors such as (Ga, Mn) As according to the elaboration conditions.
  • the anisotropy field is of the order of ⁇ Ms, where Ms is the saturation magnetization, ie about 1.5 T for Co.
  • the value of the applied magnetic field can in practice, between 3 and 10 times less than the value of the effective field of anisotropy and preferably between 4 and 10 times less than this.
  • the values of the applied magnetic field may therefore be greater than for the first configuration, since the anisotropy field is generally greater.
  • FIGS. 5a and 5b show an example of a stack that can be used in an MRAM magnetic memory cell or a logic component cell, in order to allow both writing and reading.
  • a magnetic material 63 of small thickness which has a magnetization in the direction 66 parallel to its plane is sandwiched between two layers 62 and 64 of different non-magnetic materials, the material 64 forming a conductive track on an insulating substrate, optionally provided with a region 64 'in extra thickness.
  • the external magnetic field is applied in the direction 67 perpendicular to the plane of the interfaces between the stacked layers.
  • To this stack are superimposed successively a layer 68 of a magnetic material, and an upper electrode 69 having one or more layers of conductive materials that may or may not be magnetic to form, as for the first configuration, a stack as described in connection with the Figures 4c to 4f.
  • A, B and C represent three points of electrical contact respectively at the ends of the track 64 (contacts A and B), and on the upper electrode 69 (contact C).
  • FIG. 5b also shows an example of integration with the permanent magnet magnet pad 60a and 60b to generate the magnetic field in the direction 67.
  • the permanent magnet 60b is made of conductive material.
  • FIGS. 6a to 6d illustrate a memory architecture that implements the structure described in FIGS. 5a and 5b, according to four modes of implementation.
  • the magnetic layer 80 is sandwiched between a current supply layer 82, 82 'and a stack 81 which comprises the layers 62, 68, and 69 of FIGS. 5a and 5b, to define as for the first configuration a tunnel junction type stack if the layer 62 is dielectric (or spin valve if the layer 62 is non-magnetic metal) to read the magnetization state of the layer 80.
  • a tunnel junction type stack if the layer 62 is dielectric (or spin valve if the layer 62 is non-magnetic metal) to read the magnetization state of the layer 80.
  • the injection of the write current into the track 82 is controlled by two transistors 83a and 83b.
  • the reading of the stored information is as well for a structure of the tunnel junction type as of the spin valve type, by injecting a reading current of low intensity (by example of the order of a few micro-amps or tens of microamperes for the case of tunnel junctions) between terminals C (line 84) and B (or equivalently between terminals C and A) and by measuring the voltage between these terminals, or by applying a constant reading voltage between terminals C and B (or equivalently between terminals C and A) and by measuring the reading current flowing between these terminals, so in all cases to measure the resistance between the considered terminals.
  • a reading current of low intensity by example of the order of a few micro-amps or tens of microamperes for the case of tunnel junctions
  • the read current has a low value so that the tunnel barrier (in the case where the layer 62 is dielectric) can not be damaged.
  • Permanent magnets 85a and 85b may be integrated into the structure, for example respectively below the track 82 and above the stack 81, to apply the static field in the direction 86 perpendicular to the plane of the layer 80.
  • material constituting the permanent magnet 85a must be conductive so as not to disturb the reading.
  • FIGS. 6c and 6d differ from FIGS. 6a and 6b respectively in that only one reading transistor is used, the other end 88 (point B) of the current supply line 82 being brought to a potential constant.
  • a control circuit can be implemented in all cases to manage the write and / or read operations.
  • the reversal of the magnetization of the layer 80 is carried out here thanks to a current flowing through the lower electrode 82 in one direction or the other in the presence of the static magnetic field direction 86, the outer layer of the stack 82 , 80, 81 being structured in the form of a current feed track 82, possibly with a thickened conductive region 82 '.
  • the portion 82 'in excess may or may not be in the same conductive material as the track 82.
  • the injection of current for writing can be done in two modes.
  • two transistors 83a and 83b operating in switching mode are used, the free terminal of which is alternately grounded. for one and at a voltage Vdd for the other, the voltage V d d being chosen to circulate a current of selected value, in one direction or in the other depending on whether the transistor 83a or the transistor 83b is brought to the voltage Vdd-
  • a single transistor 83a is used, the other end of the track 82 being carried at 88 at a fixed voltage.
  • the track connected to the transistor is taken to the potential Vdd (or ground) while the other track connected at the end of the track 82 at 88 is connected to ground (or Vd d ).
  • Vdd potential
  • Vd d potential
  • the track connected to the end of the track 82 at 88 is brought to an intermediate potential, for example Vdd 2, while that connected to the transistor 83a is respectively raised to the potential V d d or to the ground in the desired direction for the current.
  • Vdd 2 an intermediate potential
  • the current can be sent on a much smaller surface than those used in conventional techniques, and this current is sufficient to operate the device. In this embodiment, there is a consumption economy on the operation.
  • FIG. 7 is an example of an electrical diagram for integrating a memory element to form an array of two-dimensional memory cells, for example with a tunnel junction. Devices for applying a magnetic field are not shown for simplification purposes.
  • bit lines or lines of digits 11 1, 111 2 , 111 3 , etc. connected to the drain of transistors 1131, 113 2 , 113 3 , 113 ',, 1 13 '2 1 13' 3, 113' ⁇ , 1 ⁇ 13 "2, etc .. and the bit lines coupled l2 h 112 2, 112 3, ... which form a two-dimensional array.
  • control tracks 1 10, 110 ', 110 " ... gates of the transistors 113 h 113 2 , 113 3 , 113 ⁇ , 113' 2 , 1 13 ' 3 , 113' ⁇ , 1 13 "2, etc ... which form word lines.
  • the marks 1 14 U 114 2 , 114 3 , 1 14 ⁇ , 1 14 ' 2 , 1 14' 3 , etc. schematically indicate a stack according to the invention having a tunnel junction (or a spin valve).
  • the tunnel junction or the spin valve is not traversed by a current perpendicular to the plane of its layers during a writing phase, and it is traversed by a current perpendicular to the plane of its layers only when a reading phase.
  • Characteristic points A, B and C have been indicated. They correspond to those shown in Figures 2a, 2b, 3c, 3d, 5a, 5b, 6c and 6d (mounting with a single transistor).
  • the points A are connected to the sources of the transistors 113], 113 2 , 1 13 3 , 1 13 ⁇ , 1 13 ' 2 , etc.
  • the points B are connected to a conjugate bit line 112i, 112 2 , 112 3 , etc. and the points C to a polarization line 115, 115 ', etc.
  • the drains D of the transistors 1 131, 1 13 2 , 113 3 , 1 13 ⁇ , 113 ' 2 , etc. are connected to the bit lines 111, 111 2 , 111 3 , etc.
  • the bottom of the stacks 114 1? 114 2 , etc ... is the layer whose magnetization is changed by means of the write current.
  • the sources can then be connected to the bit lines l11i, 1 11 2 , etc. and the drains at the points A.
  • bit line (or "bit line") 1 1 11 and the conjugate bit line 112i which are associated with this memory point are carried according to the direction magnetization that is desired at potential Vdd (or ground) and ground (or potential Vdd) in the case of symmetrical operation described above.
  • the other bit lines 11 1 2 , etc. and conjugate bit lines 1 12 2 , etc. associated with the other memory points are inactive.
  • the associated word line 1 10 is brought to the control potential necessary for the closing of the transistor 1 131 (equivalent to the transistor 73a or 83a of the above figures), to allow the flow of the write current through the transistor 113).
  • the writing current thus passes between the points A and B in one direction or the other depending on the direction of the magnetization that is desired.
  • the other word lines 1 10 ', 110 ", etc. are brought to the potential that opens the transistors No current passes perpendicularly to the plane of the layers the tunnel junction type stack
  • the polarization lines 1 15, 1 15 ', etc. connected to the points C of the stacks are inactive (or open) in this write phase.
  • the "conjugate bit line" 1 12i associated with this memory point is open, as are all the other conjugate bit lines 1 12 2 , etc. to prevent any current from flowing in.
  • the polarization line 115 associated with the memory point envisaged is brought to a potential allowing the passage of the reading current (low) in the tunnel junction or in the spin valve, while all the others polarization lines 1 15 ', etc. are disconnected.
  • the associated "word line” 110 is brought to the potential allowing the closing of the transistor 1 13] and a current can therefore pass through the tunnel junction or the spin valve between the points C and A. To read only this tunnel junction or this spin valve, the other word line 110 ', etc.
  • the reading can then be done for example according to the state of the art by comparison by means of an amplifier of the current passing in the junction at a reference current.
  • This reading current of low current density, passing perpendicular to the planes of the stack does not make it possible to write the junction in this reading phase.
  • the procedure is the same in the case of a spin valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

L'invention est relative à un élément magnétique inscriptible comportant un empilement de couches présentant une couche magnétique d'écriture, caractérisé en ce que l'empilement comporte une dite couche magnétique d'écriture, à savoir une couche centrale (13, 53, 70, 23, 63, 80) en au moins un matériau magnétique présentant une direction d'aimantation parallèle ou perpendiculaire au plan de la couche centrale, qui est prise en sandwich entre une première (12, 52, 71, 22, 62) et une deuxième (14, 54, 72, 24, 64, 82,) couches externes en matériaux non magnétiques, la première couche externe (12, 52, 71, 22, 62) comportant un premier matériau non magnétique et la deuxième couche externe (14, 54, 72, 24, 64, 82) comportant un deuxième matériau non magnétique différent du premier matériau non magnétique au moins le deuxième matériau non magnétique étant électriquement conducteur, en ce qu'il comporte d'une part un dispositif pour faire passer un courant d'écriture seulement à travers la deuxième couche externe et la couche centrale et éventuellement à travers la première couche externe seulement dans le cas où celle-ci est conductrice, ce courant d'écriture circulant dans une direction de courant parallèle au plan de la couche centrale, et d'autre part, un dispositif pour appliquer un champ magnétique ayant une composante selon une direction de champ magnétique soit parallèle, soit perpendiculaire au plan de la couche centrale (13, 53, 70, 23, 63, 80) et à la direction de courant, et en ce que la direction d'aimantation et la direction de champ magnétique, sont perpendiculaires entre elles.

Description

ELEMENT DE MEMOIRE MAGNETIQUE.
La présente invention a pour objet un élément de mémoire magnétique du type à retournement induit par un courant.
Le retournement de l'aimantation d'une couche ou d'un petit élément magnétique se fait communément au moyen d'un champ magnétique appliqué. La direction de celui-ci est changée suivant que l'on veuille retourner l'aimantation dans un sens ou dans un autre. C'est ce principe qui est à la base de l'écriture dans des pistes magnétiques ou des disques durs d'ordinateur : l'élément à retourner est mécaniquement placé au voisinage du générateur de champ magnétique de façon à localiser spatialement ce champ. C'est en effet la structure même du champ magnétique, par définition non localisé dans l'espace, qui soulève de nombreuses difficultés pour son intégration dans des dispositifs. Ainsi, lorsque aucune actuation mécanique n'est possible ou désirée, par exemple dans le cas des mémoires magnétiques solides de type "MRAM" (magnetic random access memories) ou des dispositifs logiques, il faut localiser suffisamment le champ magnétique pour que celui-ci n'agisse que sur la cellule cible sans impacter ses voisines. Ce problème devient de plus en plus important lorsque les différentes cellules mémoire ou logiques sont disposées très proches les unes des autres afin d'augmenter les densités.
La possibilité de manipuler l'aimantation au moyen d'un courant polarisé en spin qui a été démontrée tout d'abord théoriquement en 1996 a apporté une première solution à ce problème. Ce principe physique, appelé couple de transfert de spin (STT pour spin transfer torque en anglais) nécessite la présence, pour manipuler l'aimantation au niveau du point mémoire, d'au moins deux couches magnétiques séparées par un métal non magnétique (pour une structure de type vanne de spin) ou par un isolant (pour une structure de type jonction tunnel magnétique), les deux couches ayant leur aimantations non colinéraires. L'explication physique détaillée diffère suivant que l'on est en présence d'une structure vanne de spin ou jonction tunnel magnétique mais globalement le courant se polarise en spin à la traversée de la première couche magnétique, pour ensuite exercer un couple sur l'aimantation de la seconde couche au moyen de la composante non colinéaire de la polarisation du courant. Lorsque les densités de courant sont suffisantes, l'aimantation de la seconde couche magnétique peut être retournée à la fois pour les vannes de spin et les jonctions tunnel magnétiques.
Comme décrit par exemple dans le Brevet US 7 009 877 publié le 7 Mars 2006 et dans la Demande US 2009/129143 publiée le 21 Mai 2009, le courant électrique d'écriture traverse nécessairement la jonction perpendiculairement au plan des couches.
C'est également le cas du Brevet US 6,269,018 dans lequel (figure 5b) le courant d'écriture qui génère également un champ magnétique dans une couche centrale ferromagnétique traverse perpendiculairement au plan des couches un empilement de type jonction tunnel magnétique. On notera également que ce document met en œuvre deux couches magnétiques distinctes.
Cette possibilité de manipuler localement l'aimantation d'un élément magnétique de taille sub-micronique au moyen d'un courant électrique a tout de suite généré des possibilités d'application. De nos jours, c'est l'intégration de ce principe dans les nouvelles architectures de cellules mémoire MRAM et des composants logiques qui est recherchée par les acteurs industriels.
Cette intégration se heurte pour l'instant à différentes difficultés qui semblent entrelacées.
Le retournement par STT nécessite la présence au niveau du point mémoire d'au moins deux couches magnétiques séparées par un espaceur non magnétique. L'écriture se fait comme indiqué ci-dessus en injectant un courant de forte densité à travers tout l'empilement perpendiculairement au plan des couches magnétiques, tandis que la lecture se fait au moyen de la magnétorésistance de l'empilement : magnétorésistance géante (GMR) pour les vannes de spin, et magnétorésistance tunnel (TMR) pour les jonctions tunnel magnétiques. De nos jours, toutes les applications ou presque sont basées sur l'utilisation de jonctions tunnel magnétiques. Ainsi, si le signal GMR n'est que de quelques pourcents, le signal TMR de jonctions à base de MgO est communément supérieur à 100%. Les jonctions tunnel ont néanmoins le désavantage de présenter des valeurs du produit résistance * surface (RA) importantes. Ainsi, pour une densité de courant typique de 10 A/cm nécessaire au retournement par STT, la tension aux bords de la jonction est de 10V pour un RA de ΙΟΟΩ.μηι2, IV pour un RA de 10 Ω.μιη2 et 0.1V pour un RA de 1 Ω.μπι2. Hormis pour la valeur la plus faible, la puissance dissipée dans la jonction est alors importante ce qui est préjudiciable à la fois en terme de consommation énergétique et d'endommagement de la dite jonction.
De plus, les valeurs importantes de TMR utiles à la lecture sont souvent obtenues pour des empilements présentant des valeurs de RA importantes.
Cela explique les recherches actuelles pour obtenir des jonctions tunnel présentant de fortes valeurs de TMR et de faibles valeurs de RA. De plus, même pour des valeurs relativement faibles de tension aux bords de la jonction, des phénomènes de vieillissement accéléré de la jonction dus aux cycles en tension ont été observés en fonctionnement. De nombreuses études sont consacrées actuellement à ce point à la fois pour optimiser les matériaux dans les géométries existantes mais aussi pour définir de nouvelles géométries pour découpler autant que possible les phénomènes d'écriture et de lecture.
En résumé, une difficulté réside dans l'impossibilité d'optimiser indépendamment la lecture et l'écriture car, dans les dispositifs à transfert de spin (STT) connus, les deux phénomènes sont intrinsèquement liés.
Une autre difficulté est liée au fait que l'écriture nécessite de faire passer un courant de très forte densité à travers l'empilement.
Une autre difficulté inhérente encore à ce lien provient de la complexité toujours plus grande des empilements. Ainsi, si l'on veut que l'effet de transfert de spin (STT) ne se fasse ressentir que dans la couche à retourner pour stocker l'aimantation, il faut par exemple stabiliser les autres couches au moyen d'un couplage d'échange avec un matériau antiferromagnétique ; si l'on veut augmenter l'amplitude du transfert STT, il faut optimiser les couches polarisantes ; si l'on veut diminuer les champs magnétiques rayonnés sur les couches sensibles, il faut utiliser par exemple des bicouche antiferromagnétiques artificielles ; etc...
Il en résulte que les empilements magnétiques typiques de cellules MRAM ou composants logiques peuvent comporter plus de 10 ou 15 couches différentes de matériaux divers. Ceci pose ensuite des difficultés dans les étapes de structuration et notamment dans l'étape de gravure qui est un des points de blocage les plus importants pour l'intégration de ces empilements magnétiques.
Une autre voie de recherche est de manipuler l'aimantation au moyen d'un champ électrique extérieur. Ceci peut être partiellement accompli en modifiant l'anisotropie d'un matériau au moyen d'un champ électrique extérieur, le retournement de l'aimantation s'effectuant au moyen d'un champ magnétique appliqué. Une telle technique est décrite dans l'article de T. MARUYAMA et collaborateurs intitulé « Large voltage-induced magnetic anisotropy charge in a few atomic layers of iron » (Nature Nanotechnology, vol. 4, March 2009 - Macmillan Publishers Ltd.).
Cette technique ne permet actuellement que de réduire l'anisotropie magnétique du matériau. Les processus d'écriture et de lecture sont alors les mêmes que ceux décrits ci-dessus, ainsi que leurs inconvénients.
La présente invention a pour objet un élément de mémoire magnétique qui, pour inverser l'aimantation, ne nécessite la présence que d'une couche magnétique (ayant une aimantation parallèle ou perpendiculaire à son plan) et qui fonctionne sans que l'empilement ne soit traversé par un courant perpendiculairement au plan des couches.
L'invention concerne ainsi un élément magnétique inscriptible comportant un empilement de couches présentant une couche magnétique d'écriture, caractérisé en ce que l'empilement comporte une dite couche magnétique d'écriture, à savoir une couche centrale en au moins un matériau magnétique présentant une direction d'aimantation parallèle ou perpendiculaire au plan de la couche centrale, qui est prise en sandwich entre une première et une deuxième couches externes en matériaux non magnétiques, la première couche externe comportant un premier matériau non magnétique et la deuxième couche externe comportant un deuxième matériau non magnétique différent du premier matériau non magnétique, au moins le deuxième matériau non magnétique étant électriquement conducteur, en ce qu'il comporte un dispositif pour faire passer un courant d'écriture seulement à travers la deuxième couche externe et la couche centrale et éventuellement à travers la première couche externe seulement dans le cas où celle-ci est électriquement conductrice, ce courant d'écriture circulant dans au moins une direction de courant parallèle au plan de la couche centrale, et un dispositif pour appliquer un champ magnétique ayant une composante selon une direction de champ magnétique soit parallèle, soit perpendiculaire au plan de la couche centrale et à la direction de courant, et en ce que la direction d'aimantation et la direction de champ magnétique sont perpendiculaires entre elles.
L'invention met ainsi en œuvre un dispositif pour faire passer le courant d'écriture et un dispositif distinct du précédent pour appliquer un champ magnétique. Si la première couche externe n'est pas conductrice, elle n'est traversée par aucun courant lors d'une phase d'écriture. Si elle est conductrice et dans ce cas seulement, elle est traversée par le courant d'écriture.
Avantageusement, le champ magnétique est soit parallèle, soit perpendiculaire au plan de la couche centrale et à la direction du courant.
Deux configurations sont possibles :
Selon une première configuration, la direction de champ magnétique est parallèle à la direction du courant et la direction de l'aimantation est perpendiculaire au plan de la couche centrale magnétique.
Selon une deuxième configuration, la direction de l'aimantation est parallèle à la direction du courant et la direction de champ magnétique est perpendiculaire au plan de la couche centrale magnétique. Dans ces deux configurations, le courant électrique circule parallèlement à la couche magnétique et ne traverse pas l'empilement dans une direction perpendiculaire au plan des couches, il passe à travers la couche centrale magnétique et au moins la deuxième couche externe dans au moins une direction de courant parallèle au plan des couches, et la mémoire peut être écrite en agissant soit sur le sens du courant, soit sur le sens du champ magnétique.
La couche centrale a avantageusement une épaisseur comprise entre 0,1 nm et 5 nm. Dans la première configuration, cette valeur est de préférence inférieure ou égale à 2 nm. Dans deuxième configuration, cette valeur est de préférence inférieure ou égale à 3 nm.
Dans le cas où la direction de l'aimantation est perpendiculaire au plan de la couche, la couche centrale peut comporter un alliage présentant une anisotropie magnétique perpendiculaire propre, à savoir notamment FePt, FePd, CoPt ou bien encore en un alliage de terre rare / métal de transition qui présente également une anisotropie magnétique perpendiculaire propre, tel que GdCo, ou TbFeCo. La couche centrale magnétique peut aussi comporter un métal ou un alliage présentant dans l'empilement une anisotropie magnétique perpendiculaire induite par les interfaces, notamment Co, Fe, CoFe, Ni, CoNi.
Dans le cas ou la direction de l'aimantation est contenue dans le plan des couches, la couche centrale peut comporter un métal ou un alliage présentant dans l'empilement une anisotropie magnétique planaire notamment Co, Fe, CoFe, Ni, NiFe, CoNi.
Au moins une couche externe conductrice est en un métal non magnétique de préférence Pt, W, Ir, Ru, Pd, Cu, Au, Bi ou en un alliage non magnétique de ces métaux. L'épaisseur d'une telle couche conductrice peut être comprise entre lnm et 10 nm et est de préférence inférieure ou égale à 5 nm. La valeur de cette épaisseur n'a pas de lien avec la valeur choisie pour l'épaisseur de la couche centrale.
Une couche externe non conductrice est en un matériau isolant électrique, préférentiellement un oxyde diélectrique tel que SiOx, AlOx, MgOx, TiOx, TaOx, HfOx ou bien en un nitrure diélectrique tel que SiNx, BNx. L'épaisseur de cette couche externe est par exemple comprise entre 0,5nm et 200 nm, plus particulièrement entre 0.5 nm et 100 nm et de préférence inférieure à 3nm en particulier si la lecture de l'élément mémoire se fait au moyen du signal de magnétorésistance tunnel. Les deux couches externes peuvent être conductrices, mais elles sont alors choisies en deux dits métaux ou alliages de métaux non magnétiques différents.
La densité du courant est comprise par exemple entre 104 A/cm2 et 109 A/cm2, et avantageusement entre 105 A/cm2 et 108 A/cm2.
Le champ magnétique appliqué peut présenter une valeur comprise entre 0,002 T et 1 T, et avantageusement entre 0,005 T et 0,8 T.
La première couche externe (qui est celle qui n'est pas traversée par le dit courant) peut être recouverte d'une couche de lecture en matériau magnétique et d'une électrode de lecture. Dans le cas où la première couche externe est en métal non magnétique, elle forme avec la couche de lecture, l'électrode de lecture et la couche centrale une vanne de spin. Dans le cas où la première couche externe est diélectrique, elle forme avec la couche de lecture, l'électrode de lecture et la couche centrale une jonction tunnel magnétique. L'épaisseur de la première couche externe est alors de préférence inférieure à 3 nm.
L'élément magnétique peut être structuré de sorte que la première couche externe et la couche centrale forment un plot, alors que la deuxième couche externe forme une piste. La deuxième couche externe peut comporter une région en surépaisseur qui fait partie du plot.
L'invention concerne également un dispositif magnétique inscriptible comportant une pluralité de dits plots dont la deuxième couche externe est constituée par une dite piste qui leur est commune.
Alternativement, la première couche externe, la couche centrale et la deuxième couche externe forment un plot, et le dispositif magnétique inscriptible comporte une pluralité de dits plots, ainsi qu'une piste conductrice bordant la deuxième couche externe desdits plots pour injecter ledit courant à travers la deuxième couche externe et la couche centrale de chacun desdits plots, la deuxième couche externe étant en un matériau électriquement conducteur différent de celui de la piste conductrice.
L'invention sera mieux comprise à la lecture de la description ci- après, en liaison avec les dessins dans lesquels :
- les figures la à lf illustrent la première configuration de mise en œuvre de l'invention, dont les figures 2a à 2b représentent un mode de réalisation intégré dans une cellule mémoire magnétique de type "MRAM", et dont les figures 3a à 3d illustrent des modes de réalisation dans lesquels plusieurs éléments de mémoire sont représentés pour illustrer l'architecture de la mémoire. - les figures 4a à 4f illustrent la deuxième configuration de mise en œuvre de l'invention, dont les figures 5a et 5b représentent un mode de réalisation intégré dans une cellule de mémoire magnétique de type "MRAM" et dont les figures 6a à 6d illustrent des modes de réalisation dans lesquels plusieurs éléments de mémoire sont représentés pour illustrer l'architecture de la mémoire.
- et la figure 7 est un exemple d'intégration d'un élément magnétique selon l'invention constituant une cellule mémoire, pour former un réseau mono ou bi- dimensionnel.
L'empilement mis en œuvre dans le cadre de la présente invention, à savoir une couche magnétique centrale, en sandwich entre deux couches externes non magnétiques, dont au moins une est conductrice, les deux couches externes étant en des matériaux différents, a pour effet de créer une asymétrie d'inversion qui génère un champ électrique non compensé dans la couche centrale magnétique. Les électrons se propageant dans ce champ électrique sont soumis dans leur référentiel propre à un champ magnétique appelé champ Rashba HR dont la direction est perpendiculaire à la fois au courant et au champ électrique. Ce champ magnétique s'applique donc sur les électrons de conduction.
Les inventeurs ont monté qu'un champ magnétique effectif résultant de ce champ Rashba et de l'interaction d'échange couplant le spin des électrons itinérants et localisés s'applique sur l'aimantation locale. Ainsi, l'article de Ioan MIRON et Collaborateurs, intitulé « Current-driven spin torque induced by the Rashba effect in a ferromagnetic métal layer », publié dans Nature Materials, vol. 9, p. 230-234 (2010) montre un empilement comportant une couche de Pt (3 nm) une couche de Co (0,6 nm) ayant une aimantation perpendiculaire à son plan et donc parallèle à l'axe z, et une couche de AlOx (2 nm) parcourue par un courant circulant parallèlement à l'axe x. Cette situation présente un champ magnétique effectif Heff selon le troisième axe de trièdre, l'axe y. Cette configuration est de ce fait inappropriée à la réalisation d'une mémoire, car ce champ magnétique n'est pas colinéaire à l'aimantation de la couche.
De manière surprenante, les inventeurs ont montré que cet obstacle théorique pouvait être franchi en utilisant ce qui, selon leur interprétation, résulte d'une dynamique de l'aimantation due à l'interaction du champ Heff et d'un champ magnétique externe ayant une composante perpendiculaire à Heff, lorsqu'un courant est injecté dans une structure présentant une asymétrie d'inversion, la direction de la composante perpendiculaire à Heff du champ magnétique étant, soit colinéaire à la direction d'injection du courant (première configuration), soit perpendiculaire à la dite direction (deuxième configuration).
Les figures la à lf illustrent la première configuration de mise en œuvre de l'invention selon laquelle la direction du champ magnétique appliqué est parallèle à la direction du courant et la direction de l'aimantation est perpendiculaire au plan de la couche centrale magnétique. Le champ magnétique appliqué est ainsi perpendiculaire à la fois à l'aimantation et à la direction du champ magnétique effectif
Heff.
La référence 15 désigne un substrat qui est un isolant électrique, afin de ne pas court-circuiter la structure. Il peut être notamment constitué par un oxyde diélectrique (par exemple SiOx, AlOx, MgOx), ou par un nitrure par exemple SiNx. Il peut être seul ou déposé sur un autre substrat par exemple en silicium.
La référence 13 désigne la couche magnétique plane dont l'aimantation est perpendiculaire à son plan. La référence 16 désigne l'orientation de l'aimantation, qui peut être présente dans un sens ou dans le sens opposé.
Les références 12 et 14 désignent respectivement les première et deuxième couches externes non magnétiques. La deuxième couche externe 14 est celle qui est traversée par un courant lors de l'écriture.
La référence 1 1 désigne la direction du courant d'écriture qui peut être orienté dans ce sens ou dans le sens opposé, et la référence 17 désigne l'orientation du champ magnétique appliqué, qui est colinéaire à la direction du courant et qui peut être orienté dans ce sens ou dans le sens opposé.
Les figures la et lb montrent un empilement non structuré dans lequel les couches 12, 13 et 14 de l'empilement forment une piste.
Les figures le à lf montrent un empilement structuré dans lequel la couche 14 (dénommée deuxième couche externe) est conductrice et les couches magnétique 13 et non magnétique 12 (dénommée première couche externe) sont seules structurées pour former des plots (Figures le et ld) et dans lequel les trois couches 12, 13, 14 sont structurées pour constituer un plot en intégrant dans le plot une surépaisseur 14' de la couche conductrice 14, de sorte que le plot contienne une partie de l'épaisseur du matériau non magnétique de la couche 14 (Figures le et lf). L'épaisseur à prendre en compte pour la deuxième couche externe est celle de la couche 14 proprement dite et de la surépaisseur 14'.
On notera que la région en surépaisseur 14' n'est pas nécessairement dans le même matériau électriquement conducteur que la couche 14 auquel cas c'est cette surépaisseur seule 14' qui fait fonction de deuxième couche externe non magnétique et c'est son matériau qui est fonctionnel dans l'empilement pour obtenir une asymétrie d'inversion. Le matériau métallique de la couche 14 peut alors être quelconque.
La formation de plots permet de ne retourner l'aimantation que dans les plots, sinon l'aimantation est retournée sur toute la longueur de la piste.
La couche magnétique 13 présente une aimantation perpendiculaire et a une épaisseur assez fine pour que le champ électrique dû aux interfaces ne soit pas négligeable. Son épaisseur ne dépasse typiquement pas 2nm et elle est au maximum de 5nm. Tous les matériaux magnétiques présentant une aimantation perpendiculaire, due par exemple à leur anisotropie magnétique perpendiculaire propre (alliages FePt, FePd, CoPt.... ; alliages terre rare/métaux de transition GdCo, TbFeCo...) ou à l'effet d'une anisotropie magnétique perpendiculaire induite par les interfaces (Co, Fe, CoFe, Ni, CoNi, .... peuvent être utilisés. On peut aussi prendre des matériaux magnétiques non métalliques comme par exemple des semi-conducteurs magnétiques, tels que GaMnAs (GaAs dopé au Mn), On notera que les matériaux semi-conducteurs magnétiques connus ne sont magnétiques qu'à une température inférieure à l'ambiante.
Dans le cas où l'anisotropie perpendiculaire du matériau magnétique est induite par les interfaces, on peut obtenir une aimantation perpendiculaire au plan en agissant sur l'épaisseur de la couche centrale et/ou sur l'état d'oxydation d'une couche externe en oxyde par exemple en modifiant les paramètres du dépôt de cette couche externe en oxyde ou en effectuant un recuit après la réalisation de l'empilement.
Exemple : Un empilement comportant une couche 14 conductrice en Pt (d'épaisseur 3nm), une couche centrale 13 en Co (d'épaisseur lnm) et une couche 12 en AlOx présente pour un état d'oxydation donné de cette couche d'AlOx, une aimantation perpendiculaire, alors que si l'épaisseur de la couche en Co est égale à 1,5 nm, l'aimantation est dans le plan. Si l'empilement subit un recuit à 300°C pendant 60 minutes sous vide, alors l'aimantation de la couche centrale 13 en Co est perpendiculaire au plan.
Au-delà d'une épaisseur de 3nm pour la couche en Co, on ne pourra pas obtenir d'aimantation hors du plan quel que soit le recuit ou les paramètres d'oxydation si la couche 12 est en AlOx. Si par contre le diélectrique utilisé pour la couche 12 est MgOx, on pourra obtenir une aimantation perpendiculaire pour une épaisseur de la couche centrale supérieure ou égale à 3nm.
L'influence de l'épaisseur d'une couche de cobalt sur les propriétés magnétiques pour différents oxydes (AlOx, MgOx, SiOx) est décrite dans l'article "Domain Patterns and Magnetization reversai Behaviours in Oxide/Co/Pt Films" de Jae Chul LEE et Collaborateurs, paru dans IEEE Transactions on Magnetics, vol. 46 n° 6 June 2010.
L'effet de l'oxydation et du recuit sur les propriétés magnétiques dans les tri-couches Pt/Co/AlOx a été décrit dans l'article 'Influence of Thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers" de B. RODMACQ et collaborateurs, paru dans Physical Review B 79 024423, (2009).
L'influence de l'état d'oxydation d'une couche d'oxyde sur les propriétés magnétiques de la couche de cobalt dans un empilement tri-couche platine/cobalt/métal oxydé, a été décrite dans l'article "Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers" de A. MANCHON et collaborateurs, paru dans Journal of Appplied Physics 104, 043914 (2008).
Les deux couches non-magnétiques 12 et 14 doivent être différentes afin de créer une asymétrie d'inversion dans la structure globale. On choisit avantageusement deux matériaux différents pour chacune de ces couches, par exemple un diélectrique pour l'une des deux et un métal pour l'autre, mais on peut choisir aussi un métal pour chacune d'entre elles. Le cas où les deux couches 12 et 14 sont diélectriques n'est possible que si on ne structure pas un plot mais une piste. On peut alors faire circuler le courant directement dans la couche centrale 13.
Ainsi, chacune des deux couches 12 et 14 peut être constituée par les matériaux suivants, avec la condition que ces couches soient différentes pour que l'empilement global (couches 12, 13, et 14) soit à aimantation perpendiculaire : un oxyde diélectrique (SiOx, A10x, MgOx, TiOx, TaOx, HfOx, ...), un nitrure diélectrique, (SiNx, BNX,...), un métal non magnétique (Pt, Pd, Cu, Au, Bi,...) un alliage non magnétique de ces métaux, un composé semi-conducteur organique ou non (par exemple GaAs, Si, Ge ou Graphène lié si besoin à un buffer de croissance par exemple un métal tel que l'iridium.
Dans le cas où les couches non magnétiques sont l'une ou l'autre conductrices, c'est-à-dire le cas d'un métal ou d'un alliage, les deux couches externes ne doivent pas avoir la même composition.
L'épaisseur des couches 12 et 14 peut être choisie dans une large gamme de valeurs, typiquement de 0,5 à 200 nm d'épaisseur et plus particulièrement entre 0.5 nm et 100 nm. Dans le cas où la couche 12 est isolante, il n'y a pas d'inconvénient à ce que sa valeur atteigne la limite supérieure indiquée, à savoir 200 nm sauf dans le cas où la lecture du point mémoire se fait au moyen du signal de magnétorésistance tunnel en rajoutant par exemple une couche magnétique et une électrode au dessus de cette couche isolante comme représenté sur les figures 2a et 2b. Dans ce cas l'épaisseur de cette couche isolante sera choisie préférentiellement inférieure à 3nm. Par contre, dans le cas de couches 12 et/ou 14 métalliques, on privilégie des couches fines, typiquement inférieures à 5 nm et généralement inférieures à 10 nm, de façon à ne pas trop diminuer le courant efficace passant dans la couche magnétique à cause de ces canaux conducteurs en parallèle. Dans le cas où la couche 12 est métallique et que la lecture du point mémoire se fait au moyen du signal de magnétorésistance géante en rajoutant par exemple une couche magnétique et une électrode au dessus de cette couche métallique comme représenté sur les figures 2a et 2b, l'épaisseur de cette couche 12 conductrice sera choisie typiquement inférieure à 10 nm et préférentiellement inférieure à 5nm.
Ces différentes couches peuvent être déposées par toute technique connue telle que : évaporation, pulvérisation, dépôt par voie électrochimique, croissance chimique, ....
La couche 14 peut être omise dans certaines géométries. La couche magnétique 13 est alors déposée directement sur le substrat isolant 15 et la couche non magnétique 12 est choisie de façon à avoir l'asymétrie d'inversion, en un matériau différent de celui constituant le substrat 15. Il faut néanmoins remarquer que dans le cas où des plots sont structurés, la couche 14 doit être présente et constituée d'un matériau conducteur électrique de façon à pouvoir injecter du courant dans la couche centrale 13 des plots structurés (ici 18a et 18b). Dans ce cas, la portion 14' en surplomb doit être également conductrice pour générer, en combinaison avec la couche 12, l'asymétrie d'inversion qui est recherchée pour générer un champ Rashba et pour permettre d'injecter du courant dans la couche centrale magnétique 13.
L'élément à retourner, que ce soit la piste représentée aux figures la et lb ou un plot reporté ou structuré sur la piste (figures le à lf), est connecté de manière connue en soi avec des électrodes conductrices de façon à injecter dans la couche conductrice 14 un courant suivant la direction 1 1 représentée figure 1, ce qui permet une injection de courant dans la couche centrale magnétique 13. Un champ magnétique est appliqué sur la structure colinérairement 17 à la direction d'injection du courant 1 1. Le courant peut être appliqué dans la direction 1 1 suivant le sens de la flèche 7+ ou suivant le sens contraire à celui de la flèche De même, le champ magnétique peut être appliqué dans la direction 17 suivant le sens de la flèche H+ ou suivant le sens contraire à celui de la flèche H..
Un couple de sens du courant et du champ stabilise une direction d'aimantation. Par exemple, le couple /+, H+ stabilise la configuration d'aimantation vers le haut comme représenté dans les figures la à lf.
Partant de la configuration où l'aimantation de l'élément est uniformément aimantée vers le haut, on peut la retourner en gardant le sens du courant électrique /+ en changeant le sens du champ magnétique appliqué H..
Une autre solution est de garder le sens du champ magnétique H+, et de changer le sens du courant électrique L. Cette solution est préférée, car elle permet d'utiliser un champ magnétique statique par exemple généré par des aimants permanents de façon à ne consommer aucune énergie.
On peut retourner l'aimantation vers le bas en agissant sur le sens du champ appliqué, ce qui conduit au couple (/+, H.), soit en agissant sur le sens du courant appliqué, ce qui conduit au couple (L, H+), le couple (L, H+) étant préféré comme indiqué ci-dessus. Une fois l'aimantation retournée, celle-ci est stable même en l'absence de courant injecté et en présence ou non du champ magnétique statique.
Un changement à la fois du sens du courant et du sens de l'aimantation conduit au couple (L, H.) qui stabilise également une aimantation vers le haut.
De manière générale il faut remarquer qu'il n'est pas nécessaire que le champ externe soit exactement parallèle à la direction du courant. Il suffit d'avoir un champ magnétique externe dans un plan perpendiculaire à l'aimantation, ce champ magnétique externe ayant une composante non nulle parallèle au courant. On observe un retournement jusqu'à un angle de 60° entre le champ appliqué et le courant.
Les valeurs typiques des densités de courant injectées dans la couche 14 sont comprises entre 104 A/cm2 et 109 A/cm2, et elles sont avantageusement comprises entre 105 A/cm2 et 108 A/cm2.
Les valeurs typiques de la composante du champ magnétique appliqué le long de la direction du courant sont comprises entre 20 Oe-10 kOe, c'est-à- dire entre 0,002T et 1T. Avantageusement, on choisira une valeur comprise entre 50 Oe (0,005T) et 8000 Oe (0,8T). Celui-ci doit être maintenu à une valeur assez faible pour de ne pas induire une diminution trop grande de la barrière d'énergie séparant les deux orientations d'aimantation, ce qui provoquerait des retournements non désirés.
A cet effet, la valeur du champ magnétique appliqué est choisie très inférieure au champ effectif d'anisotropie de la couche magnétique.
Par exemple, une couche centrale en Co entre une couche 14 en Pt et une couche 12 de MgO a un champ effectif d'anisotropie de 0,8T (8000 Oe) et on peut appliquer sans problème un champ magnétique de 0,008 T (800 Oe). La valeur du champ magnétique appliqué peut être en pratique choisie comme étant entre 3 et 10 fois inférieure à la valeur du champ effectif d'anisotropie, et plus particulièrement entre 4 et 10 fois inférieure à cette valeur.
Le champ magnétique peut être appliqué de différentes façons, par exemple de façon simple à l'aide d'un courant parcourant une ou plusieurs bobines de façon à générer un champ global sur l'ensemble du dispositif ; soit au moyen de pistes parcourues par un courant comme utilisées dans les mémoires MRAM à retournement induit par un champ magnétique ; soit, de façon préférentielle par des aimants permanents placés au voisinage d'au moins un plot à retourner. Cette solution a l'avantage important de ne pas induire de consommation énergétique pour la génération du champ magnétique. Ces aimants permanents peuvent être obtenus par la structuration d'un dépôt magnétique, ce qui facilite l'intégration de cette technique de retournement dans des dispositifs fonctionnels par exemple de type mémoire ou logique.
On peut également mettre en œuvre un ou plusieurs aimants permanents placés à l'extérieur de l'ensemble des plots afin de générer un champ sur l'ensemble de la structure.
Les figures 2a et 2b sont un exemple d'empilement utilisable dans une cellule de mémoire inscriptible MRAM.
La référence 53 représente la couche centrale magnétique prise en sandwich entre deux matériaux non magnétiques différents 52 et 54, pour réaliser l'empilement tel que décrit ci-dessus, sur un substrat 55 électriquement isolant.
La référence 57 désigne la direction du champ magnétique extérieur appliqué.
Au-dessus de l'empilement sont disposées pour la lecture une couche 58 d'un matériau magnétique et une électrode supérieure 59 pouvant contenir une ou plusieurs couches conductrices (magnétiques ou non magnétiques).
La fonction de la couche 58 est de permettre que la structure 53, 52, 58 présente des valeurs de résistance électrique différentes suivant le sens de l'aimantation 56 de la couche 53 (signal de magnétorésistance). Elle n'intervient que pour la lecture et n'a aucun effet sur la manipulation de l'aimantation de la couche 53.
En d'autres termes, l'écriture et la lecture sont définies de manière indépendante et peuvent être optimisées séparément.
L'électrode 59 peut comporter une couche ou bien de manière connue en soi un empilement de différentes couches fonctionnelles. Il peut contenir par exemple : - un empilement définissant un antiferromagnétique synthétique de façon à limiter les champs rayonnés sur la couche que l'on cherche à manipuler 53, par exemple un empilement comprenant une couche ferromagnétique séparée de la couche ferromagnétique 58 par une très fine couche d'un matériau métallique non magnétique, typiquement 0,3 nm de ruthénium (Ru), les valeurs des aimantations des deux couches ferromagnétiques étant le plus proche possible de telle sorte que le couplage antiferromagnétique entre elles qui est dû à la présence de la couche de ruthénium résulte en un champ total rayonné par ces trois couches sur la couche 53 qui soit nul ou quasi nul ;
- ou bien un matériau magnétique antiferromagnétique couplé par échange à la couche 58 de façon à stabiliser cette couche 58 dite de référence ;
- ou bien des matériaux conducteurs non magnétiques pour réaliser des contacts électriques ;
ou encore une combinaison de ces différentes possibilités par exemple un matériau antiferromagnétique adjacent à un matériau ferromagnétique de manière à stabiliser l'aimantation de celui-ci par le couplage entre ces deux matériaux, ce matériau ferromagnétique étant séparé de la couche 58 par une fine couche métallique, typiquement 0,3nm de Ru de façon que le couplage magnétique entre ces deux couches ferromagnétiques soit antiferromagnétique. Enfin, le première matériau magnétique est recouvert d'une ou plusieurs couches conductrices non magnétiques, par exemple 5nm de Ta recouvert de 7nm de Ru. On trouvera des exemples de telles combinaisons par exemple dans des empilements magnétiques utilisés pour le retournement par STT décrit dans B. DIENY et al., Int. J. Nanotechnology, vol. 7, 591 (2010).
Deux configurations principales peuvent être distinguées suivant la nature de la couche 52 : si elle est en métal non magnétique, la structure 53, 52, 58 est de type vanne de spin, tandis que si la couche 52 est diélectrique, la structure 53, 52, 58 est du type jonction tunnel magnétique. Le signal de magnétorésistance étant beaucoup plus important pour ces structures, ce seront celles-ci qui seront privilégiées. De même, pour optimiser encore le signal de magnétorésistance, on privilégie dans l'un et l'autre cas, la configuration dans laquelle l'aimantation de la couche 58 est colinéaire, soit parallèle, soit antiparallèle, à celle de la couche 53.
A, B et C (Figure 2a et 2b) désignent trois bornes de connexion électrique. Dans la phase d'écriture, un courant d'écriture est injecté entre les bornes A et B (de façon équivalente, une tension est appliquée entre ces bornes de façon à faire circuler un courant). Le courant d'écriture passe dans la couche magnétique 53 et produit dans cette couche un champ magnétique efficace dû au champ Rashba et à l'interaction d'échange s-d, agissant sur l'aimantation locale (voir l'article précité de MIRON et collaborateurs). Ce champ efficace Heff sera dénommé par la suite de façon équivalente par champ de spin-orbite ou champ efficace Heff. Ce champ de spin-orbite, en combinaison avec le champ extérieur appliqué permet selon l'invention, la manipulation de l'aimantation. Dans le cas où la couche 52 est constituée par un matériau diélectrique, le courant injecté latéralement ne passe pas à travers cette couche et ne l'endommage pas. La lecture de l'information stockée, typiquement l'orientation de l'aimantation dans la couche 53, se fait aussi bien pour une structure de type jonction tunnel que de type vanne de spin, en injectant un courant de faible intensité (par exemple de l'ordre de quelques μΑ ou de quelques dizaines de μΑ pour le cas de jonction tunnel) entre les bornes C et B (ou de façon équivalente entre les bornes C et A), et en mesurant la tension entre ces bornes ; ou bien en appliquant une tension constante entre les bornes B et C, (ou de façon équivalente entre les bornes C et A), et en mesurant le courant qui circule entre ces bornes de façon à mesurer dans les deux cas la résistance entre les bornes considérées. Celle-ci aura deux valeurs différentes selon que la direction d'aimantation 56 est parallèle ou anti-parallèle à celle de la couche de référence 58. Le courant de lecture a une faible valeur de sorte que la barrière tunnel (dans le cas où la couche 52 est diélectrique) ne saurait être endommagée.
Comme indiqué plus haut dans la description, le champ magnétique appliqué peut conserver un sens constant, le retournement de l'aimantation étant obtenu par le sens du courant à travers les couches 54 et 53. Cette solution est préférée, car elle est facilement intégrable et n'implique aucune consommation électrique supplémentaire (dans le cas où on utilise des aimants permanents).
Sinon, l'aimantation peut être bien entendu retournée simplement en inversant le sens du champ magnétique appliqué, en conservant le sens du courant injecté.
Des exemples d'architecture de mémoire sont maintenant présentés en relation avec les figures 3a à 3d, dans lesquels les figures 3b et 3d mettent en œuvre l'intégration d'aimants permanents.
Les figures 3a à 3d représentent quatre exemples de mise en œuvre d'une architecture de mémoire, selon la première configuration, avec mise en œuvre de la structure selon les figures 2a et 2b.
La couche 70 de matériau magnétique est prise en sandwich entre une couche conductrice 72 et un empilement 71 comportant les couches 52, 58 et 59 des figures 2a et 2b pour lire l'aimantation de la couche 70 par une jonction tunnel (ou une vanne de spin).
La ligne de lecture 74 permet d'alimenter le point C des points mémoire d'une même ligne. Une région en surépaisseur 72' équivalente à la région 54' est éventuellement présente.
Un champ magnétique statique de direction 76 est appliqué parallèlement à la direction du courant qui traverse la couche conductrice 72.
Le champ statique peut être appliqué à l'ensemble de la mémoire par un ou plusieurs aimants permanents, ou bien à chacun des plots formés par les empilements élémentaires (3 sont représentés) par exemple au moyen d'aimants permanents 75a et 75b disposés en vis-à-vis de chaque plot.
Deux transistors par exemple de type métal-oxyde-semiconducteur ou MOS 73a et 73b peuvent être mis en œuvre pour l'application du courant dans un sens et en sens inverse à travers la couche conductrice 72 (figures 3a et 3b), ou bien un seul transistor 73a est utilisé, l'autre extrémité 78 étant portée à un potentiel constant (figures 3 c et 3 d).
La couche 72 est structurée sous la forme d'une piste d'amenée de courant. Elle peut comporter une couche d'un autre matériau conducteur située sur la couche 72.
Pour un point mémoire donné, l'injection de courant pour l'écriture peut se faire selon deux modes.
On utilise dans un premier mode deux transistors 73 a et 73b fonctionnant en commutation, dont la borne libre est portée alternativement à la masse pour l'un et à une tension Vdd pour l'autre, la tension Vdd étant choisie pour faire circuler un courant de valeur choisie, dans un sens ou dans l'autre suivant que le transistor 73a ou le transistor 73b est porté à la tension Vdd-
On utilise dans un deuxième cas un seul transistor 73a, l'autre extrémité de la piste 72 étant portée en 78 à une tension fixe.
Fonctionnement symétrique :
La piste connectée au transistor est portée au potentiel Vdd (ou à la masse) tandis que l'autre piste connectée en bout de la piste 72 en 78 est connectée à la masse (ou à Vdd)- Cette configuration permet de générer plus de courant que celle qui suit.
Fonctionnement asymétrique :
La piste connectée à l'extrémité de la piste 72 en 78 est portée à un potentiel intermédiaire, par exemple Vdd 12, tandis que celle reliée au transistor 73a est portée respectivement au potentiel Vdd ou à la masse suivant le sens souhaité pour le courant. Cette configuration permet de générer moins de courant. Dans la configuration de l'invention, le courant peut être envoyé sur une surface bien plus petite que celles utilisées dans les techniques conventionnelles, et ce courant est suffisant pour faire fonctionner le dispositif. Dans cet exemple de réalisation, on fait une économie de consommation sur le fonctionnement.
Dans la deuxième configuration (Figures 4a à 4f), la direction 26 de l'aimantation de la couche magnétique est située dans le plan de celui-ci et est parallèle à la direction du courant injecté, et le champ magnétique par exemple constant qui est appliqué est perpendiculaire à la direction d'aimantation 26, ainsi qu'à la direction du champ magnétique de spin-orbite (champ magnétique efficace).
Le champ magnétique appliqué n'a pas besoin d'être parfaitement perpendiculaire à la direction du champ magnétique Heff mais doit avoir une composante non nulle, que l'on appellera dans la suite composante utile du champ magnétique appliquée, suivant la direction perpendiculaire à Hefr (ou au champ de spin-orbite) et à la direction d'aimantation 26. L'angle entre le champ magnétique appliqué et la composante utile de ce champ peut atteindre 60°.
Comme pour les figures la à lf, trois géométries sont représentées, à savoir sous forme de piste (Figures 4a et 4b) et de plots, la piste conductrice 24 longeant le plot (Figures 4c et 4d) ou bien présentant une région surélevée 24' (Figures 4e et 4f) qui est électriquement conductrice (en général métallique) et qui n'est pas nécessairement dans le même matériau que la piste 24, auquel cas c'est cette surépaisseur 24' qui fait fonction de couche externe non magnétique et c'est son matériau qui est fonctionnel dans l'empilement pour obtenir une asymétrie d'inversion. Le matériau métallique de la couche 24 peut être alors quelconque.
Pour chacune des géométries, 21 représente la direction du courant injecté et 27 la direction de la composante utile du champ magnétique extérieur qui est appliqué (d'après les remarques faites ci-dessus pour la direction). Cette direction est perpendiculaire au plan des couches 23 et 24 et donc à la direction d'aimantation 26 de la couche 23 et à la direction 21 du courant injecté.
Une couche 23 d'un matériau magnétique de faible épaisseur est prise en sandwich entre deux couches de matériaux non magnétiques différents, à savoir la couche 22 située au dessus et la couche 24 située en dessous, par laquelle le courant est injecté.
L'empilement typique comprend un substrat isolant électrique 25, par exemple un oxyde diélectrique (par exemple SiOx, A10x, MgOx) ou par exemple un nitrure de silicium par exemple SiNx, sur lequel est déposée la structure formant l'empilement. Une couche fine d'un matériau magnétique (ou d'une combinaison de matériaux magnétiques ou de couches magnétiques 23), par exemple une couche de 3 nm de cobalt, prise en sandwich entre deux couches 22 et 24 en matériaux non magnétiques différents, par exemple une couche diélectrique 22 et une couche 24 en un matériau électriquement conducteur, en général en métal, par exemple du platine. Les couches 22 et 24 peuvent aussi être en deux métaux différents. L'aimantation de la couche magnétique 23 est contenue dans le plan, orientée suivant l'axe de la piste 26. Le courant est injecté suivant la direction 21 qui est parallèle à la direction de l'aimantation et un champ magnétique extérieur est appliqué dans un plan perpendiculaire à l'aimantation avec une composante utile suivant la direction 27 perpendiculaire au plan des interfaces (ou au champ de spin orbite).
Un plot 28a ou 28b (figures 4c à 4f) contenant le matériau non magnétique 22 et le matériau magnétique 23 peut être formé sur la piste conductrice 24 dans le but de ne retourner que l'aimantation contenue dans ce plot. Le plot 28b (figures 4e et 4f) peut contenir une partie 24' de l'épaisseur du matériau non magnétique 24. Le plot 28a ou 28b peut avoir toutes les géométries : carré, rectangle, disque, ellipse, ou encore chacune de ces géométries déformées, le principe étant que l'aimantation soit dirigée le long de la piste. Pour cela, on privilégie une forme elliptique de grand axe parallèle à l'axe de la piste.
Comme dans les cas décrits ci-dessus, la portion surélevée 24' peut être également en un matériau conducteur différent du matériau de la couche 22 et de la piste conductrice 24.
Le matériau du substrat 25 peut être choisi parmi les mêmes matériaux que pour la première configuration.
La couche magnétique 23 doit présenter à la différence de la couche 13, une aimantation planaire et avoir une épaisseur assez fine pour que le champ magnétique efficace Heff dû au courant injecté et agissant sur l'aimantation locale ne soit pas négligeable.
Dans le cas où les couches 22 et 24 sont conductrices non magnétiques, on cherche à avoir une couche 23 ayant une épaisseur telle que l'anisotropie magnétique soit dans le plan. Cette épaisseur est typiquement plus importante que celle de la couche 13 entourée par deux couches 12 et 14 (figures la à lf) identiques à 22 et 24. Dans le cas où une des deux couches typiquement 22, est en un matériau isolant électrique, typiquement un oxyde tel que AlOx, MgOx, TiOx, TaOx, on peut à la fois augmenter l'épaisseur de la couche magnétique ou varier l'état d'oxydation de la couche d'oxyde, soit par exemple au cours du dépôt de cette couche, ou bien après ce dépôt au moyen de recuits sous vide. Des exemples de tels traitements peuvent être trouvés dans les publications déjà cités de B. RODMACQ et collaborateurs et de A. MANCHON et collaborateurs.
Ainsi, l'épaisseur de cette couche magnétique peut dans certains cas, en fonction des paramètres d'oxydation et/ou de recuit, être identique à celle utilisée dans la première configuration décrite précédemment, alors que l'aimantation est perpendiculaire dans cette première configuration et planaire dans celle décrite ici. Cette épaisseur pour la deuxième configuration ne dépasse typiquement pas 5nm, et est de préférence inférieure ou égale à 3 nm. Tous les matériaux magnétiques présentant une aimantation planaires (Co, Fe, CoFe, NiFe, CoNi,...) peuvent être utilisés. On peut aussi utiliser des matériaux magnétiques non métalliques comme par exemple des semi-conducteur magnétiques tels que le (Ga,Mn)As suivant les conditions d'élaboration.
A titre d'exemple illustratif qui concerne le cas (Ga,Mn)As, obtenu par croissance par exemple sur du GaAs (100), on aura après dopage du GaAs avec du Mn une contrainte compressive qui conduira à une anisotropie planaire tandis que quand on le fera croître sur du GalnAs, on aura une autre contrainte et une anisotropie magnétique résultantes perpendiculaire aux plans. On trouve cela par exemple dans : "Anisotropie magnetization relaxation in ferromagnetic Gal -xMnxAs thin tilms", Kh. KHAZEN, H. J. VON BARDELEBEN, M. CUBUKCU, J. L. CANTIN, V. NOVAK, K. OLEJNIK, M. CUKR, L. THEVENARD, A. LEMAITRE, Phys. Rev. B 78 195210 (2008) ; ou encore dans "Ferromagnetic semiconductors : "moving beyond (Ga, Mn)As", A. H. MACDONALD, P. SCHIFFER, N. SAMARTH, Nature Materials 4, 195 - 202 (2005), doi:10.1038/nmatl325.
Tout ce qui a été écrit pour les couches 12 et 14 selon la première configuration reste valable pour les couches non-magnétiques 22 et 24 à la différence que la restriction imposée qui était que l'empilement global (couches 12, 13 et 14) soit à aimantation perpendiculaire est remplacé maintenant par la restriction que l'empilement, soit à aimantation planaire.
Omission de la couche 24
Tout ce qui a été écrit pour la couche 14 peut être repris ici.
Retournement de la couche
De même, tout ce qui été écrit concernant le retournement de l'aimantation dans la première configuration peut être repris à l'identique ici en considérant les directions d'aimantation et de champ extérieur appliquées présentées précédemment. Il en va de même pour les valeurs du champ magnétique, et de la densité de courant, ainsi que pour l'application du champ magnétique.
Dans le cas d'une aimantation planaire, le champ d'anisotropie est de l'ordre de <^Ms, où Ms est l'aimantation à saturation, soit environ 1,5 T pour du Co. La valeur du champ magnétique appliqué peut être en pratique entre 3 et 10 fois inférieure à la valeur du champ effectif d'anisotropie et de préférence entre 4 et 10 fois inférieure à celui-ci. Les valeurs du champ magnétique appliqué peuvent donc être plus importantes que pour la première configuration, puisque le champ d'anisotropie est en général supérieur.
Les figures 5a et 5b représentent un exemple d'empilement utilisable dans une cellule de mémoire magnétique MRAM ou de composant logique, afin de permettre à la fois l'écriture et la lecture.
Un matériau magnétique 63 de faible épaisseur qui présente une aimantation dans la direction 66 parallèle à son plan est pris en sandwich entre deux couches 62 et 64 de matériaux non magnétiques différents, le matériau 64 formant une piste conductrice sur un substrat isolant, pourvue éventuellement d'une région 64' en surépaisseur. Le champ magnétique externe est appliqué selon la direction 67 perpendiculaire au plan des interfaces entre les couches empilées. A cet empilement sont superposées successivement une couche 68 d'un matériau magnétique, et une électrode supérieure 69 présentant une ou plusieurs couches de matériaux conducteurs qui peuvent être ou non magnétiques pour former comme pour la première configuration un empilement tel que décrit en liaison avec les figures 4c à 4f. A, B et C représentent trois points de prise de contact électrique respectivement à des extrémités de la piste 64 (contacts A et B), et sur l'électrode supérieure 69 (contact C).
La figure 5b montre également un exemple d'intégration au plot d'aimants à aimantation permanente 60a et 60b pour générer le champ magnétique dans la direction 67. Pour permettre la prise de contact C, l'aimant permanent 60b est en matériau conducteur.
Les figures 6a à 6d illustrent une architecture de mémoire qui met en œuvre la structure décrite aux figures 5a et 5b, selon quatre modes de mise en œuvre.
Dans chacun des cas, la couche magnétique 80 est prise en sandwich entre une couche 82, 82' d'amenée de courant et un empilement 81 qui comporte les couches 62, 68, et 69 des figures 5a et 5b, pour définir comme pour la première configuration un empilement de type jonction tunnel si la couche 62 est diélectrique (ou vanne de spin si la couche 62 est en métal non-magnétique) pour lire l'état d'aimantation de la couche 80. A la figure 6a, l'injection du courant d'écriture dans la piste 82 est commandée par deux transistors 83a et 83b.
La lecture de l'information stockée, typiquement l'orientation de l'aimantation dans la couche 80, se fait aussi bien pour une structure de type jonction tunnel que de type vanne de spin, en injectant un courant de lecture de faible intensité (par exemple de l'ordre de quelques micro-ampères ou dizaines de micro-ampères pour le cas de jonctions tunnel) entre les bornes C (ligne 84) et B (ou de façon équivalente entre les bornes C et A) et en mesurant la tension entre ces bornes, ou bien en appliquant une tension de lecture constante entre les bornes C et B (ou de façon équivalente entre les bornes C et A) et en mesurant le courant de lecture circulant entre ces bornes, de façon dans tous les cas à mesurer la résistance entre les bornes considérées. Celle-ci aura deux valeurs différentes selon que la direction d'aimantation 66 de la couche 80 est parallèle ou antiparallèle à celle de la couche de référence 68. Le courant de lecture a une faible valeur de sorte que la barrière tunnel (dans le cas où la couche 62 est diélectrique) ne saurait être endommagée.
Des aimants permanents 85a et 85b peuvent être intégrés à la structure, par exemple respectivement en dessous de la piste 82 et au-dessus de l'empilement 81, pour appliquer le champ statique dans la direction 86 perpendiculaire au plan de la couche 80. Le matériau constituant l'aimant permanent 85a doit être conducteur pour ne pas perturber la lecture.
Les figures 6c et 6d diffèrent des figures respectivement 6a et 6b par le fait qu'un seul transistor de lecture est mis en œuvre, l'autre extrémité 88 (point B) de la ligne 82 d'amenée de courant étant portée à un potentiel constant.
Un circuit de commande peut être mis en œuvre dans tous les cas pour gérer les opérations d'écriture et/ou de lecture.
Le retournement de l'aimantation de la couche 80 s'effectue ici grâce à un courant parcourant l'électrode inférieure 82 dans un sens ou dans l'autre en présence du champ magnétique statique de direction 86, la couche externe de l'empilement 82, 80, 81 étant structurée sous la forme d'une piste 82 d'amenée de courant, avec éventuellement une région conductrice en surépaisseur 82'. Comme dans les cas précédents, la partie 82' en surépaisseur peut être ou non dans le même matériau conducteur que la piste 82.
Pour un point mémoire donné, l'injection de courant pour l'écriture peut se faire selon deux modes.
On utilise dans un premier mode deux transistors 83a et 83b fonctionnant en commutation, dont la borne libre est portée alternativement à la masse pour l'un et à une tension Vdd pour l'autre, la tension Vdd étant choisie pour faire circuler un courant de valeur choisie, dans un sens ou dans l'autre suivant que le transistor 83a ou le transistor 83b est porté à la tension Vdd-
On utilise dans un deuxième cas un seul transistor 83a, l'autre extrémité de la piste 82 étant portée en 88 à une tension fixe.
Fonctionnement symétrique
La piste connectée au transistor est portée au potentiel Vdd (ou à la masse) tandis que l'autre piste connectée en bout de piste 82 en 88 est connectée à la masse (ou à Vdd). Cette configuration permet de générer plus de courant que celle qui suit.
Fonctionnement asymétrique
La piste connectée à l'extrémité de la piste 82 en 88 est portée à un potentiel intermédiaire, par exemple Vdd 2, tandis que celle reliée au transistor 83a est portée respectivement au potentiel Vdd ou à la masse suivant le sens souhaité pour le courant. Cette configuration permet de générer moins de courant. Dans la configuration de l'invention, le courant peut être envoyé sur une surface bien plus petite que celles utilisées dans les techniques conventionnelles, et ce courant est suffisant pour faire fonctionner le dispositif. Dans cet exemple de réalisation, on fait une économie de consommation sur le fonctionnement.
La figure 7 est un exemple de schéma électrique d'intégration d'un élément de mémoire pour former un réseau de cellules mémoires à deux dimensions par exemple avec une jonction tunnel. Les dispositifs permettant d'appliquer un champ magnétique ne sont pas représentés dans un but de simplification.
Dans une direction, sont présentes des lignes de bit (bit line) ou lignes de digits 1 1 11, 1112, 1113, etc... connectées au drain des transistors 1131 , 1132, 1133, 113' ,, 1 13'2, 1 13'3, 113'Ί, 1 13"2, etc .. et des lignes de bit conjuguées l l2h 1122, 1123,... qui forment un réseau à deux dimensions.
Dans la direction perpendiculaire, on a des pistes de commande 1 10, 110', 110", ... des portes des transistors 113h 1132, 1133, 113Ί, 113'2, 1 13'3, 113'Ί, 1 13 "2, etc ... qui forment des lignes de mot (word lines).
Les repères 1 14U 1142, 1143, 1 14Ί, 1 14'2, 1 14'3, etc... désignent schématiquement un empilement selon l'invention comportant une jonction tunnel (ou une vanne de spin). La jonction tunnel ou la vanne de spin n'est pas traversée par un courant perpendiculairement au plan de ses couches lors d'une phase d'écriture, et elle n'est parcourue par un courant perpendiculairement au plan de ses couches que lors d'une phase de lecture. Les points caractéristiques A, B et C ont été indiqués. Ils correspondent à ceux qui sont indiqués aux figures 2a, 2b, 3c, 3d, 5a, 5b, 6c et 6d (montage avec un seul transistor).
Les points A sont connectés aux sources des transistors 113], 1132, 1 133, 1 13Ί, 1 13 '2, etc....
Les points B sont connectés à une ligne de bit conjuguée 112i, 1122, 1123, etc.. et les points C à une ligne de polarisation 115, 115', etc.... Les drains D des transistors 1 131, 1 132, 1133, 1 13Ί, 113'2, etc .. sont connectés aux lignes de bit l l l i, 1112, 1113, etc ..
Le bas des empilements 1141? 1142, etc... est donc la couche dont on change l'aimantation au moyen du courant d'écriture.
Dans tous les cas, on peut inverser les sources et les drains des transistors, les sources pouvant alors être connectées aux lignes de bit l l l i, 1 112, etc...et les drains aux points A.
Dans la phase d'écriture, d'un point mémoire, par exemple 114j, la ligne de bit (ou "bit line") 1 1 11 et la ligne de bit conjuguée 112i qui sont associées à ce point mémoire sont portées selon le sens d'aimantation que l'on désire au potentiel Vdd (ou à la masse) et à la masse (ou au potentiel Vdd) dans le cas du fonctionnement symétrique décrit ci-dessus. Les autres lignes de bit 11 12, etc.. et lignes de bit conjuguées 1 122, etc.. associées aux autres points mémoire sont inactives. La ligne de mot 1 10 associée est portée au potentiel de commande nécessaire à la fermeture du transistor 1 131 (équivalent au transistor 73a ou 83a des figures précitées), pour permettre la circulation du courant d'écriture à travers le transistor 113).
Le courant d'écriture passe donc entre les points A et B dans un sens ou dans l'autre suivant le sens de l'aimantation que l'on désire. De façon à n'écrire que cette cellule, les autres lignes de mot 1 10', 110", etc .. sont portées au potentiel qui ouvre les transistors. Aucun courant ne traverse perpendiculairement au plan des couches l'empilement de type jonction tunnel ou vanne de spin au risque de l'endommager. A cet effet, les lignes de polarisation 1 15, 1 15', etc .. connectées aux points C des empilements sont inactives (ou ouvertes) dans cette phase d'écriture.
Dans la phase de lecture, par exemple du point mémoire 1 14j, la "ligne de bit conjuguée" 1 12i associée à ce point mémoire est ouverte, ainsi que toutes les autres lignes de bit conjuguée" 1 122, etc.. de façon à empêcher tout courant d'y circuler. La ligne de polarisation 115 associée au point mémoire envisagé est portée à un potentiel permettant le passage du courant de lecture (faible) dans la jonction tunnel ou dans la vanne de spin, tandis que toutes les autres lignes de polarisation 1 15', etc .. sont déconnectées. La «ligne de mot» 110 associée est portée au potentiel permettant la fermeture du transistor 1 13] et un courant peut donc passer à travers la jonction tunnel ou la vanne de spin entre les points C et A. Pour ne lire que cette jonction tunnel ou cette vanne de spin, les autres lignes de mot « word line » 110', etc .. sont portées au potentiel qui ouvre les transistors. Dans le cas d'une jonction tunnel, la lecture peut alors se faire par exemple suivant l'état de l'art par comparaison au moyen d'un amplificateur du courant passant dans la jonction à un courant de référence. Ce courant de lecture de faible densité de courant, passant perpendiculairement aux plans de l'empilement ne permet pas d'écrire la jonction dans cette phase de lecture. La procédure est la même dans le cas d'une vanne de spin.

Claims

REVENDICATIONS
1) Elément magnétique inscriptible comportant un empilement de couches présentant une couche magnétique d'écriture, caractérisé en ce que l'empilement comporte une dite couche magnétique d'écriture, à savoir une couche centrale (13, 53, 70, 23, 63, 80) en au moins un matériau magnétique présentant une direction d'aimantation parallèle ou perpendiculaire au plan de la couche centrale, qui est prise en sandwich entre une première (12, 52, 71, 22, 62) et une deuxième (14, 54, 72, 24, 64, 82,) couches externes en matériaux non magnétiques, la première couche externe (12, 52, 71, 22, 62) comportant un premier matériau non magnétique et la deuxième couche externe (14, 54, 72, 24, 64, 82) comportant un deuxième matériau non magnétique différent du premier matériau non magnétique au moins le deuxième matériau non magnétique étant électriquement conducteur, en ce qu'il comporte d'une part un dispositif pour faire passer un courant d'écriture seulement à travers la deuxième couche externe et la couche centrale et éventuellement à travers la première couche externe seulement dans le cas où celle-ci est conductrice, ce courant d'écriture circulant dans une direction de courant parallèle au plan de la couche centrale, et d'autre part, un dispositif pour appliquer un champ magnétique ayant une composante selon une direction de champ magnétique soit parallèle, soit perpendiculaire au plan de la couche centrale (13, 53, 70, 23, 63, 80) et à la direction de courant, et en ce que la direction d'aimantation et la direction de champ magnétique, sont perpendiculaires entre elles.
2) Elément magnétique selon la revendication 1 , caractérisé en ce le champ magnétique est soit parallèle, soit perpendiculaire au plan de la couche centrale et à la direction du courant.
3) Elément magnétique selon une des revendications 1 ou 2, caractérisé en ce que la direction de champ magnétique est parallèle à la direction du courant et en ce que la direction d'aimantation est perpendiculaire au plan de la couche centrale magnétique (13, 53, 70).
4) Elément magnétique selon la revendication 3, caractérisé en ce que la couche centrale (13, 53, 70) a une épaisseur comprise entre 0,1 nm et 5 nm et de préférence inférieure ou égale à 2 nm.
5) Elément magnétique selon une des revendications 1 ou 2, caractérisé en ce que la direction d'aimantation est parallèle à la direction du courant et en ce que la direction de champ magnétique est perpendiculaire au plan de la couche centrale magnétique (23, 63, 80). 6) Elément magnétique selon la revendication 5, caractérisé en ce que la couche centrale (23, 63, 80) a une épaisseur comprise entre 0,1 nm et 5 nm et de préférence inférieure ou égale à 3 nm.
7) Elément magnétique selon une des revendications 3 ou 4, caractérisé en ce que la couche centrale (13, 53, 70, 23, 63, 80) comporte un alliage présentant une anisotropie magnétique perpendiculaire propre, à savoir, notamment FePt, FePd, CoPt ou bien encore un alliage de terre rare / métal de transition, notamment GdCo, TbFeCo.
8) Elément magnétique selon une des revendications 3 ou 4, caractérisé en ce que la couche centrale comporte un métal ou un alliage présentant dans l'empilement une anisotropie magnétique perpendiculaire induite par les interfaces, notamment Co, Fe, CoFe, Ni, CoNi.
9) Elément magnétique selon une des revendications 5 ou 6, caractérisé en ce que la couche centrale comporte un métal ou un alliage présentant dans l'empilement une anisotropie magnétique planaire, notamment Co, Fe, CoFe, Ni, NiFe, CoNi.
10) Elément magnétique selon une des revendications précédentes, caractérisé en ce qu'au moins une couche externe est conductrice et est en un métal non-magnétique, tel que Pt, W, Ir, Ru, Pd, Cu, Au, Bi ou en un alliage de ces métaux.
1 1) Elément magnétique selon la revendication 10, caractérisé en ce que l'épaisseur de la dite couche externe conductrice est inférieure à 10 nm et de préférence inférieure ou égale à 5 nm.
12) Elément magnétique selon une des revendications précédentes, caractérisé en ce que la première couche externe est en un oxyde diélectrique tel que SiOx, AlOx, MgOx, TiOx, TaOx, HfOx ou en un nitrure diélectrique tel que SiNx, BNx.
13) Elément magnétique selon la revendication 12, caractérisé en ce que l'épaisseur d'une dite couche externe est comprise entre 0,5nm et 200 nm, plus particulièrement entre 0,5 nm et 100 nm, et préférentiellement inférieure à 3nm.
14) Elément magnétique selon une des revendications 1 à 11, caractérisé en ce que les deux couches externes sont conductrices et sont choisies en deux dits matériaux ou alliages non magnétiques différents.
15) Elément magnétique selon une des revendications précédentes, caractérisé en ce que ledit courant présente une densité de courant comprise entre 104 A/cm2 et 109 A/cm2 et préférentiellement entre 105 A/cm2 et 108 A/cm2. 16) Elément magnétique selon une des revendications précédentes, caractérisé en ce que le champ magnétique appliqué présente une valeur comprise entre 0,002 T et 1 T, et avantageusement entre 0,005 T et 0,8 T.
17) Elément magnétique selon une des revendications précédentes, caractérisé en ce que la première couche externe (52) est recouverte d'une couche de lecture (58) en matériau magnétique et d'une électrode de lecture (59).
18) Elément magnétique selon la revendication 17, caractérisé en ce que la première couche externe (52) est en métal non-magnétique et en ce qu'elle forme avec la couche de lecture (58), l'électrode de lecture (59) et la couche centrale une vanne de spin.
19) Elément magnétique selon la revendication 17, caractérisé en ce que la première couche externe (52) est diélectrique et en ce qu'elle forme avec la couche de lecture (58) l'électrode de lecture (59) et la couche centrale une jonction tunnel magnétique.
20) Elément magnétique selon une des revendications 17 à 19, caractérisé en ce que l'épaisseur de la première couche externe est inférieure à 3 nm.
21) Elément magnétique selon une des revendications précédentes, caractérisé en ce que la première couche externe et la couche centrale forment un plot, alors que la deuxième couche externe forme une piste.
22) Elément magnétique selon la revendication 21 , caractérisé en ce que le deuxième couche externe comporte une région en surépaisseur qui fait partie du plot.
23) Dispositif magnétique inscriptible, caractérisé en ce qu'il comporte une pluralité de plots selon une des revendications 21 ou 22 dont la deuxième couche externe comporte une dite piste qui leur est commune.
24) Dispositif magnétique inscriptible caractérisé en ce que la première couche externe, la couche centrale et la région en surépaisseur de la deuxième couche externe forment un plot selon la revendication 22, et en ce qu'il comporte une pluralité desdits plots, ainsi qu'une piste électriquement conductrice bordant la deuxième couche externe desdits plots pour injecter ledit courant à travers la deuxième couche externe et la couche centrale de chacun desdits plots, la deuxième couche externe étant en un matériau électriquement conducteur différent de celui de la piste électriquement conductrice.
PCT/IB2011/053258 2010-07-26 2011-07-21 Element de memoire magnetique WO2012014131A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137004907A KR101974149B1 (ko) 2010-07-26 2011-07-21 자기 메모리 소자
EP11749248.8A EP2599085B1 (fr) 2010-07-26 2011-07-21 Element de memoire magnetique
JP2013521266A JP6154745B2 (ja) 2010-07-26 2011-07-21 磁気記憶素子
CN201180043138.4A CN103329204B (zh) 2010-07-26 2011-07-21 磁性存储元件
RU2013108267/02A RU2585578C2 (ru) 2010-07-26 2011-07-21 Элемент магнитной памяти

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003123A FR2963152B1 (fr) 2010-07-26 2010-07-26 Element de memoire magnetique
FR1003123 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014131A1 true WO2012014131A1 (fr) 2012-02-02

Family

ID=43430915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/053258 WO2012014131A1 (fr) 2010-07-26 2011-07-21 Element de memoire magnetique

Country Status (8)

Country Link
US (1) US8416618B2 (fr)
EP (1) EP2599085B1 (fr)
JP (1) JP6154745B2 (fr)
KR (1) KR101974149B1 (fr)
CN (1) CN103329204B (fr)
FR (1) FR2963152B1 (fr)
RU (1) RU2585578C2 (fr)
WO (1) WO2012014131A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508983A (ja) * 2015-01-14 2018-03-29 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク 磁気メモリスロット
EP3945609A1 (fr) 2020-07-31 2022-02-02 Antaios Dispositif de mémoire magnétorésistive
EP3996093A1 (fr) 2020-11-06 2022-05-11 Antaios SAS Cellule de ram magnétique et procédé d'écriture et de lecture de cet élément de mémoire
US11362266B2 (en) 2020-07-23 2022-06-14 Antaios Magneto resistive memory device
EP4016530A1 (fr) 2020-12-16 2022-06-22 Antaios Dispositif de mémoire magnéto-résistive comportant des opérations assistées thermiquement

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450177B2 (en) 2010-03-10 2016-09-20 Tohoku University Magnetoresistive element and magnetic memory
JP5725735B2 (ja) * 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
FR2966636B1 (fr) * 2010-10-26 2012-12-14 Centre Nat Rech Scient Element magnetique inscriptible
US9564579B2 (en) * 2011-05-27 2017-02-07 University Of North Texas Graphene magnetic tunnel junction spin filters and methods of making
JP5765721B2 (ja) * 2012-03-22 2015-08-19 国立研究開発法人物質・材料研究機構 高い垂直磁気異方性を示す極薄垂直磁化膜、その製造方法及び用途
US9368176B2 (en) * 2012-04-20 2016-06-14 Alexander Mikhailovich Shukh Scalable magnetoresistive element
JP2013232497A (ja) * 2012-04-27 2013-11-14 Renesas Electronics Corp 磁性体装置及びその製造方法
KR101649978B1 (ko) 2012-08-06 2016-08-22 코넬 유니버시티 자기 나노구조체들의 스핀 홀 토크 효과들에 기초한 전기적 게이트 3-단자 회로들 및 디바이스들
US9076537B2 (en) * 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
JP6191941B2 (ja) * 2013-01-24 2017-09-06 日本電気株式会社 磁気メモリセル及び磁気ランダムアクセスメモリ
US9429633B2 (en) 2013-02-11 2016-08-30 HGST Netherlands B.V. Magnetic sensor utilizing rashba effect in a two-dimensional conductor
US9076541B2 (en) * 2013-03-14 2015-07-07 Samsung Electronics Co., Ltd. Architecture for magnetic memories including magnetic tunneling junctions using spin-orbit interaction based switching
KR20140123340A (ko) * 2013-04-12 2014-10-22 삼성전자주식회사 자기 터널 접합을 갖는 반도체 소자의 형성 방법 및 관련된 소자
CN104751861A (zh) * 2013-12-30 2015-07-01 福建省辉锐材料科技有限公司 一种磁存储装置的制备方法
US10008248B2 (en) 2014-07-17 2018-06-26 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US9589619B2 (en) * 2015-02-09 2017-03-07 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy
KR102466342B1 (ko) 2015-06-11 2022-11-15 삼성전자주식회사 자기 메모리 소자
WO2017034563A1 (fr) * 2015-08-26 2017-03-02 Intel IP Corporation Mémoire à effet hall à spin d'impulsion double avec éléments magnétiques perpendiculaires
CN105679358B (zh) * 2015-09-22 2018-05-25 上海磁宇信息科技有限公司 垂直型自旋转移矩磁性随机存储器记忆单元
FR3042303B1 (fr) * 2015-10-08 2017-12-08 Centre Nat Rech Scient Point memoire magnetique
FR3042634B1 (fr) 2015-10-16 2017-12-15 Centre Nat Rech Scient Point memoire magnetique
EP3382768B1 (fr) * 2015-11-27 2020-12-30 TDK Corporation Élément d'inversion de magnétisation de courant de spin, élément à effet de magnétorésistance, et mémoire magnétique
US10573363B2 (en) 2015-12-02 2020-02-25 Samsung Electronics Co., Ltd. Method and apparatus for performing self-referenced read in a magnetoresistive random access memory
US9837602B2 (en) * 2015-12-16 2017-12-05 Western Digital Technologies, Inc. Spin-orbit torque bit design for improved switching efficiency
US10475988B2 (en) * 2016-07-27 2019-11-12 National University Of Singapore High efficiency spin torque switching using a ferrimagnet
US11495735B2 (en) * 2016-09-28 2022-11-08 Tdk Corporation Spin-current magnetization rotational element and element assembly
KR101963482B1 (ko) 2016-10-20 2019-03-28 고려대학교 산학협력단 자기 터널 접합 소자 및 자기 메모리 소자
KR101998268B1 (ko) 2016-10-21 2019-07-11 한국과학기술원 반도체 소자
KR102458889B1 (ko) 2017-08-09 2022-10-27 한국과학기술원 반도체 소자 및 반도체 로직 소자
JP6712804B2 (ja) 2016-11-18 2020-06-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
EP3555920A4 (fr) * 2016-12-13 2020-05-06 INTEL Corporation Logique spin-orbite magnétoélectrique perpendiculaire
KR101825318B1 (ko) 2017-01-03 2018-02-05 고려대학교 산학협력단 스핀필터 구조체를 포함하는 자기 터널 접합 소자
US10276780B2 (en) 2017-01-13 2019-04-30 Korea Advanced Institute Of Science And Technology Semiconductor device, semiconductor device control method and optical switch
CN113659071B (zh) * 2017-02-27 2024-04-09 Tdk株式会社 自旋流磁化旋转元件、磁阻效应元件及磁存储器
WO2018155077A1 (fr) * 2017-02-27 2018-08-30 Tdk株式会社 Élément rotatif de magnétisation de courant de spin, élément à effet magnétorésistif et mémoire magnétique
JP6316474B1 (ja) * 2017-03-21 2018-04-25 株式会社東芝 磁気メモリ
EP3680938A4 (fr) 2017-09-07 2021-05-26 TDK Corporation Élément d'inversion de magnétisation de courant de spin et élément à effet de résistance magnétique de type couplage spin-orbite
KR102024876B1 (ko) 2017-09-14 2019-11-05 한국과학기술원 Sot 반도체 소자 및 sot 반도체 소자의 기록 방법
US10833249B2 (en) 2017-09-18 2020-11-10 Centre National De La Recherche Scientifique Magnetic memory cell of current programming type
US10897364B2 (en) * 2017-12-18 2021-01-19 Intel Corporation Physically unclonable function implemented with spin orbit coupling based magnetic memory
CN110392931B (zh) * 2018-02-19 2022-05-03 Tdk株式会社 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件及磁存储器
CN109065705B (zh) * 2018-07-09 2020-10-20 北京航空航天大学 一种磁性隧道结
CN113036034B (zh) * 2021-03-09 2023-07-25 北京科技大学 可调控Co2FeX合金垂直磁各向异性的磁性薄膜材料及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269018B1 (en) 2000-04-13 2001-07-31 International Business Machines Corporation Magnetic random access memory using current through MTJ write mechanism
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
US20070109853A1 (en) * 2005-11-17 2007-05-17 Macronix International Co., Ltd. Systems and methods for a magnetic memory device that includes a single word line transistor
US20090129143A1 (en) 2007-11-21 2009-05-21 Magic Technologies, Inc. Spin transfer MRAM device with separated CPP assisted writing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2081460C1 (ru) * 1994-04-18 1997-06-10 Институт проблем управления РАН Магниторезистивная ячейка памяти
RU2066484C1 (ru) * 1994-07-12 1996-09-10 Институт проблем управления РАН Запоминающий элемент на спин-вентильном магниторезистивном эффекте
JP2000195250A (ja) * 1998-12-24 2000-07-14 Toshiba Corp 磁気メモリ装置
US6538921B2 (en) * 2000-08-17 2003-03-25 Nve Corporation Circuit selection of magnetic memory cells and related cell structures
DE60323144D1 (de) * 2002-11-27 2008-10-02 Nxp Bv Stromumlenkschema für einen seriell programmierten mram
US7466585B2 (en) * 2006-04-28 2008-12-16 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic random access memory
JP4250644B2 (ja) * 2006-08-21 2009-04-08 株式会社東芝 磁気記憶素子およびこの磁気記憶素子を備えた磁気メモリならびに磁気メモリの駆動方法
KR100862183B1 (ko) * 2007-06-29 2008-10-09 고려대학교 산학협력단 강자성 물질의 도메인 구조 및 다중 상태를 이용한 자기기억 소자
US7826258B2 (en) * 2008-03-24 2010-11-02 Carnegie Mellon University Crossbar diode-switched magnetoresistive random access memory system
US8363461B2 (en) * 2008-07-10 2013-01-29 Nec Corporation Magnetic random access memory, method of initializing magnetic random access memory and method of writing magnetic random access memory
JP2010062342A (ja) * 2008-09-04 2010-03-18 Fujitsu Ltd 磁性細線及び記憶装置
JP2010098259A (ja) * 2008-10-20 2010-04-30 Institute Of Physical & Chemical Research メモリセル、ならびに、磁気メモリ素子
KR101584099B1 (ko) * 2009-08-19 2016-01-13 삼성전자주식회사 자성층을 구비한 트랙 및 이를 포함하는 자성소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269018B1 (en) 2000-04-13 2001-07-31 International Business Machines Corporation Magnetic random access memory using current through MTJ write mechanism
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
US20070109853A1 (en) * 2005-11-17 2007-05-17 Macronix International Co., Ltd. Systems and methods for a magnetic memory device that includes a single word line transistor
US20090129143A1 (en) 2007-11-21 2009-05-21 Magic Technologies, Inc. Spin transfer MRAM device with separated CPP assisted writing

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. H. MACDONALD, P. SCHIFFER, N. SAMARTH: "Ferromagnetic semiconductors", NATURE MATERIALS, vol. 4, 2005, pages 195 - 202
A. MANCHON: "Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers", JOURNAL OF APPPLIED PHYSICS, vol. 104, 2008, pages 043914
B. DIENY ET AL., J. NANOTECHNOLOGY, vol. 7, 2010, pages 591
B. RODMACQ: "Influence of Thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers", PHYSICAL REVIEW B, vol. 79, 2009, pages 024423
IOAN MIRON: "Current-driven spin torque induced by the Rashba effect in a ferromagnetic métal layer", NATURE MATERIALS, vol. 9, 2010, pages 230 - 234, XP002634560, DOI: doi:10.1038/NMAT2613
JAE CHUL LEE: "Domain Patterns and Magnetization reversal Behaviours in Oxide/Co/Pt Films", IEEE TRANSACTIONS ON MAGNETICS, vol. 46, no. 6, June 2010 (2010-06-01), XP011309889, DOI: doi:10.1109/TMAG.2010.2040813
KH. KHAZEN, H. J. VON BARDELEBEN, M. CUBUKCU, J. L. CANTIN, V. NOVAK, K. OLEJNIK, M. CUKR, L. THEVENARD, A. LEMAITRE: "Anisotropic magnetization relaxation in ferromagnetic Gal-xMnxAs thin tilms", PHYS. REV. B, vol. 78, 2008, pages 195210
T. MARUYAMA: "Nature Nanotechnology", vol. 4, March 2009, MACMILLAN PUBLISHERS LTD., article "Large voltage-induced magnetic anisotropy charge in a few atomic layers of iron"

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508983A (ja) * 2015-01-14 2018-03-29 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク 磁気メモリスロット
US11362266B2 (en) 2020-07-23 2022-06-14 Antaios Magneto resistive memory device
EP3945609A1 (fr) 2020-07-31 2022-02-02 Antaios Dispositif de mémoire magnétorésistive
EP3996093A1 (fr) 2020-11-06 2022-05-11 Antaios SAS Cellule de ram magnétique et procédé d'écriture et de lecture de cet élément de mémoire
EP4016530A1 (fr) 2020-12-16 2022-06-22 Antaios Dispositif de mémoire magnéto-résistive comportant des opérations assistées thermiquement

Also Published As

Publication number Publication date
CN103329204A (zh) 2013-09-25
JP2013536574A (ja) 2013-09-19
CN103329204B (zh) 2016-05-04
JP6154745B2 (ja) 2017-06-28
FR2963152B1 (fr) 2013-03-29
EP2599085B1 (fr) 2017-04-26
EP2599085A1 (fr) 2013-06-05
RU2013108267A (ru) 2014-09-20
RU2585578C2 (ru) 2016-05-27
US8416618B2 (en) 2013-04-09
US20120020152A1 (en) 2012-01-26
FR2963152A1 (fr) 2012-01-27
KR20130071467A (ko) 2013-06-28
KR101974149B1 (ko) 2019-04-30

Similar Documents

Publication Publication Date Title
EP2599085B1 (fr) Element de memoire magnetique
EP2599138B1 (fr) Element magnetique inscriptible
EP2633525B1 (fr) Element magnetique inscriptible.
FR3037185B1 (fr) Dispositif a commutation d&#39;anisotropie magnetique commande en tension utilisant un film de polarisation ferromagnetique externe.
EP1808862B1 (fr) Dispositif magnétique à jonction tunnel magnétique, mémoire et procédés d&#39;écriture et de lecture utilisant ce dispositif
EP2218072B1 (fr) Element magnetique a ecriture assistee thermiquement
EP2436035B1 (fr) Dispositif de memoire magnetique a polarisation de spin et son procede d&#39;utilisation
EP2583281B1 (fr) Mémoire magnétoélectrique
EP3528256A1 (fr) Empilement magnetique, multicouche, jonction tunnel, point memoire et capteur comportant un tel empilement
EP2255362B1 (fr) Element magnetique a ecriture assistee thermiquement
EP2140455A1 (fr) Memoire magnetique a jonction tunnel magnetique
EP3531420B1 (fr) Jonction tunnel magnetique a anisotropie de forme perpendiculaire et variabilite minimisee, point memoire et element logique comprenant la jonction tunnel magnetique, procede de fabrication de la jonction tunnel magnetique
Pham Spin-Orbit effect in ferrimagnetic thin film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043138.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011749248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011749248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013108267

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20137004907

Country of ref document: KR

Kind code of ref document: A