RU2066484C1 - Запоминающий элемент на спин-вентильном магниторезистивном эффекте - Google Patents

Запоминающий элемент на спин-вентильном магниторезистивном эффекте Download PDF

Info

Publication number
RU2066484C1
RU2066484C1 RU94025911A RU94025911A RU2066484C1 RU 2066484 C1 RU2066484 C1 RU 2066484C1 RU 94025911 A RU94025911 A RU 94025911A RU 94025911 A RU94025911 A RU 94025911A RU 2066484 C1 RU2066484 C1 RU 2066484C1
Authority
RU
Russia
Prior art keywords
layer
strip
film
magnetic anisotropy
effect
Prior art date
Application number
RU94025911A
Other languages
English (en)
Other versions
RU94025911A (ru
Inventor
Н.П. Васильева
С.И. Касаткин
А.М. Муравьев
Original Assignee
Институт проблем управления РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем управления РАН filed Critical Институт проблем управления РАН
Priority to RU94025911A priority Critical patent/RU2066484C1/ru
Application granted granted Critical
Publication of RU2066484C1 publication Critical patent/RU2066484C1/ru
Publication of RU94025911A publication Critical patent/RU94025911A/ru

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

Изобретение относится к области вычислительной техники, в частности к магнитным запоминающим устройствам с произвольной выборкой информации. Сущность: запоминающий элемент снабжен двумя низкорезистивными проводниками, например, из меди, расположенными соответственно между трехслойной полоской и первым защитным слоем и трехслойной полоской и вторым изолирующим слоем и разделенными между собой на участке, свободном от трехслойной полоски, третьим изолирующим слоем, причем тонкопленочные магниторезистивные слои имеют разные величины поля магнитной анизотропии и отношение большего поля магнитной анизотропии к меньшему составляет не менее четырех. 3 ил.

Description

Предлагаемое изобретение относится к области вычислительной техники, в частности к магнитным тонкопленочным запоминающим устройствам с произвольной выборкой информации.
Известна магниторезистивная ячейка памяти (см. Патент США N 4751677, М. кл. 5 G 11 C 11/150), использующая анизотропный магниторезистивный (АМР) эффект, на основе двуслойных магнитных пленок FeNiCo с полупроводниковыми схемами управления на одной подложке. К недостаткам ячеек памяти на АМР-эффекте следует отнести невысокую величину эффекта, равную (2-3)% и, как следствие этого, достаточно высокие требования к технологии изготовления для получения приемлемого сигнала считывания.
Известен (см. A. V. Pohm, C. S. Comstock. Memory implications of the spin-value effect in soft multilayers. J. Appl. Phys. 69(8), 1991, p.p. 5760-5762) запоминающий элемент на спин-вентильном магниторезистивном (СВМР) эффекте, принятый нами в качестве прототипа предлагаемого технического решения, выполненный в виде одной многослойной полоски с основной частью из двух магниторезистивных пленок Fe15Ni65Co20, разделенных слоем меди, которая в режиме считывания включается в схему моста. При СВМР-эффекте изменение сопротивления зависит от угла между векторами намагниченности соседних магнитных пленок, разделенных слоем меди. Величина СВМР-эффекта на образцах с пленками из Fe15Ni65Co20 достигает (5,5-7,5)% при толщинах магнитных пленок около 8 нм и толщине медной прослойки 5 нм. Однако для использования СВМР-эффекта необходимо, чтобы перемагничивалась только одна магнитная пленка. Для этого увеличивают коэрцитивную силу одной из пленок за счет обменного взаимодействия с дополнительной магнитной пленкой, например FeMn пленкой. В упомянутом выше запоминающем элементе используются две пленки FeNiCo, и в его описании не оговорен способ получения этих пленок с различными величинами магнитной анизотропии или коэрцитивной силы. Другим недостатком известного решения является уменьшение наблюдаемого СВМР-эффекта из-за шунтирующего влияния медной пленки, т.к. ток в полоске проходит параллельно по двум магниторезистивным и медной пленкам, а сопротивление медной пленки неизменно и мало по сравнению с сопротивлением магнитных пленок.
Техническим результатом является расширение функциональных возможностей запоминающего элемента и упрощение технологии его изготовления.
Технический результат достигается тем, что запоминающий элемент на спин-вентильном магниторезистивном эффекте, содержащий кремниевую подложку, на которой последовательно расположены первый изолирующий слой, первый защитный слой, трехслойная полоска с заостренными концами, состоящая из двух расположенных параллельно подложке тонкопленочных магниторезистивных слоев с осью легкого намагничивания, направленной вдоль полоски, и расположенного между ними тонкопленочного слоя меди, а поверх трехслойной полоски расположен второй изолирующий слой, на котором сформированы проводниковый и второй защитный слои, дополнительно снабжен двумя низкорезистивными проводниками, например из меди, расположенными соответственно между трехслойной полоской и первым защитным слоем и трехслойной полоской и вторым изолирующим слоем и разделенными между собой на участке, свободном от трехслойной полоски, третьим изолирующим слоем, причем тонкопленочные магниторезистивные слои трехслойной полоски имеют разные величины поля магнитной анизотропии. При этом отношение большего поля магнитной анизотропии к меньшему составляет не менее четырех.
Существенными отличительными признаками в приведенной выше совокупности являются наличие двух низкорезистивных проводников, расположенных с обеих сторон трехслойной полоски и разделенных дополнительным изолирующим слоем, и выполнение тонкопленочных магниторезистивных слоев с различными величинами поля магнитной анизотропии.
Сущность изобретения состоит в том, что предлагаемая структура обеспечивает протекание тока перпендикулярно поверхностям слоев элемента, а не вдоль них, как в известном устройстве, и, таким образом, тонкопленочный слой меди между магниторезистивными слоями в трехслойной полоске оказывается включенным последовательно им, а не параллельно, что устраняет шунтирующее влияние слоя меди и увеличивает наблюдаемый СВМРэффект, что, в свою очередь, приводит к резкому увеличению сигнала считывания. Использование магниторезистивных слоев с различными величинами поля магнитной анизотропии устраняет необходимость использования дополнительной пленки FeMn для увеличения коэрцитивной силы одной из магнитных пленок за счет обменного взаимодействия.
Изобретение поясняется чертежами, где на фиг. 1 показана структура запоминающего элемента на СВМР-эффекте в разрезе, на фиг. 2 запоминающие элементы, включенные в схему моста, вид сверху, а на фиг. 3 схема включения элемента в триггер.
Запоминающий элемент на СВМР-эффекте содержит (фиг. 1) кремниевую подложку 1, на которой последовательно расположены первый изолирующий слой 2, первый защитный слой 3, первый низкорезистивный проводник 4, третий изолирующий диэлектрический слой 5, трехслойная полоска с заостренными концами, состоящая из двух слоев магниторезистивных магнитных пленок 6, 7 и слоя меди 8. Поверх трехслойной полоски расположен второй низкорезистивный проводник 9. Выше последовательно расположены второй изолирующий слой 10, проводниковый слой 11 и второй защитный слой 12.
При считывании в мостовой схеме используются четыре магниторезистивных запоминающих элемента 13-16 (фиг. 2), а при использовании триггерной схемы полоски 17, 18 с проводниками 19, 20 подключены к триггеру из транзисторов 21, 22 с ключами 23-26 (фиг. 3).
Работа запоминающего элемента происходит следующим образом. При отсутствии тока через трехслойную полоску (сенсорного тока) и тока через проводник 11 намагниченность в двух магнитных пленках расположена либо антипараллельно друг другу при записанном в запоминающий элемент "0", либо параллельно друг другу при записанной "1". Наличие двух низкорезистивных проводников 4, 9 приводит к тому, что сенсорный ток будет протекать перпендикулярно через трехслойную полоску, а не вдоль нее, как было в предыдущих структурах, в которых контактные площадки были на заостренных концах полоски. Таким образом, ток проходит последовательно через две магниторезистивные и медную пленку, а не параллельно.
Введем понятия величина физического СВМР-эффекта, характеризуемая величиной
Figure 00000002
, и величина наблюдаемого СВМР-эффекта, характеризуемая величиной (Δρ/ρ)наб. Под физическим СВМР-эффектом будем понимать величину эффекта, присущего магниторезистивной полоске с сопротивлением Rм:
(Δρ/ρ)физ= ΔRм/Rм (1)
где ΔRм максимальное изменение сопротивление полоски.
Под наблюдаемым СВМР-эффектом будем понимать величину измеряемого эффекта в конкретной структуре с сопротивлением R и максимальным изменением сопротивления ΔR:
(Δρ/ρ)наб=(R(Rм+ΔRм)-R(Rм))/R(Rм)= ΔR/R
В случае уже известного запоминающего элемента, как уже говорилось выше, две магнитные и медная пленки (RCu) включены параллельно и сопротивление данной структуры равно:
R(1)(Rм)=RмRCu / (Rм+2RCu) (2)
Изменение сопротивления равно:
Figure 00000003

Отсюда величина наблюдаемого СВМР-эффекта для известной структуры равна:
Figure 00000004

Обозначив через p=RCu/Rм и с учетом (1) получим:
(Δρ/ρ)физ= (1+2p)(Δρ/ρ) (1) наб /[2p-(Δρ/ρ) (1) наб (4)
Для (Δρ/ρ) (1) наб = (5,5-7,5) % и p ≈ (0,2-0,25)
(Δρ/ρ)физ= (23-33) %
В предлагаемом запоминающем элементе две магнитные и медная пленки включены последовательно и общее сопротивление R(2) элемента равно:
R(2)(Rм)=2Rм+RCu
Изменение сопротивления равно:
Figure 00000005

Отсюда
Figure 00000006

Окончательно:
(Δρ/ρ) (2) наб = 2(Δρ/ρ)физ/(2+RCu/Rм) (4)
Таким образом, соотношение между величинами наблюдаемого СВМР-эффекта в предлагаемом и известном запоминающих элементах с учетом выражений (2)-(4) следующее:
Figure 00000007

Это приводит к тому, что для используемого отношения Rм/RCu=4-5 наблюдаемый СВМР-эффект возрастает с (5,5-7,5)% до (20-30)% Однако при таком направлении протекания сенсорного тока исчезает его влияние на перемагничивание магнитных пленок. Остается воздействие только тока через проводник 11, создающего магнитное поле вдоль оси легкого намагничивания (ОЛН). Поэтому в режиме записи подается импульс нужной для записи "0" или "1" полярности только в проводник 11. Из-за различия в величине поля магнитной анизотропии пленка с меньшей ее величиной перемагнитится первой, что и будет означать перезапись "0" в "1". При увеличении тока управления произойдет перемагничивание пленки с большим значением поля магнитной анизотропии, что будет означать обратное перемагничивание "1" в "0", а это недопустимо. Таким образом, при перезаписи "0" в "1" существует некоторый диапазон допустимых токов записи. При перезаписи "1" в "0" подается ток обратной полярности, который перемагничивает пленку с меньшей величиной поля магнитной анизотропии, пленку же с большей величиной поля магнитной анизотропии это поле не может перемагнитить. Ограничения на величину токов записи прежние.
Считывание информации возможно различными путями, например с помощью мостовой и триггерной схем. При считывании информации в мостовой схеме необходим усилитель считывания. Запоминающие элементы 13-16 (рис. 2) включаются в мостовую схему, причем в элементы 13, 15 записана "1", а в элементы 14, 16 "0", что можно принять за запись информации "1" в мост. Тогда информации "0" соответствуют противоположные состояния элементов 13-16. Определяется информация, считанная с моста, знаком сигнала считывания. В мостовую схему и проводники 11 подается импульс тока, причем в проводниках 11 элементов 13, 16 и 14, 15 импульсы токов имеют противоположную полярность. В результате действия магнитных полей, создаваемых токами в проводниках 11, во всех четырех элементах будет происходить отклонение векторов намагниченности от ОЛН, что приведет к уменьшению сопротивлений одной пары полосок и увеличению сопротивления другой пары элементов. В результате при считывании "0" будет считан положительный сигнал считывания, а при считывании "1" - отрицательный сигнал.
Возможен другой вариант построения ячейки памяти (фиг. 3) замена нижних плеч моста (14 и 15 на фиг. 2) транзисторами 21, 22, составляющими с трехслойными полосками 17 и 18 при наличии перекрестных положительных обратных связей симметричный триггер. Запись информации заключается, как и в предудыщем случае, в перемагничивании низкоанизотропного магниторезистивного слоя при действии импульса тока нужной полярности в проводники 19 и 20, причем в полоски записывается противоположная информация. Считывание происходит следующим образом. При подаче напряжения питания на триггер через ключи 24 и 26 триггер устанавливается в одно из двух возможных состояний, определяемое различием в величинах сопротивлений нагрузки, которыми являются трехслойные полоски 17 и 18. Напряжения с коллекторов транзисторов 21 и 22 через открытые на это время ключи 23 и 25 поступают для считывания информации. Достоинство такого варианта в большой величине сигнала считывания, упрощающей построение запоминающего устройства в целом.
Для создания высокой магнитной анизотропии можно использовать сплав Fe15Ni65Co20, применяемый в магниторезистивных элементах и позволяющий получить величину поля магнитной анизотропии до 20 Э, а при увеличении содержания кобальта до 30% поле магнитной анизотропии достигает 40 Э, для создания слоя с малой величиной поля магнитной анизотропии можно использовать пермаллой Fe20Ni80, дающий величину поля магнитной анизотропии от 2 до 5 Э.
Таким образом, достоинством заявляемого запоминающего элемента на СВМР-эффекте является увеличение сигнала считывания, что позволяет применять новые схемы запоминающих ячеек и упрощение структуры, т.к. отпадает необходимость в дополнительной магнитной пленке, что ведет к увеличению плотности информации, уменьшению технологических трудностей изготовления элемента и понижению потребляемой мощности.

Claims (2)

1. Запоминающий элемент на спин-вентильном магниторезистивном эффекте, содержащий кремниевую подложку, на которой последовательно расположены первый изолирующий слой, первый защитный слой, трехслойная полоска с заостренными концами, состоящая из двух расположенных параллельно подложке тонкопленочных магниторезистивных слоев с осью легкого намагничивания, направленной вдоль полоски, и расположенного между ними тонкопленочного слоя меди, а поверх трехслойной полоски расположен второй изолирующий слой, на котором сформированы проводниковый и второй защитный слои, отличающийся тем, что он снабжен двумя низкорезистивными проводниками, например, из меди, расположенными соответственно между трехслойной полоской и первым защитным слоем и трехслойной полоской и вторым изолирующим слоем и разделенными между собой на участке, свободном от трехслойной полоски, третьим изолирующим слоем, причем тонкопленочные магниторезистивные слои имеют разные величины напряженности поля магнитной анизотропии.
2. Элемент по п.1, отличающийся тем, что отношение большей величины напряженности поля магнитной анизотропии к меньшей не менее 4.
RU94025911A 1994-07-12 1994-07-12 Запоминающий элемент на спин-вентильном магниторезистивном эффекте RU2066484C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94025911A RU2066484C1 (ru) 1994-07-12 1994-07-12 Запоминающий элемент на спин-вентильном магниторезистивном эффекте

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94025911A RU2066484C1 (ru) 1994-07-12 1994-07-12 Запоминающий элемент на спин-вентильном магниторезистивном эффекте

Publications (2)

Publication Number Publication Date
RU2066484C1 true RU2066484C1 (ru) 1996-09-10
RU94025911A RU94025911A (ru) 1997-05-20

Family

ID=20158360

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94025911A RU2066484C1 (ru) 1994-07-12 1994-07-12 Запоминающий элемент на спин-вентильном магниторезистивном эффекте

Country Status (1)

Country Link
RU (1) RU2066484C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585578C2 (ru) * 2010-07-26 2016-05-27 Сантр Насьональ Де Ля Решерш Сьянтифик Элемент магнитной памяти

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 4751677, кл. G 11 С 11/15, 1988. 2. A.V. Pohm, C.S.Comstock Memory implication of the spinvalue effect in soft multilayers. y. Appl.Phys. 69(8), 1991, p. 5760-5762. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585578C2 (ru) * 2010-07-26 2016-05-27 Сантр Насьональ Де Ля Решерш Сьянтифик Элемент магнитной памяти

Also Published As

Publication number Publication date
RU94025911A (ru) 1997-05-20

Similar Documents

Publication Publication Date Title
KR970009765B1 (ko) 자성박막 메모리 및 그 기록 · 재생 방법
Daughton Magnetoresistive memory technology
US6480411B1 (en) Magnetoresistance effect type memory, and method and device for reproducing information from the memory
US5768181A (en) Magnetic device having multi-layer with insulating and conductive layers
US6226197B1 (en) Magnetic thin film memory, method of writing information in it, and me
US5432373A (en) Magnetic spin transistor
US5343422A (en) Nonvolatile magnetoresistive storage device using spin valve effect
JP4896341B2 (ja) 磁気ランダムアクセスメモリ及びその作動方法
JP3673347B2 (ja) 強磁性gmr材料
US20030011944A1 (en) Magneto-resistive effect element, magnetic sensor using magneto-resistive effect, magnetic head using magneto-resistive effect and magnetic memory
KR100829557B1 (ko) 열자기 자발 홀 효과를 이용한 자기 램 및 이를 이용한데이터 기록 및 재생방법
JPH0766033A (ja) 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
EP1702336A2 (en) Separate write and read access architecture for magnetic tunnel junction
US5251088A (en) Magnetic read head with magneto-resistance effect
US5864498A (en) Ferromagnetic memory using soft magnetic material and hard magnetic material
US5923583A (en) Ferromagnetic memory based on torroidal elements
US20030048675A1 (en) Magnetoresistive film and memory using the same
US6754055B2 (en) Giant magneto-resistive effect element having small leakage current, magneto-resistive effective type head having small-leakage current, thin-film magnetic memory having small leakage current and thin-film magnetic sensor having small leakage current
KR100439653B1 (ko) 메모리 셀 배열 및 그 동작 방법
JP2000512763A (ja) ホイートストンブリッジを備える磁界センサ
RU2066484C1 (ru) Запоминающий элемент на спин-вентильном магниторезистивном эффекте
KR100446888B1 (ko) 자기저항효과막 및 그를 이용한 메모리
JP3891511B2 (ja) 磁性薄膜メモリ及びその記録再生方法
JPH09260743A (ja) 磁気抵抗効果素子及び磁気情報検出方法
JP4944315B2 (ja) 磁気抵抗効果膜、それを備えたメモリ素子及びそれを用いたメモリ