WO2012011785A2 - 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 - Google Patents

리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 Download PDF

Info

Publication number
WO2012011785A2
WO2012011785A2 PCT/KR2011/005445 KR2011005445W WO2012011785A2 WO 2012011785 A2 WO2012011785 A2 WO 2012011785A2 KR 2011005445 W KR2011005445 W KR 2011005445W WO 2012011785 A2 WO2012011785 A2 WO 2012011785A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
active material
lithium secondary
compound
Prior art date
Application number
PCT/KR2011/005445
Other languages
English (en)
French (fr)
Other versions
WO2012011785A3 (ko
Inventor
김직수
최문호
최동귀
유종열
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to JP2013520675A priority Critical patent/JP5759545B2/ja
Priority to CN201180035730.XA priority patent/CN103168381B/zh
Priority to US13/811,170 priority patent/US9083044B2/en
Publication of WO2012011785A2 publication Critical patent/WO2012011785A2/ko
Publication of WO2012011785A3 publication Critical patent/WO2012011785A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a cathode active material for a lithium secondary battery, to a cathode active material for a lithium secondary battery and a lithium secondary battery using the same, more specifically a continuous concentration gradient of the concentration of lithium gradually from inside to outside the particles
  • the present invention relates to a method of manufacturing a cathode active material for a lithium secondary battery that implements a mold structure, a cathode active material for a lithium secondary battery manufactured thereby, and a lithium secondary battery using the same.
  • lithium ion secondary battery Since the lithium ion secondary battery appeared in 1991, it has been widely used as a power source for portable devices. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably. The demand for lithium ion secondary battery as a power source for driving these portable electronic information communication devices is increasing day by day. It is increasing. In particular, research on power sources for electric vehicles by hybridizing an internal combustion engine and a lithium secondary battery has been actively conducted in the United States, Japan, and Europe.
  • LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high stability, and flat discharge voltage characteristics. However, since Co is low in reserve, expensive, and toxic to humans, development of other cathode materials is desired. LiNiO 2 having a layered structure such as LiCoO 2 exhibits a large discharge capacity but has not been commercialized due to problems in cycle life, thermal instability, and safety at high temperatures.
  • Japanese Patent Application Laid-open No. Hei 8-171910 discloses mixing an alkaline solution in a mixed aqueous solution of Mn and Ni to coprecipitate Mn and Ni, and then calcining LiNi x Mn 1-x after mixing lithium hydroxide with the coprecipitation compound.
  • a method for producing a cathode active material of O 2 (0.7 ⁇ x ⁇ 0.95) is disclosed.
  • Japanese Patent Application No. 2000-227858 discloses a positive electrode active material having a new concept of dissolving a transition metal to LiNiO 2 or LiMnO 2 to form a solid solution by uniformly dispersing Mn and Ni compounds at atomic level. .
  • Ni 4 + due to the reactivity of Ni 4 + not only has a problem to commercialize, but still does not solve the thermal stability of the active material containing Ni.
  • Nickel from a material having a layered crystal structure the most attention as an alternative material LiCoO 2-manganese and nickel-cobalt-manganese are each 1: 1 or 1: 1: Li [Ni 1/2 Mn 1/2] mixed in a 1 O 2 and Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 .
  • these materials have low electronic conductivity (J. of Power Sources, 112 (2002) 41-48), so that the high power characteristics of the hybrid power source for electric vehicles are higher than those of LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . Falls.
  • these materials have a uniform composition on and inside the particle surface.
  • the function of the inside and the surface of the anode powder particles must be different. That is, the composition inside the particles should be structurally stable with a lot of insertion / desorption sites of lithium, but should minimize the reactivity with the electrolyte on the particle surface.
  • the coating amount is 1 to 2wt% or less compared to the positive electrode active material
  • the coating layer is known to suppress side reactions with the electrolyte by forming a very thin film layer of about several nanometers or when the heat treatment temperature after coating is high.
  • a solid solution may be formed on the surface of the particles to have a metal composition different from that inside the particles.
  • the surface layer combined with the coating material is known to be tens of nanometers or less, and there is a drastic compositional difference between the coating layer and the bulk of the particle, which reduces the effect of long-term use of hundreds of cycles. In addition, the effect is halved due to incomplete coating in which the coating layer is not evenly distributed on the surface.
  • a lithium transition metal oxide having a concentration gradient of a metal composition has been proposed as a method of synthesizing an internal material, coating a material having a different composition to the outside, preparing a double layer, and then mixing the mixture with a lithium salt and performing heat treatment.
  • the Republic of Korea Patent Publication No. 2005-0083869 can be a gradual gradient of the metal composition through the heat treatment process, but at a high heat treatment temperature of more than 850 °C a concentration gradient due to the thermal diffusion of metal ions hardly occurs, synthesized
  • the powder is not suitable for use as a cathode active material for lithium secondary batteries due to its low tap density and low energy density.
  • the method cannot control the amount of lithium in the outer layer, thereby reducing reproducibility.
  • lithium carbonate and lithium hydroxide remain on the surface, so that a large amount of gas is generated at high temperature during cell assembly, and the battery case is easy to swell, and gelation occurs easily when mixing electrodes for cell assembly.
  • agglomeration occurs when the electrode is coated, resulting in surface defects.
  • the present invention implements a continuous concentration gradient structure in which lithium concentration gradually decreases with respect to the concentration of metallic elements from the outside to the inside of the lithium secondary battery having thermal stability, high capacity, and excellent life characteristics. It is an object of the present invention to provide a method for producing a cathode active material for a battery, a cathode active material for a lithium secondary battery produced thereby, and a lithium secondary battery using the same.
  • the present invention provides a) a first metal salt aqueous solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally a transition metal at the same time, and then mixed and calcined with a lithium raw material.
  • a core comprising a compound of Formula 1;
  • M is Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al At least one metal selected from Ga, In, Cr, Ge, Sn)
  • M is Mg, Zn, Ca, Sr, Cu, Zr, P, At least one metal selected from Fe, Al, Ga, In, Cr, Ge, Sn)
  • step c) mixing the center portion obtained in step a) with the compound for forming an outer portion obtained in step b) to form an outer portion on the central surface;
  • step d) heat-treating the compound obtained in step c) at 500 to 800 to form a double layer structure in which lithium is present in a continuous concentration gradient from the contact interface of the central part and the outer part to the surface part of the outer part;
  • a method of manufacturing a cathode active material for a lithium secondary battery is provided.
  • the average particle diameter of the central portion in the step a) is characterized in that 3 to 20.
  • the average particle diameter of the compound for forming an outer portion in step b) is characterized in that 20 to 600nm.
  • the thickness of the outer portion formed on the surface of the center in steps c) and d) is characterized in that 0.5 to 5 ⁇ m.
  • the present invention provides a cathode active material for a lithium secondary battery is produced by any one of the above manufacturing method, the lithium is present in a continuous concentration gradient from the contact interface of the central portion and the outer portion to the surface portion of the outer portion.
  • the present invention is manufactured by any one of the above manufacturing method, the distance to a certain point in the outer portion on the basis of the surface portion of the outer portion is referred to as D, the concentration ratio of lithium to the concentration of metal elements at the D position When D is P, the relationship between D and P satisfies the following equation when D changes from the surface portion of the outer portion to the contact interface between the central portion and the outer portion.
  • the present invention provides a lithium secondary battery using the cathode active material for lithium secondary battery.
  • the method for producing a cathode active material for a lithium secondary battery of the present invention and the cathode active material for a lithium secondary battery manufactured thereby have a double-layer concentration gradient structure in which lithium concentration gradually increases from the outermost part to the inside, thereby exhibiting high capacity and heat. With stability and excellent lifespan, it can be used not only for small secondary batteries but also for large batteries for electric vehicles and power storage systems.
  • FIG. 6 shows the initial discharge capacity and the efficiency of Example 1 in which the dissimilar metal was introduced later, while having a higher capacity than Comparative Example 1, which was a co-precipitated product, while Example 2 is a photograph showing a low capacity.
  • FIG. 7 illustrates the observation of particles with a projection electron microscope (TEM) to observe the shape of the center and core of all the double-layered lithium metal composite oxides prepared in Example 2.
  • TEM projection electron microscope
  • the present invention comprises the steps of: a) mixing a first aqueous metal salt solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally a transition metal at the same time in a reactor, followed by mixing and baking with a lithium raw material to prepare a core, b ) Simultaneously mixing the second metal salt aqueous solution, chelating agent and basic aqueous solution containing nickel, cobalt, manganese and optionally transition metal in the reactor, and then mixing and baking with lithium raw material, pulverizing it to nano size for forming the outline Preparing a compound, c) mixing the center compound obtained in step a) and the compound for forming an outer portion obtained in step b) to form the outer compound on the surface of the center, and d)
  • the compound obtained in the step c) is heat-treated at 500 to 800 to remove the liquor from the contact interface between the central portion and the outer edge formed on the central surface. It provides a method
  • a) a first metal salt aqueous solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally a transition metal are simultaneously mixed in a reactor and then mixed and calcined with a lithium raw material to prepare a central portion.
  • an aqueous first metal salt solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally transition metals are mixed in a reactor to prepare a metal complex hydroxide precipitate as a precursor.
  • the first metal salt aqueous solution may be prepared by adding a salt including nickel salt, cobalt salt, manganese salt and transition metal to a solvent, and each nickel salt; Cobalt salts; Manganese; And at least one element selected from the group consisting of Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, and combinations thereof.
  • the metal salt sulfates, nitrates, acetates, halides, hydroxides, and the like may be used, and are not particularly limited, as long as they can be dissolved in water.
  • the first metal salt aqueous solution is mixed by adjusting the molar ratio of nickel, cobalt, manganese, and transition metal to have a high capacity characteristics. This molar ratio can be easily calculated according to the metal composition of the final inner center to be obtained.
  • 1-y 1 -z 1 -w 1 is represented by nickel
  • y 1 is cobalt
  • z 1 is manganese
  • w 1 is represented by the ratio of transition metal M, 0.9 ⁇ x 1 ⁇ 1.3, 0.1 ⁇ y 1 ⁇ 0.3, 0.0 ⁇ z 1 ⁇ 0.3, 0 ⁇ w 1 ⁇ 0.1
  • the ratio of nickel, cobalt and manganese is, for example, 3: 1: 6, 4: 1: 5, 4: 0: 6, etc.
  • an aqueous ammonia solution As the chelating agent, an aqueous ammonia solution, an aqueous ammonium sulfate solution, a mixture thereof, and the like may be used. It is preferable that it is 0.2-0.5: 1, and, as for the molar ratio of the said chelating agent and the 1st metal salt aqueous solution, it is more preferable that it is 0.2-0.4: 1.
  • the molar ratio of the chelating agent is 0.2 to 0.5 with respect to 1 mol of the first metal aqueous solution, the chelating agent reacts with the metal at least 1 to 1 to form a complex, but the complex is mixed with a basic aqueous solution such as NaOH. This is because the remaining chelating agent can be converted into an intermediate product and recovered and used as a chelating agent, which is also an optimal condition for increasing and stabilizing crystallinity of the positive electrode active material.
  • Examples of the basic aqueous solution may include NaOH and KOH, but are not limited thereto, and any basic aqueous solution may be used. It is preferable to use 4M-5M as the density
  • the reaction of the step of preparing a metal hydroxide precipitate, nickel salt, manganese salt, cobalt salt, and optionally transition metal salts are dissolved in distilled water, and then added to the reactor with a chelating agent and a basic aqueous solution to precipitate
  • a chelating agent and a basic aqueous solution to precipitate causes Coprecipitation method is a method of obtaining a composite hydroxide by simultaneously precipitated two or more elements by using a neutralization reaction in an aqueous solution.
  • the average time of the mixed solution staying in the reactor is adjusted to 4 to 12 hours, the pH is adjusted to 10 to 12.5, preferably 10.5 to 11.5, the temperature of the reactor is maintained at 50 °C to 80 °C .
  • the reason for raising the temperature of the reactor is that it is difficult to obtain a high-density complex hydroxide because the cobalt hydroxide produced is precipitated in complex salt form at a low temperature.
  • the reaction time in the reactor is preferably controlled to 8 to 30 hours, preferably 10 to 30 hours. After collecting the first metal hydroxide precipitate prepared by the above method in the form of a slurry, the slurry solution is filtered and washed and dried at 100 to 150 ° C. to obtain a metal complex hydroxide.
  • the dry metal composite hydroxide and the lithium raw material dried as described above are mixed at a constant ratio and thermally calcined at 900 to 1000 ° C. under air flow to obtain a lithium metal composite oxide.
  • the lithium raw material is not particularly limited as long as it is a lithium salt containing lithium such as lithium carbonate or lithium nitrate.
  • the ratio of the metal complex oxide and the lithium salt is preferably 1: 1.1 to 1: 1.5.
  • the lithium metal composite oxide obtained as described above becomes a "center part" located at the center of the cathode active material, and the center part may be represented by the following Chemical Formula 1.
  • M is Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al At least one metal selected from Ga, In, Cr, Ge, Sn)
  • the average particle diameter of the said central part becomes like this. Preferably it is 3-20 micrometers, More preferably, it is 5-15 micrometers. This is because when the average particle diameter of the central portion is smaller than 3 ⁇ m, the discharge capacity is reduced, and when the average particle diameter is 20 ⁇ m or more, the thermal safety is deteriorated.
  • the center part manufactured by the above method has a high capacity and a high energy density, and has an advantage of excellent thermal stability and high voltage characteristics.
  • a second aqueous metal salt solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally transition metals are then mixed in a reactor at the same time, and then mixed and calcined with a lithium raw material and pulverized to nano size
  • a compound for forming a spherical outline is prepared.
  • a second aqueous metal salt solution, a chelating agent and a basic aqueous solution containing nickel, cobalt, manganese and optionally a transition metal are mixed in the reactor to prepare a metal complex hydroxide precipitate as a precursor.
  • the second metal salt aqueous solution may be prepared by adding a salt including nickel salt, cobalt salt, manganese salt and transition metal to a solvent, each of nickel salts; Cobalt salts; Manganese; And at least one element selected from the group consisting of Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, and combinations thereof.
  • the metal salt sulfates, nitrates, acetates, halides, hydroxides, and the like may be used, and are not particularly limited, as long as they can be dissolved in water.
  • the first metal salt aqueous solution is mixed by adjusting the molar ratio of nickel, cobalt, manganese, and transition metal to have a high capacity characteristics. This molar ratio can be easily calculated according to the metal composition of the final inner center to be obtained.
  • 1-y 2 -z 2 -w 2 is represented by nickel
  • y 2 is cobalt
  • z 2 is manganese
  • w 2 is represented by the ratio of transition metal M, 0.9 ⁇ x 2 ⁇ 1 + z 2 , 0 ⁇ y 2 ⁇ 0.33, 0 ⁇ z 2 ⁇ 0.5, 0 ⁇ w 2 ⁇ 0.1
  • the ratio of nickel, cobalt, manganese may be, for example, 1: 1: 1 and 5: 2: 3, etc. have.
  • the kind and the amount of the chelating agent and the basic aqueous solution are the same as those used in the manufacturing method of the center portion.
  • the dry metal composite oxide and the lithium raw material are mixed in a predetermined ratio in the same manner as in the manufacturing method of the center portion, and then calcined at 900 to 1000 ° C. under air flow to obtain a lithium metal composite oxide.
  • the lithium raw material is not particularly limited as long as it is a lithium salt containing lithium such as lithium carbonate or lithium nitrate.
  • the ratio of the metal complex oxide and the lithium salt is preferably 1: 0.6 to 1: 1.1.
  • a small amount of lithium is included in the outer portion of the outer portion of the positive electrode active material particles as compared to the center portion, and a smaller concentration than the central portion is formed in order to form a concentration gradient in which lithium is continuously decreased from the boundary surface of the center portion to the surface portion of the outer portion.
  • the lithium metal composite oxide obtained as described above is pulverized to several nanometers (nanometer) using an air jet mill. When the particles are ground to have an average particle diameter of several nm, the electrical conductivity is improved.
  • the lithium metal composite oxide obtained as described above is referred to as a compound for forming an outer portion since it becomes a raw material for forming an outer portion located at the outer portion of the cathode active material.
  • the average particle diameter of the compound for forming an outer portion is preferably 20 to 600 nm, more preferably 30 to 500 nm. The average particle diameter must be in the above range to form the desired coating thickness in the core coating.
  • the outer compound for forming may be represented by the following formula (2).
  • M is Mg, Zn, Ca, Sr, Cu, Zr, P, At least one metal selected from Fe, Al, Ga, In, Cr, Ge, Sn)
  • step c) by mixing the center portion obtained in step a) and the compound for forming the outer portion obtained in step b) to form an outer portion on the surface of the center, d) the compound obtained here is heat-treated at 500 to 800 °C A double layer structure is formed in which lithium is present in a continuous concentration gradient from the contact interface of the center portion and the outer portion to the surface portion of the outer portion.
  • the center forming compound obtained in step a) and the compound for forming the outer portion obtained in step b) are put together in a high speed dry coater and mixed at a speed of 5000 to 15000 rpm.
  • the compound for forming the outer portion of the size of several nanometers surrounds the central portion with a certain thickness to form the outer portion.
  • the outer portion covering the center portion can be adjusted by adjusting the residence time, temperature, rotation speed in the reactor, such as a high-speed dry coating machine.
  • the thickness of the outer portion formed in the present invention is preferably 0.5 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the thickness of the outer portion is preferably within the above range because there is an advantage to improve the thermal safety, and if outside the above range there is a problem that the discharge capacity is reduced is not preferred.
  • the double layer structure thus obtained is heat-treated at 500 to 800 ° C. to obtain a double layer structure in which lithium is present in a continuous concentration gradient from the contact interface between the center portion and the outer portion coated on the surface of the central portion to the surface portion of the outer portion.
  • the heat treatment atmosphere is preferably an oxidizing atmosphere of air or oxygen, and the heat treatment time is preferably 10 to 30 hours. It is also possible to carry out preliminary firing at 250 to 650 ° C. for 5 to 20 hours before the heat treatment step. In addition, the annealing process may be performed at 600 to 750 ° C. for 10 to 20 hours after the heat treatment process.
  • concentration distribution in which the concentration of the metal changes gradually.
  • concentration distribution is continuously realized from the outermost part of the central part inside the positive electrode active material to the surface part of the outer part.
  • Such a continuous concentration gradient can prevent the formation of impurity phases caused by a sharp difference in the transition metal and lithium composition at the interface between the center and the outer portion, and stabilization of the crystal structure because no sharp phase boundary region appears. Can be.
  • the distance from the surface portion of the outer portion to the contact interface between the central portion and the outer portion of the outer portion is referred to as a distance D from the outer portion on the basis of the surface portion of the outer portion, and the metal element at the D position.
  • D the ratio of the concentration of lithium to the concentration of P
  • P the relation between D and P provides a cathode active material for a lithium secondary battery that satisfies the following formula.
  • the concentration of lithium with respect to the concentration of metal elements increases from the surface of the outer portion to the inside, but when a is less than 0.07, the difference in lithium concentration between the center and the outer portion is hardly noticeable.
  • the concentration is high, the excessive amount of lithium is formed and remains, and the problem remains as it is.
  • a is 0.7 or more, the concentration of lithium in the central part and the outer part changes abruptly, resulting in structural instability.
  • the cathode active material for a lithium secondary battery manufactured by the above-described manufacturing method and having a continuous concentration gradient of lithium from the contact interface of the central part and the outer part to the surface part of the surgical part, has high capacity, high energy density, thermal stability, and high voltage characteristics at the center part.
  • the outer part minimizes the problem of excessive lithium, which is a disadvantage of the core material, and has overall thermal stability, high capacity, and excellent life characteristics.
  • Examples of electrolytes that may be used in the lithium secondary battery include esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and Cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and di Aliphatic carbonates such as prophylcarbonone (DPC), methyl formate (IMF), methyl acetate (MA), methyl propionate (MP) and ethyl propionate (MA) And cyclic carboxylic acid esters such as carboxylic acid ester and butyrolactone (GBL).
  • esters such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and Cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and di Aliphatic carbonates
  • cyclic carbonate ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), etc. are particularly preferable. Moreover, it is also preferable to use aliphatic carboxylic acid ester in 20% or less range as needed.
  • Lithium salts dissolved in the solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN ( CF 3 SO 2 ) 2 , LiB 10 Cl 10 , Lithium Bis (oxalato) borate (LiBOB), lower aliphatic lithium carbonate, lithium chloroborane, lithium tetraphenylborate, and LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), Imides such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), and the like can be used. .
  • the lithium salts may be used alone or in any combination within a range that does not impair the effects of the present invention. It is particularly
  • carbon tetrachloride ethylene trifluoride chloride, or phosphate containing phosphorus may be included in the electrolyte.
  • Inorganic solid electrolytes include Li 4 SiO 4 , Li 4 SiO 4 -Lil-LiOH, xLi 3 PO 4- (1-x) Li 4 SiO 4 , Li 2 SiS 3 , Li 3 PO 4 -Li 2 S-SiS 2 , Phosphorus sulfide compounds and the like are preferable.
  • organic solid electrolyte it is preferable to use polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, fluoropropylene or the like, or polymer materials such as derivatives, mixtures and composites.
  • the separator is preferably a polyethylene or polypropylene polymer such as porous polyethylene.
  • a compound capable of adsorbing and releasing lithium ions such as lithium, lithium alloy, alloy, intermetallic compound, carbon, organic compound, inorganic compound, metal complex and organic high molecular compound is used. It is preferable to use said compound individually or in combination arbitrarily in the range which does not impair the effect of this invention, respectively.
  • the lithium alloy examples include a Li-Al alloy, a Li-Al-Mn alloy, a Li-Al-Mg alloy, a Li-Al-Sn alloy, a Li-Al-In alloy, a Li-Al-Cd alloy, It is preferable to use a Li-Al-Te based alloy, a Li-Ga based alloy, a Li-Cd based alloy, a Li-In based alloy, a Li-Pb based alloy, a Li-Bi based alloy, a Li-Mg based alloy, or the like. .
  • the compound of a transition metal and silicon, the compound of a transition metal, and tin, etc. can be used, Especially a compound of nickel and silicon is preferable.
  • carbonaceous materials include coke, pyrolytic carbon, natural graphite, artificial graphite, meso carbon micro beads, graphitized meso phase small spheres, vapor grown carbon, glassy carbon, and carbon fiber.
  • pyrolytic carbon Natural graphite, artificial graphite, meso carbon micro beads, graphitized meso phase small spheres, vapor grown carbon, glassy carbon, and carbon fiber.
  • Polyacrylonitrile-based, pitch-based, cellulose-based, vapor-grown carbon-based amorphous carbon, carbon from which organic materials are fired, and the like are preferably used. It is preferable to use these individually or in combination arbitrarily in the range which does not impair the effect of this invention, respectively.
  • a packaging material composed of a metal can or aluminum and several layers of polymers as the exterior material.
  • NiSO 4 ⁇ 6H 2 O nickel sulfate hexahydrate
  • CoSO 4 ⁇ 7H 2 O cobalt sulfate hexahydrate
  • MnSO 4 manganese sulfate monohydrate
  • the prepared 2.5M nickel / cobalt / manganese mixed metal solution, 28% ammonia water and 25% sodium hydroxide solution were continuously added simultaneously using a metering pump while stirring under nitrogen at a speed of 500 rpm.
  • ammonia water was introduced at a rate of 1.0L / hr, sodium hydroxide was continuously reacted while adjusting the input amount to maintain a pH of 11 ⁇ 12 in the reactor Was performed.
  • the reactor residence time was 10 hours. Slurry, a reaction product discharged through the reactor overflow as a continuous reaction, was collected.
  • the slurry solution thus collected was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain a precursor of nickel / cobalt / manganese metal composite hydroxide.
  • the composition of the obtained metal composite hydroxide was [Ni 0.28 Co 0.12 Mn 0.60 (OH) 2 ].
  • the chemical composition of the calcined lithium metal composite oxide was Li 1.25 [Ni 0.21 Co 0.09 Mn 0.45 ] O 2 .
  • NiSO 4 ⁇ 6H 2 O nickel sulfate hexahydrate
  • CoSO 4 ⁇ 7H 2 O cobalt sulfate heptahydrate
  • MnSO 4 manganese sulfate monohydrate
  • the prepared 2.5M nickel / cobalt / manganese mixed metal solution, 28% aqueous ammonia, and 25% sodium hydroxide solution were continuously added simultaneously using a metering pump while stirring under nitrogen at a speed of 700 rpm.
  • a metering pump while maintaining the temperature in the reactor 50 °C mixed metal solution at 7L / hr, ammonia water at 0.4 L / hr rate, sodium hydroxide was continuously reacted while adjusting the input amount to maintain the pH in the reactor 11 ⁇ 12 Was performed.
  • the reactor residence time was 10 hours. Slurry, a reaction product discharged through the reactor overflow as a continuous reaction, was collected.
  • the slurry solution thus collected was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain nickel / cobalt / manganese metal composite hydroxide.
  • the composition of the obtained metal composite hydroxide was [Ni 0.333 Co 0.333 Mn 0.333 (OH) 2 ].
  • the resulting fired product was pulverized to nano size using an air jet mill to obtain a lithium metal composite oxide having a layered structure of chemical composition Li [Ni 0.333 Co 0.333 Mn 0.333 ] O 2 having a size of 100 nm or less.
  • the synthesized compound for forming the center portion and the outer portion was put together in a high speed dry coater at a ratio of 80:20 and mixed at a rotation speed of 10,000 rpm to synthesize a double layer structure.
  • the double layer structure material synthesized in Example 1 was synthesized by heat treatment at 600 ° C. for 2 hours under an air atmosphere.
  • the lithium metal composite oxide Li 1.25 [Ni 0.21 Co 0.09 Mn 0.45 ] O 2 was obtained in the same manner as in the synthesis of the central portion of Example 1.
  • Example 1 of 2. run the same way of the outer frame unit with the layered composite structure of the lithium metal composite oxide Li [Ni Co 0 .333 0 .333 0 .333 Mn] O 2 was obtained.
  • the slurry was prepared by mixing the positive electrode active material synthesized in Examples 1 to 2 and Comparative Example 1 with carbon black and PVDF [Poly (vinylidene fluoride)] and 94: 3: 3 in a weight ratio of organic solvent.
  • the slurry was applied to an Al foil having a thickness of 20 ⁇ m and then dried to prepare a positive electrode.
  • the CR2016 coin half cell was assembled using a porous polyethylene film (CellGard 2502) as a metal lithium and a separator as the cathode together with the cathode, and 1.1M LiPF6 EC / EMC / DEC solution was used as an electrolyte.
  • the coin cell prepared by the above method was subjected to a charge / discharge test at a current density of 0.1 C at 2.0 V to 4.6 V.
  • Initial capacity and efficiency for this is shown in Table 1 below.
  • Figure 6 the initial discharge capacity and efficiency of Example 1, the dissimilar metal is introduced later shows a higher capacity than Comparative Example 1 which is a co-precipitated product, while Example 2 showed a low capacity.
  • This proves that the bilayer structure formed through the coating has the interfacial resistance of the center and the outer part, so that the capacity decreases, but the heat treatment eliminates the resistance of this interface.
  • the method for producing a cathode active material for a lithium secondary battery of the present invention and the cathode active material for a lithium secondary battery manufactured thereby have a double-layer concentration gradient structure in which lithium concentration gradually increases from the outermost part to the inside, thereby exhibiting high capacity and heat. With stability and excellent lifespan, it can be used not only for small secondary batteries but also for large batteries for electric vehicles and power storage systems.

Abstract

본 발명은 a) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하여 하기 화학식 1의 화합물을 포함하는 중심부를 제조하는 단계; [화학식 1] Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2 (상기 식에서 0.9≤x1≤1.3, 0.1≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임) b) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하고, 이를 나노 크기로 분쇄하여 하기 화학식 2의 화합물을 포함하는 외곽부 형성용 화합물을 제조하는 단계; [화학식 2] Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2 (상기 식에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임) c) 상기 a)단계에서 얻은 중심부와 상기 b)단계에서 얻은 외곽부 형성용 화합물을 혼합하여 상기 중심부 표면에 외곽부를 형성시키는 단계; 및 d) 상기 c)단계에서 얻은 화합물을 500 내지 800℃에서 열처리하여 상기 중심부와 외곽부의 접촉 경계면에서부터 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질을 제공한다.

Description

리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
본 발명은 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지에 관한 것으로, 보다 구체적으로 입자 내부에서 외부까지 리튬의 농도가 점차 감소하는 연속적인 농도구배형 구조를 구현하는 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지에 관한 것이다.
리튬 이온 이차전지는 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이온 이차전지에 대한 수요가 나날이 증가하고 있다. 특히 최근에는 내연기관과 리튬 이차전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다.
전기 자동차용의 대형 전지로서는, 아직도 개발 시작 단계이고 특히 안전성의 관점에서 니켈 수소 전지가 사용되고 있지만 에너지 밀도 관점에서 리튬이온전지사용을 고려하고 있지만, 최대의 과제는 높은 가격과 안전성이다. 특히, 현재 상용화되어 사용되고 있는 LiCoO2나 LiNiO2 양극활물질은 어느 것이나 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다.
현재 시판되는 소형 리튬 이온 이차전지는 양극활물질로 LiCoO2를 주로 사용한다. LiCoO2는 안정된 충·방전특성 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. LiCoO2와 같은 층상 구조를 갖는 LiNiO2는 큰 방전용량을 나타내지만 싸이클 수명 및 열적으로 가장 불안정하고 고온에서의 안전성에 문제가 있어 아직 상품화되지 못하고 있다.
이것을 개선하기 위해, 니켈의 일부를 전이금속 원소로 치환하는 시도가 많이 이루어지고 있다. 그러나, 아직도 만족된 결과는 얻어지고 있지 않다. 예를 들면 일본특허 공개번호 평 8-171910호에는 Mn과 Ni의 혼합 수용액에 알칼리 용액을 혼합하여 Mn과 Ni을 공침시키고, 이 공침 화합물에 수산화리튬을 혼합한 후에 소성하여 LiNixMn1-xO2(0.7≤x≤0.95)의 양극활물질을 제조하는 방법이 개시되어 있다.
최근 일본특허 출원번호 제2000-227858호에는 LiNiO2나 LiMnO2에 전이 금속을 부분 치환하는 개념이 아니라 Mn과 Ni 화합물을 원자레벨에서 균일하게 분산시켜 고용체를 만드는 새로운 개념의 양극활물질이 개시되어 있다. 그러나 Ni4+의 반응성으로 인해 상업화하기에는 문제점을 가질 뿐 아니라 여전히 Ni을 포함하는 활물질의 열적 안정성은 해결하지 못하였다.
LiCoO2 대체 재료로 가장 각광받는 층상 결정구조를 갖는 재료로 니켈-망간과 니켈-코발트-망간이 각각 1:1 혹은 1:1:1로 혼합된 Li[Ni1/2Mn1/2]O2와 Li[Ni1/3Co1/3Mn1/3]O2 등을 들 수 있다. 이 재료들은 LiCoO2에 비해 저가격, 고용량, 우수한 열적 안정성 등의 특성을 나타내나, LiCoO2에 비해 낮은 전자전도도로 인해 고율특성과 저온특성이 떨어지며, 낮은 탭 밀도로 인해 용량이 높음에도 불구하고 전지의 에너지 밀도가 향상되지 않는다. 특히 이 재료들을 전자전도도가 낮아 (J. of Power Sources, 112(2002) 41-48) 전기자동차용 하이브리드(hybrid) 전원으로 사용하기에는 고출력 특성이 LiCoO2, LiNiO2, 및 LiMn2O4에 비해 떨어진다.
이상에서 살펴 본 바와 같이 Rm형 층상 결정구조를 갖는 리튬 전이 금속계 산화물로는 LiCoO2, LiNiO2, LiNi1-xCoxO2, LiNi1-x-yCoxMyO2 (M=Mn, Al, Mg, Ti, Ti1/2Mg1/2), LiNi1/3Co1/3Mn1/3O2, LiNi1/2Mn1/2O2, LiNixCo1-2xMnxO2, Li1+z[NixCo1-2xMnx]1-zO2 등이 있다. 일반적으로 이러한 물질들은 입자 표면과 내부에서의 조성이 균일하다. 우수한 양극 성능을 갖기 위해서는 양극 분말 입자의 내부와 표면에서의 작용하는 기능이 서로 달라야 한다. 즉 입자 내부에서의 조성은 리튬의 삽입/탈리 자리가 많고 구조적으로 안정해야 하나, 입자 표면에서는 전해액과의 반응성을 최소화시켜야 한다.
양극활물질의 표면 조성을 변화시키는 한 방법으로 표면 코팅 방법이 있다. 일반적으로 코팅양은 양극활물질 대비 1 내지 2wt% 이하의 작은 양으로 코팅 층은 수 나노미터 정도의 매우 얇은 박막 층을 형성하여 전해액과의 부반응을 억제하는 것으로 알려져 있거나, 코팅 후 열처리 온도가 높은 경우 분말 입자의 표면에 고용체를 형성하여 입자 내부와 다른 금속 조성을 갖는 경우가 있다. 이 경우 코팅물질과 결합한 표면층이 수 십 나노미터 이하로 알려져 있으며, 코팅 층과 입자 벌크와의 급격한 조성 차이가 있어 수백 싸이클의 장기 사용 시 그 효과가 줄어들게 된다. 또한, 상기 코팅 층이 표면에 고루 분포하지 않은 불완전한 코팅으로 인해 그 효과가 반감된다.
이러한 단점을 없애기 위해 종래 내부 물질을 합성한 후에 외부에 다른 조성을 갖는 물질을 입혀 이중층으로 제조한 후 리튬염과 혼합하여 열처리하는 방법으로 금속 조성의 농도 구배를 갖는 리튬전이금속 산화물이 제안되어 왔다. 예를 들어 대한민국 특허공개 제2005-0083869호는 열처리 과정을 통하여 금속 조성의 점진적인 구배가 이루어질 수는 있으나, 850℃ 이상의 높은 열처리 온도에서는 금속이온들의 열 확산으로 인해 농도 구배차가 거의 생기지 않고, 합성된 분말은 탭 밀도와 에너지 밀도가 낮아 리튬 이차전지용 양극활물질로 사용하기에는 부적합하다. 또한 상기 방법은 내부 물질로 리튬 전이금속 산화물을 사용할 경우 외부 층의 리튬 양 제어가 불가능하여 재현성이 떨어진다. 리튬이 과량으로 합성되는 경우 표면에 탄산리튬 및 수산화리튬이 잔류하게 되어, 셀 조립시 고온에서 다량의 가스가 발생하여 전지 케이스가 부풀기 쉬우며, 셀 조립을 위한 전극 믹싱시 겔화가 쉽게 발생하고 전극 코팅 시 뭉침이 생겨 표면 불량을 가져온다는 단점이 있다.
상기와 같은 문제점을 해결하기 위하여 본 발명은 입자 외부에서 내부까지 금속 원소의 농도에 대한 리튬의 농도가 점차 감소하는 연속적인 농도구배형 구조를 구현하여 열안정성 및 고용량, 우수한 수명 특성을 갖는 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지를 제공하는 것을 그 목적으로 한다.
상기와 같은 목적을 해결하기 위하여 본 발명은 a) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하여 하기 화학식 1의 화합물을 포함하는 중심부를 제조하는 단계;
[화학식 1]
Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2
(상기 식에서 0.9≤x1≤1.3, 0.1≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
b) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하고, 이를 나노 크기로 분쇄하여 하기 화학식 2의 화합물을 포함하는 외곽부 형성용 화합물을 제조하는 단계;
[화학식 2]
Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2
(상기 식에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
c) 상기 a)단계에서 얻은 중심부와 상기 b)단계에서 얻은 외곽부 형성용 화합물을 혼합하여 상기 중심부 표면에 외곽부를 형성시키는 단계; 및
d) 상기 c)단계에서 얻은 화합물을 500 내지 800에서 열처리하여 상기 중심부와 외곽부의 접촉 경계면에서부터 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법을 제공한다.
본 발명에 있어서, 상기 a) 단계에서의 중심부의 평균 입경은 3 내지 20인 것을 특징으로 한다.
본 발명에 있어서, 상기 b)단계에서의 외곽부 형성용 화합물의 평균 입경은 20 내지 600nm인 것을 특징으로 한다.
본 발명에 있어서, 상기 c)단계 및 d)단계에서 상기 중심부의 표면에 형성된 외곽부의 두께는 0.5 내지 5㎛인 것을 특징으로 한다.
또한, 본 발명은 상기의 어느 한 제조방법에 의해 제조되어, 중심부와 외곽부의 접촉 경계면에서부터 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 리튬 이차전지용 양극활물질을 제공한다.
또한, 본 발명은 상기의 어느 한 제조방법에 의해 제조되어, 외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리를 D 라고 하고, 상기 D 위치에서의 금속 원소들의 농도에 대한 리튬의 농도비를 P 이라고 할 때, D가 외곽부의 표면부에서부터 중심부와 외곽부의 접촉 경계면까지 변화할 경우 D와 P 과의 관계식이 하기 식을 만족한다.
P = aD + b
D = 외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리
P = D 위치에서 금속 원소들의 농도에 대한 리튬의 농도비
0.07 ≤ a ≤ 0.7 , 0.95 ≤ b ≤ 1.05
또한, 본 발명은 상기 리튬 이차전지용 양극활물질을 이용한 것을 특징으로 하는 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질은 리튬의 농도가 최외각부에서부터 내부로 갈수록 점점 증가하는 이중층 농도구배형 구조로 되어 있어, 고용량을 나타내면서도 열안정성과 우수한 수명 특성을 갖추어 소형 이차전지뿐만 아니라 전기자동차 및 전력저장시스템용 대형전지에까지 이용될 수 있다.
도1은 상기 실시예 1~2 및 비교예 1에서 제조된 리튬금속복합산화물의 결정구조를 분석하기 위해 분말 XRD(X-Ray Diffraction)를 측정한 결과를 그래프이다.
도2 내지 도5는 본 발명의 실시예에 의한 입자들의 SEM사진 측정 결과이다.
도 6은 이종금속이 후 도입된 실시예 1의 초기 방전용량 및 효율은 동시 공침한 제품인 비교예 1보다 높은 용량을 보이는 반면, 실시 예 2는 낮은 용량을 보이는 사진이다.
도 7은 상기 실시예 2에서 제조된 모든 이중층 구조의 리튬금속복합산화물의 중심부와 코어부의 형상을 관찰하기 위해 투사전자현미경(TEM)으로 입자를 관찰하여 나타내었다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
본 발명은 a) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하여 중심부를 제조하는 단계, b) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하고, 이를 나노 크기로 분쇄하여 외곽부 형성용 화합물을 제조하는 단계, c) 상기 a)단계에서 얻은 중심부와 상기 b)단계에서 얻은 외곽부 형성용 화합물을 혼합하여 상기 외곽부 형성용 화합물이 상기 중심부 표면에 외곽부를 형성시키는 단계, 및 d) 상기 c)단계에서 얻은 화합물을 500 내지 800에서 열처리하여 상기 중심부와 상기 중심부 표면에 형성된 외곽부의 접촉 경계면에서 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법을 제공한다.
우선, a) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하여 중심부를 제조한다.
보다 구체적으로, 먼저 전구체인 금속복합수산화물 침전물을 제조하기 위하여 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에 혼합한다. 상기 제1 금속염 수용액은 니켈염, 코발트염, 망간염 및 전이 금속 포함하는 염을 용매에 첨가하여 제조할 수도 있고 각각의 니켈염; 코발트염; 망간염; 및 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, 및 이들의 조합으로 이루어진 군에서 선택된 적어도 1종 이상의 원소를 포함하여 사용할 수 있다.
상기 금속염으로는 황산염, 질산염, 초산염, 할라이드, 수산화물 등이 사용될 수 있으며 물에 용해될 수 있으면 되므로 특별히 한정되지는 않는다. 또한, 상기 제1 금속염 수용액은 고용량 특성을 가지도록 니켈, 코발트, 망간, 및 전이 금속의 몰 비를 조절하여 혼합한다. 이러한 몰 비는 얻고자 하는 최종 내부 중심부의 금속 조성에 따라 용이하게 산출될 수 있다. 본 발명에서는 각각 1-y1-z1-w1을 니켈, y1을 코발트, z1을 망간, w1을 전이 금속 M의 비율로 표기할 때, 0.9≤x1≤1.3, 0.1≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1가 되도록 하고, 니켈, 코발트, 망간의 비율이 예를 들어 3:1:6, 4:1:5 및 4:0:6 등이 될 수 있다.
상기 킬레이팅제로는 암모니아 수용액, 황산 암모늄 수용액, 이들의 혼합물 등이 사용될 수 있다. 상기 킬레이팅제와 제 1 금속염 수용액의 몰 비는 0.2 내지 0.5: 1인 것이 바람직하고, 0.2 내지 0.4: 1인 것이 보다 바람직하다. 상기 킬레이팅제의 몰 비를 제 1 금속 수용액 1몰에 대하여 0.2 내지 0.5로 한 것은 상기 킬레이팅제는 금속과 1 대 1 이상으로 반응하여 착제를 형성하지만, 이 착제가 NaOH와 같은 염기성 수용액과 반응하고 남은 킬레이팅제가 중간 생성물로 변하여 다시 킬레이팅제로 회수되어 사용될 수 있기 때문이며, 나아가 이것이 양극활물질의 결정성을 높이고 안정화하기 위한 최적의 조건이기 때문이다.
상기 염기성 수용액의 예로는 NaOH 및 KOH를 들 수 있으나, 이에 한정되는 것은 아니며, 통상적으로 사용되는 염기성을 띄는 수용액이라면 어떠한 것도 사용 가능하다. 상기 염기성 수용액의 농도는 4M 내지 5M의 것을 사용하는 것이 바람직하다.
상기 금속복합수산화물 침전물 제조 단계의 반응을 좀 더 상세히 설명하면, 니켈염, 망간염, 코발트염, 및 선택적으로 전이 금속염들을 증류수에 용해한 후, 킬레이팅제, 염기성 수용액과 함께 각각 반응기에 투입하여 침전을 일으킨다. 공침법은 수용액 중에서 중화반응을 이용하여 2 원소 이상을 동시에 침전시켜 복합수산화물을 얻는 방법이다. 여기에서 상기 혼합용액이 상기 반응기 내에 체류하는 평균시간은 4 내지 12시간으로 조절하고, pH는 10 내지 12.5, 바람직하게는 10.5 내지 11.5로 조절하고, 반응기의 온도는 50℃ 내지 80℃로 유지한다. 이렇게 반응기의 온도를 높이는 이유는 생성된 코발트 수산화물이 낮은 온도에서는 착염 형태로 침전되기 때문에 고밀도 복합수산화물을 얻기 어렵기 때문이다. 상기 반응기 내에서의 반응시간은 8 내지 30 시간, 바람직하게는 10 내지 30시간으로 조절하는 것이 바람직하다. 상기 방법으로 제조된 제1 금속 수산화물 침전물을 슬러리 형태로 모아 둔 후, 이 슬러리 용액을 여과 및 세척하고 100 내지 150℃에서 건조하여 금속복합수산화물을 얻는다.
상기와 같이 건조된 금속복합수산화물과 리튬 원료를 일정비로 혼합하여 공기 흐름 하에서 900 내지 1000℃에서 열소성하여 리튬금속복합산화물을 얻는다. 상기 리튬 원료는 탄산리튬, 질산리튬 등 리튬을 포함하는 리튬염이면 특별히 제한되지 않는다.
본 발명에서는 금속복합산화물과 리튬염의 비율을 1:1.1 내지 1:1.5가 되도록 하는 것이 바람직하다. 양극활물질의 표면에 리튬이 과량으로 형성되어 잔류하는 경우 전지 케이스가 부풀고 표면 불량이 생기는 등의 문제점이 발생하므로, 양극활물질 입자의 외부보다 내부에 리튬을 다량 배치하여 문제점을 최소화하기 위함이다.
상기와 같이 얻어진 리튬금속복합산화물은 양극활물질의 중심부에 위치하는 "중심부"가 되는 것으로, 상기 중심부는 하기 화학식 1로 표기될 수 있다.
[화학식 1]
Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2
(상기 식에서 0.9≤x1≤1.3, 0.1≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
상기 중심부의 평균 입경은 바람직하게는 3 내지 20㎛이고, 더욱 바람직하게는 5 내지 15㎛이다. 상기 중심부의 평균 입경이 3㎛보다 작으면 방전 용량이 감소하는 문제점이 있고, 20㎛ 이상이면 열적 안전성이 저하되는 문제점이 있기 때문이다.
상기 방법으로 제조된 중심부는 고용량 및 고에너지 밀도를 가지며, 열안전성이 우수하고 고전압 특성을 유지할 수 있는 장점을 가진다.
그 다음, b) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하고, 이를 나노 크기로 분쇄하여 구형의 외곽부 형성용 화합물을 제조한다.
먼저, 전구체인 금속복합수산화물 침전물을 제조하기 위하여 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에 혼합한다. 상기 제2 금속염 수용액은 니켈염, 코발트염, 망간염 및 전이 금속 포함하는 염을 용매에 첨가하여 제조할 수도 있고 각각의 니켈염; 코발트염; 망간염; 및 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn, 및 이들의 조합으로 이루어진 군에서 선택된 적어도 1종 이상의 원소를 포함하여 사용할 수 있다.
상기 금속염으로는 황산염, 질산염, 초산염, 할라이드, 수산화물 등이 사용될 수 있으며 물에 용해될 수 있으면 되므로 특별히 한정되지는 않는다. 또한, 상기 제1 금속염 수용액은 고용량 특성을 가지도록 니켈, 코발트, 망간, 및 전이 금속의 몰 비를 조절하여 혼합한다. 이러한 몰 비는 얻고자 하는 최종 내부 중심부의 금속 조성에 따라 용이하게 산출될 수 있다. 본 발명에서는 각각 1-y2-z2-w2을 니켈, y2을 코발트, z2을 망간, w2을 전이 금속 M의 비율로 표기할 때, 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1가 되도록 하고, 니켈, 코발트, 망간의 비율이 예를 들어 1:1:1 및 5:2:3 등이 될 수 있다.
상기 킬레이팅제 및 염기성 수용액의 종류와 사용량은 중심부의 제조방법에서 사용된 것과 동일하다.
상기 중심부의 제조방법과 같은 방법으로 건조된 금속복합산화물과 리튬 원료를 일정비로 혼합하여 공기 흐름 하에서 900 내지 1000℃에서 열소성하여 리튬금속복합산화물을 얻는다. 상기 리튬 원료는 탄산리튬, 질산리튬 등 리튬을 포함하는 리튬염이면 특별히 제한되지 않는다.
본 발명에서는 금속복합산화물과 리튬염의 비율을 1:0.6 내지 1:1.1이 되도록 하는 것이 바람직하다. 상술한 바와 같은 이유로 양극활물질 입자의 바깥측인 외곽부의 리튬이 중심부에 비하여 소량 포함되게 하며, 중심부와 외곽부의 경계면에서부터 외곽부의 표면부를 향하여 리튬이 연속적으로 감소하는 농도 구배를 형성하기 위하여 중심부보다 적은 1.1 미만이 되도록 하는 것이다.
상기와 같이 얻어진 리튬금속복합산화물은 에어제트밀을 이용하여 수 나노미터(nanometer) 크기로 분쇄한다. 입자가 수 nm의 평균 입경을 가지도록 분쇄되면 전기전도도가 향상된다.
상기와 같이 얻어진 리튬금속복합산화물은 양극활물질의 외곽에 위치하는 외곽부를 형성하는 원료가 되므로 외곽부 형성용 화합물이라고 명칭한다. 상기 외곽부 형성용 화합물의 평균 입경은 바람직하게는 20 내지 600nm, 더욱 바람직하게는 30 내지 500nm이다. 평균 입경이 상기 범위 내여야 중심부 피복 시 바람직한 피복 두께 형성이 가능하다.
상기 외곽부 형성용 화합물은 하기 화학식 2로 표기될 수 있다.
[화학식 2]
Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2
(상기 식에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
그 후, c) 상기 a)단계에서 얻은 중심부와 상기 b)단계에서 얻은 외곽부 형성용 화합물을 혼합하여 상기 중심부 표면에 외곽부를 형성시키고, d) 여기서 얻은 화합물을 500 내지 800℃에서 열처리하여 상기 중심부와 외곽부의 접촉 경계면에서부터 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 형성한다.
본 단계에서는 a)단계에서 얻은 중심부와 b)단계에서 얻은 외곽부 형성용 화합물을 함께 고속 건식코팅기에 넣고 5000 내지 15000rpm의 속도로 혼합시킨다. 이 때 수 나노미터 크기의 외곽부 형성용 화합물이 중심부를 일정한 두께로 둘러싸면서 피복하여 외곽부를 형성한다.
상기 중심부를 피복한 외곽부는 고속 건식코팅기 등의 반응기에서의 체류 시간, 온도, 회전 속도를 조절하면 그 두께를 조절할 수 있다. 본 발명에서 형성된 외곽부의 두께는 바람직하게는 0.5 내지 5㎛, 더욱 바람직하게는 1 내지 3㎛일 수 있다. 외곽부의 두께가 상기 범위 내에서는 열적 안전성을 향상 시킬수 있는 장점이 있어 바람직하고, 상기 범위를 벗어나는 경우 방전 용량이 감소하는 문제점이 있어 바람직하지 못하다.
이렇게 얻어진 이중층 구조를 500 내지 800℃에서 열처리하여 중심부와 상기 중심부 표면에 피복된 외곽부의 접촉 경계면에서 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 얻는다. 열처리 분위기는 공기나 산소의 산화성 분위기가 바람직하고 열처리 시간은 10 내지 30시간인 것이 바람직하다. 상기 열처리 공정 전에 250 내지 650℃에서 5 내지 20시간 유지시켜 예비 소성을 실시할 수도 있다. 또한 상기 열처리 공정 후에 600 내지 750℃에서 10 내지 20시간 어닐링 공정을 실시할 수도 있다.
본 발명에서 "연속적인 농도 구배로 존재한다"는 의미는 금속의 농도가 점진적으로 변화하는 농도 분포로 존재한다는 것이다. 농도 분포는 양극활물질 내부의 중심부의 최외각부에서 외곽부의 표면부까지 연속적으로 구현된다.
상기와 같은 연속적인 농도 구배는 상기 중심부와 상기 외곽부가 접하는 계면에서의 전이 금속 및 리튬 조성의 급격한 차이로 발생할 수 있는 불순물상의 생성문제를 예방할 수 있고, 급격한 상경계 영역이 나타나지 않아 결정구조를 안정화할 수 있다.
본 발명에 있어서, 외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리를 D 라고 하고, D가 외곽부의 표면부에서부터 중심부와 외곽부의 접촉 경계면까지 변화할 경우, 상기 D 위치에서의 금속 원소들의 농도에 대한 리튬의 농도비를 P 라고 할 때, D와 P와의 관계식이 하기 식을 만족하는 리튬 이차전지용 양극활물질을 제공한다.
P = aD + b
D = 외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리
P = D 위치에서의 금속 원소들의 농도에 대한 리튬의 농도비
0.07 ≤ a ≤ 0.7 , 0.95 ≤ b ≤ 1.05
즉, 외곽부의 표면으로부터 내부로 갈수록 금속원소들의 농도에 대한 리튬의 농도가 증가하지만, a 가 0.07 이하일 때는 중심부와 외곽부의 리튬 농도 차이가 거의 나지 않기 때문에 외곽부에서도 금속 원소들의 농도에 대한 리튬의 농도가 높아 리튬이 과량으로 형성되어 잔류하는 경우의 문제점을 그대로 나타내게 되며, a가 0.7 이상일 때는 중심부와 외곽부의 리튬 농도가 급격하게 변하기 때문에 구조적으로 불안하게 되는 문제점이 있다.
상기의 제조방법에 의해 제조되어, 중심부와 외곽부의 접촉 경계면에서부터 외과부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 리튬 이차전지용 양극활물질은 중심부에서 고용량 및 고에너지 밀도, 열안정성, 고전압 특성을 유지하는 동시에 외곽부에서는 중심부 소재의 단점인 과량 리튬 문제를 최소화시켜 전체적으로 열안정성, 고용량, 우수한 수명 특성을 가진다.
또한, 본 발명에 따른 상기 리튬 이차전지용 양극활물질을 이용한 것을 특징으로 하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지에 사용될 수 있는 전해질로는 에스테르(ester), 예를 들면 에틸렌 카보네이트(ethylene carbornate)(EC), 프로필렌 카보네이트(propylene carbonate)(PC), 부틸렌 카보네이트(butylene carbonate)(BC) 및 비닐렌 카보네이트(carbonate)(VC) 등의 환상 카보네이트(carbonate), 디메틸 카보네이트(dimethyl carbonate)(DMC), 디에틸 카보네이트(diethylcarbonate)(DEC), 에틸 메틸 카보네이트(ethyl methyl carbonate)(EMC) 및 디푸로필카보네토(DPC)등의 비환상 카보네이트(carbonate), 포름산 메틸(methyl)IMF), 초산메틸(MA), 프로피온산 메틸(methyl)(MP) 및 프로피온산 에틸(ethyl)(MA)등의 지방족 카르본산 에스테르(ester), 부티로락톤(lactone)(GBL)등의 환상 카르본산 에스테르(ester)등을 들 수 있다. 환상 카보네이트(carbonate)로서는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 비닐렌 카보네이트(VC) 등이 특히 바람직하다. 또한, 필요에 따라 지방족 카르본산 에스테르(ester)를 20 % 이하의 범위에서 사용하는 것도 바람직하다.
상기 용매에 용해하는 리튬염으로는 LiClO4, LiBF4, LiPF6, LiAlCl4, LiSbF6, LiSCN, LiCF3SO3, LiCF3CO2, Li(CF3SO2)2, LiAsF6, LiN(CF3SO2)2, LiB10Cl10, LiBOB(Lithium Bis(oxalato)borate), 저급 지방족 카르본산 리튬, 클로로 보란 리튬, 사페닐붕산리튬, 그리고 LiN(CF3SO2) (C2F5SO2), LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(CF3SO2)(C4F9SO2) 등의 이미드(imide)류 등을 사용할 수 있다. 상기 리튬염은 각각 단독으로 또는 본 발명의 효과를 손상시키지 않은 범위에서 임의로 조합하여 사용할 수 있다. 특히 LiPF6을 사용하는 것이 바람직하다.
또한 전해액을 불연성으로 하기 위해 사염화탄소, 삼불화 염화 에틸렌, 혹은 인이 포함된 인산염 등을 전해액에 포함시킬 수 있다.
뿐만 아니라, 다음과 같은 고체 전해질도 이용할 수 있다. 무기 고체 전해질에는, Li4SiO4, Li4SiO4-Lil-LiOH, xLi3PO4-(1-x)Li4SiO4, Li2SiS3, Li3PO4-Li2S-SiS2, 황화 인 화합물 등을 사용하는 것이 바람직하다.
유기 고체전해질로는 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리비닐 알코올, 폴리불화비닐리덴, 플루오르프로필렌 등이나 이러한 유도체, 혼합물, 복합체 등의 폴리머 재료를 사용하는 것이 바람직하다.
세퍼레이터는 다공성 폴리에틸렌과 같은 폴리에틸렌계 혹은 폴리프로필렌계 폴리머를 사용하는 것이 바람직하다.
상기 음극재료로서는, 리튬, 리튬합금, 합금, 금속간 화합물, 탄소, 유기 화합물, 무기 화합물, 금속 착체 및 유기 고분자 화합물 등 리튬이온을 흡착, 방출할 수 있는 화합물을 사용한다. 상기의 화합물을 각각 단독으로, 또는 본 발명의 효과를 손상시키지 않은 범위에서 임의로 조합하여 사용하는 것이 바람직하다.
리튬합금으로서는, Li-Al계 합금, Li-Al-Mn계 합금, Li-Al-Mg계 합금, Li-Al-Sn계 합금, Li-Al-In계 합금, Li-Al-Cd계 합금, Li-Al-Te계 합금, Li-Ga계 합금, Li-Cd계 합금, Li-In계 합금, Li-Pb계 합금, Li-Bi계 합금 및 Li-Mg계 합금 등을 사용하는 것이 바람직하다.
합금, 금속간 화합물로서는 전이 금속과 규소의 화합물이나 전이 금속과 주석의 화합물 등을 사용할 수 있고, 특히 니켈과 규소의 화합물이 바람직하다.
탄소성질 재료로서는, 코크스(coke), 열분해 탄소 류, 천연 흑연, 인조 흑연, 메소 카본마이크로 비즈(carbon micro beads), 흑연화 메소 페이즈(phase) 소 구체, 기상 성장 탄소, 유리상 탄소 류, 탄소섬유 (폴리아크릴로니트릴(polyacrylonitrile)계, 피치(pitch)계, 셀룰로오스 (cellulose)계, 기상 성장 탄소계), 부정형 탄소 및 유기물이 소성되는 탄소 등을 사용하는 것이 바람직하다. 이것들은 각각 단독으로, 또는 본 발명의 효과를 손상시키지 않은 범위에서 임의로 조합하여 사용하는 것이 바람직하다.
또한 외장재로는 금속 캔 또는 알루미늄과 몇 겹의 폴리머 층으로 구성된 포장재를 사용하는 것이 바람직하다.
이하, 본 발명의 실시예를 상세히 설명하지만, 이들 실시예로 본 발명이 한정되는 것은 아니다.
<실시예 1> 열처리 하지 않은 이중층 구조
1. 중심부 합성
Ni:Co:Mn 몰비가 28:12:60이 되도록 2.5M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 1M 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 11~12 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 25% 수산화나트륨 용액을 500rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 50℃를 유지하면서 혼합금속용액은 7L/hr, 암모니아수는 1.0L/hr의 속도로 투입하였고, 수산화나트륨은 반응기 내의 pH가 11~12를 유지하도록 투입량을 조정하면서 연속반응을 수행하였다. 반응기 체류시간은 10시간이었다. 연속반응으로 반응기 오버플로우(over flow)를 통해 배출되는 반응생성물인 슬러리(slurry)를 모아 두었다. 이렇게 모아둔 슬러리 용액을 여과 및 고순도의 증류수로 세척 후 110℃, 12시간 진공오븐에서 건조하여 전구체인 니켈/코발트/망간 금속복합수산화물을 얻었다. 얻어진 금속복합수산화물의 조성은 [Ni0.28Co0.12Mn0.60(OH)2] 이었다.
건조된 상기 금속복합수산화물을 탄산리튬(Li2CO3)과 Li/(Ni+Co+Mn)=1.25의 몰비로 혼합하여 코딜라이트(Cordilite) 도가니(Sega)에 넣고 공기 흐름 하에서 950, 10시간 소성하여 리튬금속복합산화물을 얻었다. 소성물인 리튬금속복합산화물의 화학 조성은 Li1.25[Ni0.21Co0.09Mn0.45]O2 이었다.
2. 외곽부 형성용 화합물 합성
Ni:Co:Mn 몰비가 33.3:33.3:33.3이 되도록 2.5M의 황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O) 및 황산망간 1수화물(MnSO4·H2O) 혼합 금속용액을 제조하였다. 1M 암모니아 수용액을 채운 내용적 90L를 가지는 연속반응기를 이용하였으며 초기 용액의 pH는 11~12 범위로 하였다. 상기 제조된 2.5M의 니켈/코발트/망간 혼합금속용액과 28% 암모니아수 및 25% 수산화나트륨 용액을 700rpm의 속도로 질소 투입 하에 교반하면서 정량펌프를 이용하여 동시에 연속적으로 투입하였다. 이때 반응기 내의 온도는 50℃를 유지하면서 혼합금속용액은 7L/hr, 암모니아수는 0.4L/hr의 속도로 투입하였고, 수산화나트륨은 반응기 내의 pH가 11~12를 유지하도록 투입량을 조정하면서 연속 반응을 수행하였다. 반응기 체류시간은 10시간이었다. 연속반응으로 반응기 오버플로우(over flow)를 통해 배출되는 반응생성물인 슬러리(slurry)를 모아 두었다. 이렇게 모아둔 슬러리 용액을 여과 및 고순도의 증류수로 세척 후 110℃, 12시간 진공오븐에서 건조하여 니켈/코발트/망간 금속복합수산화물을 얻었다. 얻어진 금속복합수산화물의 조성은 [Ni0.333Co0.333Mn0.333(OH)2] 이었다.
건조된 상기 금속복합수산화물을 탄산리튬(Li2CO3)과 Li/(Ni+Co+Mn)=1.0의 몰비로 혼합하여 코딜라이트(Cordilite) 도가니(Sega)에 넣고 공기 흐름 하에서 950℃, 10시간 소성하여 리튬금속복합산화물을 얻었다. 얻어진 소성물을 에어제트밀(Air Jet Mill)을 이용하여 나노 크기로 분쇄하여 100 nm 이하 크기의 화학 조성 Li[Ni0.333Co0.333Mn0.333]O2 인 층상 구조의 리튬금속복합산화물을 얻었다.
3. 이중층 구조 합성
상기 합성된 중심부와 외곽부 형성용 화합물을 80:20의 비율로 고속건식코팅기에 함께 넣고 10,000rpm의 회전속도로 혼합하여 이중층 구조를 합성하였다.
< 실시예 2> 열처리한 이중층 구조
상기 실시예 1에서 합성된 이중층 구조 소재를 600℃에서 2시간 공기분위기하에서 열처리하여 합성하였다.
< 비교예1 >
실시예 1의 1. 중심부 합성의 방법과 동일하게 실행하여 리튬금속복합산화물 Li1.25[Ni0.21Co0.09Mn0.45]O2 을 얻었다.
< 비교예2 >
실시예1의 2. 외곽부 합성의 방법과 동일하게 실행하여 층상 구조의 리튬금속복합산화물 Li[Ni0 .333Co0 .333Mn0 .333]O2을 얻었다.
< 실험예 1> XRD 측정
상기 실시예 1~2 및 비교예 1에서 제조된 리튬금속복합산화물의 결정구조를 분석하기 위해 분말 XRD(X-Ray Diffraction)를 측정한 결과를 그래프를 도 1에 나타내었다. XRD분석 결과, 실시예 1~2에서 얻어진 이중층 구조의 리튬금속복합산화물은 중심부의 리튬금속복합산화물과 동일한 구조를 가짐을 알 수 있다.
< 실험예 2> SEM 측정
상기 실시예 1~2 및 비교예 1~2에서 제조된 모든 리튬금속복합산화물의 입자형상 및 표면을 관찰하기 위해 전자주사현미경(SEM)으로 입자를 관찰하여 그 결과를 각각 도 2 내지 5에 나타내었다. 실시예 1~2 및 비교예 2는 10~100nm의 작은 1차 입자가 모여 구형을 가지는 1~12㎛의 2차 입자를 형성한 것을 볼 수 있다. 또한 실시 예 1과 실시 예 2에서 코팅 후 비교예 2인 외곽부 물질이 보이지 않는 것을 확인할 수 있으므로 외곽부 물질이 중심부에 완전히 코팅 되었음을 알 수 있다.
< 실험예 3> 전지 시험(Coin Half Cell Test)
상기 실시예 1~2, 비교예 1에서 합성된 양극활물질을 카본블랙과 결착제인 PVDF[Poly(vinylidene fluoride)]와 94:3:3의 중량비로 유기용매인 NMP와 혼합하여 슬러리를 제조하였다. 이 슬러리를 두께 20um의 Al박(foil)에 도포한 후 건조하여 양극을 제조하였다. 상기 양극과 함께 음극으로 금속리튬과 분리막으로 다공성 폴리에틸렌 필름(CellGard 2502)을 사용하여 CR2016 코인반쪽셀(Coin half cell)을 조립하였고, 전해액으로는 1.1M LiPF6 EC/EMC/DEC 용액을 사용하였다. 상기 방법으로 제조한 코인셀을 0.1C의 전류밀도로 2.0V~4.6V에서 충방전시험을 수행하였다. 이에 대한 초기 용량 및 효율을 하기 표 1에 나타내었다. 도 6에서 확인할 수 있는 바와 같이, 이종금속이 후 도입된 실시예 1의 초기 방전용량 및 효율은 동시 공침한 제품인 비교예 1보다 높은 용량을 보이는 반면, 실시 예 2는 낮은 용량을 보였다. 이것은 코팅을 통해 형성된 이중층 구조는 중심부와 외곽부의 계면 저항이 있어 용량이 떨어지나, 열처리를 통해 이 계면의 저항이 없어졌다는 것을 반증한다.
표 1
비교예1 실시예 1 실시예2
충전용량 mAh/g 291.0 287.1 287.4
방전용량 247.5 239.9 249.7
초기효율 % 81.5 83.6 86.9
< 실험예 6> TEM 측정
상기 실시예 2에서 제조된 모든 이중층 구조의 리튬금속복합산화물의 중심부와 코어부의 형상을 관찰하기 위해 투사전자현미경(TEM)으로 입자를 관찰하여 도 7에 나타내었다. 중심부에 외곽부 물질이 50~200nm 두께로 코팅되어 있는 것을 볼 수 있다.
본 발명의 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질은 리튬의 농도가 최외각부에서부터 내부로 갈수록 점점 증가하는 이중층 농도구배형 구조로 되어 있어, 고용량을 나타내면서도 열안정성과 우수한 수명 특성을 갖추어 소형 이차전지뿐만 아니라 전기자동차 및 전력저장시스템용 대형전지에까지 이용될 수 있다.

Claims (7)

  1. a) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 1 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하여 하기 화학식 1의 화합물을 포함하는 중심부를 제조하는 단계;
    [화학식 1]
    Lix1[Ni1-y1-z1-w1Coy1Mnz1Mw1]O2
    (상기 식에서 0.9≤x1≤1.3, 0.1≤y1≤0.3, 0.0≤z1≤0.3, 0≤w1≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
    b) 니켈, 코발트, 망간 및 선택적으로 전이 금속을 함유하는 제 2 금속염 수용액, 킬레이팅제 및 염기성 수용액을 반응기에서 동시에 혼합한 후, 리튬 원료와 혼합 소성하고, 이를 나노 크기로 분쇄하여 하기 화학식 2의 화합물을 포함하는 외곽부 형성용 화합물을 제조하는 단계;
    [화학식 2]
    Lix2[Ni1-y2-z2-w2Coy2Mnz2Mw2]O2
    (상기 식에서 0.9≤x2≤1+z2, 0≤y2≤0.33, 0≤z2≤0.5, 0≤w2≤0.1이고 M은 Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr, Ge, Sn로부터 선택되는 1종 이상의 금속임)
    c) 상기 a)단계에서 얻은 중심부와 상기 b)단계에서 얻은 외곽부 형성용 화합물을 혼합하여 상기 중심부 표면에 외곽부를 형성시키는 단계; 및
    d) 상기 c)단계에서 얻은 화합물을 500 내지 800℃에서 열처리하여 상기 중심부와 상기 외곽부의 접촉 경계면에서부터 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 이중층 구조를 형성하는 단계;를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법.
  2. 제 1항에 있어서,
    상기 a) 단계에서의 중심부의 평균 입경은 3 내지 20㎛인 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법.
  3. 제 1항에 있어서,
    상기 b)단계에서의 외곽부 형성용 화합물의 평균 입경은 20 내지 600nm인 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법.
  4. 제 1항에 있어서,
    상기 c)단계 및 d)단계에서 상기 중심부의 표면에 형성되는 외곽부의 두께는 0.5 내지 5㎛인 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조방법.
  5. 제 1항 내지 제 4항 중 어느 한 항에 의해 제조되어, 상기 중심부와 외곽부의 접촉 경계면에서부터 상기 외곽부의 표면부까지 리튬이 연속적인 농도 구배로 존재하는 리튬 이차전지용 양극활물질.
  6. 제 1항 내지 제 4항 중 어느 한 항에 의해 제조되어,
    외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리를 D 라고 하고, D가 외곽부의 표면부에서부터 중심부와 외곽부의 접촉 경계면까지 변화할 경우, 상기 D 위치에서의 금속 원소들의 농도에 대한 리튬의 농도비를 P 라고 할 때, D와 P와의 관계식이 하기 식을 만족하는 리튬 이차전지용 양극활물질.
    P = aD + b
    D = 외곽부의 표면부를 기준으로 하여 외곽부 내의 일정 지점까지의 거리
    P = D 위치에서의 금속 원소들의 농도에 대한 리튬의 농도비
    0.07 ≤ a ≤ 0.7 , 0.95 ≤ b ≤ 1.05
  7. 제 5항 또는 제 6항의 리튬 이차전지용 양극활물질을 이용한 것을 특징으로 하는 리튬 이차전지.
PCT/KR2011/005445 2010-07-22 2011-07-22 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지 WO2012011785A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013520675A JP5759545B2 (ja) 2010-07-22 2011-07-22 リチウム二次電池用正極活物質の製造方法、それにより製造されたリチウム二次電池用正極活物質及びそれを用いたリチウム二次電池
CN201180035730.XA CN103168381B (zh) 2010-07-22 2011-07-22 制造用于锂二次电池的阳极活性材料的方法、由该方法制造的用于锂二次电池的阳极活性材料以及使用该材料的锂二次电池
US13/811,170 US9083044B2 (en) 2010-07-22 2011-07-22 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery manufactured thereby and lithium secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100070920A KR101215829B1 (ko) 2010-07-22 2010-07-22 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR10-2010-0070920 2010-07-22

Publications (2)

Publication Number Publication Date
WO2012011785A2 true WO2012011785A2 (ko) 2012-01-26
WO2012011785A3 WO2012011785A3 (ko) 2012-05-31

Family

ID=45497329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005445 WO2012011785A2 (ko) 2010-07-22 2011-07-22 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지

Country Status (5)

Country Link
US (1) US9083044B2 (ko)
JP (1) JP5759545B2 (ko)
KR (1) KR101215829B1 (ko)
CN (1) CN103168381B (ko)
WO (1) WO2012011785A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698850A1 (en) * 2012-08-14 2014-02-19 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same
WO2014059348A2 (en) 2012-10-11 2014-04-17 Lampe-Onnerud Maria Christina Lithium ion battery
JP2016026998A (ja) * 2015-11-06 2016-02-18 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
WO2017069410A1 (ko) * 2015-10-20 2017-04-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2017069407A1 (ko) * 2015-10-20 2017-04-27 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2018143783A1 (ko) * 2017-02-06 2018-08-09 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
WO2020028168A1 (en) 2018-07-30 2020-02-06 Cadenza Innovation, Inc. Housing for rechargeable batteries
US10892471B2 (en) 2017-02-06 2021-01-12 Lg Chem, Ltd. Methods of preparing positive electrode active material precursor for lithium secondary battery and positive electrode active material

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178624A1 (ko) * 2013-04-29 2014-11-06 한양대학교 산학협력단 리튬 이차 전지용 양극활물질
KR102157479B1 (ko) * 2013-04-29 2020-10-23 한양대학교 산학협력단 리튬 이차 전지용 양극활물질
EP2634148B1 (en) * 2012-03-01 2015-04-01 GS Yuasa International Ltd. Active material for non-aqueous electrolyte secondary battery, method for production of the active material, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101970199B1 (ko) * 2012-12-28 2019-04-19 주식회사 에코프로비엠 리튬 복합 산화물 및 이의 제조 방법
KR101952167B1 (ko) * 2012-12-28 2019-02-27 주식회사 에코프로비엠 리튬 니켈 산화물과 리튬 망간 산화물의 복합체 제조 방법 및 이에 의하여 제조된 리튬 니켈 산화물과 리튬 망간 산화물의 복합체
KR101970201B1 (ko) * 2012-12-31 2019-04-19 주식회사 에코프로비엠 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질
WO2014133370A1 (ko) * 2013-02-28 2014-09-04 한양대학교 산학협력단 리튬이차전지용 양극활물질
EP3007253B1 (en) 2013-05-31 2019-10-02 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium cell and method for manufacturing same
US10741841B2 (en) 2013-07-29 2020-08-11 Lg Chem, Ltd. Electrode active material having improved energy density and lithium secondary battery including the same
CN105431382B (zh) * 2013-07-31 2017-07-07 汉阳大学校产学协力团 锂复合氧化物及其制造方法
WO2015016648A1 (ko) * 2013-07-31 2015-02-05 한양대학교 산학협력단 전이금속 복합 산화물의 제조 방법 및 이에 의하여 제조된 전이금속 복합 산화물 및 이를 이용하여 제조된 리튬 복합 산화물
KR101728645B1 (ko) * 2013-10-04 2017-04-19 닛산 지도우샤 가부시키가이샤 비수 전해질 2차 전지용 정극 활물질 및 그 제조 방법
CN103943834B (zh) * 2014-04-30 2016-02-17 深圳市天劲新能源科技有限公司 一种具有双层结构的多元正极材料的制备方法
KR101762508B1 (ko) 2014-10-02 2017-07-27 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016053053A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016154617A1 (en) 2015-03-26 2016-09-29 David Mitlin Anodes for batteries based on tin-germanium-antimony alloys
KR102101006B1 (ko) 2015-12-10 2020-04-14 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
WO2017099481A1 (ko) * 2015-12-10 2017-06-15 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
KR20170073217A (ko) 2015-12-18 2017-06-28 삼성전자주식회사 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 전지
KR101970207B1 (ko) * 2016-01-05 2019-04-18 주식회사 에코프로비엠 코발트 코팅 전구체의 제조 방법, 이에 의하여 제조된 코발트 코팅 전구체 및 이를 이용하여 제조된 양극활물질
KR102580002B1 (ko) 2016-01-13 2023-09-19 에스케이온 주식회사 리튬 이차 전지
KR101986165B1 (ko) 2017-02-27 2019-06-05 한남대학교 산학협력단 전이금속 복합화합물 전구체 및 이로부터 제조된 이차전지용 양극 활물질
KR101986163B1 (ko) 2017-02-27 2019-06-05 한남대학교 산학협력단 망간을 함유하는 전이금속 복합화합물 전구체 및 이를 포함하여 제조된 이차전지용 양극 활물질
CN107359346B (zh) * 2017-06-19 2019-07-26 荆门市格林美新材料有限公司 一种锂电池正极材料改性多元前驱体及制备方法
KR102277735B1 (ko) * 2018-02-28 2021-07-16 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법 및 제조장치
WO2019185318A1 (en) * 2018-03-28 2019-10-03 Umicore Lithium transition metal composite oxide as a positive electrode active material for rechargeable lithium secondary batteries
WO2020154024A1 (en) * 2019-01-25 2020-07-30 Massachusetts Institute Of Technology Lithium transition metal oxide particles having lithium concentration gradients
KR102412692B1 (ko) * 2019-10-18 2022-06-24 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN112382749B (zh) * 2020-07-03 2024-04-12 华中科技大学 一种锂离子电池正极材料及其制备方法
CN112582599B (zh) * 2020-12-10 2022-08-05 万华化学(四川)有限公司 一种无钴高镍四元正极材料、其制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261508B1 (ko) * 1997-10-30 2000-07-15 김순택 리튬복합산화물,그제조방법및그것을활물질로하는양극을채용한리튬이온이차전지
KR20030093166A (ko) * 2003-11-18 2003-12-06 선양국 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
KR20060128814A (ko) * 2006-11-28 2006-12-14 한양대학교 산학협력단 리튬이차전지용 고용량, 고안전성 층상 양극 활물질의 제조방법 및 그 제조물
KR100959589B1 (ko) * 2008-04-03 2010-05-27 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783333A (en) * 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
JP4161382B2 (ja) * 1997-02-25 2008-10-08 堺化学工業株式会社 2層構造粒子状組成物の製造方法
KR100809847B1 (ko) 2002-10-31 2008-03-04 주식회사 엘지화학 금속성분의 조성에 구배를 갖는 리튬 전이금속 산화물
US7205072B2 (en) * 2002-11-01 2007-04-17 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
US20040191161A1 (en) * 2002-11-19 2004-09-30 Chuanfu Wang Compounds of lithium nickel cobalt metal oxide and the methods of their fabrication
JP4089526B2 (ja) * 2003-06-26 2008-05-28 トヨタ自動車株式会社 正極活物質およびその製造方法ならびに電池
KR100822012B1 (ko) 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
US8574765B2 (en) * 2007-03-05 2013-11-05 Toda Kogyo Corporation Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
JP5401035B2 (ja) * 2007-12-25 2014-01-29 日立ビークルエナジー株式会社 リチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100261508B1 (ko) * 1997-10-30 2000-07-15 김순택 리튬복합산화물,그제조방법및그것을활물질로하는양극을채용한리튬이온이차전지
KR20030093166A (ko) * 2003-11-18 2003-12-06 선양국 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
KR20060128814A (ko) * 2006-11-28 2006-12-14 한양대학교 산학협력단 리튬이차전지용 고용량, 고안전성 층상 양극 활물질의 제조방법 및 그 제조물
KR100959589B1 (ko) * 2008-04-03 2010-05-27 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 신규 전구체

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698850A1 (en) * 2012-08-14 2014-02-19 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same
US9614225B2 (en) 2012-08-14 2017-04-04 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method for preparing same and rechargeable lithium battery including same
WO2014059348A2 (en) 2012-10-11 2014-04-17 Lampe-Onnerud Maria Christina Lithium ion battery
EP3573136A2 (en) 2012-10-11 2019-11-27 Cadenza Innovation, Inc. Method for manufacturing lithium ion batteries
WO2017069410A1 (ko) * 2015-10-20 2017-04-27 주식회사 엘지화학 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2017069407A1 (ko) * 2015-10-20 2017-04-27 주식회사 엘지화학 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
US10581071B2 (en) 2015-10-20 2020-03-03 Lg Chem, Ltd. Precursor for the production of positive electrode active material comprising metal oxides having multilayered structure and positive electrode active material for lithium secondary battery produced using the same
US10741872B2 (en) 2015-10-20 2020-08-11 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery comprising lithium metal oxides having multilayered structure and positive electrode comprising the same
JP2016026998A (ja) * 2015-11-06 2016-02-18 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
WO2018143783A1 (ko) * 2017-02-06 2018-08-09 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
US10892471B2 (en) 2017-02-06 2021-01-12 Lg Chem, Ltd. Methods of preparing positive electrode active material precursor for lithium secondary battery and positive electrode active material
WO2020028168A1 (en) 2018-07-30 2020-02-06 Cadenza Innovation, Inc. Housing for rechargeable batteries

Also Published As

Publication number Publication date
CN103168381B (zh) 2015-10-14
CN103168381A (zh) 2013-06-19
US20130183583A1 (en) 2013-07-18
WO2012011785A3 (ko) 2012-05-31
US9083044B2 (en) 2015-07-14
JP5759545B2 (ja) 2015-08-05
JP2013535771A (ja) 2013-09-12
KR20120009891A (ko) 2012-02-02
KR101215829B1 (ko) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2012011785A2 (ko) 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR100974352B1 (ko) 리튬 이차 전지용 복합 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬 이차 전지
KR100548988B1 (ko) 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2011087309A9 (ko) 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질.
WO2017069410A1 (ko) 다층 구조의 리튬 금속 산화물들을 포함하는 리튬 이차전지용 양극 활물질 및 그것을 포함하는 양극
WO2010101396A2 (ko) 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2011081422A2 (ko) 리튬 복합 산화물 및 그 제조 방법.
KR100923442B1 (ko) 신규 양극 활물질
WO2009145471A1 (ko) 리튬 복합 전이금속 산화물 제조용 신규 전구체
WO2017069407A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
EP3733609A1 (en) Positive active material, preparing method thereof, and rechargeable lithium battery including the same
WO2015034229A1 (ko) 전이금속-피로인산화물 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 또는 하이브리드 캐패시터
WO2010047552A2 (ko) 전극 효율 및 에너지 밀도 특성이 개선된 양극 활물질
KR102227303B1 (ko) 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
JP2019513680A (ja) リチウムリッチアンチペロブスカイトコーティングlco系リチウム複合体、この製造方法、これを含む正極活物質及びリチウム二次電池
KR100598491B1 (ko) 이중층 구조를 가지는 리튬이차전지용 양극 활물질, 그제조 방법 및 그를 사용한 리튬이차전지
KR20060128814A (ko) 리튬이차전지용 고용량, 고안전성 층상 양극 활물질의 제조방법 및 그 제조물
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2022080710A1 (ko) 양극 활물질용 복합 전이금속 전구체 및 그로부터 제조된 이차전지용 양극 활물질
WO2016053054A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016068682A1 (ko) 전이금속 산화물 전구체, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809912

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013520675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13811170

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11809912

Country of ref document: EP

Kind code of ref document: A2