WO2016053054A1 - 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2016053054A1
WO2016053054A1 PCT/KR2015/010449 KR2015010449W WO2016053054A1 WO 2016053054 A1 WO2016053054 A1 WO 2016053054A1 KR 2015010449 W KR2015010449 W KR 2015010449W WO 2016053054 A1 WO2016053054 A1 WO 2016053054A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
cobalt oxide
secondary battery
positive electrode
Prior art date
Application number
PCT/KR2015/010449
Other languages
English (en)
French (fr)
Inventor
강민석
조치호
류지훈
신선식
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150138717A external-priority patent/KR101787199B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15846750.6A priority Critical patent/EP3203554B1/en
Priority to CN201580054081.6A priority patent/CN106797030B/zh
Priority to JP2017517259A priority patent/JP6517330B2/ja
Priority to US15/515,447 priority patent/US10490816B2/en
Publication of WO2016053054A1 publication Critical patent/WO2016053054A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • a lithium secondary battery has a problem in that its life is rapidly decreased as charging and discharging are repeated. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other influences inside the battery, and the internal resistance of the battery is increased.
  • LiCoO 2 having a layered structure.
  • LiCoO 2 is easy to synthesize and is most used because of its excellent electrochemical performance including lifespan characteristics.
  • LiCoO 2 has a low structural stability and thus is not applicable to high capacity battery technology.
  • LiNiO 2 LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni x CoyMnz) O 2
  • LiNiO 2 has the advantage of exhibiting battery characteristics of high discharge capacity, but the synthesis is difficult by a simple solid phase reaction, there is a problem of low thermal stability and low cycle characteristics.
  • lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have advantages in that they are excellent in thermal safety and inexpensive, but have a small capacity and low temperature characteristics.
  • LiMn 2 O 4 but a part merchandising products to low cost, since the Mn + 3 structure modification (Jahn-Teller distortion) due to the not good life property.
  • LiFePO 4 has a low price and excellent safety, and a lot of research is being made for hybrid electric vehicles (HEV), but it is difficult to apply to other fields due to low conductivity.
  • LiCoO 2 the most popular material for LiCoO 2 as an alternative cathode active material is lithium nickel manganese cobalt oxide, Li (Ni x Co y Mn z ) O 2 (At this time, X, y, and z are atomic fractions of independent oxide composition elements, respectively, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ x + y + z ⁇ 1.
  • This material is cheaper than LiCoO 2 and has advantages in that it can be used for high capacity and high voltage, but has disadvantages of poor rate characteristics and high lifetime characteristics at high temperatures. Therefore, in order to increase the structural stability of lithium nickel manganese cobalt oxide, it is used by including the content of Li higher than the content of the transition metal contained in the oxide.
  • the packing density of the active material must be increased or the voltage must be increased.
  • the active material of such a large particle has a relatively low surface area, the active area in contact with the electrolyte is also narrow. This narrow active area adversely acts as a kinetic and therefore exhibits relatively low rate properties and initial doses.
  • the first technical problem to be solved by the present invention is to provide a cathode active material for a lithium secondary battery and a method of manufacturing the same, which can exhibit excellent wool characteristics and lifetime characteristics without deterioration of initial capacity characteristics.
  • a second technical problem to be solved by the present invention is to provide a positive electrode, a lithium secondary battery, a battery module and a battery pack including the positive electrode active material.
  • the particles of lithium cobalt oxide wherein the particles of lithium cobalt oxide is lithium cobalt oxide of lithium defects having a molar ratio of Li / Co less than 1 inside the particles
  • a cathode active material for a lithium secondary battery Provided is a cathode active material for a lithium secondary battery.
  • preparing the particles of the first lithium cobalt oxide by mixing the cobalt raw material and the lithium raw material in an amount such that 0 ⁇ Li / Co molar ratio ⁇ 1, and then heat treatment first, And mixing the cobalt raw material and the lithium raw material in an amount such that 1 ⁇ Li / Co molar ratio with respect to the particles of the first lithium cobalt oxide, followed by secondary heat treatment.
  • a manufacturing method is provided.
  • a cathode for a lithium secondary battery including the cathode active material is provided.
  • a lithium secondary battery including the positive electrode is provided.
  • a battery module including the lithium secondary battery as a unit cell.
  • a battery pack including the battery module is provided.
  • the cathode active material for a lithium secondary battery according to the present invention may exhibit excellent wool and life characteristics without rapidly decreasing the initial capacity characteristics by increasing the movement of lithium ions in the particles.
  • FIG. 1 is a crystal structure photograph of a cathode active material prepared in Preparation Example 1 observed using a Transmission Electron Microscopy (TEM).
  • TEM Transmission Electron Microscopy
  • FIG. 2 is a graph illustrating initial charge and discharge characteristics during charge and discharge of a lithium secondary battery including the cathode active materials prepared in Preparation Example 1 and Comparative Example 1, respectively.
  • FIG 3 is a graph illustrating the rate characteristics during charge and discharge of a lithium secondary battery including the cathode active materials prepared in Preparation Example 1 and Comparative Example 1, respectively.
  • the present invention provides a lithium deficient structure capable of three-dimensional movement of lithium ions in the interior of active material particles when preparing lithium cobalt oxide-based cathode active materials on primary particles, thereby moving lithium ions within the particles. By speeding up, alleles can exhibit excellent capacity and lifetime characteristics without degrading rate characteristics and initial capacity characteristics.
  • the cathode active material for a lithium secondary battery according to an embodiment of the present invention includes particles of lithium cobalt oxide, and the particles of lithium cobalt oxide have a molar ratio of Li / Co less than 1, more specifically 0.95 in the particles. It contains lithium cobalt oxide of the lithium defect more than 1 or more.
  • the 'inside' of the positive electrode active material particles means a region excluding the surface of the active material particles, specifically, 0% or more from the particle center with respect to the distance from the center of the active material particles to the surface, that is, the semi-diameter of the active material. It means the area corresponding to the distance less than 100%.
  • the lithium cobalt oxide of the lithium defect has a cubic crystal structure in which the space group belongs to Fd-3m, and the lattice constant a0 is 7.992 to 7.994 (25 ° C). Can be.
  • the crystal structure is similar to the spinel crystal structure, so that lithium ions can be moved in three dimensions as in the spinel crystal structure. Accordingly, compared with the layered structure in which the lithium ions can be moved in two dimensions, the lithium ions can be more smoothly moved and have a higher speed. As a result, the insertion and desorption of the lithium ions can be easier.
  • the movement of lithium ions in the particles is not easy.
  • the lithium cobalt oxide of the lithium defect having the above-described crystal structure can be placed inside the particles, even if the size of the active material particles is large, it is possible to quickly and smoothly move the lithium ions in the particles to facilitate the insertion and desorption of lithium ions
  • the initial battery internal resistance can be reduced to further improve discharge capacity and lifespan even if the particles are allele without fear of deterioration of the rate characteristic and the initial capacity characteristic.
  • the crystal structure of the lithium cobalt oxide of the lithium defect can be confirmed according to a conventional crystal structure checking method, and specifically, the crystal structure can be confirmed by a transmission electron microscope.
  • the lithium cobalt oxide of the lithium defect may include the first lithium cobalt oxide of Formula 1.
  • a and x are atomic fractions of the oxide composition elements, respectively, 0 ⁇ a ⁇ 0.05 and x is 0 ⁇ x ⁇ 0.02.
  • M is any one or two or more elements selected from the group consisting of W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, and Nb as a doping element. It includes, and may be included in the content of x, that is, 0 ⁇ x ⁇ 0.02 in the first lithium cobalt oxide.
  • x 0 ⁇ x ⁇ 0.02 in the first lithium cobalt oxide.
  • the particles of the lithium cobalt oxide may have a core-shell structure, wherein the core part of the first lithium cobalt of the lithium defect of Formula 1 An oxide, and the shell portion may include a lithium cobalt oxide of the formula (2).
  • a, b, x and y are atomic fractions of the independent oxide composition elements, respectively 0 ⁇ a ⁇ 0.05, 1 ⁇ b ⁇ 1.2, 0 ⁇ x ⁇ 0.02 and 0 ⁇ y ⁇ 0.02)
  • a is greater than 0.05 or b is greater than 1.2 according to the lithium defect structure formation according to the active material
  • the effect of improving the rate characteristic can be further improved by 10% or more.
  • the rate characteristic improvement effect can be improved up to 30%.
  • the first lithium cobalt oxide has a spinel like structure, that is, a cubic crystal structure in which the space group belongs to Fd-3m, as described above, and the first lithium cobalt oxide
  • the 2 lithium cobalt oxide may have a layered structure.
  • the positive electrode active material according to an embodiment of the present invention is lithium cobalt having a defect structure capable of three-dimensional movement of lithium ions inside the active material particles, that is, the core part, which is mechanically disadvantageous with respect to the movement of lithium ions.
  • the above-described effects can be obtained, and on the surface side of the active material particles, that is, the shell portion, a lithium rich lithium cobalt oxide having a Li / Co ratio of 1 or more as described above.
  • the structural stability of the active material in particular, the structural stability at a high temperature can be improved to prevent capacity deterioration even at a high temperature, and the reactivity with the electrolyte solution can be reduced to reduce gas generation.
  • SOC state of charge
  • the surface may have a higher SOC for the mechanically advantageous surface, and conversely, the inside may have a lower SOC.
  • the core part and the shell part may include lithium distributed in a concentration gradient gradually decreasing toward the center of the active material particles in each region.
  • the gradient of the concentration gradient of lithium in the core portion and the shell portion may be a linear function that changes independently from the center of the active material particles depending on the thickness of the particles, or may be a quadratic function.
  • the gradient of the concentration gradient of lithium in the core portion and the gradient of the concentration gradient of lithium in the shell portion may be the same or different inclination values.
  • the core portion and the shell portion may include lithium present in one concentration value in each region.
  • the concentration of lithium included in the core portion may be lower than the concentration of lithium included in the shell portion.
  • the height difference according to the difference in the lithium concentration in the core portion and the shell portion may be formed at the contact interface between the core portion and the shell portion.
  • the cathode active material of the core-shell structure as described above may include lithium distributed in a concentration gradient gradually decreasing from the surface of the particles toward the center of the active material particles.
  • a may increase toward the center of the particle within the range of 0 ⁇ a ⁇ 0.05
  • b may decrease toward the center of the particle within the range of 1 ⁇ b ⁇ 1.2.
  • the concentration gradient slope of lithium may be a first order function or a second order function that varies depending on the thickness of the particles from the center of the active material particles.
  • the concentration change of lithium on the surface and inside of the active material or lithium cobalt oxide particles may be measured according to a conventional method, and specifically, the concentration of each element including lithium present on the surface may be X-ray photoelectron. It can be measured by X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Energy Dispersve x-ray spectroscopy (EDS).
  • XPS X-ray Photoelectron Spectroscopy
  • TEM Transmission Electron Microscopy
  • EDS Energy Dispersve x-ray spectroscopy
  • Lithium composition of lithium cobalt oxide can be measured by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and time of flight secondary ion mass spectrometer (Time of Flight Secondary Ion) Mass spectrometry (ToF-SIMS) can determine the form of lithium cobalt oxide.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • TOF-SIMS Time of Flight Secondary Ion Mass spectrometry
  • the core portion of the active material particles is an area corresponding to the distance from the center of the particles of lithium cobalt oxide to the surface, that is, the distance of 0% to 99% from the particle center with respect to the semi-diameter of the active material.
  • the shell portion is present on the surface of the core portion, it means a region excluding the core portion in the active material particles.
  • the semi-diameter of the core portion and the thickness of the shell portion may have a ratio of 1: 0.01 to 1: 0.1. If the semi-diameter of the core portion is too large, the structural stabilization effect of the active material according to the formation of the shell portion containing lithium rich lithium cobalt oxide and the battery characteristic improvement effect are insignificant. If the thickness of the shell portion is too thick, the relative decrease in the core portion may increase the lithium ion rate inside the active material particles and thereby the improvement effect. More specifically, the thickness of the shell portion may be 1 to 500 nm, or 10 to 300 nm under the condition of the ratio of the diameter of the core portion to the thickness of the shell portion.
  • the cathode active material according to an embodiment of the present invention has a monolithic structure consisting of primary particles of lithium cobalt oxide.
  • the "monolith structure” refers to a structure in which particles exist in an independent phase in which particles do not aggregate with each other in a morphology phase.
  • Particle structures in contrast to these monolithic structures, include structures in which small-sized particles ('primary particles') are physically and / or chemically aggregated to form relatively large particle forms ('secondary particles'). Can be.
  • the surface area is relatively low, and thus there is a problem in that the rate characteristic and the initial capacity are reduced due to the decrease in the active area in contact with the electrolyte.
  • a cathode active material of secondary particles in which primary particles of fine particles are assembled is mainly used.
  • lithium ions move to the surface of the active material and react with moisture or CO 2 in the air to easily form surface impurities such as Li 2 CO 3 and LiOH.
  • the positive electrode active material according to an embodiment of the present invention has a monolithic structure, so there is no fear of a problem that the positive electrode active material having secondary particles has.
  • the positive electrode active material of the monolithic structure as described above may have an average particle diameter (D 50 ) of 3 ⁇ m to 50 ⁇ m in consideration of the specific surface area and the positive electrode mixture density, due to the structural features that facilitate the insertion and removal of lithium ions
  • the average particle diameter (D 50 ) of 10 ⁇ m to 50 ⁇ m higher than that of the related art may have a higher particle size than that of the related art.
  • the average particle diameter (D 50 ) of the positive electrode active material may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the cathode active material particles according to an embodiment of the present invention may be measured using, for example, a laser diffraction method.
  • the method for measuring the average particle diameter (D 50 ) of the positive electrode active material is, after dispersing the particles of the positive electrode active material in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac MT 3000) to about 28 after examining the kHz ultrasound of 60 W in output, it can be used to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring device for example, Microtrac MT 3000
  • the cobalt raw material and the lithium raw material are mixed in an amount such that 0 ⁇ Li / Co molar ratio ⁇ 1 and then subjected to a first heat treatment to obtain the first lithium cobalt oxide.
  • Preparing the particles step 1; And mixing the cobalt raw material and the lithium raw material in an amount such that 1 ⁇ Li / Co molar ratio with respect to the particles of the lithium cobalt oxide, followed by secondary heat treatment (step 2). have.
  • a method of manufacturing the cathode active material for a lithium secondary battery is provided.
  • Step 1 is a step of preparing the particles of the first lithium cobalt oxide having a lithium defect structure.
  • the particles of the first lithium cobalt oxide having the lithium defect structure may be prepared by mixing the cobalt raw material and the lithium raw material in an amount such that 0 ⁇ Li / Co molar ratio ⁇ 1 and then heat treatment first. .
  • the cobalt raw material may be cobalt-containing oxide, hydroxide, oxyhydroxide, halide, nitrate, carbonate, acetate, oxalate, citrate or sulfate, and more specifically Co (OH) 2 , CoO, CoOOH , Co (OCOCH 3 ) 2 .4H 2 O, Co (NO 3 ) 2 .6H 2 O, or Co (SO 4 ) 2 .7H 2 O, and the like, and any one or a mixture of two or more thereof may be used. .
  • the lithium raw material may be specifically a lithium-containing oxide, hydroxide, oxyhydroxide, halide, nitrate, carbonate, acetate, oxalate, citrate or sulfate, and more specifically, Li 2 CO 3 , LiNO 3 , LiNO 2, LiOH, LiOH and H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4, CH 3 COOLi, or Li 3 C 6 H 5 O 7 or the like Any one or a mixture of two or more of these may be used.
  • the cobalt raw material and the lithium raw material may be mixed in an amount such that the Li / Co molar ratio satisfies a condition of 0 ⁇ Li / Co molar ratio ⁇ 1, or 0.95 ⁇ Li / Co molar ratio ⁇ 1.
  • the core portion including the first lithium cobalt oxide of the lithium defect structure, specifically, the first lithium cobalt oxide of Formula 1 is formed.
  • a raw material of the doping metal element (M) may be selectively added when mixing the cobalt raw mulch and the lithium raw material.
  • the raw material of the doping metal element (M) is specifically one or two selected from the group consisting of W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca and Nb
  • the above metals, or oxides, hydroxides, oxyhydroxides, halides, nitrates, carbonates, acetates, oxalates, citrates or sulfates and the like, may be used, and any one or a mixture of two or more thereof may be used.
  • the first heat treatment for the mixture of the above raw materials may be carried out at a temperature from 800 °C to 1100 °C. If the primary heat treatment temperature is lower than 800 ° C, there may be a decrease in discharge capacity per unit weight, cycle characteristics, and a decrease in operating voltage due to residual unreacted raw materials. There is a fear of lowering the discharge capacity per weight, lowering cycle characteristics, and lowering operating voltage.
  • the first heat treatment may be performed at a lower temperature than the subsequent second heat treatment within the above temperature range, and thus may control the diffusion rate of lithium, thereby making it easier to form lithium cobalt oxide having a defect structure.
  • the primary heat treatment may be carried out in the air or under an oxygen atmosphere, and may be carried out for 5 to 30 hours to sufficiently diffuse the reaction between the particles of the mixture.
  • step 2 is a step of forming a layer of the second lithium cobalt oxide having no lithium defect structure on the surface of the particles of the first lithium cobalt oxide having a lithium defect structure prepared in step 1.
  • the layer of lithium cobalt oxide not having the lithium defect structure is 1 ⁇ Li / Co molar ratio of the cobalt raw material and the lithium raw material with respect to the particles of the first lithium cobalt oxide having the lithium defect structure prepared in step 1
  • the mixture may be formed by mixing in an amount such that 1 ⁇ Li / Co molar ratio ⁇ 1.2 and then performing a second heat treatment.
  • the layer of lithium cobalt oxide having no lithium defect structure has a Li / Co molar ratio of the cobalt raw material and the lithium raw material with respect to the lithium cobalt oxide particles having the lithium defect structure prepared in step 1 above. It can be carried out in the same manner as in step 1, except mixing in an amount such that 1 ⁇ Li / Co molar ratio, preferably 1 ⁇ Li / Co molar ratio ⁇ 1.2.
  • a layer containing lithium cobalt oxide having no lithium defect structure, specifically lithium cobalt oxide of Formula 2 or lithium cobalt oxide having a layered structure Will be formed.
  • the cobalt raw material and the lithium raw material are the same as described in step 1.
  • a raw material of the doping metal element (M ′) may be selectively added when mixing the cobalt raw mulch and the lithium raw material.
  • the raw material of the doping metal element (M ') is specifically any one selected from the group consisting of W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca and Nb or Two or more metals, or oxides, hydroxides, oxyhydroxides, halides, nitrates, carbonates, acetates, oxalates, citrates or sulfates, and the like, including any one or a mixture of two or more thereof.
  • the second heat treatment in step 2 may be carried out at a temperature from 800 °C to 1100 °C. If the heat treatment temperature is less than 800 ° C., the crystallization of the lithium cobalt oxide formed on the surface is not sufficiently performed, and there is a fear that the movement of lithium ions may be disturbed. In addition, when the heat treatment temperature exceeds 1100 ° C., there is a fear of excessive crystallization or unstable structure formation by Li evaporation in the crystal structure. Accordingly, in order to prevent the lowering of the discharge capacity per unit weight, the cycle characteristics and the lowering of the operating voltage due to the residual or side reaction products of the unreacted raw materials and the uncrystallized or overcrystallized lithium cobalt oxide. More specifically, the heat treatment may be carried out at a temperature of 1000 °C to 1100 °C.
  • the higher the temperature during the secondary heat treatment promotes the movement and diffusion of lithium in the active material, so that the distribution of lithium in the positive electrode active material can be controlled according to the secondary heat treatment temperature.
  • the temperature during the second heat treatment is 1000 ° C. or more and 1000 ° C. to 1100 ° C. within the above temperature range, lithium in the active material may be distributed with a concentration gradient.
  • the secondary heat treatment may be performed in the air or under an oxygen atmosphere, and may be performed for 7 to 50 hours. If the heat treatment time is too long, there is a concern that the evaporation of lithium and the crystallinity of the metal oxide layer formed on the surface become high, resulting in problems in the movement of lithium ions.
  • Method for producing the positive electrode active material according to an embodiment of the present invention is a dry method without using a solvent.
  • the wet method using a solvent in the preparation and surface treatment process of the positive electrode active material is easy to change the pH of the solvent because the metal precursor is dissolved in the solvent, thereby changing the size of the final positive electrode active material or particle breakage It may cause.
  • lithium ions are eluted from the surface of the positive electrode active material containing lithium, and various oxides may be formed on the surface as side reaction materials.
  • the cathode active material is manufactured by a dry method, so that there is no fear of occurrence of the above-described problems caused by the use of a solvent, and it is superior in terms of production efficiency and process ease of the active material.
  • the dry method does not use a binder, there is no fear of side reactions caused by the use of the binder.
  • the positive electrode active material prepared by the above production method includes lithium cobalt oxide having a lithium defect structure that facilitates the insertion and removal of lithium ions into the particles, so that even if it is an allele, there is no concern about deterioration of the rate characteristic and the initial capacity characteristic. It can exhibit excellent high voltage characteristics.
  • a cathode and a lithium secondary battery including the cathode active material are provided.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon, nickel, titanium on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the positive electrode active material layer may include a conductive material and a binder together with the positive electrode active material. At this time, the positive electrode active material is the same as described above.
  • the conductive material is used to impart conductivity to the electrode, and in the battery constituted, any conductive material may be used as long as it has electronic conductivity without causing chemical change.
  • any conductive material may be used as long as it has electronic conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the positive electrode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode having the structure as described above may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material, the binder and the conductive material may be prepared by dissolving or dispersing the composition for forming a positive electrode active material layer prepared by dissolving in a solvent, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent in the preparation of the positive electrode active material layer forming composition may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrroli Don (NMP), acetone (acetone) or water, and the like, one of these alone or a mixture of two or more may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the positive electrode active material composition on a separate support and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium or silver, or the like, or an aluminum-cadmium alloy may be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material on a negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support It may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • the Li 2 CO 3 powder and Co 3 O 4 powder were mixed in an amount such that the Li / Co molar ratio was 0.95, followed by primary heat treatment at 900 ° C. for 10 hours.
  • the resulting powder was ground and classified to produce particles of lithium defect first lithium cobalt oxide.
  • Li 2 CO 3 powder and Co 3 O 4 powder is dry-mixed in an amount such that the Li / Co molar ratio is 1.01, and the secondary heat treatment at 1050 °C 20 hours
  • a positive electrode active material average particle size: 12 ⁇ m
  • lithium had a concentration gradient increasing from the center of the particle to the surface of the positive electrode active material.
  • the Li 2 CO 3 powder and Co 3 O 4 powder were mixed in an amount such that the Li / Co molar ratio was 0.95, followed by primary heat treatment at 900 ° C. for 10 hours.
  • the resulting powder was ground and classified to produce particles of lithium defect first lithium cobalt oxide.
  • the thickness of the shell portion including the second lithium cobalt oxide was about 250 nm.
  • the Li 2 CO 3 powder and Co 3 O 4 powder were mixed in an amount such that the Li / Co molar ratio was 0.95, followed by primary heat treatment at 900 ° C. for 10 hours.
  • the resulting powder was ground and classified to produce particles of lithium defect first lithium cobalt oxide.
  • lithium cobalt oxide particles prepared above dry mix Li 2 CO 3 powder and Co 3 O 4 powder in an amount such that the Li / Co molar ratio is 1, and further MgO and TiO 2 powder Li 1 Mg and Ti metals were added in an amount such that the amount of Mg and Ti was 0.01 moles, respectively, followed by secondary heat treatment at 1050 ° C. for 20 hours, so that the concentration gradient of lithium increased from the center of the particle toward the surface throughout the positive electrode active material. It was distributed to have a monostructure positive electrode active material (average particle size: 12 ⁇ m) comprising a lithium cobalt oxide doped with Mg and Ti in the shell portion.
  • a lithium secondary battery was manufactured using the cathode active materials prepared in Preparation Examples 1 to 3, respectively.
  • the positive electrode active material, the carbon black conductive material and the PVdF binder prepared in any one of Preparation Examples 1 to 3 are mixed in an N-methylpyrrolidone solvent in a weight ratio of 90: 5: 5 to form a positive electrode.
  • a composition (viscosity: 5000 mPa ⁇ s) was prepared, which was applied to an aluminum current collector, and then dried and rolled to prepare a positive electrode.
  • MCMB meocarbon microbead
  • carbon black conductive material and PVdF binder, which are artificial graphite as a negative electrode active material, were mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming a negative electrode, This was applied to a copper current collector to prepare a negative electrode.
  • An electrode assembly was manufactured by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 dissolving phosphate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiCoO 2 (average particle diameter: 12 ⁇ m) was used as the cathode active material.
  • a shell portion including at least one lithium cobalt oxide is formed in a region from the surface of the particle to a depth of 300 nm, and inside the other particles. It was confirmed that the Li / Co ratio had a core-shell structure in which a core part including lithium cobalt oxide of lithium defects of less than 1 was formed, and the core part region in the active material corresponded to a distance of 95% of the semi-diameter of the active material particles.
  • the positive electrode active material can be seen to form a concentration gradient that gradually decreases the molar ratio of Li / Co from the surface of the particles to the center, and the slope of the concentration gradient of lithium in the shell portion of the core portion Larger than the gradient of concentration gradient of lithium.
  • Coin cell using Li metal negative electrode
  • the positive electrode active material prepared in Preparation Example 1 was prepared using the positive electrode active material prepared in Preparation Example 1, and charged and discharged at 0.1 C / 0.1 C at room temperature (25 ° C.). .
  • the results are shown in FIG. 2.
  • the lithium secondary battery including the cathode active material of Preparation Example 1 having a lithium defect structure inside the particles of lithium cobalt oxide includes a cathode active material of LiCoO 2 having no lithium defect structure. It showed the same level of charge and discharge characteristics as the lithium secondary battery. However, in the case of the positive electrode active material of Preparation Example 1, the breakdown of the voltage profile was observed between 4.05V and 4.15V during initial charge and discharge due to the lithium defect structure present in the particles.
  • Cycle capacity retention which is the ratio of the discharge capacity at the 50th cycle to the initial capacity, after 50 charge / discharge cycles under the condition of 0.5C / 1C within the range of 3 to 4.4V drive voltage at (60 ° C).
  • the battery of Example 1 containing the positive electrode active material having a lithium defect structure in the particle compared with the battery of Comparative Example 1 containing lithium cobalt oxide having no lithium defect structure as the positive electrode active material, improved rate characteristics and life characteristics Indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 양극활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 상기 양극활물질은 리튬 코발트 산화물의 입자를 포함하고, 상기 리튬 코발트 산화물의 입자는 입자 내부에 Li/Co의 몰비가 1 미만인 리튬 코발트 산화물을 포함함으로써, 초기 용량 특성의 저하에 대한 우려 없이 우수한 율 특성 및 수명 특성을 나타낼 수 있다.

Description

리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2014년 10월 2일자 한국특허출원 제2014-0133474호 및 2015년 10월 1일자 한국특허출원 제2015-0138717호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 합성이 용이하고, 수명 특성을 비롯한 전기 화학적 성능이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다..
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트 산화물, Li(NixCoyMnz)O2 (이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다. 이에 리튬 니켈망간코발트 산화물의 구조안정성을 높이기 위하여 산화물내 포함되는 전이금속의 함량 대비 Li의 함량을 높게 포함시켜 사용하고 있다.
최근 휴대폰 및 테블릿 PC사와 같은 휴대용 기기들이 점점 더 소형화됨에 따라, 이에 적용되는 전지에 대해서도 소형화와 함께 고용량화 및 에너지화가 요구되고 있다. 전지의 단위 부피당 에너지를 높이기 위해서는 활물질의 충전밀도(packing density)를 높이거나 전압을 높여야 한다. 또, 충전밀도를 높이기 위해서는 입자가 큰 활물질을 사용하는 것이 좋다. 그러나 이러한 큰 입자의 활물질은 표면적이 상대적으로 낮기 때문에 전해액과 접촉하는 활성 면적(active area) 또한 좁다. 이런 좁은 활성 면적은 카이네틱(kinetic)적으로 불리하게 작용하므로, 상대적으로 낮은 율 특성과 초기 용량을 나타낸다.
본 발명이 해결하고자 하는 제1기술적 과제는, 대립자이면서도 초기용량 특성의 저하 없이 우수한 울 특성 및 수명 특성을 나타낼 수 있는 리튬 이차전지용 양극활물질 및 그 제조방법을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2기술적 과제는, 상기 양극활물질을 포함하는 양극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 리튬 코발트 산화물의 입자를 포함하고, 상기 리튬 코발트 산화물의 입자는 입자 내부에 Li/Co의 몰비가 1 미만인 리튬 결함의 리튬 코발트 산화물을 포함하는 것인 리튬 이차전지용 양극활물질이 제공된다.
본 발명의 다른 일 실시예에 따르면, 코발트 원료물질 및 리튬 원료물질을 0<Li/Co몰비<1가 되도록 하는 양으로 혼합한 후 1차 열처리하여 제1리튬 코발트 산화물의 입자를 준비하는 단계, 및 상기 제1리튬 코발트 산화물의 입자에 대해 코발트 원료물질 및 리튬 원료물질을 1≤Li/Co 몰비가 되도록 하는 양으로 혼합한 후 2차 열처리하는 단계를 포함하는, 상기한 리튬 이차전지용 양극활물질의 제조방법이 제공된다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극활물질을 포함하는 리튬 이차전지용 양극이 제공된다.
또, 본 발명의 다른 일 실시예에 따르면, 상기 양극을 포함하는 리튬 이차전지가 제공된다.
또, 본 발명의 다른 일 실시예에 따르면, 상기한 리튬 이차전지를 단위셀로 포함하는 전지모듈이 제공된다.
또, 본 발명의 다른 일 실시예에 따르면, 상기 전지모듈을 포함하는 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 리튬 이차전지용 양극활물질은 입자 내부에서의 리튬 이온의 이동을 빠르게 하여 대립자이면서도 초기용량 특성의 저하 없이 우수한 울 특성 및 수명 특성을 나타낼 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 제조예 1에서 제조한 양극활물질에 대하여 투과 전자 현미경(Transmision Electron Microscopy, TEM)을 이용하여 관찰한 결정구조 사진이다.
도 2는 제조예 1 및 비교예 1에서 제조한 양극활물질을 각각 포함하는 리튬 이차전지에 대한 충방전시, 초기 충,방전 특성을 관찰한 그래프이다.
도 3은 제조예 1 및 비교예 1에서 제조한 양극활물질을 각각 포함하는 리튬 이차전지에 대한 충방전시, 율 특성을 관찰한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 1차 입자상의 리튬 코발트 산화물계 양극활물질의 제조시, 활물질 입자의 내부에 리튬 이온의 3차원적 이동이 가능한 리튬 결함(lithium deficient) 구조를 형성함으로써, 입자 내부에서의 리튬 이온의 이동을 빠르게 하여 대립자이면서도 율 특성 및 초기용량 특성의 저하 없이 우수한 용량 및 수명 특성을 나타낼 수 있다.
즉, 본 발명의 일 실시예에 따른 리튬 이차전지용 양극활물질은, 리튬 코발트 산화물의 입자를 포함하고, 상기 리튬 코발트 산화물의 입자는 입자 내부에 Li/Co의 몰비가 1 미만, 보다 구체적으로는 0.95 이상 1 미만인 리튬 결함의 리튬 코발트 산화물을 포함하는 것이다.
본 발명에 있어서, 양극활물질 입자의 '내부'는 활물질 입자의 표면을 제외한 영역을 의미하며, 구체적으로는 활물질 입자의 중심에서부터 표면까지의 거리, 즉 활물질의 반직경에 대해 입자 중심에서부터 0% 이상 100% 미만의 거리에 해당하는 영역을 의미한다.
통상 리튬 코발트 산화물이 층상 결정 구조를 갖는 것과 달리, 상기 리튬 결함의 리튬 코발트 산화물은 공간군이 Fd-3m에 속하는 큐빅형 결정구조를 가지며, 격자상수(a0)는 7.992 내지 7.994(25℃)일 수 있다. 상기 결정 구조는 스피넬 결정 구조와 유사하여, 스피넬 결정 구조에서와 같이 3차원적으로 리튬 이온의 이동이 가능하다. 이에 따라 리튬 이온의 2차원적인 이동이 가능한 층상 구조에 비해, 리튬 이온의 이동이 보다 원활하고, 그 속도가 빠르며, 그 결과 리튬 이온의 삽입과 탈리가 보다 용이할 수 있다. 통상 대립자의 양극활물질에서는 입자 내부에서 리튬 이온의 이동이 용이하지 않다. 이에 대해, 상기한 결정 구조를 갖는 리튬 결함의 리튬 코발트 산화물을 입자 내부에 위치시킴으로써, 활물질 입자의 크기가 크더라도 입자내 리튬 이온의 빠르고 원활한 이동이 가능하여 리튬 이온의 삽입과 탈리가 용이하기 때문에, 초기 전지 내부 저항을 감소시켜 대립자이더라도 율 특성 및 초기용량 특성의 저하에 대한 우려없이 방전 용량 및 수명 특성을 더욱 향상시킬 수 있다.
상기 리튬 결함의 리튬 코발트 산화물의 결정 구조는 통상의 결정구조 확인 방법에 따라 확인할 수 있으며, 구체적으로 투과전자 현미경을 결정구조를 확인할 수 있다.
보다 구체적으로 상기 리튬 결함의 리튬 코발트 산화물은 하기 화학식 1의 제1리튬 코발트 산화물을 포함할 수 있다.
[화학식 1]
Li1-aCoMxO2
상기 화학식 1에서 a 및 x는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<a≤0.05이고, x는 0≤x≤0.02이다.
또, 상기 화학식 1에서, M은 도핑원소로서 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 상기 제1리튬 코발트 산화물 내 x의 함량, 즉 0≤x≤0.02의 함량으로 포함될 수 있다. 이와 같이 리튬 결함의 리튬 코발트 산화물에 상기한 금속원소가 더 도핑될 경우, 구조안정성이 향상되어 리튬 결함에 따른 양극활물질의 구조안정성 저하에 대한 우려가 없고, 전지 적용시 출력 특성이 향상될 수 있다. 또 상기한 함량으로 도핑됨으로써 그 개선 효과가 더욱 향상될 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 상기 리튬 코발트 산화물의 입자는, 코어-쉘 구조를 가질 수 있으며, 이때, 상기 코어부는 하기 화학식 1의 리튬 결함의 제1리튬 코발트 산화물을 포함하고, 그리고 상기 쉘부는 하기 화학식 2의 리튬 코발트 산화물을 포함할 수 있다.
[화학식 1]
Li1-aCoMxO2
[화학식 2]
LibCoM'yO2
(상기 화학식 1 및 2에서,
M 및 M'은 각각 독립적으로 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속 원소를 포함하고,
a, b, x 및 y는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<a≤0.05, 1≤b≤1.2, 0≤x≤0.02 및 0≤y≤0.02이다)
상기 화학식 1에서 0<a≤≤0.05 및 1≤≤b≤≤1.2의 조건을 동시에 충족할 경우, a가 0.05를 초과하거나 또는 b가 1.2를 초과하는 경우의 활물질에 비해 리튬 결함구조 형성에 따른 율 특성 개선 효과가 10% 이상 더 개선될 수 있다. 또, 리튬 결함구조를 형성하지 않은 리튬 코발트 산화물(LiCOO2)에 비해서는 율 특성 개선 효과가 최대 30%까지의 개선될 수 있다.
또, 상기 리튬 코발트 산화물의 입자에 있어서, 상기 제1리튬 코발트 산화물은 앞서 설명한 바와 같이 스피넬 유사 구조(spinel like structure), 즉 공간군이 Fd-3m에 속하는 큐빅형 결정구조를 갖고, 그리고 상기 제2리튬 코발트 산화물은 층상 구조(layered structure)를 갖는 것일 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따른 상기 양극활물질은 리튬 이온의 이동과 관련하여 역학적으로 불리한 활물질 입자의 내부, 즉 코어부에는 리튬 이온의 3차원적 이동이 가능한 결함 구조의 리튬 코발트 산화물을 포함함으로써 전술한 바와 같은 효과를 얻을 수 있고, 또, 역학적으로 유리한 활물질 입자의 표면측, 즉 쉘부에는 상기한 바와 같이 Li/Co의 비가 1 이상인 리튬 리치(rich)의 리튬 코발트 산화물을 포함함으로써, 활물질의 구조 안정성, 특히 고온에서의 구조 안정성이 개선되어 고온에서도 용량 열화를 방지할 수 있고, 또 전해액과의 반응성이 감소되어 가스 발생을 감소시킬 수 있다. 또, 충전과정에서 특정 SOC(state of charge)라고 가정했을 때 역학적으로 유리한 표면의 경우 더 높은 SOC를 갖고, 반대로 내부는 더 낮은 SOC를 가질 수 있다.
상기한 바와 같이 활물질 입자내 위치에 따른 Li/Co 비의 제어 및 그에 따른 개선효과의 현저함을 고려할 때, 상기 화학식 1 및 2에서, 0.01<a≤0.05, 1≤b≤1.05일 수 있다.
보다 구체적으로, 상기와 같은 코어-쉘 구조의 양극활물질에 있어서 상기 코어부 및 쉘부는 각각의 영역내에서 활물질 입자의 중심으로 갈수록 점진적으로 감소하는 농도구배로 분포하는 리튬을 포함할 수 있다.
이 경우, 상기 코어부 및 쉘부 내에서의 리튬의 농도구배 기울기는 각각 독립적으로 활물질 입자 중심에서부터 입자의 두께에 따라 변화하는 1차 함수일 수도 있고, 또는 2차 함수일 수도 있다. 또, 상기 코어부 내에서의 리튬의 농도구배 기울기와 쉘부 내에서의 리튬의 농도구배 기울기는 서로 동일하거나, 또는 서로 다른 기울기값을 가질 수도 있다.
다른 한편으로, 상기와 같은 코어-쉘 구조의 양극활물질에 있어서, 상기 코어부 및 쉘부는 각각의 영역 내에서 하나의 농도값으로 존재하는 리튬을 포함할 수도 있다. 이 경우, 상기 코어부에 포함된 리튬의 농도가 쉘부에 포함된 리튬의 농도에 비해 낮은 것일 수 있다.
또, 상기한 바와 같이 코어부 및 쉘부 내에서 각각 독립적으로 상이한 양상의 리튬 농도 분포를 갖는 경우, 상기 코어부와 쉘부의 접촉 계면에서는 코어부 및 쉘부에서의 리튬 농도 차이에 따른 높낮이차가 형성될 수 있다.
또 다른 한편으로, 상기와 같은 코어-쉘 구조의 양극활물질은, 활물질 입자 전체에 걸쳐, 입자의 표면에서부터 중심으로 갈수록 점진적으로 감소하는 농도구배로 분포하는 리튬을 포함할 수 있다. 이 경우, 상기 화학식 1 및 2에서, a는 0<a≤0.05의 범위 내에서 입자의 중심으로 갈수록 증가하고, b는 1≤b≤1.2의 범위 내에서 입자의 중심으로 갈수록 감소할 수 있다. 또, 상기 리튬의 농도구배 기울기는 활물질 입자 중심에서부터 입자의 두께에 따라 변화하는 1차 함수일 수도 있고, 또는 2차 함수일 수도 있다. 이와 같이 입자 전체에 걸쳐 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있다.
한편, 본 발명에 있어서 활물질 또는 리튬 코발트 산화물 입자의 표면 및 내부에서의 리튬의 농도 변화는 통상의 방법에 따라 측정될 수 있으며, 구체적으로 표면에 존재하는 리튬을 비롯한 각 원소의 농도는 X선 광전자 분석법(X-ray Photoelectron Spectroscopy, XPS), 투과전자현미경(Transmission Electron Microscopy, TEM) 및 에닥스(Energy Dispersve x-ray spectroscopy, EDS)로 측정할 수 있다. 또 리튬 코발트 산화물의 리튬 조성은 유도결합 플라스마 - 원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES)로 측정할 수 있으며, 또, 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS)를 통하여 리튬 코발트 산화물의 형태를 확인할 수 있다.
한편, 본 발명에 있어서 활물질 입자의 코어부는, 리튬 코발트 산화물의 입자의 중심에서부터 표면까지의 거리, 즉 활물질의 반직경에 대해 입자 중심에서부터 0% 내지 99%의 거리에 해당하는 영역이며, 보다 구체적으로는 0% 내지 95%의 거리에 해당하는 영역을 의미하고, 쉘부는 상기한 코어부의 표면상에 존재하며, 활물질 입자 내에서 상기 코어부를 제외한 영역을 의미한다.
구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 상기 코어부의 반직경과 쉘부의 두께는 1:0.01 내지 1:0.1의 비를 가질 수 있다. 상기한 비 범위를 벗어나, 코어부의 반직경이 지나치게 클 경우, 리튬 리치의 리튬 코발트 산화물을 포함하는 쉘부 형성에 따른 활물질의 구조 안정화 효과 및 이에 따른 전지 특성 개선 효과가 미미하고, 또 상기 비를 벗어나 쉘부의 두께가 지나치게 두꺼울 경우, 코어부의 상대적인 감소로 활물질 입자 내부에서의 리튬 이온 속도 증가 및 그에 따른 개선 효과가 미미할 수 있다. 보다 구체적으로는 상기한 코어부의 반직경과 쉘부의 두께비 조건 하에서 상기 쉘부의 두께는 1 내지 500nm, 혹은 10 내지 300nm일 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질은 리튬 코발트 산화물의 1차 입자로 이루어진 단일체(Monolith) 구조를 갖는다.
본 발명에 있어서, '단일체(Monolith) 구조'란, 몰포로지(Morphology) 상으로 입자들이 상호 응집되지 않은 독립된 상(phase)으로 존재하는 구조를 의미한다. 이러한 단일체 구조와 대비되는 입자 구조로는, 작은 크기의 입자('1차 입자')들이 물리적 및/또는 화학적으로 응집되어 상대적으로 큰 크기의 입자 형태('2차 입자')를 이루는 구조를 들 수 있다.
통상 전지의 고용량화를 위해서는 양극활물질의 입자 크기가 큰 것이 바람직하지만, 이 경우 표면적이 상대적으로 낮기 때문에 전해액과 접촉하는 활성 면적의 감소로 율 특성과 초기 용량이 저하되는 문제가 있다. 이를 해결하기 위해 미립자의 1차 입자를 조립한 2차 입자상의 양극활물질이 주로 사용되고 있다. 그러나, 이와 같이 2차 입자화된 양극활물질의 경우 리튬 이온이 활물질의 표면으로 이동하면서 공기 중의 수분 또는 CO2 등과 반응하여 Li2CO3, LiOH 등의 표면 불순물을 형성하기 쉽고, 이렇게 형성된 표면 분순물들은 전지 용량을 감소시키거나, 전지 내에서 분해되어 가스를 발생시킴으로써 전지의 스웰링(swelling) 현상을 발생시키므로, 고온 안정성에 심각한 문제점을 가지고 있다. 이에 대해 본 발명의 일 실시예에 따른 양극활물질은 단일체 구조를 가짐으로써 2차 입자상의 양극활물질이 갖는 문제점 발생의 우려가 없다.
또, 상기와 같은 단일체 구조의 양극활물질은 비표면적 및 양극 합제밀도를 고려하여 3㎛ 내지 50㎛의 평균입경(D50)을 가질 수 있으며, 리튬 이온의 삽입 및 탈리가 용이한 구조적 특징으로 인해 종래에 비해 보다 높은 10㎛ 내지 50㎛의 평균입경(D50) 종래에 비해 보다 높은 입경을 가질 수도 있다.
본 발명에 있어서, 상기 양극활물질의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 양극활물질 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로는, 상기 양극활물질의 평균 입경(D50)의 측정 방법은, 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
상기한 바와 같은 본 발명의 일 실시예에 따른 양극활물질은, 코발트 원료물질 및 리튬 원료물질을 0<Li/Co몰비<1가 되도록 하는 양으로 혼합한 후 1차 열처리하여 제1리튬 코발트 산화물의 입자를 준비하는 단계(단계1); 및 상기 리튬 코발트 산화물의 입자에 대해 코발트 원료물질 및 리튬 원료물질을 1≤Li/Co 몰비가 되도록 하는 양으로 혼합한 후 2차 열처리하는 단계(단계2)를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 리튬 이차전지용 양극활물질의 제조방법이 제공된다.
이하 각 단계별로 상세히 설명하면, 단계 1은 리튬 결함구조를 갖는 제1리튬 코발트 산화물의 입자를 준비하는 단계이다.
구체적으로, 상기 리튬 결함구조를 갖는 제1리튬 코발트 산화물의 입자는, 코발트 원료물질 및 리튬 원료물질을 0<Li/Co몰비<1가 되도록 하는 양으로 혼합한 후 1차 열처리하여 제조될 수 있다.
상기 코발트 원료물질은 구체적으로 코발트 함유 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있고, 보다 구체적으로는 Co(OH)2, CoO, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, 또는 Co(SO4)2ㆍ7H2O 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 리튬 원료물질은 구체적으로 리튬 함유 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있고, 보다 구체적으로는 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 코발트 원료물질과 리튬 원료물질의 혼합은 Li/Co몰비가 0<Li/Co몰비<1, 혹은 0.95≤Li/Co몰비<1의 조건을 충족하도록 하는 양으로 혼합될 수 있다. 상기한 함량 범위로 혼합될 때, 리튬 결함구조의 제1리튬 코발트 산화물, 구체적으로는 상기한 화학식 1의 제1리튬 코발트 산화물을 포함하는 코어부가 형성되게 된다.
또, 제조되는 제1 리튬 코발트 산화물이 도핑된 경우, 상기 코발트 원료뮬질과 리튬 원료물질의 혼합시 도핑용 금속원소(M)의 원료물질이 선택적으로 더 첨가될 수 있다.
상기 도핑용 금속원소(M)의 원료물질은 구체적으로는 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속, 또는 이를 포함하는 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기한 원료물질들의 혼합물에 대한 1차 열처리는 800℃ 내지 1100℃에서의 온도에서 실시될 수 있다. 1차 열처리 온도가 800℃ 미만이면 미반응 원료물질의 잔류로 인해 단위무게당 방전 용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하 우려가 있고, 1100℃를 초과하면 부반응물의 생성으로 인해 단위무게당 방전용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하 우려가 있다.
또, 상기 1차 열처리는 상기한 온도 범위 내에서 이후의 2차 열처리에 비해 낮은 온도에서 수행되는 것이, 리튬의 확산 속도를 제어할 수 있어 결함 구조의 리튬 코발트 산화물의 형성에 보다 용이할 수 있다.
또, 상기 1차 열처리는 대기 중에서 또는 산소 분위기 하에서 실시될 수 있으며, 또 5 내지 30시간 동안 실시되는 것이 혼합물의 입자간의 확산 반응이 충분히 이루어질 수 있다.
한편, 단계 2는 상기 단계 1에서 제조한 리튬 결함구조를 갖는 제1리튬 코발트 산화물의 입자의 표면에 리튬 결함구조를 갖지 않는 제2리튬 코발트 산화물의 층을 형성하는 단계이다.
구체적으로, 상기 리튬 결함구조를 갖지 않는 리튬 코발트 산화물의 층은 상기 단계 1에서 제조한 리튬 결함구조를 갖는 제1리튬 코발트 산화물의 입자에 대해 코발트 원료물질 및 리튬 원료물질을 1≤Li/Co 몰비, 혹은 1≤Li/Co 몰비≤1.2가 되도록 하는 양으로 혼합한 후 2차 열처리함으로써 형성될 수 있다.
또 상기 단계 2에 있어서, 리튬 결함구조를 갖지 않는 리튬 코발트 산화물의 층은, 상기 단계 1에서 제조한 리튬 결함구조를 갖는 리튬 코발트 산화물 입자에 대해 코발트 원료물질 및 리튬 원료물질을 Li/Co몰비가 1≤Li/Co 몰비, 바람직하게는 1≤Li/Co몰비≤1.2의 조건을 충족하도록 하는 양으로 혼합하는 것을 제외하고는, 상기 단계 1에서와 동일한 방법으로 실시될 수 있다. 코발트 원료물질과 리튬 원료물질이 상기한 함량범위로 혼합될 때, 리튬 결함구조를 갖지 않는 리튬 코발트 산화물, 구체적으로는 상기한 화학식 2의 리튬 코발트 산화물 또는 층상 구조를 갖는 리튬 코발트 산화물을 포함하는 층이 형성되게 된다. 이때, 상기 코발트 원료물질 및 리튬 원료물질은 단계 1에서 설명한 바와 동일하다.
또, 제조되는 제2 리튬 코발트 산화물이 도핑된 경우, 상기 코발트 원료뮬질과 리튬 원료물질의 혼합시 도핑용 금속원소(M')의 원료물질이 선택적으로 더 첨가될 수 있다.
상기 도핑용 금속원소(M')의 원료물질은 구체적으로는 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속, 또는 이를 포함하는 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
한편, 상기 단계 2에서의 2차 열처리는 800℃ 내지 1100℃에서의 온도에서 실시될 수 있다. 열처리 온도가 800℃ 미만이면, 표면상에 형성된 리튬 코발트 산화물의 결정화가 충분히 이루어지지 않아 리튬 이온의 이동이 방해를 받을 우려가 있다. 또, 열처리 온도가 1100℃를 초과하면 결정화가 과도하게 일어나거나 또는 결정 구조 내의 Li 증발에 의한 불안정한 구조 형성의 우려가 있다. 이에 따라 미반응 원료물질의 잔류 또는 부반응 생성물, 그리고 생성된 리튬 코발트 산화물의 미결정화 또는 과결정화로 인한 단위무게당 방전 용량의 저하, 사이클 특성의 저하 및 작동 전압의 저하를 방지하기 위해 상기 2차 열처리는 보다 구체적으로는 1000℃ 내지 1100℃ 온도에서 실시될 수 있다.
또, 상기 2차 열처리시 온도가 높을수록 활물질내 리튬의 이동 및 확산이 촉진되기 때문에, 2차 열처리 온도에 따라 양극활물질내 리튬의 분포를 제어할 수 있다. 구체적으로 상기한 온도 범위 내에서 2차 열처리시의 온도가 1000℃ 이상, 1000℃ 내지 1100℃인 경우 활물질내 리튬이 농도구배를 가지며 분포될 수 있다.
또, 상기 2차 열처리는 대기 중에서 또는 산소 분위기하에서 실시될 수 있으며, 7 내지 50시간 동안 실시될 수 있다. 열처리 시간이 지나치게 길면 리튬의 증발 및 표면에 형성된 금속 산화물 층의 결정도가 높아져 리튬이온의 이동에 문제가 생길 우려가 있다.
본 발명의 일 실시예에 따른 상기 양극활물질의 제조방법은 용매를 사용하지 않는 건식방법이다.
양극활물질의 제조 및 표면처리 공정시 용매를 이용하는 습식방법은, 금속 전구체를 용매에 용해시켜 사용하기 때문에 용매의 pH를 변화시키기 쉽고, 이로 인해 최종 제조되는 양극활물질의 크기를 변화시키거나 입자 쪼개짐을 유발할 우려가 있다. 또, 리튬을 함유하고 있는 양극활물질의 표면에서 리튬이온이 용출되어, 표면에 부반응 물질로서 각종 산화물이 형성될 우려가 있다. 이에 반해 본 발명에서는 건식 방법에 의해 양극활물질을 제조함으로써, 용매 사용에 따른 상기한 문제 발생의 우려가 없고, 또 활물질의 제조 효율성 및 공정 용이성 면에서 보다 우수하다. 더불어 건식 방법은 바인더를 사용하지 않기 때문에 바인더 사용에 따른 부반응 발생의 우려가 없다.
상기와 같은 제조방법 의해 제조된 양극활물질은, 입자 내에 리튬 이온의 삽입 및 탈리가 용이한 리튬 결함구조를 갖는 리튬 코발트 산화물을 포함함으로써, 대립자이더라도 율특성 및 초기용량 특성의 저하에 대한 우려 없이 우수한 고전압 특성을 나타낼 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
한편, 상기 양극활물질층은 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다. 이때 양극활물질은 앞서 설명한 바와 동일하다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기와 같은 구조를 갖는 양극은 상기한 양극활물질을 이용하는 것을 제외하고는 통상의 양극제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
또, 상기 양극활물질층 형성용 조성물의 제조시 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄 또는 은 등으로 표면처리한 것, 또는 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[제조예 1: 양극활물질의 제조]
Li2CO3 분말 및 Co3O4 분말을 Li/Co몰비가 0.95가 되도록 하는 양으로 혼합한 후 900℃에서 10시간 동안 1차 열처리하였다. 결과로 수득한 분말을 분쇄 및 분급하여 리튬 결함의 제1리튬 코발트 산화물의 입자를 제조하였다.
상기에서 제조한 제1리튬 코발트 산화물 입자에 대해, Li2CO3 분말 및 Co3O4 분말을 Li/Co 몰비가 1.01이 되도록 하는 양으로 건식으로 혼합하고, 1050℃에서 20시간 동안 2차 열처리하여, 양극활물질 전체에 걸쳐 리튬이 입자 중심에서부터 표면으로 갈수록 증가하는 농도구배를 가지며 분포하는, 단일구조체의 양극활물질(평균입경: 12㎛)을 제조하였다.
[제조예 2: 양극활물질의 제조]
Li2CO3 분말 및 Co3O4 분말을 Li/Co몰비가 0.95가 되도록 하는 양으로 혼합한 후 900℃에서 10시간 동안 1차 열처리하였다. 결과로 수득한 분말을 분쇄 및 분급하여 리튬 결함의 제1리튬 코발트 산화물의 입자를 제조하였다.
상기에서 제조한 제1리튬 코발트 산화물 입자에 대해, Li2CO3 분말 및 Co3O4 분말을 Li/Co 몰비가 1이 되도록 하는 양으로 건식으로 혼합하고, 900℃에서 20시간 동안 2차 열처리하여, 상기 제1리튬 코발트 산화물의 코어 입자(Li1 - aCoO2, a=0.95) 표면에 제2리튬 코발트 산화물(LibCoO2, b=1)을 포함하는 단일구조체의 양극활물질(평균입경: 12㎛)을 제조하였다. 이때 제2리튬 코발트 산화물을 포함하는 쉘부의 두께는 약 250nm 였다.
[제조예 3: 양극활물질의 제조]
Li2CO3 분말 및 Co3O4 분말을 Li/Co몰비가 0.95가 되도록 하는 양으로 혼합한 후, 900℃에서 10시간 동안 1차 열처리하였다. 결과로 수득한 분말을 분쇄 및 분급하여 리튬 결함의 제1리튬 코발트 산화물의 입자를 제조하였다.
상기에서 제조한 제1리튬 코발트 산화물 입자에 대해, Li2CO3 분말 및 Co3O4 분말을 Li/Co 몰비가 1이 되도록 하는 양으로 건식으로 혼합하고, 추가적으로 MgO 및 TiO2 분말을 Li 1몰에 대해 Mg 및 Ti 금속의 함량이 각각 0.01몰이 되도록 하는 양으로 첨가, 혼합한 후 1050℃에서 20시간 동안 2차 열처리하여, 양극활물질 전체에 걸쳐 리튬이 입자 중심에서부터 표면으로 갈수록 증가하는 농도구배를 가지며 분포하고, 쉘부에 Mg 및 Ti가 도핑된 리튬 코발트 산화물을 포함하는 단일구조체의 양극활물질(평균입경: 12㎛)을 제조하였다.
[실시예 1 내지 3: 리튬 이차전지의 제조]
상기 제조예 1 내지 3에서 제조한 양극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.
상세하게는, 상기 제조예 1 내지 3 중 어느 하나에서 제조한 양극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 90:5:5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 압연하여 양극을 제조하였다.
또, 음극활물질로서 인조흑연인 MCMB(mesocarbon microbead), 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트(EC)/디메틸카보네이트(DMC)/에틸메틸카보네이트(EMC)(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.15M 농도의 리튬 헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[비교예 1: 리튬 이차 전지의 제조]
양극활물질로서 LiCoO2(평균 입경: 12㎛)을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
[실험예 1]
상기 제조예 1 에서 제조한 양극활물질에 대하여 X-선 광전자분광기(X-ray photoelectron spectroscopy, XPS)를 이용하여 활물질 표면에서 내부까지의 깊이 프로파일(depth profile)에 따른 Li/Co의 몰비 변화를 관찰하였다. 그 결과를 하기 표 1에 나타내었다.
양극활물질 입자 표면으로부터의 깊이(nm) Li/Co 의 몰비
쉘부 50 1.01
250 1.00
300 1.00
코어부 500 0.99
1000 0.99
1500 0.99
2000 0.99
2500 0.99
3000 0.99
3500 0.98
4000 0.98
4500 0.98
5000 0.98
5500 0.96
6000 (입자 중심) 0.95
표 1에 나타난 바와 같이, 제조예 1에 따라 제조된 양극활물질은 입자의 표면에서부터 300nm 깊이까지의 영역에는 Li/Co의 비가 1 이상의 리튬 코발트 산화물을 포함하는 쉘부가 형성되고, 이외 입자 내부로는 Li/Co의 비가 1 미만의 리튬 결함의 리튬 코발트 산화물을 포함하는 코어부가 형성된 코어-쉘 구조를 가지며, 활물질내 코어부 영역이 활물질 입자 반직경의 95%의 거리에 해당하는 영역임을 확인하였다. 또, 상기 양극활물질은 입자의 표면에서부터 중심으로 갈수록 Li/Co의 몰비가 점진적으로 감소하는 농도구배를 형성하며 존재하는 것을 확인할 수 있으며, 또 쉘부에서의 리튬의 농도구배의 기울기가 코어부에서의 리튬의 농도구배 기울기에 비해 컸다.
[실험예 2]
상기 제조예 1에서 제조한 양극활물질에 대하여 투과전자 현미경을 이용하여 활물질 표면측과 내부에서의 결정구조를 각각 관찰하였다. 그 결과를 도 1에 나타내었다.
도 1에 나타난 바와 같이, 활물질 입자의 내부에 존재하는 리튬 코발트 산화물의 경우(A) 스피넬 결정구조와 유사하게, 공간군 Fd-3m의 큐빅형 결정구조를 갖는 것을 확인할 수 있다. 한편 활물질 입자의 표면측에 존재하는 리튬 코발트 산화물의 경우(C) 공간군 R3m의 층상 결정구조를 가짐을 확인할 수 있다.
[실험예 3: 양극 활물질의 평가]
상기 제조예 1에서 제조한 양극활물질을 이용하여 코인셀(Li금속 음극 사용)을 제조하고, 상온(25℃)에서 0.1C/0.1C의 조건으로 충방전을 실시한 후 초기 충방전 특성을 평가하였다. 그 결과를 하기 도 2에 나타내었다.
실험결과, 도 2에 나타난 바와 같이, 리튬 코발트 산화물의 입자 내부에 리튬 결함구조를 갖는 제조예 1의 양극활물질을 포함하는 리튬 이차전지는, 리튬 결함구조를 갖지 않는 LiCoO2의 양극활물질을 포함하는 리튬 이차전지와 동등 수준의 충방전 특성을 나타내었다. 다만, 제조예 1의 양극활물질의 경우 입자 내부에 존재하는 리튬 결함구조로 인해 초기 충방전시 4.05V 내지 4.15V 사이에서 전압 프로파일의 꺽임이 관찰되었다.
추가로, 상기 제조예1에서 제조한 양극활물질을 이용하여 제조한 코인셀(Li 금속 음극 사용)을 상온(25℃)에서 0.1C 및 0.5C의 조건으로 각각 충방전을 실시한 후, 율 특성을 평가하였다. 그 결과를 하기 도 3에 나타내었다.
실험결과, 도 3에 나타난 바와 같이, 리튬 코발트 산화물의 입자 내부에 리튬 결함구조를 갖는 제조예 1의 양극활물질을 포함하는 리튬 이차전지는, 리튬 결함구조를 갖지 않는 LiCoO2의 양극활물질을 포함하는 리튬 이차전지에 비해 개선된 율 특성을 나타내었다.
[실험예 4: 리튬 이차 전지의 전지특성 평가]
상기 실시예 1 및 비교예 1에서 제조한 리튬 이차 전지에 대해 하기와 같은 방법으로 전지 특성을 평가하였다.
상세하게는, 상기 실시예 1 및 비교예 1에서 제조한 리튬 이차전지에 대해 상온(25℃)에서 3 내지 4.4V 구동전압 범위 내에서 2C/0.1C의 조건으로 충방전시 율 특성과, 고온(60℃)에서 3 내지 4.4V 구동전압 범위내에서 0.5C/1C의 조건으로 충/방전을 50회 실시한 후, 초기용량에 대한 50사이클째의 방전용량의 비율인 사이클 용량 유지율(capacity retention)을 각각 측정하고, 하기 표 2에 나타내었다.
상온(25℃) 율 특성(2C/0.1C %) 고온(60℃)에서의 50회 사이클 용량유지율(%)
비교예1 91.5 94.4
실시예1 97.1 96.2
실험결과, 입자내 리튬 결함구조를 갖는 양극활물질을 포함하는 실시예 1의 전지는, 리튬 결함구조를 갖지 않는 리튬 코발트산화물을 양극활물질로 포함하는 비교예 1의 전지에 비해 향상된 율 특성 및 수명특성을 나타내었다.

Claims (24)

  1. 리튬 코발트 산화물의 입자를 포함하고,
    상기 리튬 코발트 산화물의 입자는 입자 내부에 Li/Co의 몰비가 1 미만인 리튬 결함의 리튬 코발트 산화물을 포함하는 것인 리튬 이차전지용 양극활물질.
  2. 제1항에 있어서,
    상기 리튬 결함의 리튬 코발트 산화물은 공간군이 Fd-3m에 속하며, 큐빅형 결정구조를 갖는 것인 리튬 이차전지용 양극활물질.
  3. 제1항에 있어서,
    상기 리튬 결함의 리튬 코발트 산화물은 하기 화학식 1의 제1리튬 코발트 산화물을 포함하는 것인 리튬 이차전지용 양극활물질.
    [화학식 1]
    Li1-aCoMxO2
    (상기 화학식 1에서, M은 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하고, a는 0<a≤0.05, x는 0≤x≤0.02 이다)
  4. 제1항에 있어서,
    상기 리튬 코발트 산화물의 입자는
    하기 화학식 1의 제1리튬 코발트 산화물을 포함하는 코어부; 및
    상기 코어부의 표면 상에 위치하며, 하기 화학식 2의 제2리튬 코발트 산화물을 포함하는 쉘부의 코어-쉘 구조를 갖는 것인 리튬 이차전지용 양극활물질.
    [화학식 1]
    Li1-aCoMxO2
    [화학식 2]
    LibCoM'yO2
    (상기 화학식 1 및 2에서, M 및 M'은 각각 독립적으로 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속원소를 포함하고, a, b, x 및 y는 0<a≤0.05, 1≤b≤1.2, 0≤x≤0.02 및 0≤y≤0.02이다)
  5. 제4항에 있어서,
    상기 제1리튬 코발트 산화물은 공간군이 Fd-3m에 속하며, 큐빅형 결정구조를 가지고,
    상기 제2리튬 코발트 산화물은 층상 결정구조를 갖는 것인 리튬 이차전지용 양극활물질.
  6. 제4항에 있어서,
    상기 코어부는 리튬 코발트 산화물의 입자의 중심에서부터 표면까지의 거리에 대해 0% 내지 99%의 거리에 해당하는 영역인 것인 리튬 이차전지용 양극활물질.
  7. 제4항에 있어서,
    상기 코어부와 쉘부는 1:0.01 내지 1:0.1의 두께비를 갖는 것인 리튬 이차전지용 양극활물질.
  8. 제4항에 있어서,
    상기 코어부 및 쉘부는 각각 독립적으로 리튬 코발트 산화물 입자의 중심으로 갈수록 감소하는 농도구배로 분포하는 리튬을 포함하는 것인 리튬 이차전지용 양극활물질.
  9. 제4항에 있어서,
    상기 코어부 내에서의 리튬의 농도구배 기울기와 쉘부 내에서의 리튬의 농도구배 기울기는 서로 동일하거나 또는 서로 다른 기울기값을 갖는 것인 리튬 이차전지용 양극활물질.
  10. 제4항에 있어서,
    상기 코어부 및 쉘부 중 적어도 하나는 해당 영역 내에서 하나의 농도값으로 존재하는 리튬을 포함하는 것인 리튬 이차전지용 양극활물질.
  11. 제4항에 있어서,
    상기 리튬 코발트 산화물 입자의 표면에서부터 중심으로 갈수록 리튬이 점진적으로 감소하는 농도구배로 분포하고,
    상기 화학식 1 및 2에서, a는 0<a≤0.05의 범위 내에서 입자 중심으로 갈수록 증가하고, b는 1≤b≤1.2의 범위 내에서 입자 중심으로 갈수록 감소하는 것인 리튬 이차전지용 양극활물질.
  12. 제1항에 있어서,
    3 내지 50㎛의 평균입경을 갖는 단일구조체(monolith)인 것인 리튬 이차전지용 양극활물질.
  13. 제1항에 있어서,
    충전 및 방전에 따른 전압 프로파일 측정시 4.0V 내지 4.2V의 전압 구간에서 변곡점을 갖는 것인 리튬 이차전지용 양극활물질.
  14. 코발트 원료물질 및 리튬 원료물질을 0<Li/Co몰비<1가 되도록 하는 양으로 혼합한 후 1차 열처리하여 제1리튬 코발트 산화물의 입자를 준비하는 단계, 및
    상기 제1리튬 코발트 산화물의 입자에 대해 코발트 원료물질 및 리튬 원료물질을 1≤Li/Co 몰비가 되도록 하는 양으로 혼합한 후 2차 열처리하는 단계
    를 포함하는 제1항에 따른 리튬 이차전지용 양극활물질의 제조방법.
  15. 제14항에 있어서,
    상기 제1리튬 코발트 산화물의 입자 준비 단계에서, 코발트 원료물질 및 리튬 원료물질의 혼합시 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속원소 함유 원료물질을 첨가하는 공정을 더 포함하는 리튬 이차전지용 양극활물질의 제조방법.
  16. 제14항에 있어서,
    상기 제1리튬 코발트 산화물의 입자 준비 단계는, 코발트 원료물질 및 리튬 원료물질을 0.95≤Li/Co몰비<1가 되도록 하는 양으로 혼합한 후 800℃ 내지 1100℃에서 열처리하여 실시되는 것인 리튬 이차전지용 양극활물질의 제조방법.
  17. 제14항에 있어서,
    상기 2차 열처리는 800℃ 내지 1100℃에서 실시되는 것인 리튬 이차전지용 양극활물질의 제조방법.
  18. 제14항에 있어서,
    상기 제1리튬 코발트 산화물에 대한 코발트 원료물질 및 리튬 원료물질의 혼합시 W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr, Ba, Ca, 및 Nb로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속원소 함유 원료물질을 첨가하는 공정을 더 포함하는 리튬 이차전지용 양극활물질의 제조방법.
  19. 제1항 내지 제13항 중 어느 한 항에 따른 양극활물질을 포함하는 리튬 이차전지용 양극.
  20. 제19항에 따른 양극을 포함하는 리튬 이차전지.
  21. 제20항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.
  22. 제21항에 따른 전지모듈을 포함하는 전지팩.
  23. 제22항에 있어서,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.
  24. 제23항에 있어서,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.
PCT/KR2015/010449 2014-10-02 2015-10-02 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 WO2016053054A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15846750.6A EP3203554B1 (en) 2014-10-02 2015-10-02 Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
CN201580054081.6A CN106797030B (zh) 2014-10-02 2015-10-02 锂二次电池用正极活性材料、其制备方法和包含其的锂二次电池
JP2017517259A JP6517330B2 (ja) 2014-10-02 2015-10-02 リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
US15/515,447 US10490816B2 (en) 2014-10-02 2015-10-02 Positive electrode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0133474 2014-10-02
KR20140133474 2014-10-02
KR10-2015-0138717 2015-10-01
KR1020150138717A KR101787199B1 (ko) 2014-10-02 2015-10-01 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2016053054A1 true WO2016053054A1 (ko) 2016-04-07

Family

ID=55630995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010449 WO2016053054A1 (ko) 2014-10-02 2015-10-02 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2016053054A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314238A (zh) * 2016-12-21 2019-02-05 株式会社Lg化学 金属掺杂的高电压用正极活性材料
CN110323420A (zh) * 2018-03-29 2019-10-11 罗伯特·博世有限公司 具有稳定阴极活性材料的电池
CN112204773A (zh) * 2019-01-24 2021-01-08 株式会社Lg化学 锂二次电池
CN107799733B (zh) * 2016-09-01 2021-05-18 株式会社Lg 化学 二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
US11183691B2 (en) 2016-12-21 2021-11-23 Lg Chem, Ltd. Metal-doped positive electrode active material for high voltage
CN116031398A (zh) * 2021-10-26 2023-04-28 艾可普罗 Bm 有限公司 正极活性物质及包含其的锂二次电池
WO2024113942A1 (zh) * 2022-12-01 2024-06-06 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、二次电池和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217586A (ja) * 2002-01-25 2003-07-31 Nec Tokin Tochigi Ltd リチウムイオン二次電池
KR20120004340A (ko) * 2010-07-06 2012-01-12 삼성에스디아이 주식회사 니켈계 양극 활물질과 그 제조방법 및 이를 이용한 리튬 전지
KR20140067508A (ko) * 2012-11-26 2014-06-05 삼성정밀화학 주식회사 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217586A (ja) * 2002-01-25 2003-07-31 Nec Tokin Tochigi Ltd リチウムイオン二次電池
KR20120004340A (ko) * 2010-07-06 2012-01-12 삼성에스디아이 주식회사 니켈계 양극 활물질과 그 제조방법 및 이를 이용한 리튬 전지
KR20140067508A (ko) * 2012-11-26 2014-06-05 삼성정밀화학 주식회사 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI, S. ET AL.: "Chemical synthesis and properties of spinel Li1 -xCo2O4-delta", JOURNAL OF SOLID STATE CHEMISTRY, vol. 164, no. 2, 2002, pages 332 - 338, XP029584981, DOI: doi:10.1006/jssc.2001.9480 *
GUMMOW, R. J. ET AL.: "Spinel versus layered structures for lithium cobalt oxide synthesised at 400 °C", MATERIALS RESEARCH BULLETIN, vol. 28, no. 5, 1993, pages 235 - 246, XP022802182, DOI: doi:10.1016/0025-5408(93)90157-9 *
VAN DER VEN, A. ET AL.: "Electrochemical properties of spinel LixCoO2: A first- principles investigation", PHYSICAL REVIEW B, vol. 59, no. 2, 1999, pages 742 - 749, XP055372345 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799733B (zh) * 2016-09-01 2021-05-18 株式会社Lg 化学 二次电池用正极活性材料、其制备方法及包含其的正极和锂二次电池
CN109314238A (zh) * 2016-12-21 2019-02-05 株式会社Lg化学 金属掺杂的高电压用正极活性材料
US11183691B2 (en) 2016-12-21 2021-11-23 Lg Chem, Ltd. Metal-doped positive electrode active material for high voltage
CN110323420A (zh) * 2018-03-29 2019-10-11 罗伯特·博世有限公司 具有稳定阴极活性材料的电池
CN112204773A (zh) * 2019-01-24 2021-01-08 株式会社Lg化学 锂二次电池
CN112204773B (zh) * 2019-01-24 2024-03-22 株式会社Lg新能源 锂二次电池
CN116031398A (zh) * 2021-10-26 2023-04-28 艾可普罗 Bm 有限公司 正极活性物质及包含其的锂二次电池
WO2024113942A1 (zh) * 2022-12-01 2024-06-06 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、二次电池和用电装置

Similar Documents

Publication Publication Date Title
KR101787199B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101777466B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101762508B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2016053054A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102204938B1 (ko) 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190032126A (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019235886A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
KR102178876B1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022092710A1 (ko) 리튬 이차전지용 음극 활물질, 음극 및 리튬 이차전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846750

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015846750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15515447

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017517259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE