WO2012006736A2 - Method of material processing by laser filamentation - Google Patents
Method of material processing by laser filamentation Download PDFInfo
- Publication number
- WO2012006736A2 WO2012006736A2 PCT/CA2011/050427 CA2011050427W WO2012006736A2 WO 2012006736 A2 WO2012006736 A2 WO 2012006736A2 CA 2011050427 W CA2011050427 W CA 2011050427W WO 2012006736 A2 WO2012006736 A2 WO 2012006736A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- laser
- filament
- pulses
- laser beam
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000000463 material Substances 0.000 title claims description 41
- 238000012545 processing Methods 0.000 title abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 238000012986 modification Methods 0.000 claims abstract description 42
- 230000004048 modification Effects 0.000 claims abstract description 42
- 239000011521 glass Substances 0.000 claims description 88
- 230000003287 optical effect Effects 0.000 claims description 24
- 238000002679 ablation Methods 0.000 claims description 23
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 239000010432 diamond Substances 0.000 claims description 9
- 229910003460 diamond Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000000018 DNA microarray Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 238000004377 microelectronic Methods 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 3
- 230000035622 drinking Effects 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 230000007017 scission Effects 0.000 claims description 3
- 239000005391 art glass Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 25
- 230000006378 damage Effects 0.000 abstract description 22
- 230000008569 process Effects 0.000 abstract description 16
- 238000000137 annealing Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000009877 rendering Methods 0.000 abstract 1
- 239000012780 transparent material Substances 0.000 description 16
- 230000003993 interaction Effects 0.000 description 15
- 230000008901 benefit Effects 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000003754 machining Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 9
- 238000000608 laser ablation Methods 0.000 description 9
- 238000009825 accumulation Methods 0.000 description 7
- 230000001052 transient effect Effects 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 230000005374 Kerr effect Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 239000002419 bulk glass Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000005340 laminated glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000000960 laser cooling Methods 0.000 description 2
- 230000009021 linear effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009022 nonlinear effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- -1 lll-V Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0619—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F3/00—Severing by means other than cutting; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/0222—Scoring using a focussed radiation beam, e.g. laser
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/0025—Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/2633—Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/30—Organic material
- B23K2103/42—Plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/54—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
- Y10T225/12—With preliminary weakening
Definitions
- the present disclosure is related to methods of laser processing of materials. More particularly, the present disclosure is related to methods of singulation and/or cleaving of wafers, substrates, and plates.
- the singulation, dicing, scribing, cleaving, cutting, and facet treatment of wafers or glass panels is a critical processing step that typically relies on diamond cutting, with speeds of 30 cm/sec for flat panel display as an example.
- a mechanical roller applies stress to propagate cracks that cleave the sample. This process creates poor quality edges, microcracks, wide kerf width, and substantial debris that are major disadvantages in the lifetime, quality, and reliability of the product, while also incurring additional cleaning and polishing steps.
- the cost of de-ionized water to run the diamond scribers are more than the cost of ownership of the scriber and the technique is not environmentally friendly since water gets contaminated and needs refining that itself adds the costs.
- Laser ablative machining is an active development area for singulation, dicing, scribing, cleaving, cutting, and facet treatment, but has disadvantages, particularly in transparent materials, such as slow processing speed, generation of cracks, contamination by ablation debris, and moderated sized kerf width. Further, thermal transport during the laser interaction can lead to large regions of collateral thermal damage (i.e. heat affected zone). Laser ablation processes can be dramatically improved by selecting lasers with wavelengths that are strongly absorbed by the medium (for example, deep UV excimer lasers or far-infrared C02 laser). However, the above disadvantages cannot be eliminated due to the aggressive interactions inherent in this physical ablation process.
- laser ablation can also be improved at the surface of transparent media by reducing the duration of the laser pulse. This is especially advantageous for lasers that are transparent inside the processing medium.
- the high laser intensity induces nonlinear absorption effects to provide a dynamic opacity that can be controlled to accurately deposit appropriate laser energy into a small volume of the material as defined by the focal volume.
- the short duration of the pulse offers several further advantages over longer duration laser pulses such as eliminating plasma reflections and reducing collateral damage through the small component of thermal diffusion and other heat transport effects during the much shorter time scale of such laser pulses. Femtosecond and picosecond laser ablation therefore offer significant benefits in machining of both opaque and transparent materials.
- machining of transparent materials with pulses even as short as tens to hundreds of femtosecond is also associated with the formation of rough surfaces and microcracks in the vicinity of laser-formed hole or trench that is especially problematic for brittle materials like glasses and optical crystals. Further, ablation debris will contaminate the nearby sample and surrounding surfaces.
- a kerf-free method of cutting or scribing glass and related materials relies on a combination of laser heating and cooling, for example, with a C02 laser and a water jet.
- a C02 laser and a water jet For example, with a C02 laser and a water jet.
- U. S. Patent # 5,609,284 Kondratenko); US 6787732 UV laser (Xuan)
- high tensile stresses are generated that induces cracks deep into the material, that can be propagated in flexible curvilinear paths by simply scanning the laser- cooling sources across the surface.
- thermal-stress induced scribing provides a clean splitting of the material without the disadvantages of a mechanical scribe or diamond saw, and with no component of laser ablation to generate debris.
- the method relies on stress-induced crack formation to direct the scribe and requires [WO/2001 /032571 LASER DRIVEN GLASS CUT-INITIATION] a mechanical or laser means to initiate the crack formation.
- Short duration laser pulses generally offer the benefit of being able to propagate efficiently inside transparent materials, and locally induce modification inside the bulk by nonlinear absorption processes at the focal position of a lens.
- a 100-kHz Tksapphire chirped-pulse-amplified laser of frequency-doubled 780 nm, 300 fs, 100 MJ output was focused into the vicinity of the rear surface of a glass substrate to exceed the glass damage threshold, and generate voids by optical breakdown of the material. The voids reach the back surface due to the high repetition rate of the laser.
- a method of preparing a substrate for cleavage comprising the steps of: irradiating the substrate with one or more pulses of a focused laser beam, wherein the substrate is transparent to the laser beam, and wherein the one or more of pulses have an energy and pulse duration selected to produce a filament within the substrate; translating the substrate relative to the focused laser beam to irradiate the substrate and produce an additional filament at one or more additional locations; wherein the filaments comprise an array defining an internally scribed path for cleaving the substrate.
- the method preferably includes the step of cleaving the substrate.
- the substrate is preferably translated relative to the focused laser beam with a rate selected to produce a filament spacing on a micron scale.
- Properties of the one or more laser pulses are preferably selected to provide a sufficient beam intensity within the substrate to cause self-focusing of the laser beam.
- the one or more pulses may be provided two or more times with a prescribed frequency, and the substrate may be translated relative to the focused laser beam with a substantially constant rate, thus providing a constant spacing of filaments in the array.
- the one or more pulses include a single pulse or a train of two or more pulses.
- a time delay between successive pulses in the pulse train is less than a time duration over which relaxation of one or more material modification dynamics occurs.
- a pulse duration of each of the one or more pulses is preferably less than about 100 ps, and more preferably less than about 10 ps.
- a location of a beam focus of the focused laser beam may be selected to generate the filaments within the substrate, wherein at least one surface of the substrate is substantially free from ablation.
- a location of a beam focus of the focused laser beam may be selected to generate a V groove within at least one surface of the substrate.
- the substrate may be a glass or a semiconductor and may be selected from the group consisting of transparent ceramics, polymers, transparent conductors, wide bandgap glasses, crystals, crystal quartz, diamond, and sapphire.
- the substrate may comprise two or more layers, and wherein a location of a beam focus of the focused laser beam is selected to generate filaments within at least one of the two or more layers.
- the multilayer substrate may comprise multi-layer flat panel display glass, such as a liquid crystal display (LCD), flat panel display (FPD), and organic light emitting display (OLED).
- the substrate may also be selected from the group consisting of autoglass, tubing, windows, biochips, optical sensors, planar lightwave circuits, optical fibers, drinking glass ware, art glass, silicon, lll-V semiconductors, microelectronic chips, memory chips, sensor chips, light emitting diodes (LED), laser diodes (LD), and vertical cavity surface emitting laser (VCSEL).
- LCD liquid crystal display
- FPD flat panel display
- OLED organic light emitting display
- the substrate may also be selected from the group consisting of autoglass, tubing, windows, biochips, optical sensors, planar lightwave circuits, optical fibers, drinking glass ware, art glass,
- a location of a beam focus of the focused laser beam may be selected to generate filaments within two or more of the two or more layers, wherein the focused laser beam generates a filament in one layer, propagates into at least one additional layer, and generates a filament is the at least one additional layer.
- the location of a beam focus of the focused laser beam may be first selected to generate filaments within a first layer of the two or more layers, and the method may further comprise the steps of: positioning a second beam focus within a second layer of the two or more layers; irradiating the second layer and translating the substrate to produce a second array defining a second internally scribed path for cleaving the substrate.
- the substrate may be irradiated from an opposite side relative to when irradiating the first layer.
- a position of the second beam focus may be laterally translated relative a position of the beam focus when irradiating the first layer.
- a second focused laser beam may be used to irradiate the second layer.
- Figure 1 presents (a) front and (b) side views of the laser filamentation scribing arrangement for scribing transparent materials.
- Figure 2 presents a front view of (a) laser filamentation with V groove scribing of transparent substrate and (b) V groove scribing with suppressed filament formation.
- Figure 3 illustrates laser scribing of transparent material with internal filament formation with V groove formation on the top and bottom surface applying reflective element with focusing arrangement.
- Figure 4 shows laser scribing using two focusing apparatus applied from top and bottom surface.
- Figure 5 presents a side view of a scribed substrate, where the top, bottom or both edges can be chamfered.
- Figure 6 presents a focusing arrangement of delivering multiple
- converging laser beams for creating multiple filaments simultaneously in a transparent substrate at different physical positions, directions, angles, and depths, such that the filaments are overlapping to enable the single-step cleaving of beveled facets or other facet shapes.
- Figure 7 presents three different focusing arrangements for laser filamentation scribing (a) a top transparent substrate without damaging top surface of a bottom substrate, (b) the bottom substrate from a top location, and (c) a double plate assembly which can be scribed separated, or laser scribed simultaneously, forming filaments in both substrates without optical breakdown in the medium between the plates so that the double plate assembly can be separated along similar curvilinear or straight lines.
- Figure 8 illustrates laser scribing of a double layer apparatus including two transparent substrates using two focusing beams. Each focus can be adjusted to form a filament, V groove or a combination thereof.
- Figure 9 provides top and side views of a double layer glass after scribing where (a) only internal filaments are formed, (b) internal filaments and top surface V grooves are formed, and (c) only a V groove is formed on the top surfaces of both plates.
- Figure 10 illustrates scribing laminated glass from top and bottom side with and without offset.
- Figure 1 1 illustrates a method of laser bursts filament scribing of stacks of very thin substrates.
- Figure 12 is an optical microscope image of a glass plate viewed through a polished facet prior to mechanical cleaving, showing laser filamentation tracks formed under identical laser exposure with laser focusing by the lens positioned near the lower (a), middle (b) and top (c) regions of the glass plate.
- Figure 13 shows a microscope image of glass imaged at the top (a) and bottom (b) surfaces prior to mechanical cleaving, with a track of laser filaments written inside the bulk glass.
- Figure 14 shows facet edge views of glass plates after mechanical cleaving in which a track of laser filaments was formed at moderate (a) and fast (b) scanning speed during the laser exposure.
- Figure 15 shows facet edge microscope views comparing the laser modification in 1 mm thick glass formed with an identical number of equal-energy laser pulses applied at (a) low repetition rate, (b) and in single pulse high energy low repetition rate pulse trains. Single pulse has energy of all pulses in one burst train.
- Figure 16 provides microscope images of scribed glass applying V groove and filament with high repetition rate laser, showing: (a) side view, (b) top view and (c) front view.
- Figure 17 is a front view of three different V groove formation using high repetition rate laser.
- Figure 18 provides an image showing the scribing of flat panel display glass. Two laminated glass with 400 um thickness are scribed simultaneously; a) side view and b) front view.
- exemplary means “serving as an example, instance, or illustration,” and should not be construed as preferred or
- transparent means a material that is at least partially transparent to an incident optical beam. More preferably, a transparent substrate is characterized by absorption depth that is sufficiently large to support the generation of an internal filament by an incident beam according to embodiments described below.
- Figure 1 presents a schematic arrangement shown in (a) front and (b) side views for forming laser filaments in a transparent substrate.
- Short duration laser pulses 10 are focused with objective lens 12 inside transparent substrate 14.
- the laser pulse, or sequence of pulses, or burst- train of pulses a laser filament 18 is generated within the substrate, producing internal microstructural modification with a shape defined by the laser filament volume.
- a continuous trace of filament tracks 20 are permanently inscribed into the glass volume as defined by the curvilinear or straight path followed by the laser in the sample.
- the filaments are produced by weak focusing, high intensity short duration laser light, which can self-focus by the nonlinear Kerr effect, thus forming a so-called filament.
- This high spatio-temporal localization of the light field can deposit laser energy in a long narrow channel, while also being associated with other complex nonlinear propagation effects such as white light generation and formation of dynamic ring radiation structures surrounding this localized radiation.
- the filamentation process is believed to depend mainly on two competing processes.
- the spatial intensity profile of the laser pulse acts like a focusing lens due to the nonlinear optical Kerr effect. This causes the beam to self-focus, resulting in an increase of the peak intensity. This effect is limited and balanced by increasing diffraction as the diameter decreases until a stable beam waist diameter is reached that can propagate distances many times longer than that expected from a simple calculation of the confocal beam parameter (or depth of focus) from this spot size.
- Optical breakdown is the result of a tightly focused laser beam inside a transparent medium that forms a localized dense plasma around the geometrical focus.
- the plasma generation mechanism is based on initial multi-photon excitation of electrons, followed by inverse Bremsstrahlung, impact ionization, and electron avalanche processes. Such processes
- laser filamentation offers a new direction for internal laser processing of transparent materials that can avoid ablation or surface damage, dramatically reduce kerf width, avoid crack generation, and speed processing times for such scribing applications.
- high repetition rate lasers defines a new direction to enhance the formation of laser beam filaments with heat accumulation and other transient responses of the material on time scales faster than thermal diffusion out of the focal volume (typically ⁇ 10 microseconds).
- embodiments disclosed herein harnesses short duration laser pulses (preferably with a pulse duration less than about 100 ps) to generate a filament inside a transparent medium.
- the method avoids dense plasma generation such as through optical break down that can be easily produced in tight optical focusing conditions as typically applied and used in femtosecond laser machining.
- weak focusing which is preferential, the nonlinear Kerr effect is believed to create an extended laser interaction focal volume that greatly exceeds the conventional depth of focus, overcoming the optical diffraction that normally diverges the beam from the small self-focused beam waist.
- a filamentation array is formed in the transparent substrate, only small mechanical pressure is required to cleave the substrate into two parts on a surface shape that is precisely defined by the internal laser-filamentation curtain.
- the laser-scribed facets typically show no or little cracking and microvoids or channels are not evident along the scribed zone.
- simple changes to the laser exposure or sample focusing conditions can move the filament to the surface and thus induce laser ablation machining if desired, as described further below. This assists in creating very sharp V groves on the surface of the substrate.
- V grooves To scribe very thin substrates (less than 400 urn thick) creating a sharp V groove is desired.
- Other common ablation techniques generally create U grooves or rounded V grooves.
- V grooves also can form on both top and bottom surface of the sample making scribed edges chamfered.
- the present method entails lateral translation of the focused laser beam to form an array of closely positioned filament-induced modification tracks.
- This filament array defines a pseudo-continuous curtain of modification inside the transparent medium without generating laser ablation damage at either of the top or bottom surfaces.
- This curtain renders the glass plate highly susceptible to cleaving when only very slight pressure (force) is applied, or may spontaneously cleave under internal stress.
- the cleaved facets are devoid of ablation debris, show minimal or no microcracks and microvents, and accurately follow the flexible curvilinear or straight path marked internally by the laser with only very small kerf width as defined by the self-focused beam waist.
- Laser filaments formed by such burst trains offer significant advantage in lowering the energy threshold for filament formation, increasing the filament length to hundreds of microns or several millimeters, thermally annealing of the filament modification zone to minimize collateral damage, improving process reproducibility, and increasing the processing speed compared with the use of low repetition rate lasers.
- there is insufficient time i.e. 10 nsec to 1 ⁇
- time i.e. 10 nsec to 1 ⁇
- the temperature in the interaction volume rises during subsequent laser pulses, leading to laser interactions with more efficient heating and less thermal cycling.
- brittle materials become more ductile to mitigate crack formation.
- Other transient effects include temporary defects and plasma that survive from previous laser pulse interactions. These transient effects then serve to extend the filamentation process to long interaction lengths, and/or improve absorption of laser energy in subsequent pulses.
- the laser filamentation method can be tuned by various methods to generate multi-filament tracks broken with non-filamenting zones through repeated cycles of Kerr-lens focusing and plasma defocusing.
- Such multi-level tracks can be formed in a thick transparent sample, across several layers of glasses separated by transparent gas or other transparent materials, or in multiple layers of different transparent materials.
- By controlling the laser exposure to only form filaments in the solid transparent layers one can avoid ablation and debris generation on each of the surfaces in the single or multi-layer plates. This offers significant advantages in manufacturing, for example, where thick glasses or delicate multilayer transparent plates must be cleaved with smooth and crack free facets.
- the filamentation method applies to a wide range of materials that are transparent to the incident laser beam, including glasses, crystals, selected ceramics, polymers, liquid-encapsulated devices, multi-layer materials or devices, and assemblies of composite materials.
- the spectral range of the incident laser beam is not limited to the visible spectrum, but represents any material that is transparent to a laser wavelength also in the vacuum ultraviolet, ultraviolet, visible, near- infrared, or infrared spectra.
- silicon is transparent to 1500 nm light but opaque to visible light.
- laser filaments may be formed in silicon with short pulse laser light generated at this 1500 nm wavelength either directly (i.e. Erbium-doped glass lasers) or by nonlinear mixing (i.e. optical parametric amplification) in crystals or other nonlinear medium.
- the laser filament may result in the generation of white light, which without being limited by theory, is believed to be generated by self phase modulation in the substrate and observed to emerge for the laser filamentation zone in a wide cone angle 16 after the filament ends due to factors such reduced laser pulse energy or plasma defocusing.
- the length and position of the filament is readily controlled by the lens focusing position, the numerical aperture of objective lens, the laser pulse energy, wavelength, duration and repetition rate, the number of laser pulses applied to form each filament track, and the optical and thermo-physical properties of the transparent medium.
- these exposure conditions can be manipulated to create sufficiently long and strong filaments to nearly extend over the full thickness of the sample and end without breaking into the top or bottom surfaces. In this way, surface ablation and debris can be avoided at both surfaces and only the interior of the transparent substrate is thus modified.
- the laser filament can terminate and cause the laser beam to exit the glass bottom surface at high divergence angle 16 such that laser machining or damage is avoided at the bottom surface of the transparent plate.
- Figure 2 presents a schematic arrangement shown in a side view for (a) forming laser filaments 20 with surface V groove formation 22 (b) V groove formation with suppressed filament formation.
- laser processing can be arranged such that filaments forms inside the transparent material and very sharp V groove that is the result of ablation from on top of the surface.
- filaments can be suppressed or completely removed.
- the method is employed for the scribing and cleaving of optical display glass substrates such as flat panel displays.
- a flat panel display is the sandwich of two glasses substrates.
- the bottom glass substrate may be printed with circuits, pixels, connectors, and/or transistors, among other electrical elements.
- a gap between the substrates is filled with liquid crystal materials.
- the top and left edge of the LCD can be scribed without any offset but the right and bottom edge typically has an offset of about 5 mm which is call the pad area, and all electronics connected through this region to the LCD elements.
- This area is the source of a major bottleneck that limits using high power lasers for flat panel display laser scribing, because during top layer scribing, all the circuitry on the bottom layer may be damaged.
- the inventors placed a top glass substrate on the surface of a coated mirror. During laser filament scribing of the top glass of a double glass plate, it is preferably to adjust the location of filaments formed within the top glass plate so as to avoid damage on the bottom layer that generally contains a metal coating (as described above). The results from this experiment highlighted two important points.
- laser scribing can be achieved without damaging the coating of the bottom substrate pad area, and secondly, when filaments located in a special position closer to the bottom surface, reflection from the bottom metal surface may machine or process the bottom surface of the top layer, creating a V groove on the bottom.
- the arrangement of Figure 4 may be employed to create sharp V grooves on the top and bottom layer of the glass.
- both edges are chamfered through laser scribing via the addition of a second beam 28 and objective 30, and no need for further chamfering or grinding that would otherwise necessitate washing and drying.
- the side and front view of the cleaved sample is shown in Figure 5, where the surface of V groove 32 is shown after cleaving.
- Figure 6 presents an example of a focusing arrangement for delivering multiple converging laser beams into a transparent plate for creating multiple filaments simultaneously.
- the beams 10 and 34 maybe separated from a single laser source using well know beam splitter devices and focused with separate lenses 12 and 36 as shown.
- diffractive optics, multi-lens systems and hybrid beam splitting and focusing systems may be employed in
- filamentation modification tracks 18 are created in parallel in straight or curvilinear paths such that multiple parts of the plate can be laser written at the same time and subsequently scribed along the multiple modification tracks for higher overall processing speed.
- Figure 7 presents a schematic arrangement for two different focusing conditions for laser filamentation writing that confines the array 38 of modification tracks 40 solely in a top transparent substrate 42 ( Figure 7(a)) as a first laser exposure step, and followed sequentially by filamentation writing that solely confines the array 44 of modification tracks 46 inside a lower transparent plate 48 ( Figure 7(b)) in a second laser pass.
- the laser exposure is tuned to avoid ablation or other laser damage and generation of ablation debris on any of the four surfaces during each laser pass. During scribing of the top plate, no damage occurs in the bottom layer, and visa versa.
- One advantage of this one-sided processing is that the assembly of transparent plates does not need to be flipped over to access the second plate 48 due to the transparency of the first plate to the converging laser beam 50. For example, by position the 12 lens closer to the top glass plate 42 in the second pass ( Figure 7b), the filamentation is not initiated in the first plate and near full laser energy enters the second plate where filamentation is then initiated.
- a second advantage of this approach is that the two plates can be separated along similar lines during the same scribing step which is attractive particularly for assembled transparent plates in flat panel display. This method is extensible to multiple transparent plates.
- Figure 7(c) shows an arrangement for inducing laser filamentation simultaneously in two or more transparent plates 42 and 48.
- This method enables a single pass exposure of both transparent plates to form near-identical shapes or paths of the filamentation modification tracks 38 and 44.
- laser parameters are adjusted to create a first filament 38 or array of filament tracks 40 within the top plate 42, such that the filamentation terminates prior to reaching the bottom surface of the top plate, for example, by plasma de-focusing.
- the diverging laser beam is sufficiently expanded after forming the first filament track to prevent ablation, optical breakdown, or other damage to bottom surface of the top plate, the medium between the two plates, and the top surface of the bottom plate 48.
- a single laser beam simultaneously forms two or more separated filaments 38 and 44 that create parallel modification tracks 40 and 46 in two or more stacked plates at the same time.
- an assembly of two or more transparent plates can by scribed or separated along the near-parallel filamentation tracks and through all transparent plates in one cleaving step.
- the medium between the transparent plates must have good transparency and may consist of air, gas vacuum, liquid, solid or combination thereof. Alternatively, the transparent plates may be in physical or near-physical contact without any spacing. This method is extensible to filament processing in multiply stacked transparent plates.
- Figure 8 provides another embodiment of the multibeam filamentation scribing method (shown initially in Figure 4) for processing double or multiple stacked or layer transparent plates and assemblies.
- Two converging laser beams are presented to the plate assembly 42 and 48 for creating independent and isolated filaments 38 and 44 in physically separated or contacted transparent plates.
- Laser exposure conditions are adjusted for each laser beam 10 and 28 (i.e. by vertical displacement of lenses 12 and 30) to localize the filament in each plate.
- the filament tracks are then formed in similar or off-set positions with similar or different angles and depths.
- the filamentation tracks may be cleaved simultaneously such that the stack or assembly of optical plates is separated as one unit in a batch process.
- the upper and lower beams may be provided from a common optical source using conventional beam splitter or may original from two different laser sources.
- the upper and lower beams may be aligned along a common axis, or spatially offset.
- the relative spatial positioning of the two beams is configurable.
- Figure 9(a) illustrates a method of processing double layer glass (formed from plates 42 and 48) in which each layer is processed in two locations, but where one pair of filaments 52 and 54 is aligned and another pair of filaments 56 and 58 are offset laterally from each other.
- Such an arrangement can be obtained by using the method illustrated in Figure 8, where each plate is processed by a separate laser beam.
- the filaments may be processed using one of the methods illustrated in Figure 7.
- Figure 9(b) shows a similar arrangement in which a filament is formed in both the upper 42 and 48 plates with groove formation (60, 62, 64 and 66) on the top of each glass, where the method illustrated in Figure 7 is preferably employed.
- Figure 9(c) illustrates a case where only V grooves 68, 70, 72 and 74 are developed on the surface of each plate 42 and 48. Note that V groove or filament for the bottom glass can be formed in bottom surface using similar apparatus as shown in Figure 4 and Figure 8.
- Figure 10 shows the resulting formation of filaments and V-grooves in double layer glass after scribing using the method as shown in Figure 8.
- the upper plate is scribed from the top and the lower plate is scribed from bottom, where V-grooves 76 and 78 are formed.
- a V groove, a filament, or a combination thereof may be formed.
- upper and lower filaments may be offset, where the filament 56 and V grove 64 in the upper plate is spatially offset relative to the filament 58 and V groove 78 in the lower plate.
- upper and lower filaments may be aligned, where the filament 52 and V grove 60 in the upper plate is spatially aligned with filament 54 and V groove 76 in the lower plate. In such a
- cleaving of top layer is occurs with relative ease, but the inventors have determined that in some cases, the bottom layer warrants careful attention and it may be necessary to properly adjust a cleaving roller prior to the cleaving step. Those skilled in the art will readily appreciate that adjustment may be made by selecting a roller configuration that yields the desired cleave quality.
- New approaches in photonics industry involve assemblies of multiple layers of transparent plates that form a stack.
- touch screen LCDs and 3D LCDs employ three layers of glass.
- the parallel processing of such a multi-layer stack 80 is shown in Figure 1 1 , where the scribe line 82 is shown as being provided to each plate in the stack.
- Figures 7(a) and 7(b) multiple plates in such a stack may be processed by varying the working distance of the objective 12, which enables multiple plates within the stack to be individually scribed. Scribing can be done from both surfaces (similar to the method shown in Figure 7). Only a top focusing apparatus is shown in the specific case provded here.
- a glass plate was laser processed using a pulsed laser system with an effective wavelength of about 800 nm, producing 100 fs pulses at a repetition rate of 38 MHz.
- the laser wavelength was selected to be within the infrared spectral region, where the glass plate is transparent.
- Focusing optics were selected to provide a beam focus of approximately 10 ⁇ .
- the laser system was configured to apply a pulse train of 8 pulses, where the burst of pulses forming the pulse train occurred at a repetition rate of 500 Hz.
- Various configurations of aforementioned embodiments were employed, as described further below.
- Figures 12 (a)-(c) shows microscope images in a side view of 1 mm thick glass plates viewed through a polished edge facet immediately after laser exposure. The plate was not separated along the filament track for this case in order to view the internal filament structure. As noted above, a single burst of 8 pulses at 38 MHz repetition rate was applied to form each filament track.
- the burst train was presented at 500 Hz repetition rate while scanning the sample at a moderate speed of 5 mm/s, such that filament tracks were separated into individual tracks with a 10 ⁇ period.
- the filamentation modification tracks were observed to have a diameter of less than about 3 ⁇ , which is less than the theoretical focal spot size of 10 ⁇ for this focusing arrangement, evidencing the nonlinear self focusing process giving rise to the observed filamentation.
- the geometric focus of the laser beam in the sample was varied by the lens-to-sample displacement to illustrate the control over the formation of the filaments within the sample.
- the beam focus was positioned near the bottom of the plate, while in Figures 12(b) and 12(c), the beam focus was located near the middle and top of the plate, respectively.
- Figures 12(a) and 12(b) show multiple layers of filament tracks (84, 86, 88 and 90) formed through the inside of the glass plate.
- the filaments are produced at multiple depths due to defocusing and re-focusing effects as described above.
- Figure 12 thus demonstrates the controlled positioning of the filamentation tracks relative to the surfaces of the plate.
- the filaments were formed in the top half of the plate and do not extend across the full thickness of the plate.
- Figure 12(c) where the beam focus was positioned near the top of the plate, relative short filaments 92 of approximately 200 ⁇ are formed in the center of the plate, and top surface ablation and ablation debris are evident.
- a preferably form for scribing is depicted in Figure 12(b) where approximately 750 ⁇ long bands of filaments extend through most of the transparent plate thickness without reaching the surfaces. In this domain, ablative machining or other damage was not generated at both of these surfaces.
- suitable values for the array spacing and filament depth will depend on the material type and size of a given plate. For example, two plates of equal thickness but different material composition may have different suitable values for the array spacing and filament depth. Selection of suitable values for a given plate material and thickness may be achieved by varying the array spacing and filament depth to obtain a desired cleave quality and required cleave force.
- One specific advantage of the present method is that the width of the heat affected zone on the top and bottom surfaces look the approximately the same. This is an important characteristic of the present method, since the filamentation properties remain substantially confined during formation, which is desirable for accurately cleaving a plate.
- Figure 13(a) and 13(b) presents optical microscope images focused respectively on the top and bottom surface of the glass sample, as recorded for the sample shown in Figure 12(b). In between these surfaces, the internal filamentation modification appears unfocused as expected when the modification zone is physically more than 100 ⁇ from either surface due to the limited focal depth of the microscope. The images reveal the complete absence of laser ablation, physical damage or other modification at each of the surfaces while only supporting the internal formation of along laser modification track.
- the width of the filamentation modification zone was observed to be about 10 ⁇ when the microscope was focused internally within the glass. This width exceeds the 3- ⁇ modification diameter seen in Figure 12 for isolated laser filaments and is ascribed to differing zones of narrow high contrast filament tracks (visible in Figure 12) that have been shrouded in a lower contrast modification zone (not visible in Figure 12). Without intending to be limited by theory, this low contrast zone that is ascribed to an accumulative modification process (i.e. heat affected zone) is induced by the multiple pulses in the burst.
- the filamentation modification zone maintains a near constant 10 ⁇ width through its full depth range of hundred's of microns in the present glass sample that clearly demonstrates the self-focusing phenomenon.
- the filamentation modification presents a 10 ⁇ 'internal' kerf width or heat affected zone for such processing.
- the absence of damage or physical changes at the surface indicate that a much smaller or near-zero kerf width is practically available at the surface where one typically only finds other components mounted (paint, electronics, electrodes, packaging, electro-optics, MEMS, sensors, actuators, microfluidics, etc.).
- a near-zero kerf width at the surface of transparent substrates or wafers is a significant processing advantage to avoid damage or modification to such components during laser processing. This is one of the important properties of the present disclosure for laser filamentation scribing as the physical modification may be confined inside the bulk transparent medium and away from sensitive components or coatings.
- Figure 14(a) shows the end facet view after the sample was mechanically cleaved along the near continuous laser-formed filamentation plane. Under these conditions, only very slight force or pressure is required to induce a mechanical cleave. The cleave accurately follows the filament track and readily propagates the full length of the track to separate the sample. The resulting facet is very flat and with sharply defined edges that are free of debris, chips, and vents.
- the optical morphology shows smooth cleavage surfaces interdispersed with rippled structures having feature sizes of tens of microns that are generally smooth and absent of cracks.
- the smooth facet regions correspond to regions where little or no filamentation tracks were observable in views such as shown in Figure 12.
- Sharply defined top and bottom surface edges may be obtained by controlling the laser exposure to confine the filament formation entirely within the glass plate and prevent ablation at the surfaces.
- the laser filamentation interaction here generates high stress gradients that form along an internal plane or surface shape defined by the laser exposure path. This stress field enables a new means for accurately scribing transparent media in paths controlled by the laser exposure.
- Figure 14(b) presents a side view optical image of the 1 mm thick glass sample shown in Figure 12(b) after cleaving. Due to the faster scan speed applied during this laser exposure, less over stress was generated due to the coarse filament spacing (10 ⁇ ). As a result, more mechanical force was necessary to separate the plate.
- the cleaved facet now includes microcracks, vents, and more jagged or coarse morphology than as seen for the case in Figure 14(a) with slower scanning speed.
- Such microcracks are less desirable in many applications as the microcracks may seed much large cracks under packaging or subsequent processing steps, or by thermal cycling in the application field that can prematurely damage the operation or lifetime of the device.
- Figure 15(a) shows a microscope image of a cleaved glass plate of 1 mm thickness in which filaments were formed at a low 500 Hz repetition rate (2 ms between laser pulses). The scanning rate was adjusted to deliver 8 pulses per interaction site with each pulse having the same 40 ⁇ pulse energy as used in the above burst-train examples. The total exposure per single filament was therefore 320 ⁇ in both cases of burst ( Figures 12-14) and non-burst ( Figure 15) beam delivery. The long time separation between pulses in the non-burst case ( Figure 15(a)) ensures relaxation of all the material modification dynamics prior to the arrival of the next laser pulse. This precludes any filamentation enhancement effect as heat accumulation and other transient effects are fully relaxed in the long interval between pulses.
- Figure 15(b) shows an edge facet image of a similar glass plate in which filaments were each formed in the low-repetition rate of 500 Hz at 320 ⁇ energy per pulse (i.e. 320 ⁇ for burst train: single pulse in the train).
- Much longer filaments (-180 ⁇ ) than in the low-repetition rate 8-pulse exposure of Figure 15(a) is observed.
- the filaments are deeply buried within the bulk glass so too avoid surface ablation or other laser damage. Nonetheless, the observed filament length is smaller than that observed for burst filamentation at a similar mean fluence.
- a common rapid scan speed was applied to provide a broad spacing of the filament array for observational purposes.
- filaments are produced by providing a burst of pulses for generating each filament, where each burst comprises a series of pulses provided with a relative delay that is less than the timescale for the relaxation of all the material modification dynamics.
- a V groove with a filament descending from the V groove was produced in a glass substrate having a thickness of 700 microns.
- the depth and width of the V is about 20 ⁇ and the filament extended to a length of about 600 ⁇ .
- Figure 16(b) provides a top view of the glass substrate.
- the observed kerf width is about 20 ⁇ , covered with about 5 ⁇ recast in the sides.
- no visible debris is accumulated on the surface.
- Figure 16(c) shows a front view of the glass after it is cleaved, highlighting the deep penetration of the filaments into the glass substrate that assist in cleaving the sample.
- FIG. 17 A side view showing three different V grooves is provided in Figure 17. Note that the chamfer angle is different for each V. The chamfer angle and depth can be adjusted by changing the focus and beam divergence. The width, depth and sharpness of the V grooves are of high quality comparing to other laser scribing techniques where they generally create wider kerf width or shorter depth structures with grooves having a U-shaped and causing a large amount of debris to accumulate on the surface.
- Figure 18 presents the simultaneous laser filamentation scribing of an assembly of two 400 urn thick double layer glasses by the method
- Figure 18(a) shows a side view of the scribed laminated glass before cleaving and Figure 18(b) shows optical microscope images of the front surfaces of top and bottom layer glasses after cleaving.
- the modification tracks are largely confined with in the bulk of the glass, and thus, no ablation debris or microcracks are present in any of the surfaces.
- the facet has clean flat surfaces with only a small degree of contouring around the filament tracks observable. The edges are relatively sharp and absent of microcracks.
- the facet has the general appearance of a grinded surface, and may be referred to as having been produced by "laser grinding”. Such clean and "laser grinded” surfaces may be obtained by creating filaments that are tightly spaced, and preferably, adjacent to each other.
- the present method of low and high (burst) repetition rate filamentation was found to be effective in glass for pulse durations tested in the range of about 30 fs to 10 ps.
- pulse durations tested in the range of about 30 fs to 10 ps.
- the preferably pulse duration range for other materials may be different.
- Those skilled in the art may determine a suitable pulse duration for other materials by varying the pulse duration and examining the characteristics of the filaments produced.
- embodiments as disclosed herein utilize self-focusing to generate filaments (plasma channels) in transparent materials. Therefore, laser pulse durations in the range of 1 femtosecond to 100 ps are considered the practical operating domain of the present disclosure for generating appropriately high intensity to drive Kerr-lens self focusing in most transparent media.
- thermal lensing serves as an alternate means for generating a filament or long-focusing channel to produce filament modification tracks in transparent materials for scribing application.
- the filamentation modification of transparent media enables rapid and low-damage singulation, dicing, scribing, cleaving, cutting, and facet treatment of transparent materials that are typically in the form of a flat or curved plate, and thus serve in numerous manufacturing applications.
- the method generally applies to any transparent medium in which a filament may form.
- this includes dicing or cleaving of liquid crystal display (LCD), flat panel display (FPD), organic display (OLED), glass plates, multilayer thin glass plates, autoglass, tubing, windows, biochips, optical sensors, planar lightwave circuits, optical fibers, drinking glass ware, and art work.
- LCD liquid crystal display
- FPD flat panel display
- OLED organic display
- applications include singulation of microelectronic chips, memory chips, sensor chips, light emitting diodes (LED), laser diodes (LD), vertical cavity surface emitting laser (VCSEL) and other optoelectronic devices.
- LED light emitting diodes
- LD laser diodes
- VCSEL vertical cavity surface emitting laser
- This filament process will also apply to dicing, cutting, drilling or scribing of transparent ceramics, polymers, transparent conductors (i.e. ITO), wide bandgap glasses and crystals (such as crystal quartz, diamond, sapphire).
- ITO transparent conductors
- crystals such as crystal quartz, diamond, sapphire
- Examples include silica on silicon, silicon on glass, metal-coated glass panel display, printed circuit boards, microelectronic chips, optical circuits, multi-layer FPD or LCD, biochips, sensors, actuators, MEMs, micro Total Analysis Systems ( ⁇ ), and multi-layered polymer packaging.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Geochemistry & Mineralogy (AREA)
- Forests & Forestry (AREA)
- Laser Beam Processing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Dicing (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2013000106A MY184075A (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
RU2013102422/02A RU2013102422A (en) | 2010-07-12 | 2011-07-12 | METHOD OF PROCESSING MATERIALS USING FILAMENTATION |
KR1020187031438A KR102088722B1 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
CN201180042747.8A CN103079747B (en) | 2010-07-12 | 2011-07-12 | The method being carried out material process by laser filament effect |
AU2011279374A AU2011279374A1 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
KR1020137002677A KR20130031377A (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
SG2013002688A SG187059A1 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
EP11806190.2A EP2593266A4 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
JP2013518917A JP6121901B2 (en) | 2010-07-12 | 2011-07-12 | Material processing by laser filament formation |
US13/640,140 US9296066B2 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
CA2805003A CA2805003C (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
US15/083,088 US10399184B2 (en) | 2010-07-12 | 2016-03-28 | Method of material processing by laser filamentation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36356810P | 2010-07-12 | 2010-07-12 | |
US61/363,568 | 2010-07-12 | ||
US37296710P | 2010-08-12 | 2010-08-12 | |
US61/372,967 | 2010-08-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/640,140 A-371-Of-International US9296066B2 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
US15/083,088 Continuation US10399184B2 (en) | 2010-07-12 | 2016-03-28 | Method of material processing by laser filamentation |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012006736A2 true WO2012006736A2 (en) | 2012-01-19 |
WO2012006736A3 WO2012006736A3 (en) | 2012-11-29 |
Family
ID=45469840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2011/050427 WO2012006736A2 (en) | 2010-07-12 | 2011-07-12 | Method of material processing by laser filamentation |
Country Status (11)
Country | Link |
---|---|
US (2) | US9296066B2 (en) |
EP (1) | EP2593266A4 (en) |
JP (2) | JP6121901B2 (en) |
KR (2) | KR102088722B1 (en) |
CN (1) | CN103079747B (en) |
AU (1) | AU2011279374A1 (en) |
CA (1) | CA2805003C (en) |
MY (1) | MY184075A (en) |
RU (1) | RU2013102422A (en) |
SG (1) | SG187059A1 (en) |
WO (1) | WO2012006736A2 (en) |
Cited By (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102601529A (en) * | 2012-03-27 | 2012-07-25 | 北京理工大学 | Method for improving machining efficiency of micro-channel preparation through femtosecond laser |
CN102601521A (en) * | 2012-03-27 | 2012-07-25 | 北京理工大学 | Method for internally processing transparent medium by femtosecond laser pulse sequence |
CN102981373A (en) * | 2012-11-26 | 2013-03-20 | 中国科学院上海光学精密机械研究所 | Y-shaped waveguide laser direct writing device |
DE102012110971A1 (en) | 2012-11-14 | 2014-05-15 | Schott Ag | Separating transparent workpieces |
WO2014079570A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
EP2754524A1 (en) * | 2013-01-15 | 2014-07-16 | Corning Laser Technologies GmbH | Method and apparatus for laser based processing of flat substrates using a laser beam line |
EP2781296A1 (en) | 2013-03-21 | 2014-09-24 | Corning Laser Technologies GmbH | Device and method for cutting out contours from flat substrates using a laser |
JP2014177369A (en) * | 2013-03-14 | 2014-09-25 | Hamamatsu Photonics Kk | Manufacturing method of tempered glass member |
WO2014171396A1 (en) * | 2013-04-15 | 2014-10-23 | 旭硝子株式会社 | Method for cutting glass sheet |
WO2014161535A3 (en) * | 2013-04-04 | 2014-11-27 | Lpkf Laser & Electronics Ag | Method and device for separating a substrate |
WO2014161534A3 (en) * | 2013-04-04 | 2014-11-27 | Lpkf Laser & Electronics Ag | Method and device for providing through-openings in a substrate and a substrate produced in said manner |
DE102013212577A1 (en) | 2013-06-28 | 2014-12-31 | Trumpf Laser- Und Systemtechnik Gmbh | Method for cutting off a workpiece by means of a pulsed laser beam |
JP2015014740A (en) * | 2013-07-08 | 2015-01-22 | 日本電気硝子株式会社 | Optical element and method of manufacturing the same |
WO2015018425A1 (en) | 2013-08-07 | 2015-02-12 | Trumpf Laser- Und Systemtechnik Gmbh | Method for processing a plate-like workpiece having a transparent, glass, glass-like, ceramic, and/or crystalline layer, severing device for such a workpiece, and product from such a workpiece |
JP2015037808A (en) * | 2013-08-02 | 2015-02-26 | ロフィン−ジナール テクノロジーズ インコーポレイテッド | Method and device for executing laser filamentation in transparent material |
EP2868421A1 (en) * | 2013-11-04 | 2015-05-06 | Rofin-Sinar Technologies, Inc. | Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses |
WO2015069143A1 (en) * | 2013-11-07 | 2015-05-14 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ОПТОСИСТЕМЫ" (ООО "Оптосистемы") | Method and device for forming precision holes in optically transparent film using an ultrashort pulse of laser radiation |
US20150140241A1 (en) * | 2013-11-19 | 2015-05-21 | Rofin-Sinar Technologies Inc. | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
DE102013223637A1 (en) | 2013-11-20 | 2015-05-21 | Trumpf Laser- Und Systemtechnik Gmbh | A method of treating a laser transparent substrate for subsequently separating the substrate |
JP2015110248A (en) * | 2013-12-03 | 2015-06-18 | ロフィン−ジナール テクノロジーズ インコーポレイテッド | Method and apparatus for laser-machining silicon by filamentation of burst ultrafast laser pulse |
RU2556177C1 (en) * | 2014-01-09 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Method of sublimation and laser profiling or drilling of translucent substrates |
WO2015108991A2 (en) | 2014-01-17 | 2015-07-23 | Imra America, Inc. | Laser-based modification of transparent materials |
JP2015520938A (en) * | 2012-04-13 | 2015-07-23 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク | Laser nano machining apparatus and method |
US9102011B2 (en) | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
KR20150106439A (en) * | 2013-01-14 | 2015-09-21 | 아이피지 포토닉스 코포레이션 | Thermal processing by transmission of mid infra-red laser light through semiconductor substrate |
EP2944412A1 (en) | 2014-05-16 | 2015-11-18 | Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras | Method and apparatus for laser cutting of transparent media |
WO2016007843A1 (en) * | 2014-07-11 | 2016-01-14 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
RU2573181C1 (en) * | 2014-11-24 | 2016-01-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") | Laser processing of non-metallic plates |
WO2016010947A1 (en) * | 2014-07-14 | 2016-01-21 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
DE102015215235A1 (en) | 2014-08-08 | 2016-02-11 | Ceramtec-Etec Gmbh | Process for the preparation of thin substrates |
WO2016026984A1 (en) * | 2014-08-22 | 2016-02-25 | Ceramtec-Etec Gmbh | Separation of materials with transparent properties |
DE102015010822A1 (en) | 2014-08-22 | 2016-02-25 | Ceramtec-Etec Gmbh | Process for the production of precision components from transparent materials |
EP2734480B1 (en) * | 2012-07-17 | 2016-03-09 | LISEC Austria GmbH | Method and apparatus for chamfering a glassplate |
JP2016513016A (en) * | 2013-02-04 | 2016-05-12 | ニューポート コーポレーション | Method and apparatus for laser cutting transparent and translucent substrates |
JP2016520501A (en) * | 2013-03-15 | 2016-07-14 | キネストラル テクノロジーズ,インク. | Laser cutting tempered glass |
DE102016201910A1 (en) | 2015-02-09 | 2016-08-11 | Ceramtec-Etec Gmbh | Creation of a transparent surface for the use of a laser-based separation process |
EP2965853B1 (en) | 2014-07-09 | 2016-09-21 | High Q Laser GmbH | Processing of material using elongated laser beams |
WO2016154284A1 (en) * | 2015-03-24 | 2016-09-29 | Corning Incorporated | Laser cutting and processing of display glass compositions |
CN106029287A (en) * | 2013-12-17 | 2016-10-12 | 康宁股份有限公司 | Method of laser cutting sapphire substrate by lasers and an article comprising sapphire with edge having series of defects |
US9517929B2 (en) | 2013-11-19 | 2016-12-13 | Rofin-Sinar Technologies Inc. | Method of fabricating electromechanical microchips with a burst ultrafast laser pulses |
US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
DE102015110422A1 (en) | 2015-06-29 | 2016-12-29 | Schott Ag | Laser processing of a multiphase transparent material, as well as multiphase composite material |
DE102015111491A1 (en) | 2015-07-15 | 2017-01-19 | Schott Ag | Method and device for separating glass or glass ceramic parts |
DE102015111490A1 (en) | 2015-07-15 | 2017-01-19 | Schott Ag | Method and device for laser-assisted separation of a section from a flat glass element |
DE102015116846A1 (en) | 2015-10-05 | 2017-04-06 | Schott Ag | Process for filamentizing a workpiece with a shape deviating from the nominal contour and workpiece produced by filamentation |
DE102015116848A1 (en) | 2015-10-05 | 2017-04-06 | Schott Ag | Dielectric workpiece with a zone of defined strength and method for its production and its use |
US9653644B2 (en) | 2015-10-02 | 2017-05-16 | Nichia Corporation | Method for manufacturing semiconductor element |
WO2017093393A1 (en) | 2015-12-02 | 2017-06-08 | Schott Ag | Method for laser-supported detaching of a portion of a flat glass or glass-ceramic element |
US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
KR101758789B1 (en) * | 2013-11-19 | 2017-07-17 | 로핀-시나르 테크놀로지스 인코포레이티드 | Method of closed form release for brittle materials using burst ultrafast laser pulses |
WO2017121451A1 (en) | 2016-01-11 | 2017-07-20 | Zwiesel Kristallglas Ag | Laser filamentation |
LT6428B (en) | 2015-10-02 | 2017-07-25 | Uab "Altechna R&D" | Method and device for laser processing of transparent materials |
DE102016102768A1 (en) | 2016-02-17 | 2017-08-17 | Schott Ag | Method for processing edges of glass elements and glass element processed according to the method |
US9757815B2 (en) | 2014-07-21 | 2017-09-12 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser curved filamentation within transparent materials |
US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
KR101809783B1 (en) * | 2013-01-28 | 2017-12-15 | 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 | Method of radiatively grooving a semiconductor substrate |
US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
US9938187B2 (en) | 2014-02-28 | 2018-04-10 | Rofin-Sinar Technologies Llc | Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses |
WO2018122112A1 (en) | 2017-01-02 | 2018-07-05 | Schott Ag | Method for separating substrates |
US10017410B2 (en) | 2013-10-25 | 2018-07-10 | Rofin-Sinar Technologies Llc | Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses |
WO2018130448A1 (en) | 2017-01-16 | 2018-07-19 | Schott Ag | Device and method for working glass elements or glass-ceramic elements by means of a laser |
US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
DE102017106372A1 (en) | 2017-03-24 | 2018-09-27 | Lpkf Laser & Electronics Ag | Method for machining a workpiece and a workpiece produced thereby |
US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
IT201700105367A1 (en) * | 2017-09-20 | 2019-03-20 | St Microelectronics Srl | PROCEDURE FOR PRODUCING OPTICAL WAVE GUIDES, SYSTEM AND CORRESPONDING DEVICE |
US10252507B2 (en) | 2013-11-19 | 2019-04-09 | Rofin-Sinar Technologies Llc | Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy |
US10252931B2 (en) | 2015-01-12 | 2019-04-09 | Corning Incorporated | Laser cutting of thermally tempered substrates |
US10273182B2 (en) | 2012-08-01 | 2019-04-30 | Gentex Corporation | Apparatus, method, and process with laser induced channel edge |
EP3488961A1 (en) * | 2017-11-22 | 2019-05-29 | Roche Diabetes Care, Inc. | Multiple laser processing for biosensor test strips |
US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
US10377658B2 (en) | 2016-07-29 | 2019-08-13 | Corning Incorporated | Apparatuses and methods for laser processing |
WO2019158488A1 (en) | 2018-02-15 | 2019-08-22 | Schott Ag | Method and device for inserting a separation line into a transparent, brittle-fracture material, and element that can be produced according to the method and is provided with a separation line |
US10391588B2 (en) | 2015-01-13 | 2019-08-27 | Rofin-Sinar Technologies Llc | Method and system for scribing brittle material followed by chemical etching |
US10442033B2 (en) | 2015-06-02 | 2019-10-15 | Kawasaki Jukogyo Kabushiki Kaisha | Chamfering apparatus and chamfering method |
DE102018114973A1 (en) | 2018-06-21 | 2019-12-24 | Schott Ag | Flat glass with at least one predetermined breaking point |
US10522963B2 (en) | 2016-08-30 | 2019-12-31 | Corning Incorporated | Laser cutting of materials with intensity mapping optical system |
US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
US10620444B2 (en) | 2014-11-19 | 2020-04-14 | Trumpf Laser- Und Systemtechnik Gmbh | Diffractive optical beam shaping element |
US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
US10661384B2 (en) | 2014-11-19 | 2020-05-26 | Trumpf Laser—und Systemtechnik GmbH | Optical system for beam shaping |
US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
US10730783B2 (en) | 2016-09-30 | 2020-08-04 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
US10877218B2 (en) | 2019-03-26 | 2020-12-29 | Stmicroelectronics S.R.L. | Photonic devices and methods for formation thereof |
US10882143B2 (en) | 2014-11-19 | 2021-01-05 | Trumpf Laser- Und Systemtechnik Gmbh | System for asymmetric optical beam shaping |
WO2021043450A1 (en) | 2019-09-06 | 2021-03-11 | Ire-Polus | Method of laser beam machining of a transparent brittle material and device embodying such method |
US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
DE102021117203A1 (en) | 2020-07-27 | 2022-01-27 | Optics Balzers Ag | Process for the production of optical elements |
DE102020123928A1 (en) | 2020-09-15 | 2022-03-17 | Schott Ag | Process and device for cutting glass foils |
EP4011846A1 (en) | 2020-12-09 | 2022-06-15 | Schott Ag | Method of structuring a glass element and structured glass element produced thereby |
WO2022140039A1 (en) * | 2020-12-21 | 2022-06-30 | Corning Incorporated | Substrate cutting and separating systems and methods |
WO2022182619A3 (en) * | 2021-02-26 | 2022-10-06 | Corning Incorporated | Methods for laser processing transparent material using pulsed laser beam focal lines |
US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
EP4159357A1 (en) | 2021-10-01 | 2023-04-05 | National University of Ireland Galway | Method of and apparatus for cutting a substrate or preparing a substrate for cleaving |
DE102019123239B4 (en) | 2019-08-29 | 2023-05-04 | Trumpf Laser- Und Systemtechnik Gmbh | Process and device for separating a workpiece using a laser beam |
US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2459691C2 (en) * | 2010-11-29 | 2012-08-27 | Юрий Георгиевич Шретер | Method of separating surface layer of semiconductor chip (versions) |
JP2013046924A (en) * | 2011-07-27 | 2013-03-07 | Toshiba Mach Co Ltd | Laser dicing method |
US10286487B2 (en) | 2013-02-28 | 2019-05-14 | Ipg Photonics Corporation | Laser system and method for processing sapphire |
JP6062287B2 (en) * | 2013-03-01 | 2017-01-18 | 株式会社ディスコ | Wafer processing method |
JP6113529B2 (en) * | 2013-03-05 | 2017-04-12 | 株式会社ディスコ | Wafer processing method |
DE102013005136A1 (en) * | 2013-03-26 | 2014-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for removing brittle-hard material by means of laser radiation |
CN103433618B (en) * | 2013-07-25 | 2017-07-04 | 长春理工大学 | A kind of method for controlling metal surface micro-nanostructure size and distribution |
US20150165563A1 (en) * | 2013-12-17 | 2015-06-18 | Corning Incorporated | Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers |
WO2015095264A2 (en) * | 2013-12-17 | 2015-06-25 | Corning Incorporated | 3-d forming of glass |
US20150166393A1 (en) * | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser cutting of ion-exchangeable glass substrates |
WO2015113024A1 (en) * | 2014-01-27 | 2015-07-30 | Corning Incorporated | Edge chamfering methods |
WO2015113026A2 (en) * | 2014-01-27 | 2015-07-30 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
US10471546B1 (en) * | 2013-12-20 | 2019-11-12 | Gentex Corporation | Distribution of damage volumes in laser-induced channels |
US10029940B1 (en) * | 2014-02-04 | 2018-07-24 | Gentex Corporation | Laser-separated edges with controlled roughness |
IN2014CH00782A (en) | 2014-02-19 | 2015-08-28 | Kennametal India Ltd | |
US9764427B2 (en) | 2014-02-28 | 2017-09-19 | Ipg Photonics Corporation | Multi-laser system and method for cutting and post-cut processing hard dielectric materials |
EP3110592B1 (en) * | 2014-02-28 | 2020-01-15 | IPG Photonics Corporation | Multple-laser distinct wavelengths and pulse durations processing |
US10343237B2 (en) | 2014-02-28 | 2019-07-09 | Ipg Photonics Corporation | System and method for laser beveling and/or polishing |
WO2015162445A1 (en) * | 2014-04-25 | 2015-10-29 | Arcelormittal Investigación Y Desarrollo Sl | Method and device for preparing aluminium-coated steel sheets intended for being welded and then hardened under a press; corresponding welded blank |
US20160009066A1 (en) * | 2014-07-14 | 2016-01-14 | Corning Incorporated | System and method for cutting laminated structures |
CN114603249A (en) | 2014-08-28 | 2022-06-10 | Ipg光子公司 | Multi-laser system and method for cutting and post-cutting machining of hard dielectric materials |
WO2016033494A1 (en) | 2014-08-28 | 2016-03-03 | Ipg Photonics Corporation | System and method for laser beveling and/or polishing |
ES2923764T3 (en) | 2014-09-16 | 2022-09-30 | Lpkf Laser & Electronics Ag | Procedure for introducing at least one undercut or break in a plate-shaped workpiece |
DE102014113339A1 (en) | 2014-09-16 | 2016-03-17 | Lpkf Laser & Electronics Ag | Method for producing recesses in a material |
CN104216047A (en) * | 2014-09-26 | 2014-12-17 | 南京先进激光技术研究院 | Method for manufacturing optical waveguide based on self-focusing filamentation ultra-short pulse laser |
JP6499300B2 (en) * | 2014-10-13 | 2019-04-10 | エバナ テクノロジーズ ユーエービー | Laser processing method for cleaving or cutting a substrate by forming a spike-like damaged structure |
KR20170083565A (en) * | 2014-11-10 | 2017-07-18 | 코닝 인코포레이티드 | Laser processing of transparent article using multiple foci |
SG11201704275UA (en) * | 2014-11-27 | 2017-06-29 | Siltectra Gmbh | Splitting of a solid using conversion of material |
US9873628B1 (en) | 2014-12-02 | 2018-01-23 | Coherent Kaiserslautern GmbH | Filamentary cutting of brittle materials using a picosecond pulsed laser |
JP6495056B2 (en) * | 2015-03-06 | 2019-04-03 | 株式会社ディスコ | Single crystal substrate processing method |
US10391586B1 (en) | 2015-03-11 | 2019-08-27 | Coherent, Inc. | Method for laser-marking of anodized aluminum |
JP2016171214A (en) | 2015-03-12 | 2016-09-23 | 株式会社ディスコ | Processing method of single crystal substrate |
GB201505042D0 (en) | 2015-03-25 | 2015-05-06 | Nat Univ Ireland | Methods and apparatus for cutting a substrate |
US9718215B2 (en) * | 2015-04-15 | 2017-08-01 | Halo Industries, Inc. | Capacitive clamping process for cleaving work pieces using crack propagation |
JP2018522367A (en) * | 2015-05-13 | 2018-08-09 | コーニング インコーポレイテッド | Light guide with reduced hot spots and method of manufacturing the same |
WO2016186936A1 (en) * | 2015-05-15 | 2016-11-24 | Corning Incorporated | Glass articles with laser cut edges and methods for making the same |
US10384306B1 (en) | 2015-06-10 | 2019-08-20 | Seagate Technology Llc | Laser cutting array with multiple laser source arrangement |
GB201603991D0 (en) * | 2016-03-08 | 2016-04-20 | Univ Dundee | Processing method and apparatus |
BR112017027975A2 (en) | 2015-06-24 | 2018-08-28 | University Of Dundee | method and apparatus for yield reduction and laser treated surface |
CN104959736A (en) * | 2015-07-23 | 2015-10-07 | 深圳英诺激光科技有限公司 | Apparatus and method for processing micropore through filamentous laser |
PL3334697T3 (en) | 2015-08-10 | 2022-01-24 | Saint-Gobain Glass France | Method for cutting a thin glass layer |
EP3345878B1 (en) | 2015-09-04 | 2023-04-26 | AGC Inc. | Glass tube production method, glass article production method, glass tube and glass article |
CN107922259B (en) * | 2015-09-04 | 2021-05-07 | Agc株式会社 | Method for producing glass plate, method for producing glass article, and apparatus for producing glass article |
US20170197868A1 (en) * | 2016-01-08 | 2017-07-13 | Apple Inc. | Laser Processing of Electronic Device Structures |
US10518358B1 (en) | 2016-01-28 | 2019-12-31 | AdlOptica Optical Systems GmbH | Multi-focus optics |
US20170313617A1 (en) * | 2016-04-27 | 2017-11-02 | Coherent, Inc. | Method and apparatus for laser-cutting of transparent materials |
DE102016109720B4 (en) * | 2016-05-25 | 2023-06-22 | Infineon Technologies Ag | Method of forming a semiconductor device and semiconductor device |
EP3470166B1 (en) * | 2016-06-08 | 2022-10-26 | Han's Laser Technology Industry Group Co., Ltd. | Method and device for cutting sapphire |
EP3468742B1 (en) | 2016-06-14 | 2022-08-31 | Evana Technologies, UAB | A multi-segment focusing lens and the laser processing system for wafer dicing or cutting |
WO2018011618A1 (en) | 2016-07-13 | 2018-01-18 | Evana Technologies, Uab | Method and system for cleaving a substrate with a focused converging ring-shaped laser beam |
DE102016213802A1 (en) | 2016-07-27 | 2018-02-01 | 4Jet Microtech Gmbh & Co. Kg | Disconnect with laser radiation |
JP6698468B2 (en) * | 2016-08-10 | 2020-05-27 | 株式会社ディスコ | Wafer generation method |
PL3842391T3 (en) | 2016-09-01 | 2024-03-18 | AGC Inc. | Glass article |
JP6944703B2 (en) * | 2016-09-28 | 2021-10-06 | 三星ダイヤモンド工業株式会社 | Method for forming a modified layer of a brittle material substrate |
JP6775822B2 (en) | 2016-09-28 | 2020-10-28 | 三星ダイヤモンド工業株式会社 | Brittle material substrate fragmentation method and fragmentation device |
TWI604907B (en) | 2016-10-11 | 2017-11-11 | 財團法人工業技術研究院 | Laser homogeneous machining apparatus and method thereof |
JP2020500137A (en) * | 2016-10-13 | 2020-01-09 | コーニング インコーポレイテッド | Fabrication of holes and slots in glass substrates |
US20180105455A1 (en) * | 2016-10-17 | 2018-04-19 | Corning Incorporated | Silica test probe and other such devices |
JP6894692B2 (en) * | 2016-11-18 | 2021-06-30 | 株式会社ディスコ | How to divide the glass plate and how to divide the plate-shaped work |
CN106425128B (en) * | 2016-11-21 | 2019-02-01 | 北京工业大学 | The method for preparing grade deep hole at silk using femtosecond laser |
EP3587367B1 (en) * | 2017-02-21 | 2023-10-18 | AGC Inc. | Glass plate and manufacturing method of glass plate |
WO2018155099A1 (en) | 2017-02-21 | 2018-08-30 | Agc株式会社 | Glass plate and production method for glass plate |
KR102356415B1 (en) | 2017-03-06 | 2022-02-08 | 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 | Method for producing at least one recess in a material by means of electromagnetic radiation and subsequent etching process |
US20180257170A1 (en) | 2017-03-13 | 2018-09-13 | Coherent Lasersystems Gmbh & Co. Kg | Controlled separation of laser processed brittle material |
KR20190129914A (en) | 2017-03-31 | 2019-11-20 | 미쓰보시 다이야몬도 고교 가부시키가이샤 | Scribe processing method and scribe processing equipment |
WO2018189296A1 (en) | 2017-04-12 | 2018-10-18 | Saint-Gobain Glass France | Electrochromic structure and method of separating electrochromic structure |
US20200164469A1 (en) * | 2017-05-15 | 2020-05-28 | The Trustees Of The University Of Pennsylvania | Systems and methods for laser cleaving diamonds |
DE102017208290A1 (en) | 2017-05-17 | 2018-11-22 | Schott Ag | Apparatus and method for processing a workpiece along a predetermined processing line |
JP6864563B2 (en) * | 2017-06-07 | 2021-04-28 | 株式会社ディスコ | Processing method of work piece |
CN107262937B (en) * | 2017-07-06 | 2019-08-23 | 北京中科镭特电子有限公司 | A kind of laser score device |
DE102018005010A1 (en) * | 2017-07-13 | 2019-01-17 | Wika Alexander Wiegand Se & Co. Kg | Transfer and melting of layers |
DE102017212858B4 (en) * | 2017-07-26 | 2024-08-29 | Disco Corporation | Method for processing a substrate |
JP6985060B2 (en) * | 2017-08-17 | 2021-12-22 | 株式会社ディスコ | Wafer processing method |
JP2020531392A (en) * | 2017-08-25 | 2020-11-05 | コーニング インコーポレイテッド | Equipment and methods for laser machining transparent workpieces using afocal beam conditioning assemblies |
KR102582734B1 (en) * | 2017-09-27 | 2023-09-27 | 주식회사 탑 엔지니어링 | Substrate cutting apparatus |
JP6904567B2 (en) | 2017-09-29 | 2021-07-21 | 三星ダイヤモンド工業株式会社 | Scribe processing method and scribe processing equipment |
US10639714B2 (en) | 2017-10-26 | 2020-05-05 | General Electric Company | Applying electric pulses through a laser induced plasma channel for use in a 3-D metal printing process |
JP6925745B2 (en) * | 2017-11-30 | 2021-08-25 | 株式会社ディスコ | Wafer laser machining method |
US10610939B1 (en) * | 2018-01-20 | 2020-04-07 | Clean Cutters LLC | Dustless one-stroke cut-through saw |
JP7121941B2 (en) * | 2018-03-09 | 2022-08-19 | 国立大学法人埼玉大学 | Substrate manufacturing method |
TWI834649B (en) * | 2018-03-29 | 2024-03-11 | 美商康寧公司 | Methods for laser processing rough transparent workpieces using pulsed laser beam focal lines and a fluid film |
US11401195B2 (en) * | 2018-03-29 | 2022-08-02 | Corning Incorporated | Selective laser processing of transparent workpiece stacks |
KR102510398B1 (en) | 2018-04-11 | 2023-03-16 | 삼성디스플레이 주식회사 | Laser cutting apparatus and laser cutting method and manufacturing method for display panel using the same |
KR102566338B1 (en) * | 2018-04-13 | 2023-08-11 | 삼성디스플레이 주식회사 | Display device and method for manufacturing display device |
TW201946882A (en) * | 2018-05-07 | 2019-12-16 | 美商康寧公司 | Laser-induced separation of transparent oxide glass |
WO2019227014A1 (en) * | 2018-05-24 | 2019-11-28 | Baker Hughes, A Ge Company, Llc | Transducers including laser etched substrates |
US11081855B2 (en) | 2018-06-18 | 2021-08-03 | Coherent, Inc. | Laser-MOPA with burst-mode control |
JP2020004889A (en) | 2018-06-29 | 2020-01-09 | 三星ダイヤモンド工業株式会社 | Substrate cutting method and substrate cutting device |
KR20200002633A (en) | 2018-06-29 | 2020-01-08 | 미쓰보시 다이야몬도 고교 가부시키가이샤 | Method and apparatus for dividing laminated substrate |
US11524366B2 (en) | 2018-07-26 | 2022-12-13 | Coherent Munich GmbH & Co. KG | Separation and release of laser-processed brittle material |
US20200061750A1 (en) * | 2018-08-22 | 2020-02-27 | Coherent Munich GmbH & Co. KG | Mitigating low surface quality |
JP2020028905A (en) | 2018-08-23 | 2020-02-27 | 三星ダイヤモンド工業株式会社 | Partial punching method for substrate |
KR102679073B1 (en) * | 2018-09-11 | 2024-07-02 | 삼성디스플레이 주식회사 | Laser ablation apparatus and method of manufacturing display device |
JP7108517B2 (en) * | 2018-10-30 | 2022-07-28 | 浜松ホトニクス株式会社 | Laser processing equipment |
JP7311532B2 (en) * | 2018-10-30 | 2023-07-19 | 浜松ホトニクス株式会社 | Laser processing equipment |
DE102018219465A1 (en) | 2018-11-14 | 2020-05-14 | Flabeg Deutschland Gmbh | Process for cutting a glass element and cutting system |
DE102018219797A1 (en) | 2018-11-19 | 2020-05-20 | Flabeg Deutschland Gmbh | Process for temporarily storing and fixing a flat element and processing system for carrying out the process |
DE102018220240A1 (en) | 2018-11-20 | 2020-05-20 | Flabeg Deutschland Gmbh | Method for separating a glass element into a plurality of glass components and cutting system for carrying out the method |
KR102697974B1 (en) * | 2018-11-21 | 2024-08-22 | 서울바이오시스 주식회사 | Light emitting device and light emitting module including the same |
JP2020082155A (en) | 2018-11-28 | 2020-06-04 | 三星ダイヤモンド工業株式会社 | Laser processing device |
TW202030045A (en) | 2018-11-28 | 2020-08-16 | 日商三星鑽石工業股份有限公司 | Laser processing device in which a laser light does not return to the source of the laser light |
CN109693032A (en) * | 2019-02-27 | 2019-04-30 | 大族激光科技产业集团股份有限公司 | Laser cutting method and device |
FR3095152B1 (en) * | 2019-04-16 | 2021-12-17 | Safran Aircraft Engines | Process for dealing with an internal defect in a part |
US11054574B2 (en) | 2019-05-16 | 2021-07-06 | Corning Research & Development Corporation | Methods of singulating optical waveguide sheets to form optical waveguide substrates |
EP3969220A1 (en) | 2019-05-17 | 2022-03-23 | Corning Incorporated | Phase-modified quasi-non-diffracting laser beams for high angle laser processing of transparent workpieces |
DE102019003822A1 (en) * | 2019-06-02 | 2020-12-03 | Keming Du | Process for processing transparent materials |
SG10202006597QA (en) * | 2019-07-26 | 2021-02-25 | Heraeus Deutschland Gmbh & Co Kg | Process for preparing a processed filament by interaction of a filament with at least one processing beam in N processing steps |
US11646228B2 (en) | 2019-09-11 | 2023-05-09 | Chongqing Institute Of East China Normal University | Stealth dicing method including filamentation and apparatus thereof |
CN110539085A (en) * | 2019-09-11 | 2019-12-06 | 华东师范大学重庆研究院 | Femtosecond optical fiber undercutting method and device |
DE102019215264A1 (en) | 2019-10-02 | 2021-04-08 | Flabeg Deutschland Gmbh | Disc-shaped glass element and method for separating a glass substrate into a plurality of such glass elements |
CN110788500B (en) * | 2019-10-28 | 2022-02-01 | 北京航天控制仪器研究所 | Femtosecond laser precision forming processing system for complex hard and brittle material component |
CN114728832A (en) | 2019-11-21 | 2022-07-08 | Agc株式会社 | Glass plate processing method and glass plate |
DE102019219462A1 (en) | 2019-12-12 | 2021-06-17 | Flabeg Deutschland Gmbh | Method for cutting a glass element and cutting system |
CN111198443A (en) * | 2020-01-15 | 2020-05-26 | 山东师范大学 | Filamentation device based on flat-top femtosecond laser and super-continuous radiation generation device |
US11858063B2 (en) | 2020-02-03 | 2024-01-02 | Corning Incorporated | Phase-modified quasi-non-diffracting laser beams for high angle laser processing of transparent workpieces |
WO2021156166A1 (en) | 2020-02-05 | 2021-08-12 | Saint-Gobain Glass France | Method for producing an opening in a glass stack |
US12011781B2 (en) | 2020-06-10 | 2024-06-18 | Corning Incorporated | Phase-modified quasi-non-diffracting laser beams for high angle laser processing of transparent workpieces |
DE102020213776A1 (en) | 2020-11-03 | 2022-05-05 | Q.ant GmbH | Method of cleaving a crystal |
KR20220087220A (en) * | 2020-12-17 | 2022-06-24 | 코닝 인코포레이티드 | Heat chamfering method and apparatus for a glass substrate |
CN112719642A (en) * | 2020-12-22 | 2021-04-30 | 苏州京浜光电科技股份有限公司 | Glass optical filter microcrack laser cutting method |
DE102020134751A1 (en) | 2020-12-22 | 2022-06-23 | Trumpf Laser- Und Systemtechnik Gmbh | Process for cutting a workpiece |
DE102021100675B4 (en) | 2021-01-14 | 2022-08-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Process for dividing a transparent workpiece |
DE102021105034A1 (en) | 2021-03-02 | 2022-09-08 | Cericom GmbH | Device and method for processing a workpiece made of glass |
CN112935530B (en) * | 2021-04-25 | 2022-12-13 | 山东大学深圳研究院 | Method and device for determining position of pulse laser focus |
CN113333966B (en) * | 2021-05-13 | 2022-12-09 | 西安交通大学 | Femtosecond laser fiber effect-based thin quartz glass cutting method |
CN115401337B (en) * | 2021-05-28 | 2024-08-30 | 大族激光科技产业集团股份有限公司 | Ceramic substrate scribing processing method and system based on ultrafast laser |
EP4353691A1 (en) | 2021-06-11 | 2024-04-17 | Agc Inc. | Glass article manufacturing method, glass article, cover glass, and display device |
CN114083155A (en) * | 2021-12-31 | 2022-02-25 | 杭州银湖激光科技有限公司 | Method for laser cutting silicon wafer |
WO2024039266A2 (en) * | 2022-08-19 | 2024-02-22 | Владимир Николаевич ТОКАРЕВ | Method and device for processing brittle transparent and semi-transparent materials |
EP4353690A1 (en) | 2022-10-14 | 2024-04-17 | NKT Photonics A/S | System and method for processing a transparent material |
WO2024083398A1 (en) | 2022-10-17 | 2024-04-25 | Saint-Gobain Glass France | Method for producing a curved glass pane having a feed-through |
WO2024104550A1 (en) * | 2022-11-14 | 2024-05-23 | Ev Group E. Thallner Gmbh | Method for separating a first substrate layer, device for carrying out such separating, and substrate comprising a first substrate layer |
CN117921213B (en) * | 2024-03-24 | 2024-07-09 | 成都沃特塞恩电子技术有限公司 | Laser cutting method and device for controlling kerf width and computer equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407360B1 (en) * | 1998-08-26 | 2002-06-18 | Samsung Electronics, Co., Ltd. | Laser cutting apparatus and method |
US20030006221A1 (en) * | 2001-07-06 | 2003-01-09 | Minghui Hong | Method and apparatus for cutting a multi-layer substrate by dual laser irradiation |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5089735A (en) | 1973-12-17 | 1975-07-18 | ||
JPS5271092A (en) | 1975-12-09 | 1977-06-14 | Mitsubishi Heavy Ind Ltd | Transporting and loading method of cargos |
JP3352934B2 (en) | 1998-01-21 | 2002-12-03 | 理化学研究所 | High intensity ultrashort pulse laser processing method and apparatus |
US6552301B2 (en) | 2000-01-25 | 2003-04-22 | Peter R. Herman | Burst-ultrafast laser machining method |
JP4659300B2 (en) | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | Laser processing method and semiconductor chip manufacturing method |
JP4606741B2 (en) * | 2002-03-12 | 2011-01-05 | 浜松ホトニクス株式会社 | Processing object cutting method |
US6787732B1 (en) | 2002-04-02 | 2004-09-07 | Seagate Technology Llc | Method for laser-scribing brittle substrates and apparatus therefor |
CA2428187C (en) | 2002-05-08 | 2012-10-02 | National Research Council Of Canada | Method of fabricating sub-micron structures in transparent dielectric materials |
TWI248244B (en) | 2003-02-19 | 2006-01-21 | J P Sercel Associates Inc | System and method for cutting using a variable astigmatic focal beam spot |
US20050000952A1 (en) * | 2003-05-19 | 2005-01-06 | Harter Donald J. | Focusless micromachining |
KR101119387B1 (en) | 2003-07-18 | 2012-03-07 | 하마마츠 포토닉스 가부시키가이샤 | cutting method |
US7486705B2 (en) * | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
US7211184B2 (en) | 2004-08-04 | 2007-05-01 | Ast Management Inc. | Capillary electrophoresis devices |
JP4692717B2 (en) | 2004-11-02 | 2011-06-01 | 澁谷工業株式会社 | Brittle material cleaving device |
US7303977B2 (en) | 2004-11-10 | 2007-12-04 | Intel Corporation | Laser micromachining method |
JP2006239718A (en) | 2005-03-01 | 2006-09-14 | Kyoto Univ | Method and apparatus for manufacturing periodically arranged nano pore body |
CA2783963C (en) * | 2005-03-16 | 2014-10-07 | Brian L. Lawrence | Data storage devices and methods |
DE102005013783B4 (en) | 2005-03-22 | 2007-08-16 | Jenoptik Automatisierungstechnik Gmbh | Method for separating brittle materials by means of laser with unsymmetrical radiation density distribution |
DE102005038027A1 (en) | 2005-08-06 | 2007-02-08 | Jenoptik Automatisierungstechnik Gmbh | Process for cutting brittle flat materials |
DE102005039833A1 (en) * | 2005-08-22 | 2007-03-01 | Rowiak Gmbh | Device and method for material separation with laser pulses |
US9138913B2 (en) * | 2005-09-08 | 2015-09-22 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
JP2007165850A (en) | 2005-11-16 | 2007-06-28 | Denso Corp | Wafer, and dividing method thereof |
JP2007235008A (en) * | 2006-03-03 | 2007-09-13 | Denso Corp | Dividing method for wafer, and chip |
JP2007307599A (en) | 2006-05-20 | 2007-11-29 | Sumitomo Electric Ind Ltd | Body formed with through-hole and laser beam machining method |
US8198566B2 (en) * | 2006-05-24 | 2012-06-12 | Electro Scientific Industries, Inc. | Laser processing of workpieces containing low-k dielectric material |
JP5232375B2 (en) | 2006-10-13 | 2013-07-10 | アイシン精機株式会社 | Method for separating semiconductor light emitting device |
US20070298529A1 (en) * | 2006-05-31 | 2007-12-27 | Toyoda Gosei, Co., Ltd. | Semiconductor light-emitting device and method for separating semiconductor light-emitting devices |
JP5522881B2 (en) | 2006-09-06 | 2014-06-18 | イムラ アメリカ インコーポレイテッド | Method for joining materials |
WO2008035679A1 (en) | 2006-09-19 | 2008-03-27 | Hamamatsu Photonics K. K. | Laser processing method and laser processing apparatus |
JP5322418B2 (en) | 2006-09-19 | 2013-10-23 | 浜松ホトニクス株式会社 | Laser processing method and laser processing apparatus |
EP2075082B1 (en) * | 2006-09-22 | 2015-11-11 | NEC SCHOTT Components Corporation | Substance joining method |
WO2008126742A1 (en) * | 2007-04-05 | 2008-10-23 | Cyber Laser Inc. | Laser machining method, laser cutting method, and method for dividing structure having multilayer board |
JP4775313B2 (en) | 2007-05-01 | 2011-09-21 | セイコーエプソン株式会社 | Laser cutting method |
DE102007033242A1 (en) | 2007-07-12 | 2009-01-15 | Jenoptik Automatisierungstechnik Gmbh | Method and device for separating a plane plate made of brittle material into several individual plates by means of laser |
JP5139739B2 (en) | 2007-07-19 | 2013-02-06 | パナソニック株式会社 | Lamination method |
JP2009050892A (en) | 2007-08-27 | 2009-03-12 | Seiko Epson Corp | Substrate dividing method and method of manufacturing display device |
JP2009056482A (en) | 2007-08-31 | 2009-03-19 | Seiko Epson Corp | Substrate dividing method and manufacturing method of display device |
KR100876502B1 (en) * | 2007-09-21 | 2008-12-31 | 한국정보통신대학교 산학협력단 | A cutter for substrate using microwaves laser beam and method thereof |
EP2250714B1 (en) | 2008-02-19 | 2015-01-14 | Bergmann Messgeräte Entwicklung KG | Generation of burst of laser pulses |
JP5380986B2 (en) | 2008-09-30 | 2014-01-08 | アイシン精機株式会社 | Laser scribing method and laser scribing apparatus |
GB0900036D0 (en) * | 2009-01-03 | 2009-02-11 | M Solv Ltd | Method and apparatus for forming grooves with complex shape in the surface of apolymer |
JP5271092B2 (en) | 2009-01-09 | 2013-08-21 | エヌイーシーコンピュータテクノ株式会社 | Electrical equipment |
US8309885B2 (en) | 2009-01-15 | 2012-11-13 | Electro Scientific Industries, Inc. | Pulse temporal programmable ultrafast burst mode laser for micromachining |
US10307862B2 (en) | 2009-03-27 | 2019-06-04 | Electro Scientific Industries, Inc | Laser micromachining with tailored bursts of short laser pulses |
US20100252959A1 (en) | 2009-03-27 | 2010-10-07 | Electro Scientific Industries, Inc. | Method for improved brittle materials processing |
KR20120098869A (en) | 2009-12-07 | 2012-09-05 | 제이피 서셀 어소시에트, 인코퍼레이티드 | Laser machining and scribing systems and methods |
US20120234807A1 (en) | 2009-12-07 | 2012-09-20 | J.P. Sercel Associates Inc. | Laser scribing with extended depth affectation into a workplace |
JP5089735B2 (en) | 2010-07-15 | 2012-12-05 | 株式会社レーザーシステム | Laser processing equipment |
US8842358B2 (en) | 2012-08-01 | 2014-09-23 | Gentex Corporation | Apparatus, method, and process with laser induced channel edge |
CN102785031B (en) | 2012-08-15 | 2015-04-01 | 武汉隽龙科技有限公司 | Method and device for cutting transparent material by using ultra-short pulse laser |
US20140079570A1 (en) | 2012-09-17 | 2014-03-20 | GM Global Technology Operations LLC | Launch torus torque converter |
DE102012110971A1 (en) | 2012-11-14 | 2014-05-15 | Schott Ag | Separating transparent workpieces |
WO2014079478A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
EP2754524B1 (en) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line |
JP6208430B2 (en) | 2013-01-25 | 2017-10-04 | 株式会社ディスコ | Laser processing method |
KR20150110707A (en) | 2013-02-04 | 2015-10-02 | 뉴포트 코포레이션 | Method and apparatus for laser cutting transparent and semitransparent substrates |
US9481598B2 (en) | 2013-03-15 | 2016-11-01 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
EP2781296B1 (en) | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Device and method for cutting out contours from flat substrates using a laser |
JP6162827B2 (en) | 2013-04-04 | 2017-07-12 | エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト | Method and apparatus for separating substrates |
EP2964417B1 (en) | 2013-04-04 | 2022-01-12 | LPKF Laser & Electronics AG | Method for providing through-openings in a substrate |
DE102013223637B4 (en) | 2013-11-20 | 2018-02-01 | Trumpf Laser- Und Systemtechnik Gmbh | A method of treating a laser transparent substrate for subsequently separating the substrate |
US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
WO2015095264A2 (en) | 2013-12-17 | 2015-06-25 | Corning Incorporated | 3-d forming of glass |
US20150166393A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser cutting of ion-exchangeable glass substrates |
EP3166894A1 (en) | 2014-07-11 | 2017-05-17 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
EP3169635B1 (en) | 2014-07-14 | 2022-11-23 | Corning Incorporated | Method and system for forming perforations |
DE102014116958B9 (en) | 2014-11-19 | 2017-10-05 | Trumpf Laser- Und Systemtechnik Gmbh | Optical system for beam shaping of a laser beam, laser processing system, method for material processing and use of a common elongated focus zone for laser material processing |
EP3221727B1 (en) | 2014-11-19 | 2021-03-17 | Trumpf Laser- und Systemtechnik GmbH | System for asymmetric optical beam shaping |
-
2011
- 2011-07-12 SG SG2013002688A patent/SG187059A1/en unknown
- 2011-07-12 CA CA2805003A patent/CA2805003C/en active Active
- 2011-07-12 JP JP2013518917A patent/JP6121901B2/en active Active
- 2011-07-12 KR KR1020187031438A patent/KR102088722B1/en active IP Right Grant
- 2011-07-12 CN CN201180042747.8A patent/CN103079747B/en active Active
- 2011-07-12 EP EP11806190.2A patent/EP2593266A4/en not_active Withdrawn
- 2011-07-12 US US13/640,140 patent/US9296066B2/en active Active
- 2011-07-12 KR KR1020137002677A patent/KR20130031377A/en active Application Filing
- 2011-07-12 MY MYPI2013000106A patent/MY184075A/en unknown
- 2011-07-12 WO PCT/CA2011/050427 patent/WO2012006736A2/en active Application Filing
- 2011-07-12 RU RU2013102422/02A patent/RU2013102422A/en not_active Application Discontinuation
- 2011-07-12 AU AU2011279374A patent/AU2011279374A1/en not_active Abandoned
-
2016
- 2016-03-28 US US15/083,088 patent/US10399184B2/en active Active
-
2017
- 2017-03-30 JP JP2017066485A patent/JP6646609B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407360B1 (en) * | 1998-08-26 | 2002-06-18 | Samsung Electronics, Co., Ltd. | Laser cutting apparatus and method |
US20030006221A1 (en) * | 2001-07-06 | 2003-01-09 | Minghui Hong | Method and apparatus for cutting a multi-layer substrate by dual laser irradiation |
Non-Patent Citations (1)
Title |
---|
YOSHINO ET AL.: 'Micromachining with a High Repetition Rate Femtosecond Fiber Laser' JOURNAL OF LASER MICRO/NANOENGINEERING vol. 3, no. 3, 2008, pages 157 - 162, XP055107717 * |
Cited By (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102601529A (en) * | 2012-03-27 | 2012-07-25 | 北京理工大学 | Method for improving machining efficiency of micro-channel preparation through femtosecond laser |
CN102601521A (en) * | 2012-03-27 | 2012-07-25 | 北京理工大学 | Method for internally processing transparent medium by femtosecond laser pulse sequence |
US10131017B2 (en) | 2012-04-13 | 2018-11-20 | Centre National de la Recherche Scientifique—CNRS | Laser nanomachining device and method |
JP2015520938A (en) * | 2012-04-13 | 2015-07-23 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク | Laser nano machining apparatus and method |
EP2734480B1 (en) * | 2012-07-17 | 2016-03-09 | LISEC Austria GmbH | Method and apparatus for chamfering a glassplate |
US9375806B2 (en) | 2012-07-17 | 2016-06-28 | Lisec Austria Gmbh | Method and arrangement for creating bevels on the edges of flat glass |
US10273182B2 (en) | 2012-08-01 | 2019-04-30 | Gentex Corporation | Apparatus, method, and process with laser induced channel edge |
DE102012110971A1 (en) | 2012-11-14 | 2014-05-15 | Schott Ag | Separating transparent workpieces |
WO2014075995A3 (en) * | 2012-11-14 | 2014-07-24 | Schott Ag | Method for producing aligned linear breaking points by ultra-short focussed, pulsed laser radiation; method and device for separating a workpiece by means of ultra-short focussed laser radiation using a protective gas atmosphere |
US10626039B2 (en) | 2012-11-14 | 2020-04-21 | Schott Ag | Separation of transparent workpieces |
CN104768698A (en) * | 2012-11-14 | 2015-07-08 | 肖特公开股份有限公司 | Method for producing aligned linear breaking points by ultra-short focussed, pulsed laser radiation, and method and device for separating a workpiece by means of ultra-short focussed laser radiation using a protective gas atmosphere |
WO2014075995A2 (en) * | 2012-11-14 | 2014-05-22 | Schott Ag | Method for separating transparent workpieces |
JP2015536896A (en) * | 2012-11-14 | 2015-12-24 | ショット アクチエンゲゼルシャフトSchott AG | How to separate transparent workpieces |
US20200115269A1 (en) * | 2012-11-14 | 2020-04-16 | Schott Ag | Separation of transparent workpieces |
WO2014079570A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
EP3241809A1 (en) | 2012-11-20 | 2017-11-08 | UAB Altechna R&D | A method for laser pre-cutting a layered material and a laser processing system for pre-cutting such material |
EP3246296A1 (en) | 2012-11-20 | 2017-11-22 | UAB Altechna R&D | Layered material |
US9850159B2 (en) | 2012-11-20 | 2017-12-26 | Corning Incorporated | High speed laser processing of transparent materials |
CN102981373A (en) * | 2012-11-26 | 2013-03-20 | 中国科学院上海光学精密机械研究所 | Y-shaped waveguide laser direct writing device |
KR20150106439A (en) * | 2013-01-14 | 2015-09-21 | 아이피지 포토닉스 코포레이션 | Thermal processing by transmission of mid infra-red laser light through semiconductor substrate |
JP2016513359A (en) * | 2013-01-14 | 2016-05-12 | アイピージー フォトニクス コーポレーション | Heat treatment by transmission of mid-infrared laser light through a semiconductor substrate. |
KR102131764B1 (en) | 2013-01-14 | 2020-07-08 | 아이피지 포토닉스 코포레이션 | Thermal processing by transmission of mid infra-red laser light through semiconductor substrate |
EP2754524B1 (en) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line |
WO2014111385A1 (en) * | 2013-01-15 | 2014-07-24 | Corning Laser Technologies GmbH | Method and device for laser-based machining of flat substrates |
EP2754524A1 (en) * | 2013-01-15 | 2014-07-16 | Corning Laser Technologies GmbH | Method and apparatus for laser based processing of flat substrates using a laser beam line |
US10421683B2 (en) | 2013-01-15 | 2019-09-24 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
KR20160010397A (en) * | 2013-01-15 | 2016-01-27 | 코닝 레이저 테크놀로지스 게엠베하 | Method and device for laser-based machining of flat substrates |
EP2945770B1 (en) * | 2013-01-15 | 2019-03-27 | Corning Laser Technologies GmbH | Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line |
CN106170365A (en) * | 2013-01-15 | 2016-11-30 | 康宁激光技术有限公司 | Use the method and apparatus that laser beam focal line carries out processing based on laser to sheet-like substrates |
TWI639479B (en) * | 2013-01-15 | 2018-11-01 | 德商康寧雷射科技有限公司 | Method and system for the laser-based machining of sheet-like substrates and glass article |
CN105209218A (en) * | 2013-01-15 | 2015-12-30 | 康宁激光技术有限公司 | Method and device for laser-based machining of flat substrates |
US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
US11345625B2 (en) | 2013-01-15 | 2022-05-31 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
US11028003B2 (en) | 2013-01-15 | 2021-06-08 | Corning Laser Technologies GmbH | Method and device for laser-based machining of flat substrates |
JP2016513024A (en) * | 2013-01-15 | 2016-05-12 | コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH | Laser-based machining method and apparatus for flat substrates |
JP2016509540A (en) * | 2013-01-15 | 2016-03-31 | コーニング レーザー テクノロジーズ ゲーエムベーハーCORNING LASER TECHNOLOGIES GmbH | Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines |
KR101809783B1 (en) * | 2013-01-28 | 2017-12-15 | 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 | Method of radiatively grooving a semiconductor substrate |
JP2016513016A (en) * | 2013-02-04 | 2016-05-12 | ニューポート コーポレーション | Method and apparatus for laser cutting transparent and translucent substrates |
EP2950968A4 (en) * | 2013-02-04 | 2016-10-19 | Newport Corp | Method and apparatus for laser cutting transparent and semitransparent substrates |
JP2019064916A (en) * | 2013-02-04 | 2019-04-25 | ニューポート コーポレーション | Method and apparatus for cutting transparent and translucent substrate by laser |
JP2014177369A (en) * | 2013-03-14 | 2014-09-25 | Hamamatsu Photonics Kk | Manufacturing method of tempered glass member |
EP3473372A3 (en) * | 2013-03-15 | 2019-07-24 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
US11054712B2 (en) | 2013-03-15 | 2021-07-06 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
US10241376B2 (en) | 2013-03-15 | 2019-03-26 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
US9481598B2 (en) | 2013-03-15 | 2016-11-01 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
JP2016520501A (en) * | 2013-03-15 | 2016-07-14 | キネストラル テクノロジーズ,インク. | Laser cutting tempered glass |
US11713271B2 (en) | 2013-03-21 | 2023-08-01 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
EP2781296B1 (en) * | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Device and method for cutting out contours from flat substrates using a laser |
US10280108B2 (en) | 2013-03-21 | 2019-05-07 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
EP2781296A1 (en) | 2013-03-21 | 2014-09-24 | Corning Laser Technologies GmbH | Device and method for cutting out contours from flat substrates using a laser |
KR101857336B1 (en) * | 2013-04-04 | 2018-05-11 | 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 | Method and device for separating a substrate |
WO2014161535A3 (en) * | 2013-04-04 | 2014-11-27 | Lpkf Laser & Electronics Ag | Method and device for separating a substrate |
JP2016517626A (en) * | 2013-04-04 | 2016-06-16 | エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト | Method and apparatus for drilling through holes in a substrate and substrate thus manufactured |
US11618104B2 (en) | 2013-04-04 | 2023-04-04 | Lpkf Laser & Electronics Se | Method and device for providing through-openings in a substrate and a substrate produced in said manner |
CN105102177A (en) * | 2013-04-04 | 2015-11-25 | Lpkf激光电子股份公司 | Method and device for providing through-openings in a substrate and a substrate produced in said manner |
CN105189024A (en) * | 2013-04-04 | 2015-12-23 | Lpkf激光电子股份公司 | Method and device for separating a substrate |
US10610971B2 (en) | 2013-04-04 | 2020-04-07 | Lpkf Laser & Electronics Ag | Method for producing recesses in a substrate |
WO2014161534A3 (en) * | 2013-04-04 | 2014-11-27 | Lpkf Laser & Electronics Ag | Method and device for providing through-openings in a substrate and a substrate produced in said manner |
US20200189039A1 (en) * | 2013-04-04 | 2020-06-18 | Lpkf Laser & Electronics Ag | Method and device for providing through-openings in a substrate and a substrate produced in said manner |
US9764978B2 (en) | 2013-04-04 | 2017-09-19 | Lpkf Laser & Electronics Ag | Method and device for separating a substrate |
US11401194B2 (en) | 2013-04-04 | 2022-08-02 | Lpkf Laser & Electronics Ag | Method and device for separating a substrate |
WO2014171396A1 (en) * | 2013-04-15 | 2014-10-23 | 旭硝子株式会社 | Method for cutting glass sheet |
DE102013212577A1 (en) | 2013-06-28 | 2014-12-31 | Trumpf Laser- Und Systemtechnik Gmbh | Method for cutting off a workpiece by means of a pulsed laser beam |
US10639741B2 (en) | 2013-06-28 | 2020-05-05 | Trumpf Laser—und Systemtechnik GmbH | Ablation cutting of a workpiece by a pulsed laser beam |
JP2015014740A (en) * | 2013-07-08 | 2015-01-22 | 日本電気硝子株式会社 | Optical element and method of manufacturing the same |
US9102007B2 (en) | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser filamentation within transparent materials |
JP2015037808A (en) * | 2013-08-02 | 2015-02-26 | ロフィン−ジナール テクノロジーズ インコーポレイテッド | Method and device for executing laser filamentation in transparent material |
KR20170003898A (en) * | 2013-08-02 | 2017-01-10 | 로핀-시나르 테크놀로지스 인코포레이티드 | Method and apparatus for performing laser filamentation within transparent materials |
KR101869796B1 (en) | 2013-08-02 | 2018-06-22 | 로핀-시나르 테크놀로지스 엘엘씨 | Method and apparatus for performing laser filamentation within transparent materials |
KR20180070533A (en) * | 2013-08-02 | 2018-06-26 | 로핀-시나르 테크놀로지스 엘엘씨 | Method and apparatus for performing laser filamentation within transparent materials |
US10376986B2 (en) | 2013-08-02 | 2019-08-13 | Rofin-Sinar Technologies Llc | Method and apparatus for hybrid photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
US9102011B2 (en) | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
EP2859984A3 (en) * | 2013-08-02 | 2016-02-10 | Rofin-Sinar Technologies, Inc. | A method of laser processing a transparent material |
KR101998761B1 (en) | 2013-08-02 | 2019-07-10 | 로핀-시나르 테크놀로지스 엘엘씨 | Method and apparatus for performing laser filamentation within transparent materials |
EP3366413A1 (en) | 2013-08-02 | 2018-08-29 | Rofin-Sinar Technologies, Inc. | A system for laser processing a transparent material |
WO2015018425A1 (en) | 2013-08-07 | 2015-02-12 | Trumpf Laser- Und Systemtechnik Gmbh | Method for processing a plate-like workpiece having a transparent, glass, glass-like, ceramic, and/or crystalline layer, severing device for such a workpiece, and product from such a workpiece |
US10941069B2 (en) | 2013-08-07 | 2021-03-09 | Trumpf Laser- Und Systemtechnik Gmbh | Processing a plate-like workpiece having a transparent, glass, glass-like, ceramic and/or crystalline layer |
US10017410B2 (en) | 2013-10-25 | 2018-07-10 | Rofin-Sinar Technologies Llc | Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses |
EP2868421A1 (en) * | 2013-11-04 | 2015-05-06 | Rofin-Sinar Technologies, Inc. | Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses |
RU2551043C1 (en) * | 2013-11-07 | 2015-05-20 | Общество С Ограниченной Ответственностью "Оптосистемы" | Method and device for forming precision holes in optically transparent film with ultra-short laser radiation pulse |
WO2015069143A1 (en) * | 2013-11-07 | 2015-05-14 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ОПТОСИСТЕМЫ" (ООО "Оптосистемы") | Method and device for forming precision holes in optically transparent film using an ultrashort pulse of laser radiation |
US10252507B2 (en) | 2013-11-19 | 2019-04-09 | Rofin-Sinar Technologies Llc | Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy |
KR101758789B1 (en) * | 2013-11-19 | 2017-07-17 | 로핀-시나르 테크놀로지스 인코포레이티드 | Method of closed form release for brittle materials using burst ultrafast laser pulses |
US20150140241A1 (en) * | 2013-11-19 | 2015-05-21 | Rofin-Sinar Technologies Inc. | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
US10005152B2 (en) | 2013-11-19 | 2018-06-26 | Rofin-Sinar Technologies Llc | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
KR101904130B1 (en) * | 2013-11-19 | 2018-10-04 | 로핀-시나르 테크놀로지스 엘엘씨 | Method of closed form release for brittle materials using burst ultrafast laser pulses |
US11053156B2 (en) | 2013-11-19 | 2021-07-06 | Rofin-Sinar Technologies Llc | Method of closed form release for brittle materials using burst ultrafast laser pulses |
US9517929B2 (en) | 2013-11-19 | 2016-12-13 | Rofin-Sinar Technologies Inc. | Method of fabricating electromechanical microchips with a burst ultrafast laser pulses |
DE102013223637A1 (en) | 2013-11-20 | 2015-05-21 | Trumpf Laser- Und Systemtechnik Gmbh | A method of treating a laser transparent substrate for subsequently separating the substrate |
WO2015075059A1 (en) | 2013-11-20 | 2015-05-28 | Trumpf Laser- Und Systemtechnik Gmbh | Method for treating a laser-transparent substrate for subsequently separating the substrate |
DE102013223637B4 (en) * | 2013-11-20 | 2018-02-01 | Trumpf Laser- Und Systemtechnik Gmbh | A method of treating a laser transparent substrate for subsequently separating the substrate |
JP2015110248A (en) * | 2013-12-03 | 2015-06-18 | ロフィン−ジナール テクノロジーズ インコーポレイテッド | Method and apparatus for laser-machining silicon by filamentation of burst ultrafast laser pulse |
US10144088B2 (en) | 2013-12-03 | 2018-12-04 | Rofin-Sinar Technologies Llc | Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses |
US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
US10179748B2 (en) | 2013-12-17 | 2019-01-15 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
US10144093B2 (en) | 2013-12-17 | 2018-12-04 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US10293436B2 (en) | 2013-12-17 | 2019-05-21 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
US10183885B2 (en) | 2013-12-17 | 2019-01-22 | Corning Incorporated | Laser cut composite glass article and method of cutting |
US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US10392290B2 (en) | 2013-12-17 | 2019-08-27 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
CN106029287A (en) * | 2013-12-17 | 2016-10-12 | 康宁股份有限公司 | Method of laser cutting sapphire substrate by lasers and an article comprising sapphire with edge having series of defects |
US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
US11148225B2 (en) | 2013-12-17 | 2021-10-19 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
CN106029287B (en) * | 2013-12-17 | 2018-08-10 | 康宁股份有限公司 | It is cut by laser the method for sapphire substrate with laser and has the product containing sapphire at series of defect edge |
US10597321B2 (en) | 2013-12-17 | 2020-03-24 | Corning Incorporated | Edge chamfering methods |
US10611668B2 (en) | 2013-12-17 | 2020-04-07 | Corning Incorporated | Laser cut composite glass article and method of cutting |
US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
RU2556177C1 (en) * | 2014-01-09 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Method of sublimation and laser profiling or drilling of translucent substrates |
US10137527B2 (en) | 2014-01-17 | 2018-11-27 | Imra America, Inc. | Laser-based modification of transparent materials |
WO2015108991A2 (en) | 2014-01-17 | 2015-07-23 | Imra America, Inc. | Laser-based modification of transparent materials |
US9938187B2 (en) | 2014-02-28 | 2018-04-10 | Rofin-Sinar Technologies Llc | Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses |
LT6240B (en) | 2014-05-16 | 2016-01-25 | Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras | Method and apparatus for laser cutting of transparent media |
EP2944412A1 (en) | 2014-05-16 | 2015-11-18 | Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras | Method and apparatus for laser cutting of transparent media |
US11697178B2 (en) | 2014-07-08 | 2023-07-11 | Corning Incorporated | Methods and apparatuses for laser processing materials |
US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
EP2965853B1 (en) | 2014-07-09 | 2016-09-21 | High Q Laser GmbH | Processing of material using elongated laser beams |
US10589384B2 (en) | 2014-07-09 | 2020-03-17 | High Q Laser Gmbh | Processing of material using non-circular laser beams |
WO2016007843A1 (en) * | 2014-07-11 | 2016-01-14 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
US9617180B2 (en) | 2014-07-14 | 2017-04-11 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
WO2016010947A1 (en) * | 2014-07-14 | 2016-01-21 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
EP3169635B1 (en) | 2014-07-14 | 2022-11-23 | Corning Incorporated | Method and system for forming perforations |
US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
US9975799B2 (en) | 2014-07-14 | 2018-05-22 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
US9757815B2 (en) | 2014-07-21 | 2017-09-12 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser curved filamentation within transparent materials |
DE102015215235A1 (en) | 2014-08-08 | 2016-02-11 | Ceramtec-Etec Gmbh | Process for the preparation of thin substrates |
WO2016026984A1 (en) * | 2014-08-22 | 2016-02-25 | Ceramtec-Etec Gmbh | Separation of materials with transparent properties |
DE102015010822A1 (en) | 2014-08-22 | 2016-02-25 | Ceramtec-Etec Gmbh | Process for the production of precision components from transparent materials |
US10620444B2 (en) | 2014-11-19 | 2020-04-14 | Trumpf Laser- Und Systemtechnik Gmbh | Diffractive optical beam shaping element |
US10882143B2 (en) | 2014-11-19 | 2021-01-05 | Trumpf Laser- Und Systemtechnik Gmbh | System for asymmetric optical beam shaping |
US10661384B2 (en) | 2014-11-19 | 2020-05-26 | Trumpf Laser—und Systemtechnik GmbH | Optical system for beam shaping |
US11150483B2 (en) | 2014-11-19 | 2021-10-19 | Trumpf Laser- Und Systemtechnik Gmbh | Diffractive optical beam shaping element |
US11780033B2 (en) | 2014-11-19 | 2023-10-10 | Trumpf Laser- Und Systemtechnik Gmbh | System for asymmetric optical beam shaping |
RU2573181C1 (en) * | 2014-11-24 | 2016-01-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") | Laser processing of non-metallic plates |
US11014845B2 (en) | 2014-12-04 | 2021-05-25 | Corning Incorporated | Method of laser cutting glass using non-diffracting laser beams |
US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
US10252931B2 (en) | 2015-01-12 | 2019-04-09 | Corning Incorporated | Laser cutting of thermally tempered substrates |
US10391588B2 (en) | 2015-01-13 | 2019-08-27 | Rofin-Sinar Technologies Llc | Method and system for scribing brittle material followed by chemical etching |
DE102016201910A1 (en) | 2015-02-09 | 2016-08-11 | Ceramtec-Etec Gmbh | Creation of a transparent surface for the use of a laser-based separation process |
WO2016154284A1 (en) * | 2015-03-24 | 2016-09-29 | Corning Incorporated | Laser cutting and processing of display glass compositions |
US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
US10442033B2 (en) | 2015-06-02 | 2019-10-15 | Kawasaki Jukogyo Kabushiki Kaisha | Chamfering apparatus and chamfering method |
US10010971B1 (en) | 2015-06-17 | 2018-07-03 | Rofin Sinar Technologies Llc | Method and apparatus for performing laser curved filamentation within transparent materials |
DE102015110422A1 (en) | 2015-06-29 | 2016-12-29 | Schott Ag | Laser processing of a multiphase transparent material, as well as multiphase composite material |
US10702948B2 (en) | 2015-06-29 | 2020-07-07 | Schott Ag | Laser processing of a multi-phase transparent material, and multi-phase composite material |
US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
EP3319911B1 (en) | 2015-07-10 | 2023-04-19 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
DE102015111490A1 (en) | 2015-07-15 | 2017-01-19 | Schott Ag | Method and device for laser-assisted separation of a section from a flat glass element |
EP3590898A1 (en) | 2015-07-15 | 2020-01-08 | Schott AG | Complementary sections of a planar glass element |
US11161766B2 (en) | 2015-07-15 | 2021-11-02 | Schott Ag | Method and device for separation of glass portions or glass ceramic portions |
DE102015111491A1 (en) | 2015-07-15 | 2017-01-19 | Schott Ag | Method and device for separating glass or glass ceramic parts |
US11572301B2 (en) | 2015-07-15 | 2023-02-07 | Schott Ag | Method and device for laser-assisted separation of a portion from a sheet glass element |
WO2017009149A1 (en) | 2015-07-15 | 2017-01-19 | Schott Ag | Method and device for the laser-supported detachment of a section from a planar glass element |
US11884573B2 (en) | 2015-07-15 | 2024-01-30 | Schott Ag | Method and device for separation of glass portions or glass ceramic portions |
US12037279B2 (en) | 2015-07-15 | 2024-07-16 | Schott Ag | Method and device for laser-assisted separation of a portion from a sheet glass element |
US20200199007A1 (en) * | 2015-07-15 | 2020-06-25 | Schott Ag | Method and device for separation of glass portions or glass ceramic portions |
US9653644B2 (en) | 2015-10-02 | 2017-05-16 | Nichia Corporation | Method for manufacturing semiconductor element |
LT6428B (en) | 2015-10-02 | 2017-07-25 | Uab "Altechna R&D" | Method and device for laser processing of transparent materials |
WO2017060252A1 (en) | 2015-10-05 | 2017-04-13 | Schott Ag | Dielectric workpiece having a zone of defined strength, method for producing same, and use of same |
DE102015116848A1 (en) | 2015-10-05 | 2017-04-06 | Schott Ag | Dielectric workpiece with a zone of defined strength and method for its production and its use |
US11148231B2 (en) | 2015-10-05 | 2021-10-19 | Schott Ag | Method and apparatus for filamentation of workpieces not having a plan-parallel shape, and workpiece produced by filamentation |
WO2017060251A1 (en) | 2015-10-05 | 2017-04-13 | Schott Ag | Method and device for the filamentation of workpieces not having a plane-parallel shape and workpiece produced by filamentation |
DE102015116846A1 (en) | 2015-10-05 | 2017-04-06 | Schott Ag | Process for filamentizing a workpiece with a shape deviating from the nominal contour and workpiece produced by filamentation |
US10737967B2 (en) | 2015-12-02 | 2020-08-11 | Schott Ag | Method for laser-assisted separation of a portion from a sheet-like glass or glass ceramic element |
WO2017093393A1 (en) | 2015-12-02 | 2017-06-08 | Schott Ag | Method for laser-supported detaching of a portion of a flat glass or glass-ceramic element |
DE102015120950A1 (en) | 2015-12-02 | 2017-06-08 | Schott Ag | Method for laser-assisted detachment of a section from a flat glass or glass ceramic element |
DE102015120950B4 (en) | 2015-12-02 | 2022-03-03 | Schott Ag | Method for laser-assisted detachment of a section from a flat glass or glass-ceramic element, flat at least partially ceramized glass element or glass-ceramic element and cooking surface comprising a flat glass or glass-ceramic element |
US11384003B2 (en) | 2016-01-11 | 2022-07-12 | Zwiesel Kristallglas Ag | Laser filamentation |
WO2017121451A1 (en) | 2016-01-11 | 2017-07-20 | Zwiesel Kristallglas Ag | Laser filamentation |
DE102016000184A1 (en) | 2016-01-11 | 2017-07-27 | Zwiesel Kristallglas Ag | Laserfilamentieren |
US10807902B2 (en) | 2016-02-17 | 2020-10-20 | Schott Ag | Method for machining the edges of glass elements and glass element machined according to the method |
DE102016102768A1 (en) | 2016-02-17 | 2017-08-17 | Schott Ag | Method for processing edges of glass elements and glass element processed according to the method |
WO2017140394A1 (en) | 2016-02-17 | 2017-08-24 | Schott Ag | Method for machining the edges of glass elements and glass element machined according to the method |
US11396471B2 (en) | 2016-02-17 | 2022-07-26 | Schott Ag | Method for machining the edges of glass elements and glass element machined according to the method |
US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
US10377658B2 (en) | 2016-07-29 | 2019-08-13 | Corning Incorporated | Apparatuses and methods for laser processing |
US10522963B2 (en) | 2016-08-30 | 2019-12-31 | Corning Incorporated | Laser cutting of materials with intensity mapping optical system |
US10730783B2 (en) | 2016-09-30 | 2020-08-04 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
US11130701B2 (en) | 2016-09-30 | 2021-09-28 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
US11618707B2 (en) | 2017-01-02 | 2023-04-04 | Schott Ag | Method for separating substrates |
DE102017100015A1 (en) | 2017-01-02 | 2018-07-05 | Schott Ag | Method for separating substrates |
WO2018122112A1 (en) | 2017-01-02 | 2018-07-05 | Schott Ag | Method for separating substrates |
DE102017100755A1 (en) | 2017-01-16 | 2018-07-19 | Schott Ag | Apparatus and method for processing glass or glass ceramic elements by means of a laser |
WO2018130448A1 (en) | 2017-01-16 | 2018-07-19 | Schott Ag | Device and method for working glass elements or glass-ceramic elements by means of a laser |
US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
DE102017106372A1 (en) | 2017-03-24 | 2018-09-27 | Lpkf Laser & Electronics Ag | Method for machining a workpiece and a workpiece produced thereby |
DE102017106372B4 (en) * | 2017-03-24 | 2021-04-29 | Lpkf Laser & Electronics Ag | Process for machining a workpiece |
US11972993B2 (en) | 2017-05-25 | 2024-04-30 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
US10718900B2 (en) | 2017-09-20 | 2020-07-21 | Stmicroelectronics S.R.L. | Method of producing optical waveguides, corresponding system and device |
IT201700105367A1 (en) * | 2017-09-20 | 2019-03-20 | St Microelectronics Srl | PROCEDURE FOR PRODUCING OPTICAL WAVE GUIDES, SYSTEM AND CORRESPONDING DEVICE |
EP3488961A1 (en) * | 2017-11-22 | 2019-05-29 | Roche Diabetes Care, Inc. | Multiple laser processing for biosensor test strips |
WO2019158488A1 (en) | 2018-02-15 | 2019-08-22 | Schott Ag | Method and device for inserting a separation line into a transparent, brittle-fracture material, and element that can be produced according to the method and is provided with a separation line |
DE102018126381A1 (en) | 2018-02-15 | 2019-08-22 | Schott Ag | Method and device for inserting a dividing line into a transparent brittle material, as well as according to the method producible, provided with a dividing line element |
US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
DE102018114973A1 (en) | 2018-06-21 | 2019-12-24 | Schott Ag | Flat glass with at least one predetermined breaking point |
WO2019243053A1 (en) | 2018-06-21 | 2019-12-26 | Schott Ag | Flat glass having at least one predetermined breaking point |
US10877218B2 (en) | 2019-03-26 | 2020-12-29 | Stmicroelectronics S.R.L. | Photonic devices and methods for formation thereof |
DE102019123239B4 (en) | 2019-08-29 | 2023-05-04 | Trumpf Laser- Und Systemtechnik Gmbh | Process and device for separating a workpiece using a laser beam |
WO2021043450A1 (en) | 2019-09-06 | 2021-03-11 | Ire-Polus | Method of laser beam machining of a transparent brittle material and device embodying such method |
WO2022022854A2 (en) | 2020-07-27 | 2022-02-03 | Optics Balzers Ag | Method for producing optical elements |
DE102021117203A1 (en) | 2020-07-27 | 2022-01-27 | Optics Balzers Ag | Process for the production of optical elements |
DE102020123928A1 (en) | 2020-09-15 | 2022-03-17 | Schott Ag | Process and device for cutting glass foils |
EP4011846A1 (en) | 2020-12-09 | 2022-06-15 | Schott Ag | Method of structuring a glass element and structured glass element produced thereby |
WO2022140039A1 (en) * | 2020-12-21 | 2022-06-30 | Corning Incorporated | Substrate cutting and separating systems and methods |
WO2022182619A3 (en) * | 2021-02-26 | 2022-10-06 | Corning Incorporated | Methods for laser processing transparent material using pulsed laser beam focal lines |
WO2023052549A2 (en) | 2021-10-01 | 2023-04-06 | National University Of Ireland, Galway | Cutting a substrate or preparing a substrate for cleaving |
EP4159357A1 (en) | 2021-10-01 | 2023-04-05 | National University of Ireland Galway | Method of and apparatus for cutting a substrate or preparing a substrate for cleaving |
Also Published As
Publication number | Publication date |
---|---|
RU2013102422A (en) | 2014-08-20 |
US10399184B2 (en) | 2019-09-03 |
KR102088722B1 (en) | 2020-03-17 |
MY184075A (en) | 2021-03-17 |
JP2017185547A (en) | 2017-10-12 |
US20170028505A1 (en) | 2017-02-02 |
SG187059A1 (en) | 2013-02-28 |
JP2013536081A (en) | 2013-09-19 |
AU2011279374A1 (en) | 2013-02-07 |
US20130126573A1 (en) | 2013-05-23 |
CN103079747B (en) | 2016-08-03 |
US9296066B2 (en) | 2016-03-29 |
KR20180121683A (en) | 2018-11-07 |
EP2593266A4 (en) | 2017-04-26 |
JP6121901B2 (en) | 2017-04-26 |
KR20130031377A (en) | 2013-03-28 |
CN103079747A (en) | 2013-05-01 |
JP6646609B2 (en) | 2020-02-14 |
CA2805003C (en) | 2017-05-30 |
WO2012006736A3 (en) | 2012-11-29 |
CA2805003A1 (en) | 2012-01-19 |
EP2593266A2 (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10399184B2 (en) | Method of material processing by laser filamentation | |
US10010971B1 (en) | Method and apparatus for performing laser curved filamentation within transparent materials | |
US20200324368A1 (en) | Method for laser processing a transparent material | |
EP3292941B1 (en) | Method for non-ablative and/or photo acoustic compression machining a transparent target | |
US10137527B2 (en) | Laser-based modification of transparent materials | |
US20160318790A1 (en) | Method and system for scribing heat processed transparent materials | |
CA2857840C (en) | Method and apparatus for non-ablative, photoaccoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180042747.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11806190 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2805003 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013518917 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011806190 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137002677 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13640140 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2011279374 Country of ref document: AU Date of ref document: 20110712 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013102422 Country of ref document: RU Kind code of ref document: A |