WO2016026984A1 - Separation of materials with transparent properties - Google Patents

Separation of materials with transparent properties Download PDF

Info

Publication number
WO2016026984A1
WO2016026984A1 PCT/EP2015/069366 EP2015069366W WO2016026984A1 WO 2016026984 A1 WO2016026984 A1 WO 2016026984A1 EP 2015069366 W EP2015069366 W EP 2015069366W WO 2016026984 A1 WO2016026984 A1 WO 2016026984A1
Authority
WO
WIPO (PCT)
Prior art keywords
rit
transparent
laser
materials
transmission
Prior art date
Application number
PCT/EP2015/069366
Other languages
German (de)
French (fr)
Inventor
Lars Schnetter
Björn SCHUNCK
Original Assignee
Ceramtec-Etec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec-Etec Gmbh filed Critical Ceramtec-Etec Gmbh
Publication of WO2016026984A1 publication Critical patent/WO2016026984A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the invention relates to a method for separating materials.
  • the invention relates to a method for separating transparent, brittle-hard materials by means of laser.
  • the separation of materials by means of laser beam is today a widespread technology dar. However, if the material has transparent properties, this technology quickly reaches physical limits that preclude an economic use.
  • the separation process it is necessary to introduce the energy of the laser light into the material to achieve a structural change in the form of cracking or material melting.
  • the material it has hitherto been necessary for the material to be separated not to be transparent for the wavelength of the laser beam, so that the energy input by means of laser was effected via the interactions between the laser and the material, i. through absorption.
  • each laser pulse or a multiplicity of laser pulses leads to a local evaporation of the material (ablation). Spatially summed up, the separation of transparent materials is made possible.
  • Relative transmission like absolute transmission, only the value (intensity of an incident light) after subtraction of the reflection on both surfaces is set to 100%, thus for example with spinel the intensity is due to the reflection with maximally 87% (wavelength of the light: 600 nm) and is set to 100%.
  • grain size in the present invention means the mean grain size (d50). A determination of the grain size is possible via the line-cut analysis.
  • For the processing of the workpiece according to the invention must be a transparency in the relevant wavelength range. It is not necessary that the material is transparent over the entire wavelength range. It is also not necessary that a 100% relative transmission, or a 100% transmission /. In addition, it is not necessary for a transmission of, for example, 0.1% or 1% to be present.
  • the material has to be transparent essentially only +/- 20 nm around the wavelength of the incident laser beam.
  • at least 10%, better 20% real inline transmission (RIT) must be present according to the invention.
  • An RIT of 10% is necessary according to the invention because light that penetrates a body to almost 100% (100% absolute transmission) in this body by scattering and reflection from its original beam path can be distracted. In this case, although 100% of the light penetrates the body, it is not "straightforward" and uncontrolled, the RIT is 0%.
  • the material to be separated must have at least a RIT of 5%, better of at least 10% and particularly preferably of at least 20% around the wavelength of the laser light.
  • the material according to the invention is preferably a monocrystalline or polycrystalline ceramic material.
  • the material is selected from the group of polycrystalline ceramics, particularly preferably aluminum oxide, spinel (MgAl 2 O 4 ), zirconium oxide, yttrium aluminum garnet (YAG) or the group of monocrystalline ceramics, particularly preferably monocrystalline aluminum oxide (sapphire). ,
  • polycrystalline aluminum oxide with, for example, 0.5 ⁇ m particle size.
  • Polycrystalline aluminum oxide has in the visual range with wall thicknesses> 3 mm a relative and absolute RIT «5%, but at wavelengths> 1000 ⁇ nevertheless a relative transmission> 20%.
  • the process according to the invention works although the polycrystalline alumina is in the visual range, i. for wavelengths between 380 and 780 nm, is not transparent.
  • materials with wall thicknesses ⁇ 3 mm are used.
  • the grain size is too coarse, for example, on average> 2 ⁇ or too many second phases such as glass phases in conventional aluminas with 92 wt .-%, 96 wt .-% or 99 wt .-% alumina present, occur even at wavelengths> 1000 ⁇ too strong scattering effects, so that the material may have a RIT ⁇ 5% and therefore can no longer be cut. Therefore, according to the invention are preferred Aluminum oxides with grain sizes ⁇ 2 ⁇ used, the high purities> 99 wt .-% have.
  • a material for the wavelength of the laser beam may contain scattering elements such as pores, dopants or other secondaries which, while permitting "transparency" in the form of TFT> 50%, have RIT ⁇ 5% or close to 0%.
  • scattering elements such as pores, dopants or other secondaries which, while permitting "transparency" in the form of TFT> 50%, have RIT ⁇ 5% or close to 0%.
  • These materials also can not have a transparency in the form of a RIT value> 50% in the visual light range, but without being able to be cut by the process, the present invention comprises in particular the following embodiments:
  • Embodiment 1 is a method for separating materials, wherein the method is performed by means of short laser pulses.
  • Embodiment 2 The method of Embodiment 1, wherein the laser pulses are in the range of pico- or femtoseconds.
  • Embodiment 3 Method according to embodiment 1 or 2, wherein the material is transparent.
  • Embodiment 4 Method according to one of the preceding embodiments, wherein in the method laser filaments are formed in the material.
  • Embodiment 5 Method according to one of the preceding embodiments, wherein the material is transparent +/- 20 nm around the wavelength of the incident laser light.
  • Embodiment 6 Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 5%.
  • Embodiment 7 Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 10%.
  • Embodiment 8 Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 20%.
  • RIT Real Inline Transmission
  • Embodiment 9 Method according to one of the preceding embodiments, wherein the material has a wall thickness of ⁇ 3 mm.
  • Embodiment 10 Method according to one of the preceding embodiments, wherein the material is a monocrystalline or polycrystalline ceramic.
  • Embodiment 1 1 Method according to one of the preceding embodiments, wherein the aluminum oxide has a grain size of ⁇ 2 ⁇ .
  • Embodiment 12 is a material produced by the method of any of Embodiments 1 to 11.

Abstract

The invention relates to a method for separating materials. The invention relates, in particular, to a method for separating transparent, brittle hard materials by laser.

Description

Trennen von Werkstoffen mit transparenten Eigenschaften  Separating materials with transparent properties
Die Erfindung betrifft ein Verfahren zum Trennen von Werkstoffen. Insbesondere betrifft die Erfindung ein Verfahren zum Trennen von transparenten, sprödharten Werkstoffen mittels Lasers. Das Trennen von Werkstoffen mittels Laserstrahl stellt heute eine weit verbreitete Technologie dar. Besitzt der Werkstoff jedoch transparente Eigenschaften, stößt diese Technologie schnell an physikalische Grenzen, die einer wirtschaftlichen Nutzung entgegenstehen. The invention relates to a method for separating materials. In particular, the invention relates to a method for separating transparent, brittle-hard materials by means of laser. The separation of materials by means of laser beam is today a widespread technology dar. However, if the material has transparent properties, this technology quickly reaches physical limits that preclude an economic use.
Für den Trennprozess ist es erforderlich, die Energie des Laserlichts in den Werkstoff einzubringen, um eine Gefügeveränderung in Form von Rissbildung oder Materialaufschmelzung zu erreichen. Hierzu war es bisher erforderlich, dass der zu trennende Werkstoff für die Wellenlänge des Laserstrahls nicht transparent ist, so dass der Energieeintrag mittels Laser über die Wechselwirkungen zwischen Laser und Werkstoff erfolgte, d.h. durch Absorption. For the separation process, it is necessary to introduce the energy of the laser light into the material to achieve a structural change in the form of cracking or material melting. For this purpose, it has hitherto been necessary for the material to be separated not to be transparent for the wavelength of the laser beam, so that the energy input by means of laser was effected via the interactions between the laser and the material, i. through absorption.
Die Weiterentwicklung der Lasertechnologie hin zu kürzeren Pulszeiten im Bereich von Pico- bzw. Femtosekunden ermöglicht die Nutzung von physikalischen Effekten, die es erlauben, auch in transparente Werkstoffe die erforderliche Laserenergie einzubringen. Hierbei führt jeder Laserpuls bzw. eine Vielzahl von Laserpulsen zu einem lokalen Verdampfen des Werkstoffs (Ablation). Räumlich aufsummiert wird somit das Trennen von transparenten Werkstoffen ermöglicht. The further development of laser technology towards shorter pulse times in the range of picoseconds or femtoseconds allows the use of physical effects that make it possible to introduce the required laser energy into transparent materials. In this case, each laser pulse or a multiplicity of laser pulses leads to a local evaporation of the material (ablation). Spatially summed up, the separation of transparent materials is made possible.
Einen großen Nachteil dieses Verfahrens stellen hierbei jedoch die geringen Bearbeitungsgeschwindigkeiten dar. Ein relativ neues Laser-Bearbeitungsverfahren nutzt den Effekt der Filamentbildung in transparenten Werkstoffen. Hierzu sind jedoch besondere transparente Eigenschaften des zu trennenden Werkstoffs erforderlich. Der Begriff „Transparenz" ist nicht klar definiert. Unter„Transparenz" können unterschiedliche Dinge verstanden werden wie „lichtdurchlässig" (TFT), „durchsichtig" (hohe real in-line transmission = RIT). Es ist auch kein Maß für die Transparenz beschrieben. Absolute Transmission: Lichtdurchlässigkeit bei einem Vergleich der Intensität eines einfallenden Lichtes (100%) und der Intensität nach Durchdringen des Körpers However, a major disadvantage of this method is the low processing speeds. A relatively new laser machining process utilizes the effect of filament formation in transparent materials. For this purpose, however, special transparent properties of the material to be separated are required. The term "transparency" is not clearly defined: "Transparency" means different things like "translucent" (TFT), "transparent" (high real in-line transmission = RIT). There is also no measure of transparency described. Absolute transmission: translucency when comparing the intensity of an incident light (100%) and the intensity after penetrating the body
Relative Transmission: wie absolute Transmission, nur wird der Wert (Intensität eines einfallenden Lichtes) nach Abzug der Reflektion an beiden Oberflächen auf 100% gesetzt, also bspw. bei Spinell ist die Intensität aufgrund der Reflektion bei maximal 87% (Wellenlänge des Lichtes: 600 nm) und wird auf 100% gesetzt. Relative transmission: like absolute transmission, only the value (intensity of an incident light) after subtraction of the reflection on both surfaces is set to 100%, thus for example with spinel the intensity is due to the reflection with maximally 87% (wavelength of the light: 600 nm) and is set to 100%.
Der Begriff Korngröße in der vorliegenden Erfindung meint die mittlere Korngröße (d50). Eine Bestimmung der Korngröße ist über die Linienschnitt- Analyse möglich. The term grain size in the present invention means the mean grain size (d50). A determination of the grain size is possible via the line-cut analysis.
Für die Bearbeitung des Werkstücks muss erfindungsgemäß eine Transparenz im relevanten Wellenlängenbereich vorliegen. Dabei ist es nicht erforderlich, dass der Werkstoff über den gesamten Wellenlängenbereich transparent ist. Es ist auch nicht erforderlich, dass eine 100% relative Transmission, bzw. eine 100% Transmission/. ransparenz" vorhanden ist. Zudem ist es nicht erforderlich, dass eine Transmission von bspw. 0,1 % oder 1 % vorliegt. For the processing of the workpiece according to the invention must be a transparency in the relevant wavelength range. It is not necessary that the material is transparent over the entire wavelength range. It is also not necessary that a 100% relative transmission, or a 100% transmission /. In addition, it is not necessary for a transmission of, for example, 0.1% or 1% to be present.
Überraschenderweise zeigt sich, dass der Werkstoff im Wesentlichen nur +/-20 nm um die Wellenlänge des einfallenden Laserstrahls herum transparent sein muss. Darüber hinaus müssen jedoch erfindungsgemäß mindestens 10%, besser 20% Real-Inline-Transmission (RIT) vorhanden sein. Surprisingly, it turns out that the material has to be transparent essentially only +/- 20 nm around the wavelength of the incident laser beam. In addition, however, at least 10%, better 20% real inline transmission (RIT) must be present according to the invention.
Eine RIT von 10% ist erfindungsgemäß notwendig, weil Licht, das einen Körper zu nahezu 100% durchdringt (100% absolute Transmission) in diesem Körper durch Streuung und Reflektion von seinem ursprünglichen Strahlverlauf abgelenkt werden kann. In diesem Fall durchdringt zwar 100 % des Lichts den Körper, aber nicht„geradlinig" und nicht kontrolliert; die RIT ist 0%. An RIT of 10% is necessary according to the invention because light that penetrates a body to almost 100% (100% absolute transmission) in this body by scattering and reflection from its original beam path can be distracted. In this case, although 100% of the light penetrates the body, it is not "straightforward" and uncontrolled, the RIT is 0%.
Um Laserfilamente in einer definierten Tiefe des Werkstoffs erzeugen zu können, ist jedoch eine Kontrolle der Fokussierung des Laserstrahls notwendig. Daher muss der zu trennende Werkstoff erfindungsgemäß mindestens eine RIT von 5%, besser von mindestens 10% und besonders bevorzugt von mindestens 20% um die Wellenlänge des Laserlichts herum aufweisen. In order to produce laser filaments in a defined depth of the material, however, a control of the focusing of the laser beam is necessary. Therefore, according to the invention, the material to be separated must have at least a RIT of 5%, better of at least 10% and particularly preferably of at least 20% around the wavelength of the laser light.
Der erfindungsgemäße Werkstoff ist bevorzugt ein ein- oder polykristalliner keramischer Werkstoff. In einer besonders bevorzugten Ausführungsform ist der Werkstoff ausgewählt aus der Gruppe der polykristallinen Keramiken, besonders bevorzugt Aluminiumoxid, Spinell (MgAI2O4), Zirkonoxid, Yttrium- Aluminiumgranat (YAG) oder der Gruppe der einkristallinen Keramiken, besonders bevorzugt einkristallines Aluminiumoxid (Saphir). The material according to the invention is preferably a monocrystalline or polycrystalline ceramic material. In a particularly preferred embodiment, the material is selected from the group of polycrystalline ceramics, particularly preferably aluminum oxide, spinel (MgAl 2 O 4 ), zirconium oxide, yttrium aluminum garnet (YAG) or the group of monocrystalline ceramics, particularly preferably monocrystalline aluminum oxide (sapphire). ,
Besonders interessant ist dieser Umstand bei polykristallinem Aluminiumoxid mit bspw. 0,5 μιτι Korngröße. Polykristallines Aluminiumoxid hat im visuellen Bereich bei Wandstärken > 3 mm eine relative sowie absolute RIT « 5%, aber bei Wellenlängen von > 1000 μιτι trotzdem eine relative Transmission > 20%. Dies bedeutet, dass das erfindungsgemäße Verfahren funktioniert, obwohl das polykristalline Aluminiumoxid im visuellen Bereich, d.h. für Wellenlängen zwischen 380 und 780 nm, nicht transparent ist. Erfindungsgemäß werden daher bevorzugt Werkstoffe mit Wandstärken < 3 mm verwendet. Die Verwendung von Werkstoff mit Wandstärken von bis zu < 3μηη ist erfindungsgemäß aber ebenso möglich. This circumstance is particularly interesting in the case of polycrystalline aluminum oxide with, for example, 0.5 μm particle size. Polycrystalline aluminum oxide has in the visual range with wall thicknesses> 3 mm a relative and absolute RIT «5%, but at wavelengths> 1000 μιτι nevertheless a relative transmission> 20%. This means that the process according to the invention works although the polycrystalline alumina is in the visual range, i. for wavelengths between 380 and 780 nm, is not transparent. According to the invention, therefore, preferably materials with wall thicknesses <3 mm are used. The use of material with wall thicknesses of up to <3μηη according to the invention but also possible.
Ist die Korngröße jedoch zu grob, beispielsweise im Durchschnitt > 2 μιτι oder sind zu viele Zweitphasen wie beispielsweise Glasphasen bei herkömmlichen Aluminiumoxiden mit 92 Gew.-%, 96 Gew.-% oder 99 Gew.-% Aluminiumoxidanteil vorhanden, treten auch bei Wellenlängen > 1000 μιτι zu starke Streueffekte auf, so dass der Werkstoff eine RIT < 5% aufweisen kann und daher nicht mehr schneidbar ist. Erfindungsgemäß werden daher bevorzugt Aluminiumoxide mit Korngrößen < 2 μι verwendet, die hohe Reinheiten > 99 Gew.-% aufweisen. However, if the grain size is too coarse, for example, on average> 2 μιτι or too many second phases such as glass phases in conventional aluminas with 92 wt .-%, 96 wt .-% or 99 wt .-% alumina present, occur even at wavelengths> 1000 μιτι too strong scattering effects, so that the material may have a RIT <5% and therefore can no longer be cut. Therefore, according to the invention are preferred Aluminum oxides with grain sizes <2 μι used, the high purities> 99 wt .-% have.
Andererseits kann ein Material für die Wellenlänge des Laserstrahls streuende Elemente wie Poren, Dopanden oder andere Zweitkörper enthalten, die zwar eine„Transparenz" in Form eines TFT-Wertes > 50 % ermöglichen, aber dort eine RIT < 5% oder nahe 0% haben. Bei diesen Werkstoffen funktioniert das Verfahren ebenfalls nicht. Diese Werkstoffe können zudem eine Transparenz in Form eines RIT-Wertes > 50% im visuellen Lichtbereich haben, ohne jedoch mit dem Verfahren geschnitten werden zu können. Die vorliegende Erfindung umfasst insbesondere die folgenden Ausführungsformen: On the other hand, a material for the wavelength of the laser beam may contain scattering elements such as pores, dopants or other secondaries which, while permitting "transparency" in the form of TFT> 50%, have RIT <5% or close to 0%. These materials also can not have a transparency in the form of a RIT value> 50% in the visual light range, but without being able to be cut by the process, the present invention comprises in particular the following embodiments:
Ausführungsform 1 ist ein Verfahren zum Trennen von Werkstoffen, wobei das Verfahren mittels kurzen Laserpulsen durchgeführt wird. Embodiment 1 is a method for separating materials, wherein the method is performed by means of short laser pulses.
Ausführungsform 2: Verfahren nach Ausführungsform 1 , wobei die Laserpulse im Bereich von Pico- oder Femtosekunden sind. Embodiment 2: The method of Embodiment 1, wherein the laser pulses are in the range of pico- or femtoseconds.
Ausführungsform 3: Verfahren nach Ausführungsform 1 oder 2, wobei der Werkstoff transparent ist. Embodiment 3: Method according to embodiment 1 or 2, wherein the material is transparent.
Ausführungsform 4: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei beim Verfahren Laserfilamente im Werkstoff gebildet werden. Embodiment 4: Method according to one of the preceding embodiments, wherein in the method laser filaments are formed in the material.
Ausführungsform 5: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff +/- 20 nm um die Wellenlänge des einfallenden Laserlichts herum transparent ist. Embodiment 5: Method according to one of the preceding embodiments, wherein the material is transparent +/- 20 nm around the wavelength of the incident laser light.
Ausführungsform 6: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff eine Real Inline-Transmission (RIT) von 5% aufweist. Ausführungsform 7: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff eine Real Inline-Transmission (RIT) von 10% aufweist. Embodiment 6: Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 5%. Embodiment 7: Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 10%.
Ausführungsform 8: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff eine Real Inline-Transmission (RIT) von 20% aufweist. Embodiment 8: Method according to one of the preceding embodiments, wherein the material has a Real Inline Transmission (RIT) of 20%.
Ausführungsform 9: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff eine Wandstärke von < 3 mm aufweist. Ausführungsform 10: Verfahren nach einer der vorhergehenden Ausführungsformen, wobei der Werkstoff eine ein- oder polykristalline Keramik ist. Embodiment 9: Method according to one of the preceding embodiments, wherein the material has a wall thickness of <3 mm. Embodiment 10: Method according to one of the preceding embodiments, wherein the material is a monocrystalline or polycrystalline ceramic.
Ausführungsform 1 1 : Verfahren nach einer der vorhergehenden Ausführungsformen, wobei das Aluminiumoxid eine Korngröße von < 2 μιτι aufweist. Embodiment 1 1: Method according to one of the preceding embodiments, wherein the aluminum oxide has a grain size of <2 μιτι.
Ausführungsform 12 ist ein Werkstoff, wobei dieser durch das Verfahren nach einer der Ausführungsformen 1 bis 1 1 hergestellt wurde. Embodiment 12 is a material produced by the method of any of Embodiments 1 to 11.

Claims

Patentansprüche claims
1 . Verfahren zum Trennen von Werkstoffen, dadurch gekennzeichnet, dass das Verfahren mittels kurzen Laserpulsen durchgeführt wird. 1 . Method for separating materials, characterized in that the method is carried out by means of short laser pulses.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Laserpulse im Bereich von Pico- oder Femtosekunden sind. 2. The method according to claim 1, characterized in that the laser pulses are in the range of pico- or femtoseconds.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Werkstoff transparent ist. 3. The method according to claim 1 or 2, characterized in that the material is transparent.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Verfahren Laserfilamente im Werkstoff gebildet werden. 4. The method according to any one of the preceding claims, characterized in that laser filaments are formed in the material during the process.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff +/- 20 nm um die Wellenlänge des einfallenden Laserlichts herum transparent ist. 5. The method according to any one of the preceding claims, characterized in that the material is +/- 20 nm transparent to the wavelength of the incident laser light around.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff eine Real Inline-Transmission (RIT) von 5% aufweist. 6. The method according to any one of the preceding claims, characterized in that the material has a Real Inline Transmission (RIT) of 5%.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff eine Real Inline-Transmission (RIT) von 10% aufweist. 7. The method according to any one of the preceding claims, characterized in that the material has a real inline transmission (RIT) of 10%.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff eine Real Inline-Transmission (RIT) von 20% aufweist. 8. The method according to any one of the preceding claims, characterized in that the material has a real inline transmission (RIT) of 20%.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff eine Wandstärke von < 3 mm aufweist. 9. The method according to any one of the preceding claims, characterized in that the material has a wall thickness of <3 mm.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Werkstoff eine ein- oder polykristalline Keramik ist. 10. The method according to any one of the preceding claims, characterized in that the material is a single or polycrystalline ceramic.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Aluminiumoxid eine Korngröße von < 2 μιτι aufweist. 1 1. Method according to one of the preceding claims, characterized in that the aluminum oxide has a particle size of <2 μιτι.
12. Werkstoff, dadurch gekennzeichnet, dass dieser durch das Verfahren nach einem der Ansprüche 1 bis 1 1 hergestellt wurde. 12. Material, characterized in that this was prepared by the method according to one of claims 1 to 1 1.
PCT/EP2015/069366 2014-08-22 2015-08-24 Separation of materials with transparent properties WO2016026984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014012280 2014-08-22
DE102014012280.8 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016026984A1 true WO2016026984A1 (en) 2016-02-25

Family

ID=53900835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/069366 WO2016026984A1 (en) 2014-08-22 2015-08-24 Separation of materials with transparent properties

Country Status (2)

Country Link
DE (1) DE102015216130A1 (en)
WO (1) WO2016026984A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029076A1 (en) * 1979-08-02 1981-02-05 Gen Electric METHOD FOR CUTTING CERAMIC MATERIAL
EP1535698A1 (en) * 2002-08-06 2005-06-01 Namiki Seimitsu Houseki Kabushiki Kaisha Laser processing method
US20120012758A1 (en) * 2009-06-29 2012-01-19 Seishin Trading Co., Ltd. Laser irradiation device and laser processing method
WO2012006736A2 (en) * 2010-07-12 2012-01-19 Filaser Inc. Method of material processing by laser filamentation
DE102012110971A1 (en) * 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
WO2014079570A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3029076A1 (en) * 1979-08-02 1981-02-05 Gen Electric METHOD FOR CUTTING CERAMIC MATERIAL
EP1535698A1 (en) * 2002-08-06 2005-06-01 Namiki Seimitsu Houseki Kabushiki Kaisha Laser processing method
US20120012758A1 (en) * 2009-06-29 2012-01-19 Seishin Trading Co., Ltd. Laser irradiation device and laser processing method
WO2012006736A2 (en) * 2010-07-12 2012-01-19 Filaser Inc. Method of material processing by laser filamentation
DE102012110971A1 (en) * 2012-11-14 2014-05-15 Schott Ag Separating transparent workpieces
WO2014079570A1 (en) * 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials

Also Published As

Publication number Publication date
DE102015216130A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
DE102013223637B4 (en) A method of treating a laser transparent substrate for subsequently separating the substrate
EP3416921B1 (en) Method for machining the edges of glass elements and glass element machined according to the method
DE2810265C2 (en) Translucent, polycrystalline aluminum oxide body and its use for a high pressure vapor lamp
DE102005020072B4 (en) Process for fine polishing / structuring heat-sensitive dielectric materials by means of laser radiation
DE102012110971A1 (en) Separating transparent workpieces
EP3313608A1 (en) Method for producing modifications in or on a multi-phase transparent workpiece by means of laser processing; multi-phase composite material
WO2017060252A1 (en) Dielectric workpiece having a zone of defined strength, method for producing same, and use of same
DE1491042B2 (en) DENTAL MATERIAL
DE102014002600A1 (en) Combined wafer fabrication process with laser treatment and temperature-induced stresses
DE102005048691A1 (en) Tool and method for machining a workpiece made of a hard material
DE102015000451A1 (en) Uneven Wafer and Method of Making an Uneven Wafer
EP2978561B1 (en) Method for removing brittle-hard material by means of laser radiation
EP3153838A1 (en) Method for preparing a sample for the microstructure diagnosis and sample for micro structure diagnosis
WO2016026984A1 (en) Separation of materials with transparent properties
DE102012213071A1 (en) Method for producing toughened substrate e.g. pre-stressed glass substrate used in e.g. smart phone, involves separating substrate along trench provided on two sides of substrate
DE102013226579A1 (en) Ceramic material
DE19646332C2 (en) Method for changing the optical behavior on the surface and / or within a workpiece by means of a laser
DE102008037037A1 (en) Process for producing a transparent polycrystalline ceramic
WO2010132915A2 (en) Polycrystalline ceramic orthodontic component
DE1944769A1 (en) Process for separating ceramic parts using localized thermal effects
DE102015009622A1 (en) Method for removing brittle-hard material by means of laser radiation
DE102015005778B3 (en) High-voltage capacitor, dielectrics with defined surface roughness for high-performance capacitors, as well as processes for the production of a dielectric
EP3177426B1 (en) Method for producing thin substrates
DD140435A1 (en) METHOD FOR DISCONNECTING CERAMIC MASSES, IN PARTICULAR UNSATURATED OXID CERAMIC MASSES
DE102016103339A1 (en) Optical coating and method of making an optical coating with reduced light scattering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15753380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15753380

Country of ref document: EP

Kind code of ref document: A1