WO2012005307A1 - ガラス基板の強度向上方法 - Google Patents

ガラス基板の強度向上方法 Download PDF

Info

Publication number
WO2012005307A1
WO2012005307A1 PCT/JP2011/065512 JP2011065512W WO2012005307A1 WO 2012005307 A1 WO2012005307 A1 WO 2012005307A1 JP 2011065512 W JP2011065512 W JP 2011065512W WO 2012005307 A1 WO2012005307 A1 WO 2012005307A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
alkali metal
plasma
ease
treatment
Prior art date
Application number
PCT/JP2011/065512
Other languages
English (en)
French (fr)
Inventor
浩司 中川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012005307A1 publication Critical patent/WO2012005307A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment

Definitions

  • the present invention relates to a method for improving the strength of a glass substrate used in a display device or the like.
  • a glass substrate is widely used for display devices such as a liquid crystal display (LCD), a plasma display panel (PDP), and an organic EL (Electroluminescent) display (OELD).
  • LCD liquid crystal display
  • PDP plasma display panel
  • OELD organic EL
  • a glass substrate with a thin plate thickness has been demanded in order to meet demands for further thinning and weight reduction of display devices.
  • Patent Document 1 proposes a chemical strengthening process on a glass substrate.
  • the strength of the glass substrate can be increased even if the plate thickness is thin.
  • warping and / or deformation may occur in the finally obtained glass substrate. This is considered to be due to a minute difference in chemical properties between the two surfaces (front and back) of the glass substrate.
  • the two surfaces of the glass substrate are not always subjected to the same history.
  • the respective surfaces may receive different histories. In such a case, when the glass substrate is chemically strengthened, the glass substrate is warped and / or deformed due to a difference in chemical properties between the two surfaces.
  • the glass substrate is used for a display device, such warpage and / or deformation of the glass substrate is not preferable because it leads to distortion of an image emitted from the display panel side. Further, when such warpage and / or deformation occurs, it becomes necessary to repair the warpage and / or deformation by polishing the glass substrate, and extra cost and time are required. In particular, glass substrates for display devices tend to become larger and thinner, and such warpage and / or deformation problems are expected to become more prominent in the future.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a method for increasing the strength of a glass substrate, which is less likely to warp and / or deform the glass substrate. To do.
  • a method for increasing the strength of a glass substrate (A) preparing a glass substrate having a first surface and a second surface facing each other; (B) Evaluating the ease of alkali metal removal on the first surface and the second surface, (C) Based on (b), the first surface of the glass substrate and / or the first surface and / or the second surface so that the ease of alkali metal removal on the second surface is substantially equal. Alternatively, plasma treatment is performed on the second surface, (D) After said (c), the glass substrate is chemically strengthened, The glass substrate strength improvement method characterized by the above-mentioned is provided.
  • a method for increasing the strength of a glass substrate (A ′) preparing a glass substrate having a first surface and a second surface opposite to each other, the same type as the glass substrate to be chemically strengthened; (B ′) a step of evaluating ease of alkali metal removal on the first surface and the second surface of the glass substrate; (C ′) Based on the evaluation result of the step (b ′), the ease of escape of alkali metals on the first surface and the second surface of the glass substrate to be subjected to separately prepared chemical strengthening treatment is substantially equal.
  • the first surface is irradiated with + (plus) ion plasma and / or the second surface is irradiated with ⁇ (minus) ion plasma.
  • the first surface is irradiated with plasma of ⁇ (minus) ions and / or the second surface is irradiated with plasma of + (plus) ions.
  • the evaluation film may be a conductive oxide.
  • the heat treatment in (b2) may be performed in the range of 100 ° C. to 600 ° C. for 10 minutes to 1 hour.
  • the (b3) may be performed by continuously measuring the amount of the alkali metal while dry-etching the evaluation film by the SIMS method.
  • the alkali metal for evaluating the ease of removal of the alkali metal in (b), (b ′) or (b1) is sodium (Na).
  • the glass substrate may be a glass substrate manufactured by a float process.
  • the glass substrate may have a thickness ranging from 0.2 mm to 3 mm.
  • the glass substrate may be for a display device of 32 inches or more.
  • the present invention can provide a method in which the glass substrate is hardly warped and / or deformed in the method of increasing the strength by subjecting the glass substrate to chemical strengthening.
  • chemical strengthening treatment means that a glass substrate is immersed in a molten salt containing an alkali metal, and an alkali metal ion having a small atomic diameter existing on the outermost surface of the glass substrate is melted.
  • This is a general term for technologies for replacing alkali metal ions having a large atomic diameter present in a salt, that is, an ion exchange strengthening method.
  • alkali metal ions having an atomic diameter larger than that of the original atoms are arranged on the surface of the treated glass substrate. For this reason, compressive stress can be given to the surface of a glass substrate, and the intensity
  • the glass substrate contains sodium (Na), this sodium is replaced with, for example, potassium (K) by the chemical strengthening treatment.
  • the glass substrate includes lithium (Li)
  • the lithium is replaced with, for example, sodium (Na) and / or potassium (K) by the chemical strengthening treatment.
  • FIG. 1 is a schematic side view of a glass substrate 10 after a conventional chemical strengthening treatment.
  • the glass substrate 10 has a first surface 12A and a second surface 12B that face each other. Further, the glass substrate 10 had a substantially flat shape without warping until immediately before the chemical strengthening treatment. However, after the chemical strengthening treatment, the glass substrate 10 is warped such that the first surface 12A becomes a convex surface and the second surface 12B becomes a concave surface.
  • the cause of such warpage and / or deformation in the glass substrate 10 after the chemical strengthening treatment is not clear, but the chemicals of the two surfaces 12A and 12B of the glass substrate 10 before the chemical strengthening treatment are not clear. It is considered that minute differences in properties are caused by such warpage and / or deformation. For example, in the process of manufacturing the glass substrate 10, when the surfaces 12 ⁇ / b> A and 12 ⁇ / b> B receive different histories, the warp as shown in FIG. 1 may occur.
  • a glass substrate manufactured by a so-called float method is in a state where only one surface is in contact with the molten tin (Sn) layer of the float bath during the manufacturing. Therefore, there may be a minute difference in chemical properties between both surfaces 12A and 12B depending on whether or not there is contact with the molten tin layer. For example, when tin remains on the surface side that has been in contact with the molten tin layer, such a surface side is expected to become a surface on which alkali metal is more difficult to escape during the chemical strengthening treatment. This is because the residual tin suppresses the alkali metal of the glass substrate from escaping to the molten salt side. Further, for example, the alkali metal concentration itself may be higher on the surface side of the glass substrate in contact with the molten tin layer.
  • the second surface 12B side (that is, the concave surface) is a surface in contact with tin, that is, the surface 12B is compared with the surface 12A during the chemical strengthening treatment. It is expected that the alkali metal is difficult to escape to the molten salt side.
  • transformation of the glass substrate in the case of a chemical strengthening process are not restricted to the glass substrate manufactured by the float glass process, A curvature and / or deformation
  • Such warpage and / or deformation of the glass substrate 10 is not preferable when it is assumed that the glass substrate 10 is used for a display device. This is because an image output from the display device is distorted by the glass substrate 10 and there is a high risk that an appropriate image cannot be obtained. Further, when such warpage and / or deformation occurs, it becomes necessary to repair the warpage and / or deformation by polishing the glass substrate, and extra cost and time are required. In particular, glass substrates for display devices tend to become larger and thinner, and such warpage and / or deformation problems are expected to become more prominent in the future.
  • FIG. 2 the typical side view of the glass substrate 100 after carrying out the chemical strengthening process by the method of this invention is shown. Even after the glass substrate 100 is chemically strengthened, the first surface 112A and the second surface 112B remain substantially flat, and the glass substrate 100 is not warped and / or deformed. unacceptable. Thus, in the present invention, a glass substrate in which warpage and / or deformation is significantly suppressed after the chemical strengthening treatment can be obtained. Therefore, in the method according to the present invention, a chemically strengthened glass substrate can be applied as it is to a large display device (for example, a display device of 32 inches or more) or a thin display device.
  • a large display device for example, a display device of 32 inches or more
  • FIG. 3 shows an example of a method for increasing the strength of the glass substrate according to the present invention.
  • the method of the present invention (A) preparing a glass substrate having a first surface and a second surface facing each other (step S110); (B) a step (step S120) of evaluating ease of alkali metal removal on the first surface and the second surface; (C) Based on the step of (b), the first surface of the glass substrate is such that the ease of alkali metal removal on the first surface and the second surface is substantially equal. And / or performing a plasma treatment on the second surface (step S130); (D) After the step (c), performing a chemical strengthening process on the glass substrate (step S140); Have
  • the method of the present invention also includes (A ′) preparing a glass substrate having a first surface and a second surface facing each other of the same type as the glass substrate to be chemically strengthened (step S110 ′); (B ′) a step (step S120 ′) of evaluating ease of escape of alkali metal on the first surface and the second surface of the glass substrate; (C ′) Based on the evaluation result of the step (b ′), the ease of escape of alkali metals on the first surface and the second surface of the glass substrate to be subjected to separately prepared chemical strengthening treatment is substantially equal.
  • a step of performing plasma treatment on the first surface and / or the second surface of the glass substrate (Step S130 ′), (D ′) a step of chemically strengthening the glass substrate that has been subjected to the plasma treatment in the step (c ′) (step S140 ′); In the order of the steps described above.
  • a glass substrate 100 having a first surface 112A and a second surface 112B facing each other is prepared.
  • the composition of the glass substrate 100 is not particularly limited as long as it contains an alkali metal, and the glass substrate 100 may be, for example, a soda lime glass substrate.
  • the glass substrate refers to a plate-like glass plate having two surfaces facing each other, that is, two surfaces of the front surface and the back surface of the glass substrate. Whether the surface is called the first surface or the second surface is arbitrary.
  • the upper surface of the glass substrate 100 is referred to as a first surface and the lower surface is referred to as a second surface.
  • the lower surface of the glass substrate 100 is referred to as a first surface
  • the upper surface is referred to as a second surface. May be called.
  • the glass substrate 100 includes, for example, 60 mol% to 80 mol% SiO 2 , 0.5 mol% to 7 mol% Al 2 O 3 , 3 mol% to 10 mol% MgO, 6 mol% to 9 mol% CaO, in terms of oxides. 0 ⁇ 5 mol% of SrO, 0 ⁇ 4mol% of BaO, 0 ⁇ 2mol% of ZrO 2, 4mol% ⁇ 13mol% of Na 2 O, and having a composition of K 2 O of 0.1 mol% ⁇ 7 mol% Also good.
  • the thickness of the glass substrate 100 is not particularly limited, but the effect of the present invention is relatively reduced with a thick glass substrate. In addition, if the plate thickness is too thin, there is a high risk of the glass substrate being damaged during the chemical strengthening treatment.
  • the thickness of the glass substrate 100 may be, for example, in the range of 0.2 mm to 3 mm, and particularly in the range of 0.4 to 2 mm.
  • the glass substrate 100 may be manufactured by a float process or may be manufactured by a fusion process. Note that the end surface of the glass substrate 100 may be chamfered.
  • Step S120, Step S120 ′ Next, on the first surface 112 ⁇ / b> A and the second surface 112 ⁇ / b> B of the glass substrate 100, the difference in ease of removal of the alkali metal to be evaluated, that is, the alkali metal (for example, Na) substituted in the chemical strengthening treatment is evaluated.
  • the alkali metal for example, Na
  • step S120 ′ a glass substrate having a plate thickness equivalent to the same type of composition as that of a glass substrate subjected to chemical strengthening treatment in a later step is separately prepared as a glass substrate used for this evaluation. This evaluation is performed, for example, by the following method ((i) to (iii)).
  • a first evaluation film that does not contain sodium is formed on the first surface 112A of the glass substrate 100.
  • a second evaluation film that does not contain sodium is formed on the second surface 112 ⁇ / b> B of the glass substrate 100.
  • the first and second evaluation films need to be films of the same material and thickness formed under the same conditions. Otherwise, the comparative evaluation of the first and second evaluation films cannot be performed in the subsequent steps.
  • the method for forming the evaluation film is not particularly limited, and the evaluation film may be a general method such as vapor deposition, physical vapor deposition (PVD), chemical vapor deposition (CVD), sputtering, or spin coating.
  • the film may be formed by a typical film forming technique.
  • the evaluation film may be made of any material as long as it does not contain sodium (that is, the element to be measured). However, an evaluation film containing only an element having an atomic diameter smaller than that of sodium is not preferable. This is because in the subsequent heat treatment step (sodium diffusion step), it may be difficult to sufficiently diffuse sodium into the evaluation film in a realistic time.
  • the evaluation film is preferably a conductive film, and more preferably an oxide.
  • the evaluation film may be, for example, indium tin oxide.
  • the thickness of the evaluation film is not particularly limited.
  • the thickness of the evaluation film may be, for example, in the range of 50 nm to 200 nm.
  • the glass substrate 100 is heat-treated. This heat treatment is performed in order to diffuse sodium present in the respective surfaces 112A and 112B into the respective evaluation films.
  • the heat treatment conditions are appropriately determined depending on the concentration of sodium contained in the glass substrate 100 and the like. That is, this heat treatment is performed under the condition that sodium present on both surfaces 112A and 112B moves into the respective evaluation films.
  • the temperature of the heat treatment may be, for example, 100 ° C. to 600 ° C., preferably 100 ° C. to a temperature range lower than the temperature of the strain point of the glass substrate. Further, the heat treatment time may be, for example, in the range of 10 minutes to 1 hour.
  • the atmosphere of the heat treatment is not particularly limited, but is preferably an air atmosphere from the viewpoint of the configuration of the apparatus and the ease of processing.
  • the first and second evaluation films are preferably made of oxide. (Iii) Next, the amount of sodium contained in the first and second evaluation films is measured.
  • Measurement of the amount of sodium in the evaluation film may be performed using a general analyzer.
  • the amount of sodium in the evaluation film is quantitatively determined from the sodium count obtained by dry etching the evaluation film in the thickness direction using a SIMS (Secondary Ion Mass Spectroscopy) apparatus. May be used.
  • a sodium profile may be obtained by obtaining a profile in the depth direction of sodium in the evaluation film by an EPMA (Electron Probe Micro Analyzer) analyzer or the like and integrating this region. From the obtained results, it is determined which surface of the first and second surfaces 112A and 112B is easy for sodium to escape, and its degree.
  • Step S130, Step S130 ′ plasma processing is performed on the first surface 112A and / or the second surface 112B of the glass substrate 100 based on the evaluation result obtained in the above-described step S120 or step S120 ′.
  • this plasma treatment is performed on a separately prepared glass substrate in order to perform a chemical strengthening treatment.
  • the “plasma treatment” is a treatment of irradiating the first surface 112A and / or the second surface 112B of the glass substrate 100 with plasma having a relatively small power that does not damage the surface. To tell.
  • the “plasma treatment” is performed in order to “balance” (equalize) the ease of removal of sodium on the first surface 112A of the glass substrate 100 and the ease of removal of sodium on the second surface 112B.
  • step S120 or step S120 ′ it is confirmed that the first surface 112A of the glass substrate 100 is more easily removed than the second surface 112B.
  • “plasma treatment” with + (plus) ions is performed on the first surface 112A.
  • the first surface 112A is irradiated with plasma having the same polarity (plus) as sodium ions, so that sodium in the vicinity of the first surface 112A moves inward of the glass substrate 100.
  • “plasma treatment” with ⁇ (minus) ions may be performed on the second surface 112B of the glass substrate 100.
  • sodium ions having a polarity (negative) opposite to that of plasma move in the vicinity of the second surface 112B. Therefore, it becomes possible to “balance” the ease of removal of sodium on both surfaces by plasma irradiation.
  • step S120 or step S120 ′ when it is confirmed that the second surface of the glass substrate 100 is in a state in which sodium is more easily removed than the first surface, the above Contrary to the above example, “plasma treatment” with + (plus) ions is performed on the second surface.
  • the second surface is irradiated with plasma having the same polarity (plus) as sodium ions, so that sodium in the vicinity of the second surface moves to the inner side of the glass substrate.
  • plasma treatment with ⁇ (minus) ions may be performed on the first surface of the glass substrate.
  • the glass substrate is made of a glass plate manufactured by a float process
  • plasma treatment with + (plus) ions is performed on the surface side of the glass substrate in contact with molten tin, or glass
  • the surface of the substrate that is not in contact with the molten tin can be subjected to plasma treatment with-(minus) ions.
  • step S120 or step S120 ' may be performed again to confirm that the ease of sodium removal on both surfaces 112A and 112B has been balanced. If the ease of removal of sodium on both surfaces 112A and 112B has not yet been balanced, the plasma treatment may be performed again. In this case, by repeating (Step S120) to (Step S130) or (Step S120 ') to (Step S130'), the ease of removal of sodium on both surfaces 112A and 112B is made substantially equal.
  • the conditions for the plasma treatment are not particularly limited.
  • a gas such as Ar (argon), N 2 (nitrogen), or O 2 (oxygen) is used in a vacuum chamber whose ultimate vacuum is in the range of 1 ⁇ 10 ⁇ 3 Pa to 1 ⁇ 10 ⁇ 5 Pa.
  • the discharge vacuum degree may be set in a range of 1 ⁇ 10 ⁇ 1 Pa to 1 ⁇ 10 ⁇ 3 Pa.
  • the power of plasma (RF) to be used is, for example, a discharge voltage of 100 W to 1000 W, and such plasma is irradiated to both surfaces 112A and 112B of the glass substrate 100 in a range of 1 minute to 1 hour. Also good.
  • Step S140, Step S140 ′ a chemical strengthening process is performed on the glass substrate 100 in which the ease of removal of sodium on both surfaces 112A and 112B is “balanced”.
  • the ease of removal of sodium on both surfaces 112A and 112B is “balanced”
  • the amount of substitution of alkali metal ions (for example, potassium ions) on both surfaces caused by the chemical strengthening treatment is almost equal. . Therefore, the substitution reaction proceeds only on one surface (or vice versa), and the glass substrate 100 is suppressed from being warped or deformed after the chemical strengthening treatment.
  • a glass substrate 100 can be obtained in which both surfaces 112A and 112B remain substantially flat as shown in FIG.
  • Conditions for the chemical strengthening treatment are not particularly limited, and a conventional chemical strengthening treatment method can be used.
  • Examples of the chemical strengthening treatment include a method in which a glass substrate is immersed in a molten nitric acid salt at 400 ° C. to 450 ° C. for a predetermined time.
  • the glass substrate contains sodium (Na), for example, potassium nitrate (KNO 3 ) is used as the nitric acid molten salt.
  • the glass substrate contains lithium (Li), for example, sodium nitrate (NaNO 3 ) and / or potassium nitrate (KNO 3 ) is used as the nitric acid molten salt.
  • the glass substrate contains lithium (Li) and sodium (Na), for example, potassium nitrate (KNO 3 ) is used as the nitric acid molten salt.
  • the time for the chemical strengthening treatment is not particularly limited, but is usually about 1 to 4 hours.
  • step S120 or step S120 ′ the difference in ease of removal of the alkali metal (sodium) to be evaluated on the first and second surfaces 112A and 112B of the glass substrate 100 is evaluated.
  • the method of the present invention has been described with reference to an example of “balancing” this in step S130 or step S130 ′.
  • alkali metal for example, sodium
  • step S120 or step S120 ′ alkali metal (for example, sodium) is used instead of the ease of removal of alkali metal (sodium) on the first and second surfaces 112A and 112B of the glass substrate 100 of the glass substrate 100. May be evaluated.
  • the conditions of the subsequent plasma treatment are determined based on the difference in the concentration of alkali metal (for example, sodium) on both surfaces 112A and 112B. And after the plasma treatment, the concentration of alkali metal (eg, sodium) on both surfaces 112A and 112B is “balanced”.
  • alkali metal for example, sodium
  • glass substrates for FPD devices such as liquid crystal displays, plasma displays, organic EL displays, and mobile displays with higher strength, in particular, upsizing and thinning.
  • Glass substrates for FPD devices can be provided and are useful as glass substrates for these devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)

Abstract

 ガラス基板の強度を高める方法であって、ガラス基板に反りおよび/または変形が生じ難い方法を提供する。 ガラス基板の強度を高める方法であって、(a)相互に対向する第1の表面および第2の表面を有するガラス基板を準備し、(b)前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価し、(c)前記(b)に基づいて、前記第1の表面および前記第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、前記ガラス基板の前記第1の表面および/または前記第2の表面に対して、プラズマ処理を行い、(d)前記(c)の後に、前記ガラス基板に化学強化処理を行う、ガラス基板の強度向上方法。

Description

ガラス基板の強度向上方法
 本発明は、ディスプレイ装置等に使用されるガラス基板の強度向上方法に関する。
 一般に、ガラス基板は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)および有機EL(Electroluminescent)ディスプレイ(OELD)等のディスプレイ装置等に広く使用されている。最近では、ディスプレイ装置のさらなる薄型化、軽量化の要望に対応するため、板厚が薄いガラス基板が要求されるようになってきている。
 一般に、ガラス基板は、板厚が薄くなると、強度が低下する。従って、板厚の薄いガラス基板を実際にディスプレイ装置等に適用するには、ガラス基板の強度を向上させる必要がある。このため、ガラス基板に対して化学強化処理を行うことが提案されている(特許文献1)。
特公平5-3420号公報
 ガラス基板に対して化学強化処理を行うことにより、板厚が薄くても、ガラス基板の強度を高めることができる。
 しかしながら、ガラス基板に対して化学強化処理を行うと、最終的に得られるガラス基板に、反りおよび/または変形が生じる場合がある。これは、ガラス基板の2つの表面(表、裏)の化学的性質の微細な差異によるものであると考えられる。例えば、ガラス基板の2つの表面は、常に同一の履歴を受けているとは限られず、例えばガラス基板の製造などの過程で、それぞれが異なる履歴を受けている場合がある。そのような場合、ガラス基板を化学強化処理すると、2つの表面の化学的性質の差異により、ガラス基板に反りおよび/または変形が生じてしまう。
 ガラス基板をディスプレイ装置に使用することを想定した場合、このようなガラス基板の反りおよび/または変形は、表示パネル側から放出される画像の歪み等につながるため、好ましいものではない。また、このような反りおよび/または変形が生じると、ガラス基板を研磨等して、反りおよび/または変形を修復する必要が生じ、余分なコストや時間が必要になってしまう。
 特に、ディスプレイ装置用のガラス基板は、より一層大型化、薄型化が進む傾向にあり、このような反りおよび/または変形の問題は、今後より顕著になるものと予想される。
 本発明は、このような背景に鑑みなされたものであり、本発明では、ガラス基板の強度を高める方法であって、ガラス基板に反りおよび/または変形が生じ難い方法を提供することを目的とする。
 本発明では、
 ガラス基板の強度を高める方法であって、
 (a)相互に対向する第1の表面および第2の表面を有するガラス基板を準備し、
 (b)前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価し、
 (c)前記(b)に基づいて、前記第1の表面および前記第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、前記ガラス基板の前記第1の表面および/または前記第2の表面に対して、プラズマ処理を行い、
 (d)前記(c)の後に、前記ガラス基板に化学強化処理を行う、ことを特徴とするガラス基板の強度向上方法が提供される。
 また、本発明では、ガラス基板の強度を高める方法であって、
 (a’)化学強化処理しようとするガラス基板と同種の、相互に対向する第1の表面および第2の表面を有するガラス基板を準備する工程と、
 (b’)前記ガラス基板の前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価する工程と、
 (c’)前記(b’)工程の評価結果に基づいて、別途用意された化学強化処理を行うガラス基板の第1の表面および第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、当該ガラス基板の当該第1の表面および/または当該第2の表面に対して、プラズマ処理を行う工程と、
 (d’)前記(c’)の工程によりプラズマ処理が行なわれたガラス基板に化学強化処理を行う工程と、
 を、上記した工程の順序に行なうことを特徴とするガラス基板の強度向上方法が提供される。
 ここで、本発明による方法では、
 前記(b)または(b’)の評価結果により、前記第1の表面において、前記第2の表面に比べて前記アルカリ金属が抜け易い場合、
 前記(c)または(c’)は、
  前記第1の表面に、+(プラス)イオンのプラズマを照射させ、および/または
  前記第2の表面に、-(マイナス)イオンのプラズマを照射させることにより、行われるのが好ましい。
 また、本発明による方法では、
 前記(b)または(b’)の評価結果により、前記第2の表面において、前記第1の表面に比べて前記アルカリ金属が抜け易い場合、
 前記(c)または(c’)は、
  前記第1の表面に、-(マイナス)イオンのプラズマを照射させ、および/または
  前記第2の表面に、+(プラス)イオンのプラズマを照射させることにより、行われるのが好ましい。
 また、本発明による方法では、
 前記(b)または(b’)は、
 (b1)前記第1の表面に、前記アルカリ金属を含まない評価膜を形成し、前記第2の表面に、前記評価膜を形成し、
 (b2)前記ガラス基板を熱処理し、
 (b3)前記評価膜中に含まれる前記アルカリ金属の量を測定することにより、行われることが好ましい。
 この場合、前記評価膜は、導電性酸化物であっても良い。
 また、本発明による方法では、
 前記(b2)における熱処理は、100℃~600℃の範囲で、10分~1時間、実施されても良い。
 また、本発明による方法では、
 前記(b3)は、SIMS法により、前記評価膜をドライエッチングしながら、前記アルカリ金属の量を連続的に測定することにより、行われても良い。
 また、本発明による方法において、前記(b)、(b’)または(b1)においてアルカリ金属の抜け易さを評価するアルカリ金属は、ナトリウム(Na)であることが好ましい。
 また、本発明による方法において、前記ガラス基板は、フロート法で製造されたガラス基板であっても良い。
 また、本発明による方法において、前記ガラス基板は、厚さが0.2mm~3mmの範囲であっても良い。
 また、本発明による方法において、前記ガラス基板は、32インチ以上のディスプレイ装置用のものであっても良い。
 本発明では、ガラス基板に化学強化処理を施して強度を高める方法において、ガラス基板に反りおよび/または変形が生じ難い方法を提供することができる。
化学強化処理した後の従来のガラス基板を模式的に示した側面図である。 化学強化処理した後の本発明によるガラス基板を模式的に示した側面図である。 本発明によるガラス基板の強度を高める方法の一例を概略的に示したフロー図である。
 以下、本発明について説明する。
 前述のように、従来より、板厚の薄いガラス基板の強度を高めるため、ガラス基板に化学強化処理を適用することが検討されている。
 ここで、「化学強化処理(または化学強化処理法)」とは、ガラス基板をアルカリ金属を含む溶融塩中に浸漬させ、ガラス基板の最表面に存在する原子径の小さなアルカリ金属イオンを、溶融塩中に存在する原子径の大きなアルカリ金属イオンと置換する技術の総称、すなわちイオン交換強化法を言う。「化学強化処理(または化学強化処理法)」では、処理されたガラス基板の表面には、元の原子よりも原子径の大きなアルカリ金属イオンが配置される。このため、ガラス基板の表面に圧縮応力を付与することができ、これによりガラス基板の強度(特にワレ強度)が向上する。
 例えば、ガラス基板がナトリウム(Na)を含む場合、化学強化処理により、このナトリウムは、例えばカリウム(K)と置換される。あるいは、例えば、ガラス基板がリチウム(Li)を含む場合、化学強化処理により、このリチウムは、例えばナトリウム(Na)および/またはカリウム(K)と置換される。
 このように、ガラス基板に対して化学強化処理を行うことにより、板厚が薄くても、ガラス基板の強度を高めることができる。
 しかしながら、ガラス基板に対して化学強化処理を行うと、最終的に得られるガラス基板に、図1に示すような反りおよび/または変形が生じる場合がある。
 図1は、従来の化学強化処理後のガラス基板10の模式的な側面図である。ガラス基板10は、相互に対向する第1の表面12Aおよび第2の表面12Bを有する。また、このガラス基板10は、化学強化処理の直前までは、反りのない略平坦な形状であった。しかしながら、化学強化処理後に、このガラス基板10には、第1の表面12Aが凸面となり、第2の表面12Bが凹面となるような反りが生じている。
 今のところ、化学強化処理後のガラス基板10に、このような反りおよび/または変形が生じる原因は、明確ではないが、化学強化処理前のガラス基板10の2つの表面12A、12Bの化学的性質の微細な差異が、このような反りおよび/または変形に起因していると考えられる。
 例えば、ガラス基板10の製造の過程で、それぞれの表面12A、12Bが異なる履歴を受けている場合、図1のような反りが生じる可能性がある。
 特に、いわゆるフロート法で製造されたガラス基板は、製造中に、一方の表面のみがフロートバスの溶融スズ(Sn)層と接触した状態となっている。従って、この溶融スズ層との接触の有無によって、両表面12Aおよび12Bの間に、化学的性質の微細な差異が生じている可能性がある。例えば、溶融スズ層と接していた表面側に、スズが残留していた場合、そのような表面側は、化学強化処理の際に、よりアルカリ金属が抜けにくい表面になることが予想される。この残留スズによって、ガラス基板のアルカリ金属が溶融塩側に抜け出ることが抑制されるためである。また、例えば、ガラス基板の溶融スズ層と接していた表面側において、アルカリ金属濃度自身がより高くなっている可能性もある。
 この考察によれば、図1において、第2の表面12Bの側(すなわち凹面)は、スズと接していた面であり、すなわちこの表面12Bでは、化学強化処理の際に、表面12Aに比べて、アルカリ金属が溶融塩側に抜け出にくくなっていたことが予想される。
 なお、化学強化処理の際のガラス基板の反りおよび/または変形は、フロート法で製造されたガラス基板に限られず、反りおよび/または変形は、フュージョン法で製造されたガラス基板においても生じ得る。
 このようなガラス基板10の反りおよび/または変形は、ガラス基板10をディスプレイ装置に使用することを想定した場合、好ましいものではない。ディスプレイ装置から出力される画像がガラス基板10によって歪んでしまい、適正な画像を得ることができなくなる危険性が高くなるからである。また、このような反りおよび/または変形が生じると、ガラス基板を研磨等して、反りおよび/または変形を修復する必要が生じ、余分なコストや時間が必要になってしまう。
 特に、ディスプレイ装置用のガラス基板は、より一層大型化、薄型化が進む傾向にあり、このような反りおよび/または変形の問題は、今後より顕著になるものと予想される。
 これに対して、本発明では、厚さが薄いガラス基板に化学強化処理を実施しても、ガラス基板の反りおよび/または変形を有意に抑制することができる。
 図2には、本発明の方法により化学強化処理された後のガラス基板100の模式的な側面図を示す。ガラス基板100は、化学強化処理された後も、第1の表面112Aおよび第2の表面112Bは、実質的に平坦な状態を維持しており、ガラス基板100には、反りおよび/または変形は認められない。
 このように、本発明では、化学強化処理後に、反りおよび/または変形が有意に抑制されたガラス基板を得ることができる。従って、本発明による方法では、大型のディスプレイ装置(例えば、32インチ以上のディスプレイ装置)や、薄型のディスプレイ装置に対しても、化学強化されたガラス基板をそのまま適用することができる。
 以下、図面を参照して、本発明についてより詳しく説明する。
 図3には、本発明によるガラス基板の強度を高める方法の一例を示す。
 図3に示すように、本発明の方法は、
 (a)相互に対向する第1の表面および第2の表面を有するガラス基板を準備するステップ(ステップS110)と、
 (b)前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価するステップ(ステップS120)と、
 (c)前記(b)のステップに基づいて、前記第1の表面および前記第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、前記ガラス基板の前記第1の表面および/または前記第2の表面に対して、プラズマ処理を行うステップ(ステップS130)と、
 (d)前記(c)のステップの後に、前記ガラス基板に化学強化処理を行うステップ(ステップS140)と、
 を有する。
 また、本発明の方法は、
 (a’)化学強化処理しようとするガラス基板と同種の、相互に対向する第1の表面および第2の表面を有するガラス基板を準備する工程(ステップS110’)と、
 (b’)前記ガラス基板の前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価する工程(ステップS120’)と、
 (c’)前記(b’)工程の評価結果に基づいて、別途用意された化学強化処理を行うガラス基板の第1の表面および第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、当該ガラス基板の当該第1の表面および/または当該第2の表面に対して、プラズマ処理を行う工程(ステップS130’)と、
 (d’)前記(c’)の工程によりプラズマ処理が行なわれたガラス基板に化学強化処理を行う工程(ステップS140’)と、
 を、上記した工程の順序に有する。
 以下、各ステップについて説明する。
 (ステップS110、ステップS110’)
 まず、相互に対向する第1の表面112Aおよび第2の表面112Bを有するガラス基板100が準備される。ガラス基板100の組成は、アルカリ金属を含む限り、特に限られず、ガラス基板100は、例えばソーダライムガラス製の基板であっても良い。
 本明細書において、ガラス基板とは、相互に対向する二つの表面、すなわちガラス基板の表面と裏面の二つの表面を有する板状のガラス板を指し、ガラス基板の二つの面のうち、どちらの面を第1の表面と呼ぶか、第2の表面と呼ぶかは、任意である。図2においては、ガラス基板100の上面を第1の表面と称し、下面を第2の表面と称したが、逆にガラス基板100の下面を第1の表面と称し、上面を第2の表面と称してもよい。
 ガラス基板100は、例えば、酸化物換算で、60mol%~80mol%のSiO、0.5mol%~7mol%のAl、3mol%~10mol%のMgO、6mol%~9mol%のCaO、0~5mol%のSrO、0~4mol%のBaO、0~2mol%のZrO、4mol%~13mol%のNaO、および0.1mol%~7mol%のKOの組成を有しても良い。
 ガラス基板100の厚さは、特に限られないが、厚いガラス基板では、本発明による効果が相対的に小さくなる。また、板厚が薄くなりすぎると、化学強化処理の際に、ガラス基板が破損する危険性が高くなる。ガラス基板100の厚さは、例えば、0.2mm~3mmの範囲であっても良く、特に0.4~2mmの範囲であっても良い。
 ガラス基板100は、フロート法で製造されたものであっても、フュージョン法で製造されたものであっても良い。
 なお、ガラス基板100の端面は、面取りされても良い。
 (ステップS120、ステップS120’)
 次に、ガラス基板100の第1の表面112Aおよび第2の表面112Bにおいて、評価対象となるアルカリ金属、すなわち化学強化処理において置換されるアルカリ金属(例えばNa)の抜け易さの差異が評価される。なお、ステップS120’においては、この評価に使用するガラス基板として、後工程において化学強化処理を施すガラス基板と同種の組成と同等な板厚を有するガラス基板が別途用意される。
 この評価は、例えば、以下の方法((i)~(iii))により実施される。なお、以下の記載では、簡略化のため、抜け易さの評価対象となるアルカリ金属として、ナトリウム(Na)を例に挙げ、説明する。
 (i)ガラス基板100の第1の表面112Aに、ナトリウムを含まない、第1の評価膜を成膜する。また、ガラス基板100の第2の表面112Bに、ナトリウムを含まない、第2の評価膜を成膜する。
 ここで、第1および第2の評価膜は、同じ条件で成膜された、同じ材質および厚さの膜である必要がある。そうでなければ、以降の工程において、第1および第2の評価膜の比較評価を行うことができなくなるからである。
 評価膜の成膜方法は、特に限られず、評価膜は、例えば、蒸着、物理気相成膜(PVD)法、化学気相成膜(CVD)法、スパッタ法、またはスピンコート法など、一般的な成膜技術で成膜されても良い。
 また、評価膜は、ナトリウム(すなわち測定対象元素)を含まなければ、いかなる材料で構成されても良い。ただし、ナトリウムよりも原子径の小さな元素のみを含む評価膜は、好ましくない。以降の熱処理工程(ナトリウムの拡散工程)において、現実的な時間で、ナトリウムを評価膜中に十分に拡散させることが難しくなるおそれがあるからである。評価膜は、導電膜であることが好ましく、さらに酸化物であることがより好ましい。評価膜は、例えば、インジウムスズ酸化物であっても良い。
 評価膜の厚さは、特に限られない。評価膜の厚さは、例えば、50nm~200nmの範囲であっても良い。
 (ii)次に、ガラス基板100が熱処理される。この熱処理は、それぞれの表面112Aおよび112Bに存在するナトリウムを、それぞれの評価膜中に拡散させるために実施される。
 熱処理の条件は、ガラス基板100に含まれるナトリウム濃度等により、適正に定められる。すなわち、この熱処理は、両表面112Aおよび112Bに存在するナトリウムが、それぞれの評価膜の中に移動するような条件で行われる。
 熱処理の温度は、例えば、100℃~600℃、好ましくは100℃~ガラス基板の歪点の温度よりも低い温度範囲であっても良い。また、熱処理の時間は、例えば10分~1時間の範囲であっても良い。なお、熱処理の雰囲気は、特に限られないが、装置の構成や処理のし易さの観点から、大気雰囲気であることが好ましい。また、この場合、第1および第2の評価膜は、酸化物で構成されることが好ましい。
 (iii)次に、第1および第2の評価膜中に含まれるナトリウムの量が測定される。
 評価膜中のナトリウム量の測定は、一般的な分析装置を用いて実施しても良い。例えば、評価膜中のナトリウム量は、SIMS(Secondary Ion Mass Spectroscopy;二次イオン質量分析法)装置を用いて評価膜を厚さ方向にドライエッチングし、この際に得られるナトリウムのカウント数から定量化しても良い。あるいは、EPMA(Electron Probe Micro Analyzer)分析装置等により、評価膜中のナトリウムの深さ方向のプロファイルを求め、この領域を積分して、ナトリウム量を求めても良い。
 得られた結果から、第1および第2の表面112Aおよび112Bのうち、ナトリウムが抜け易い表面、およびその程度が判断される。
 (ステップS130、ステップS130’)
 次に、前述のステップS120、またはステップS120’で得られた評価結果に基づき、ガラス基板100の第1の表面112Aおよび/または第2の表面112Bに対して、プラズマ処理が行われる。なお、ステップS130’においては、このプラズマ処理は、化学強化処理を施すために、別途用意されたガラス基板に対して施される。
 ここで、「プラズマ処理」とは、ガラス基板100の第1の表面112Aおよび/または第2の表面112Bに対して、該表面が損傷しない程度の、比較的小さなパワーのプラズマを照射する処理を言う。「プラズマ処理」は、ガラス基板100の第1の表面112Aにおけるナトリウムの抜け易さと、第2の表面112Bにおけるナトリウムの抜け易さとを、「バランス化」(同等化)するために実施される。
 例えば、前述のステップS120、またはステップS120’の結果において、ガラス基板100の第1の表面112Aの方が、第2の表面112Bに比べて、ナトリウムが抜け易い状態にあることが確認された場合、第1の表面112Aに対して、+(プラス)イオンによる「プラズマ処理」が実施される。この場合、第1の表面112Aに、ナトリウムイオンと同じ極性(プラス)のプラズマが照射されるため、第1の表面112Aの近傍にあるナトリウムは、ガラス基板100の内方側に移動する。あるいは、ガラス基板100の第2の表面112Bに対して、-(マイナス)イオンによる「プラズマ処理」が実施されても良い。この場合、第2の表面112Bの近傍に、プラズマと反対(マイナス)の極性を有するナトリウムイオンが移動するようになる。従って、プラズマ照射により、両表面におけるナトリウムの抜け易さを「バランス化」させることが可能になる。
 なお、前述のステップS120、またはステップS120’の結果において、ガラス基板100の第2の表面の方が、第1の表面に比べて、ナトリウムが抜け易い状態にあることが確認された場合、上記した例とは反対に、第2の表面に対して、+(プラス)イオンによる「プラズマ処理」が実施される。この場合、第2の表面に、ナトリウムイオンと同じ極性(プラス)のプラズマが照射されるため、第2の表面の近傍にあるナトリウムは、ガラス基板の内方側に移動する。あるいはまた、前記したように、ガラス基板の第1の表面に対して、-(マイナス)イオンによる「プラズマ処理」が実施されても良い。
 例えば、ガラス基板が、フロート法によって製造されたガラス板からなる場合には、ガラス基板の溶融スズと接していた表面側に対して、+(プラス)イオンによるプラズマ処理を施か、あるいは、ガラス基板の溶融スズと接していなかった表面(すなわち、フロートガラス板のトップ面)に対して、-(マイナス)イオンによるプラズマ処理を施こすことができる。
 なお、プラズマ処理の後、再度、前述のステップ(ステップS120、またはステップS120’)を実施して、両表面112Aおよび112Bにおけるナトリウムの抜け易さがバランス化されたことを確認しても良い。もし、未だ両表面112Aおよび112Bにおけるナトリウムの抜け易さがバランス化されていなかった場合、再度、プラズマ処理が行われても良い。この場合、(ステップS120)~(ステップS130)、または(ステップS120’)~(ステップS130’)を繰り返すことにより、両表面112Aおよび112Bにおけるナトリウムの抜け易さが実質的に同等にされる。
 プラズマ処理の条件は、特に限られない。プラズマ処理は、例えば、到達真空度が1×10-3Pa~1×10-5Paの範囲の真空チャンバー内において、Ar(アルゴン)、N(窒素)、O(酸素)などのガスにより、放電真空度を1×10-1Pa~1×10-3Paの範囲にした状態で、実施されても良い。また、使用するプラズマ(RF)のパワーは、例えば、100W~1000Wの放電電圧とし、このようなプラズマを、1分~1時間の範囲で、ガラス基板100の両表面112Aおよび112Bに照射しても良い。
 (ステップS140、ステップS140’)
 次に、両表面112A、112Bにおけるナトリウムの抜け易さが「バランス化」されたガラス基板100に対して、化学強化処理が実施される。
 この状態では、両表面112A、112Bにおけるナトリウムの抜け易さが「バランス化」されているため、化学強化処理によって生じる両表面におけるアルカリ金属イオン(例えばカリウムイオン)の置換量は、ほぼ同等になる。従って、片方の表面においてのみ、置換反応が進行し(あるいはその逆)、化学強化処理後に、ガラス基板100が反ったり変形したりすることが抑制される。その結果、図2に示したような、両表面112A、112Bが実質的に平坦なままのガラス基板100を得ることができる。
 化学強化処理の条件は、特に限られず、従来の化学強化処理法を利用することができる。化学強化処理は、例えば、ガラス基板を、400℃~450℃の硝酸溶融塩中に、所定時間浸漬して実施する方法が挙げられる。ガラス基板がナトリウム(Na)を含む場合、硝酸溶融塩には、例えば、硝酸カリウム(KNO)が使用される。また、ガラス基板がリチウム(Li)を含む場合、硝酸溶融塩には、例えば、硝酸ナトリウム(NaNO)および/または硝酸カリウム(KNO)が使用される。さらに、ガラス基板がリチウム(Li)およびナトリウム(Na)を含む場合、硝酸溶融塩には、例えば、硝酸カリウム(KNO)が使用される。化学強化処理の時間は、特に限られないが、通常の場合、1時間~4時間程度実施される。
 なお、上記記載では、ステップS120、またはステップS120’において、ガラス基板100の第1および第2の表面112Aおよび112Bにおける評価対象となるアルカリ金属(ナトリウム)の抜け易さの差異を評価し、以降のステップS130、またはステップS130’において、これを「バランス化」させることを例に挙げ、本発明の方法を説明した。しかしながら、ステップS120、またはステップS120’では、ガラス基板100のガラス基板100の第1および第2の表面112Aおよび112Bにおいて、アルカリ金属(ナトリウム)の抜け易さの代わりに、アルカリ金属(例えばナトリウム)の濃度が評価されても良い。この場合、両表面112Aおよび112Bにおけるアルカリ金属(例えばナトリウム)の濃度の差異に基づいて、以降のプラズマ処理の条件が定められる。そして、プラズマ処理後には、両表面112Aおよび112Bにおけるアルカリ金属(例えばナトリウム)の濃度が「バランス化」される。
 本発明によるガラス基板の強度向上方法によれば、より強度が高められた液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、およびモバイルディスプレイ等のFPD装置用のガラス基板、特に大型化、薄型化に対応できるFPD装置用のガラス基板を提供することができ、これら装置用のガラス基板として有用である。
 なお、2010年7月6日に出願された日本特許出願2010-153628号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10   従来のガラス基板
 12A  第1の表面
 12B  第2の表面
 100  ガラス基板
 112A 第1の表面
 112B 第2の表面

Claims (12)

  1.  ガラス基板の強度を高める方法であって、
     (a)相互に対向する第1の表面および第2の表面を有するガラス基板を準備し、
     (b)前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価し、
     (c)前記(b)に基づいて、前記第1の表面および前記第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、前記ガラス基板の前記第1の表面および/または前記第2の表面に対して、プラズマ処理を行い、
     (d)前記(c)の後に、前記ガラス基板に化学強化処理を行う、
     ことを特徴とするガラス基板の強度向上方法。
  2.  ガラス基板の強度を高める方法であって、
     (a’)化学強化処理しようとするガラス基板と同種の、相互に対向する第1の表面および第2の表面を有するガラス基板を準備する工程と、
     (b’)前記ガラス基板の前記第1の表面および前記第2の表面において、アルカリ金属の抜け易さを評価する工程と、
     (c’)前記(b’)工程の評価結果に基づいて、別途用意された化学強化処理を行うガラス基板の第1の表面および第2の表面におけるアルカリ金属の抜け易さが実質的に同等となるように、当該ガラス基板の当該第1の表面および/または当該第2の表面に対して、プラズマ処理を行う工程と、
     (d’)前記(c’)の工程によりプラズマ処理が行なわれたガラス基板に化学強化処理を行う工程と、
     を、上記した工程の順序に行なうことを特徴とするガラス基板の強度向上方法。
  3.  前記(b)または(b’)の評価結果により、前記第1の表面において、前記第2の表面に比べて前記アルカリ金属が抜け易い場合、
     前記(c)または(c’)は、
      前記第1の表面に、+(プラス)イオンのプラズマを照射させ、および/または
      前記第2の表面に、-(マイナス)イオンのプラズマを照射させることにより、行われることを特徴とする請求項1または2に記載の方法。
  4.  前記(b)または(b’)の評価結果により、前記第2の表面において、前記第1の表面に比べて前記アルカリ金属が抜け易い場合、
     前記(c)または(c’)は、
      前記第1の表面に、-(マイナス)イオンのプラズマを照射させ、および/または
      前記第2の表面に、+(プラス)イオンのプラズマを照射させることにより、行われることを特徴とする請求項1または2に記載の方法。
  5.  前記(b)または(b’)は、
     (b1)前記第1の表面に、前記アルカリ金属を含まない評価膜を形成し、前記第2の表面に、前記評価膜を形成し、
     (b2)前記ガラス基板を熱処理し、
     (b3)前記評価膜中に含まれる前記アルカリ金属の量を測定することにより、行われることを特徴とする請求項1乃至4のいずれか1項に記載の方法。
  6.  前記評価膜は、導電性酸化物であることを特徴とする請求項5に記載の方法。
  7.  前記(b2)における熱処理は、100℃~600℃の範囲で、10分~1時間、実施されることを特徴とする請求項5または6に記載の方法。
  8.  前記(b3)は、二次イオン質量分析法(SIMS)により、前記評価膜をドライエッチングしながら、前記アルカリ金属の量を連続的に測定することにより、行われることを特徴とする請求項5乃至7のいずれか1項に記載の方法。
  9.  前記(b)、(b’)または(b1)においてアルカリ金属の抜け易さを評価するアルカリ金属は、ナトリウム(Na)であることを特徴とする請求項1乃至8のいずれか1項に記載の方法。
  10.  前記ガラス基板は、フロート法で製造されたガラス基板であることを特徴とする請求項1乃至9のいずれか1項に記載の方法。
  11.  前記ガラス基板は、厚さが0.2mm~3mmの範囲であることを特徴とする請求項1乃至10のいずれか1項に記載の方法。
  12.  前記ガラス基板は、32インチ以上のディスプレイ装置用のものであることを特徴とする請求項1乃至11のいずれか1項に記載の方法。
PCT/JP2011/065512 2010-07-06 2011-07-06 ガラス基板の強度向上方法 WO2012005307A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010153628A JP2013189320A (ja) 2010-07-06 2010-07-06 ガラス基板の強度を高める方法
JP2010-153628 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005307A1 true WO2012005307A1 (ja) 2012-01-12

Family

ID=45441283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065512 WO2012005307A1 (ja) 2010-07-06 2011-07-06 ガラス基板の強度向上方法

Country Status (3)

Country Link
JP (1) JP2013189320A (ja)
TW (1) TW201219331A (ja)
WO (1) WO2012005307A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130515A1 (en) 2013-02-25 2014-08-28 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
CN104203859A (zh) * 2012-03-26 2014-12-10 旭硝子株式会社 能够减小化学强化时的翘曲的玻璃板
WO2015093284A1 (ja) * 2013-12-19 2015-06-25 旭硝子株式会社 強化ガラス基板の製造方法
WO2015156262A1 (ja) * 2014-04-09 2015-10-15 旭硝子株式会社 化学強化ガラスの製造方法
US20160023946A1 (en) * 2013-03-19 2016-01-28 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
US11292343B2 (en) 2016-07-05 2022-04-05 Corning Incorporated Cold-formed glass article and assembly process thereof
US11332011B2 (en) 2017-07-18 2022-05-17 Corning Incorporated Cold forming of complexly curved glass articles
US11331886B2 (en) 2016-06-28 2022-05-17 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
US11384001B2 (en) 2016-10-25 2022-07-12 Corning Incorporated Cold-form glass lamination to a display
US11459268B2 (en) 2017-09-12 2022-10-04 Corning Incorporated Tactile elements for deadfronted glass and methods of making the same
US11518146B2 (en) 2018-07-16 2022-12-06 Corning Incorporated Method of forming a vehicle interior system
US11550148B2 (en) 2017-11-30 2023-01-10 Corning Incorporated Vacuum mold apparatus, systems, and methods for forming curved mirrors
US11586306B2 (en) 2017-01-03 2023-02-21 Corning Incorporated Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same
US11597672B2 (en) 2016-03-09 2023-03-07 Corning Incorporated Cold forming of complexly curved glass articles
US11660963B2 (en) 2017-09-13 2023-05-30 Corning Incorporated Curved vehicle displays
US11685685B2 (en) 2019-07-31 2023-06-27 Corning Incorporated Method and system for cold-forming glass
US11685684B2 (en) 2017-05-15 2023-06-27 Corning Incorporated Contoured glass articles and methods of making the same
US11718071B2 (en) 2018-03-13 2023-08-08 Corning Incorporated Vehicle interior systems having a crack resistant curved cover glass and methods for forming the same
US11745588B2 (en) 2017-10-10 2023-09-05 Corning Incorporated Vehicle interior systems having a curved cover glass with improved reliability and methods for forming the same
US11767250B2 (en) 2017-11-30 2023-09-26 Corning Incorporated Systems and methods for vacuum-forming aspheric mirrors
US11768369B2 (en) 2017-11-21 2023-09-26 Corning Incorporated Aspheric mirror for head-up display system and methods for forming the same
US11772491B2 (en) 2017-09-13 2023-10-03 Corning Incorporated Light guide-based deadfront for display, related methods and vehicle interior systems
US11772361B2 (en) 2020-04-02 2023-10-03 Corning Incorporated Curved glass constructions and methods for forming same
US11899865B2 (en) 2017-01-03 2024-02-13 Corning Incorporated Vehicle interior systems having a curved cover glass and a display or touch panel and methods for forming the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951262B1 (ko) * 2014-03-31 2019-02-22 동우 화인켐 주식회사 박막 터치 스크린 패널의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134823A (ja) * 1993-11-11 1995-05-23 Nippon Sheet Glass Co Ltd 磁気記録媒体用ガラス基板及び磁気記録媒体の製造方法
JPH10194787A (ja) * 1996-12-29 1998-07-28 Hoya Corp 記録媒体用ガラス基板及び記録媒体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134823A (ja) * 1993-11-11 1995-05-23 Nippon Sheet Glass Co Ltd 磁気記録媒体用ガラス基板及び磁気記録媒体の製造方法
JPH10194787A (ja) * 1996-12-29 1998-07-28 Hoya Corp 記録媒体用ガラス基板及び記録媒体の製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245616B (zh) * 2012-03-26 2017-03-15 旭硝子株式会社 能够减小化学强化时的翘曲的玻璃板
CN104203859A (zh) * 2012-03-26 2014-12-10 旭硝子株式会社 能够减小化学强化时的翘曲的玻璃板
CN104245616A (zh) * 2012-03-26 2014-12-24 旭硝子株式会社 能够减小化学强化时的翘曲的玻璃板
WO2014130515A1 (en) 2013-02-25 2014-08-28 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
US9840436B2 (en) 2013-02-25 2017-12-12 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
US9187365B2 (en) 2013-02-25 2015-11-17 Corning Incorporated Methods for measuring the asymmetry of a glass-sheet manufacturing process
US10399894B2 (en) * 2013-03-19 2019-09-03 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
US20160023946A1 (en) * 2013-03-19 2016-01-28 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
WO2015093284A1 (ja) * 2013-12-19 2015-06-25 旭硝子株式会社 強化ガラス基板の製造方法
WO2015156262A1 (ja) * 2014-04-09 2015-10-15 旭硝子株式会社 化学強化ガラスの製造方法
US11597672B2 (en) 2016-03-09 2023-03-07 Corning Incorporated Cold forming of complexly curved glass articles
US11338556B2 (en) 2016-06-28 2022-05-24 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
US11331886B2 (en) 2016-06-28 2022-05-17 Corning Incorporated Laminating thin strengthened glass to curved molded plastic surface for decorative and display cover application
US11292343B2 (en) 2016-07-05 2022-04-05 Corning Incorporated Cold-formed glass article and assembly process thereof
US11850942B2 (en) 2016-07-05 2023-12-26 Corning Incorporated Cold-formed glass article and assembly process thereof
US11607958B2 (en) 2016-07-05 2023-03-21 Corning Incorporated Cold-formed glass article and assembly process thereof
US11384001B2 (en) 2016-10-25 2022-07-12 Corning Incorporated Cold-form glass lamination to a display
US11899865B2 (en) 2017-01-03 2024-02-13 Corning Incorporated Vehicle interior systems having a curved cover glass and a display or touch panel and methods for forming the same
US11586306B2 (en) 2017-01-03 2023-02-21 Corning Incorporated Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same
US11685684B2 (en) 2017-05-15 2023-06-27 Corning Incorporated Contoured glass articles and methods of making the same
US11332011B2 (en) 2017-07-18 2022-05-17 Corning Incorporated Cold forming of complexly curved glass articles
US11713276B2 (en) 2017-09-12 2023-08-01 Corning Incorporated Tactile elements for deadfronted glass and methods of making the same
US11459268B2 (en) 2017-09-12 2022-10-04 Corning Incorporated Tactile elements for deadfronted glass and methods of making the same
US11660963B2 (en) 2017-09-13 2023-05-30 Corning Incorporated Curved vehicle displays
US11772491B2 (en) 2017-09-13 2023-10-03 Corning Incorporated Light guide-based deadfront for display, related methods and vehicle interior systems
US11919396B2 (en) 2017-09-13 2024-03-05 Corning Incorporated Curved vehicle displays
US11745588B2 (en) 2017-10-10 2023-09-05 Corning Incorporated Vehicle interior systems having a curved cover glass with improved reliability and methods for forming the same
US11768369B2 (en) 2017-11-21 2023-09-26 Corning Incorporated Aspheric mirror for head-up display system and methods for forming the same
US11550148B2 (en) 2017-11-30 2023-01-10 Corning Incorporated Vacuum mold apparatus, systems, and methods for forming curved mirrors
US11767250B2 (en) 2017-11-30 2023-09-26 Corning Incorporated Systems and methods for vacuum-forming aspheric mirrors
US11718071B2 (en) 2018-03-13 2023-08-08 Corning Incorporated Vehicle interior systems having a crack resistant curved cover glass and methods for forming the same
US11518146B2 (en) 2018-07-16 2022-12-06 Corning Incorporated Method of forming a vehicle interior system
US11685685B2 (en) 2019-07-31 2023-06-27 Corning Incorporated Method and system for cold-forming glass
US11772361B2 (en) 2020-04-02 2023-10-03 Corning Incorporated Curved glass constructions and methods for forming same

Also Published As

Publication number Publication date
TW201219331A (en) 2012-05-16
JP2013189320A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2012005307A1 (ja) ガラス基板の強度向上方法
US9169154B2 (en) Method of cutting chemically toughened glass
EP3322676B1 (en) Method for chemically strengthening with controlled curvature
US20150072129A1 (en) Glass sheet capable of being inhibited from warping through chemical strengthening
WO2015163134A1 (ja) ガラス積層体および電子デバイスの製造方法
WO2014104303A1 (ja) 化学強化時の反りを低減できるガラス板の製造方法及びガラス板
US20090113935A1 (en) Process for producing glass bar
WO2014073455A1 (ja) ガラスフィルム積層体及び電子・電気デバイスの製造方法
WO2012002506A1 (ja) ディスプレイ装置の前面板用のガラス基板の強度を高める方法
US20170305787A1 (en) Patterned ion-exchanged substrates and methods for making the same
KR20180102098A (ko) 화학적 강화용 유리 기판 및 제어된 곡률을 이용한 화학적 강화 방법
WO2016152848A1 (ja) ガラス板
US20160023946A1 (en) Glass sheet and method for producing glass sheet
JP6013343B2 (ja) ソーダ石灰シリカガラス基板、表面処理済みガラス基板、及び同基板を組み込んだ装置
KR20060024047A (ko) 평면디스플레이장치용 유리기판 및 그 제조방법
JPWO2017026190A1 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
JP6428630B2 (ja) ガラス板
TWI717501B (zh) 玻璃板、顯示器用玻璃基板及太陽電池用玻璃基板
WO2014097986A1 (ja) ガラス素板、ガラス素板の製造方法及び化学強化ガラスの製造方法
WO2014084096A1 (ja) 強化ガラスおよびその製造方法
US20210347688A1 (en) Chemically strengthened glass substrate with reduced invading ion surface concentration and method for making the same
US20170225995A1 (en) Method for manufacturing tempered glass
WO2019044779A1 (ja) 膜付きガラス基板の製造方法、膜付きガラス基板、および膜の除去方法
JPH10231147A (ja) 透明帯電防止ガラス板
JP2007315718A (ja) ガラス基板熱処理用セッター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP