WO2012002223A1 - コークス乾式消火設備およびその操業方法 - Google Patents

コークス乾式消火設備およびその操業方法 Download PDF

Info

Publication number
WO2012002223A1
WO2012002223A1 PCT/JP2011/064280 JP2011064280W WO2012002223A1 WO 2012002223 A1 WO2012002223 A1 WO 2012002223A1 JP 2011064280 W JP2011064280 W JP 2011064280W WO 2012002223 A1 WO2012002223 A1 WO 2012002223A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coke
cooling
red hot
charging
Prior art date
Application number
PCT/JP2011/064280
Other languages
English (en)
French (fr)
Inventor
関口 毅
奈留男 浜崎
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to EP11800688.1A priority Critical patent/EP2586850B1/en
Priority to CN2011800318019A priority patent/CN102959050A/zh
Publication of WO2012002223A1 publication Critical patent/WO2012002223A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/02Dry cooling outside the oven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a coke dry fire extinguishing equipment for cooling red hot coke produced in a coke oven with a cooling gas, and an operation method thereof.
  • Coke Dry Quenching is a facility for cooling red hot coke produced in a coke oven, and batch charging red hot coke into the cooling tower from above to cool the red hot coke.
  • cooling gas inert gas
  • the red hot coke is cooled to a predetermined temperature, and the cooled coke is continuously discharged from below the cooling tower.
  • the sensible heat and latent heat (combustion component) of the cooling gas that has become hot due to heat exchange with red hot coke is recovered as steam in a waste heat recovery boiler, and the cooling gas after the recovery of waste heat is recycled.
  • Patent Document 1 discloses a technique for solving such a problem of dust generation during coke charging.
  • the inlet is gas-sealed, and the dust collecting hood covers the red hot coke charging inlet and the upper part of the cooling tower.
  • the dust collecting hood is connected to the dust collector via the dust collecting duct, and dust generation is prevented by gas-sealing the lower part of the dust collecting hood and the upper part of the cooling tower.
  • An object of the present invention is to provide a coke dry fire extinguishing equipment that can suppress generation of gas containing dust from the cooling tower itself when charging red hot coke into the cooling tower, and an operation method thereof.
  • a coke dry fire extinguishing facility for cooling red hot coke produced in a coke oven with a cooling gas, and has an inlet for charging red hot coke at an upper portion thereof.
  • a cooling tower that cools the red hot coke charged in the furnace, a furnace top lid that opens and closes the charging inlet, a cooling gas passage that flows cooling gas toward the cooling tower, and the cooling in the cooling tower.
  • a gas circulation path that circulates the gas containing the cooling gas, and a circulation mechanism that circulates the gas in the gas circulation path, having a high-temperature gas flow path through which the gas flows through heat exchange with red hot coke.
  • a waste heat recovery boiler that is interposed in the gas circulation path and recovers the heat of the cooling gas that is heated to exchange heat with red hot coke, and supply of the circulating gas that circulates through the cooling tower and the gas circulation path To adjust the volume and displacement
  • control is performed so that the supply amount of the circulating gas and the exhaust amount are balanced, and the gas is opened to open the red hot coke to the cooling tower.
  • a coke dry fire extinguishing system is provided, which includes a control unit that controls the exhaust amount of the circulating gas to be larger than the supply amount when charging.
  • the cooling tower for cooling the red hot coke charged therein has a charging inlet for charging red hot coke at the upper portion, and the furnace top lid for opening and closing the charging inlet.
  • a cooling gas passage for flowing the cooling gas toward the cooling tower, and a high temperature gas passage for flowing the hot gas after the cooling gas exchanges heat with red hot coke in the cooling tower.
  • a method for operating a coke dry fire extinguishing facility having a waste heat recovery boiler for recovering heat of gas wherein the furnace top lid is closed, and the normal operation is performed so that the supply amount of the circulating gas and the exhaust amount are balanced. Step, opening the furnace top cover, and circulating gas Exhaust amount set to be greater than the amount supplied and a step of loading the red hot coke into the cooling tower, operation method of the coke dry quenching equipment is provided.
  • the difference between the exhaust amount and the supply amount of the circulating gas is preferably set to an amount corresponding to the volume velocity of the charged coke.
  • the adjustment mechanism has a cooling gas discharge mechanism that discharges cooling gas from the cooling gas passage of the gas circulation path, and when the control unit charges the red hot coke, the cooling gas discharge mechanism By controlling the flow rate of the exhausted gas, the exhaust amount of the circulating gas can be controlled.
  • the adjusting mechanism further includes an air blowing mechanism for blowing air into the high-temperature gas passage to burn the combustible portion of the high-temperature gas to further raise the temperature of the high-temperature gas, and the control unit includes the red hot
  • the flow rate of the air blown from the air blowing mechanism may be controlled to be smaller than that during the normal operation so as to reduce the supply amount of the circulating gas. Moreover, you may perform both of these.
  • a bypass duct connecting between the top of the cooling tower and the hot gas flow section is further provided, and when the red hot coke is charged, the air sucked from the inlet of the cooling tower is It is preferable to supply the gas discharge unit.
  • FIG. 1 is a schematic configuration diagram illustrating a coke dry fire extinguishing facility (CDQ) according to an embodiment of the present invention.
  • CDQ coke dry fire extinguishing facility
  • This coke dry fire extinguishing equipment (CDQ) 100 supplies cooling gas to the inside of the cooling tower 1 from the lower part of the cooling tower 1 in which red hot coke is charged, and the cooling gas is red hot in the cooling tower 1.
  • a gas circulation unit 2 that circulates the gas by discharging the high-temperature gas after heat exchange with the coke from the cooling tower 1, and waste heat recovery that recovers sensible heat and latent heat of the high-temperature gas discharged from the cooling tower 1 as steam.
  • the cooling tower 1 is composed of an upper preliminary chamber 1a and a lower cooling chamber 1b, and an inlet 11 is formed in the upper portion of the preliminary chamber 1a for charging red hot coke conveyed from the coke oven, A furnace top cover 12 for opening and closing the charging port 11 is provided.
  • a charging device 13 having a hopper or the like is disposed at the charging port 11, and a bucket 14 containing red hot coke is transported by a crane or the like to reach the charging device 13, and red hot coke in the bucket 14 is charged. It is charged into the cooling tower 1 from the charging port 11 via the device 13.
  • a dust collection duct 41 is connected to the charging device 13, and a cyclone 42, a dust collector 43 including a bag filter, and an exhaust fan 44 are connected to the dust collection duct 41.
  • a chimney 45 for discharging the exhaust gas removed by the cyclone 42 and the dust collector 43 to the atmosphere is connected to the chimney 45.
  • Red hot coke is supplied to the cooling chamber 1b from the preliminary chamber 1a, and the cooling gas is introduced upward in the lower portion of the cooling chamber 1b.
  • the cooling gas cools the coke in the cooling chamber 1b.
  • a discharge device 16 for continuously discharging the cooled coke is provided at the lower end of the cooling chamber 1b.
  • the gas circulation unit 2 includes a cooling gas flow unit 2a through which the cooling gas flows, a high temperature gas flow unit 2b through which the high temperature gas flows after the cooling gas exchanges heat with red hot coke, and a circulation for circulating the gas. And a fan 3.
  • the hot gas flow portion 2b is connected to the annular flue 24 and the annular flue 24, which is provided in a circular tube shape on the side wall of the preliminary chamber 1a and into which the hot gas after heat exchange with the red hot coke flows. And a primary dust remover 23 in which a flow path 22 that leads to the regenerative heat recovery boiler 4 is formed.
  • the high-temperature gas after the cooling gas exchanges heat with red hot coke in the cooling tower 1 flows out to the annular flue 24 through the fuse 21.
  • a bypass duct 71 is provided so as to connect the top of the cooling tower 1 and the primary dust remover 23.
  • the cooling gas flow section 2a includes a cooling gas pipe 31 that supplies the gas after the waste heat is recovered by the waste heat recovery boiler 4 as a cooling gas, and a cyclone as a secondary dust remover provided in the cooling gas pipe 31. 32 and a cooling gas introduction mechanism 34 that introduces the cooling gas upward from the cooling gas pipe 31 to the lower portion of the cooling chamber 1b of the cooling tower 1.
  • the circulation fan 3 is provided in the cooling gas pipe 31.
  • the cooling gas pipe 31 may be provided with a gas cooler 35.
  • the flow path 22 in the primary dust remover 23 of the high temperature gas flow section 2b functions as a high temperature gas flow path
  • the cooling gas pipe 31 of the cooling gas flow section 2a functions as a cooling gas flow path.
  • the waste heat recovery boiler 4 has a heat transfer pipe (not shown) through which water flows, and the water flowing through the heat transfer pipe is heated with the high-temperature gas from the flow path 22 to be converted into steam. To do.
  • the generated steam is supplied to a steam turbine or the like for effective use.
  • the coke dry fire extinguishing equipment 100 also includes an air blowing mechanism 5 that blows air into a high-temperature gas obtained after the cooling gas exchanges heat with red hot coke, and a gas discharge mechanism 6 that discharges the cooling gas supplied to the cooling tower 1. These function as an adjusting mechanism for adjusting the supply amount and exhaust amount of the circulating gas circulating in the gas circulation path.
  • the red hot coke charged to the cooling tower 1 has a high temperature of about 1000 ° C., and the undistilled components (volatile components) in the coke become flammable gases such as hydrogen and methane, and are supplied to the circulating gas in the gas circulation path. Is done. For this reason, the air blowing mechanism 5 supplies air to the high-temperature gas obtained after the cooling gas exchanges heat with red hot coke, burns the above-described combustible gas, and further raises the temperature. As a result, for example, a high-temperature gas of 900 to 1000 ° C. is supplied to the waste heat recovery boiler 4 to increase the steam generation efficiency.
  • the air blowing mechanism 5 includes an annular flue 24, a flow path 22 of the primary dust remover 23, and a plurality of air blowing pipes 51 connected to the auxiliary chamber 1a. Is provided with an air blowing fan 53, and air is blown into the high-temperature cooling gas flowing through the cooling gas flow passage 2 a through the pipe 51 by the air blowing fan 53.
  • the pipe 52 is provided with a flow rate adjusting valve 54 and a flow meter 55. By adjusting the opening degree of the flow rate adjusting valve 54 based on the value of the flow meter 55, the air blowing amount can be controlled collectively. Yes. Further, the flow rate of each pipe 51 can be adjusted, and the air distribution ratio of each pipe 51 can be adjusted.
  • the gas discharge mechanism 6 discharges the generated gas from the red hot coke and the surplus of the circulation gas increased by blowing air, and is connected to the downstream side of the cooling fan 3 of the cooling gas pipe 31.
  • the gas discharge pipe 61 is provided with a valve 62 and a flow meter 63, and the gas discharge amount can be adjusted by the valve 62 based on the value of the flow meter 63.
  • a pressure gauge 64 is provided in the upper part of the cooling tower 1, and the pressure in the cooling tower 1 can be adjusted by adjusting the valve 62 based on the value of the pressure gauge 64. That is, the valve 62 functions as both a flow rate adjustment valve and a pressure adjustment valve.
  • the valve 62 functions as a pressure adjustment valve during normal operation (the furnace top cover 12 is closed), and functions as a flow rate adjustment valve when the coke is charged (the furnace top cover 12 is open).
  • the gas discharge pipe 61 is connected to the dust collection duct 41, and the cooling gas discharged to the gas discharge pipe 61 is collected by the dust collector 43 and discharged to the atmosphere.
  • the coke dry fire extinguishing equipment 100 further includes a control unit 7.
  • the control unit 7 controls the supply amount of the circulating gas circulating through the cooling tower 1 and the gas circulation path and the exhaust amount to be balanced.
  • the control unit 7 controls the exhaust amount of the circulating gas circulating through the cooling tower 1 and the gas circulation path to be larger than the supply amount of the circulating gas. .
  • air is sucked from the charging inlet 11 by the amount of the balance between the supply amount and the discharge amount of the circulating gas, and dust generation at the time of charging the coke is prevented.
  • the difference between the exhaust amount of the circulating gas and the supply amount is preferably an amount corresponding to the volume velocity of the coke to be charged.
  • control unit 7 mainly controls the air blowing mechanism 5 and the gas discharging mechanism 6, and during normal operation, the amount of air blown by the air blowing mechanism 5 is determined in advance with the furnace top cover 12 closed.
  • the flow rate adjustment valve 54 is controlled so as to be a predetermined amount, and the valve 62 is made to function as a pressure adjustment valve so that the pressure in the cooling tower 1 becomes constant, and the gas discharge from the gas discharge pipe 61 is controlled.
  • the control unit 7 mainly controls the air blowing mechanism 5 and the gas discharging mechanism 6, and during normal operation, the amount of air blown by the air blowing mechanism 5 is determined in advance with the furnace top cover 12 closed.
  • the flow rate adjustment valve 54 is controlled so as to be a predetermined amount
  • the valve 62 is made to function as a pressure adjustment valve so that the pressure in the cooling tower 1 becomes constant, and the gas discharge from the gas discharge pipe 61 is controlled.
  • the valve 62 is made to function as a flow rate adjusting valve, and the gas discharge mechanism 6 is used to increase
  • Control is performed so that a predetermined flow rate of air is sucked from the inlet 11 by increasing the exhaust amount.
  • the air blowing flow rate by the air blowing mechanism 5 may be controlled so as to be smaller than that during normal operation.
  • the supply amount of the circulating gas is reduced, and the balance between the supply amount of the circulating gas and the exhaust amount is lost as in the case of increasing the exhaust amount of the circulating gas by increasing the discharge amount from the gas exhaust mechanism 6.
  • the air is inevitably sucked from the inlet 11 as much as the air blowing amount is reduced.
  • the discharge flow rate can be reduced, and the load on the dust collector 43 can be reduced. It should be noted that while the valve 62 of the gas discharge mechanism 6 is kept at a constant flow rate or a constant opening degree, the supply amount of the circulating gas is reduced only by reducing the air blowing flow rate of the air blowing mechanism 5 and air is supplied from the inlet 11. Needless to say, it can be sucked.
  • the controller 7 controls the balance between the supply amount of the circulating gas and the exhaust amount immediately after opening the furnace top cover 12 when the coke is charged. This is because the charging port 11 is normally sealed with a water seal, and water may enter the cooling tower 1 if an excessive negative pressure is applied when the furnace top lid 12 is closed. This is because the operation of the control unit 7 is sufficiently possible from the opening of the furnace top lid 12 to the charging of the coke. When the furnace top lid 12 is opened, air is effectively sucked from the charging port 11. And it returns to the control at the time of operation just before the charging of coke is completed and the furnace top cover 12 is closed.
  • the cooling tower 1 is charged with red hot coke, and the coke in the cooling chamber 1b is directed upward from the cooling gas introduction mechanism 34 provided in the lower portion of the cooling chamber 1b with the furnace top lid 12 sealed during operation. Supply cooling gas continuously. The coke cooled thereby is continuously discharged by the discharge device 16.
  • the cooling gas supplied to the cooling chamber 1b rises in the red hot coke and exchanges heat with the red hot coke.
  • the hot gas is guided to the waste heat recovery boiler 4 through the annular flue 24 of the hot gas flow part 2 b of the gas circulation part 2 and the flow path 22 of the primary dust collector 23.
  • the cooling gas exchanges heat with the red hot coke.
  • the high temperature gas containing the combustible component is burned to become a high temperature gas of, for example, 900 to 1000 ° C.
  • the waste heat recovery boiler 4 steam is generated by sensible heat and latent heat of high-temperature gas, and this steam is supplied to a steam turbine or the like.
  • the gas after the waste heat is recovered by the waste heat recovery boiler 4 and the temperature is lowered is guided again to the cooling gas pipe 31 of the cooling gas supply unit 2 by the circulation fan 3 as a cooling gas, and the cyclone as a secondary dust remover.
  • the dust is removed by 32, and subsequently introduced into the cooling tower 1 through the cooling pipe 31 of the cooling gas flow passage 2a from the cooling gas introduction mechanism 34 existing at the lower part of the cooling tower 1.
  • the supplied cooling gas is cooled by the gas cooler 35 as necessary.
  • gas is circulated through the gas circulation path constituted by the flow path 22 and the cooling gas pipe 31 in the primary dust remover 23 and the cooling tower 1.
  • a predetermined amount of air is blown from the air blowing mechanism 5 into the high-temperature portion of the circulation path, and from the low-temperature portion of the cooling gas circulation path via the gas discharge pipe 61 so that the gas pressure in the upper part of the cooling tower 1 is constant. Excess cooling gas is discharged, and the supply amount of the circulating gas and the exhaust amount are balanced.
  • red hot coke is continuously supplied from the preliminary chamber 1a to the cooling chamber 1b. Then, when the red hot coke in the preliminary chamber 1a becomes a predetermined amount or less, or when a predetermined time has elapsed since the previous charging, the red hot coke is charged into the preliminary chamber 1a. At this time, the furnace top cover 12 is opened. Red hot coke is charged from the bucket 14 through the charging device 13 into the preliminary chamber 1 a of the cooling tower 1.
  • an amount of gas corresponding to the volume of the charged coke is discharged from the inlet 11 of the cooling tower 1. Since the gas released from the cooling tower 1 is a flammable high-temperature gas with a large amount of dust, it generates dust around the inlet 11 and also burns flammable components. It will be discharged
  • the furnace top cover 12 when the furnace top cover 12 is opened at the time of coke charging, the balance is lost so that the exhaust amount of the circulating gas circulating through the cooling tower 1 and the gas circulation path becomes larger than the supply amount. To control.
  • the flow rate adjusting valve 54 is controlled so that the air blowing amount by the air blowing mechanism 5 becomes a predetermined amount, and the inside of the cooling tower 1
  • the valve 62 functions as a pressure adjustment valve so that the pressure of the gas becomes constant, and the discharge of gas from the gas discharge pipe 61 is controlled so that the supply amount of the circulating gas and the exhaust amount are balanced.
  • the valve 62 is made to function as a flow rate adjusting valve, and the gas discharge mechanism 6 increases the amount of gas discharged compared to that during normal operation.
  • Control is made to increase the exhaust amount to intentionally break the balance between the supply amount of the circulating gas and the exhaust amount and to suck a predetermined flow rate of air from the inlet.
  • the air blowing flow rate by the air blowing mechanism 5 may be controlled so as to be smaller than that during normal operation. In that case, since the furnace top cover 12 is opened, it is particularly preferable to preferentially stop the air blown into the preliminary chamber 1a. By reducing the air blowing flow rate as compared with the normal operation in this way, the supply amount of the circulating gas is reduced, and the exhaust amount of the circulating gas is increased by increasing the exhaust amount from the gas exhaust mechanism 6.
  • the balance between the supply amount of the circulating gas and the exhaust amount is lost, and air is inevitably sucked from the charging port 11 as much as the air blowing amount is reduced. Moreover, the discharge amount from the gas discharge mechanism 6 can be reduced, and the load of the dust collector 43 can be reduced. It should be noted that while the valve 62 of the gas discharge mechanism 6 is kept at a constant flow rate or a constant opening degree, the supply amount of the circulating gas is reduced only by reducing the air blowing flow rate of the air blowing mechanism 5 and air is supplied from the inlet 11. You may make it suck.
  • the supply amount of the circulating gas and the exhaust amount are balanced.
  • the exhaust amount of the circulating gas is set to be larger than the supply amount.
  • the difference between the exhaust amount of the circulating gas and the supply amount is preferably an amount corresponding to the volume velocity of the coke to be charged.
  • bypass duct 71 since the bypass duct 71 is provided, when air is sucked into the cooling tower 1 from the charging port 11, the sucked air is passed to the primary dust remover 23 through the bypass duct 71. Since it is supplied, it is possible to suppress the sucked air from burning the red hot coke in the preliminary chamber 1a. At this time, if the supply amount of the air blowing mechanism 5 is reduced while the flow rate from the gas discharge mechanism 6 is kept constant, the air corresponding to the reduced air amount enters from the inlet 11. If air blowing into the chamber 1 a is stopped, a part of this air burns the combustible gas in the spare chamber 1 a and exhausts it to the primary dust remover 23 through the bypass duct 71.
  • the air that has entered from the inlet 11 that has not contributed to the combustion in the preliminary chamber 1 a contributes to burning the combustion components in the circulating gas in the primary dust remover 23 via the bypass duct 71.
  • the same combustion as before the supply amount of the air blowing mechanism 5 is reduced is maintained in the front stage of the waste heat recovery boiler 4.
  • the supply amount of the circulating gas and the exhaust amount are balanced, and when the furnace top cover is opened and the red hot coke is charged into the cooling tower. Furthermore, the balance between the supply amount and the exhaust amount is lost by making the exhaust amount of the circulating gas larger than the supply amount, so when the furnace top cover is opened, the difference between the exhaust amount and the supply amount is reduced. In response, air is sucked from the inlet. For this reason, it is possible to suppress the generation of gas from the charging inlet when charging the coke, and it is possible to fundamentally prevent the generation of dust when charging the coke.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the air blowing mechanism 5 is provided and the temperature is further increased by blowing air into the high temperature gas.
  • the present invention is not limited to this.
  • the air blowing mechanism 5 it is possible to use only the gas discharge mechanism as the adjustment mechanism for adjusting the supply amount and the exhaust amount of the circulating gas.
  • the present invention does not have to include all the components of the above-described embodiment, and the components of the above-described embodiment may be partially excluded without departing from the scope of the present invention. It is.
  • Cooling tower 1a; Preliminary room, 1b; Cooling room, 2; Gas circulation part, 2a; Cooling gas flow part, 2b; High-temperature gas flow part, 3; Circulation fan, 4; Air blowing mechanism, 6; gas discharge mechanism, 7; control unit, 11; charging inlet, 12; furnace top cover, 13; charging device, 16; discharge device, 21; Dust remover, 24; annular flue, 31; cooling gas pipe, 32; cyclone (secondary dust remover), 34; cooling gas introduction mechanism, 35; gas cooler, 41; dust collection duct, 43; 51, 52; Piping, 53; Fan, 54; Flow control valve, 55; Flow meter, 61; Gas discharge piping, 62; Valve, 63; Flow meter, 64; Pressure gauge, 71; Bypass duct, 100; Fire extinguishing equipment (CDQ)
  • CDQ Fire extinguishing equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

 コークス乾式消火設備(100)は、上部に赤熱コークスを装入する装入口(11)を有し、その中に装入された赤熱コークスを冷却する冷却塔(1)と、その装入口(11)を開閉する炉頂蓋(12)と、冷却塔(1)に向けて冷却ガスを通流する冷却ガス通流路(31)および赤熱コークスと熱交換した後の高温ガスを通流する高温ガス通流路(22)を有し、冷却ガスを含むガスを循環させるガス循環路(31,22)と、ガス循環路(31,22)に介装され、赤熱コークスと熱交換して高温になった冷却ガスの熱を回収する廃熱回収ボイラ(4)と、冷却塔(1)およびガス循環路(31,22)を循環するガスの流量を調整する調整機構(5,6)と、炉頂蓋(12)を開けて冷却塔(1)に赤熱コークス装入する際に、炉頂蓋(12)を閉じて通常操業する際よりも、冷却塔(1)およびガス循環路(31,22)を循環するガスの流量を減じるように制御する制御部(7)とを具備する。

Description

コークス乾式消火設備およびその操業方法
 本発明は、コークス炉にて製造された赤熱コークスを冷却ガスにより冷却するコークス乾式消火設備およびその操業方法に関する。
 コークス乾式消火設備(Coke Dry Quenching:CDQ)は、コークス炉で製造された赤熱コークスを冷却するための設備であり、冷却塔にその上方から赤熱コークスをバッチ装入し、赤熱コークスを収容する冷却塔に冷却ガス(不活性ガス)を供給することにより赤熱コークスを所定温度まで冷却し、冷却されたコークスを冷却塔の下方から連続的に排出するようになっている。赤熱コークスと熱交換することにより高温となった冷却ガスは、その顕熱および潜熱(燃焼成分)が廃熱回収ボイラにて蒸気として回収され、廃熱回収された後の冷却ガスは循環使用される。
 このようなコークス乾式消火設備では、バケットによって搬送されてきた赤熱コークスを装入装置により装入するが、その際に炉頂蓋を開くため、冷却塔の内部のガスが装入されたコークスと置換されて装入口から粉塵をともなって排出され、発塵してしまう。
 このようなコークス装入の際の発塵の問題を解決する技術として、例えば特許文献1に記載されたものがある。特許文献1の技術では、バケットによって搬送されてきた赤熱コークスをホッパで受けて冷却塔に装入する際に、装入口をガスシールし、赤熱コークス装入口および冷却塔の上部を覆う集塵フードをホッパ下部に設け、集塵フードを集塵ダクトを介して集塵器に接続し、集塵フードの下部と冷却塔の上部とをガスシールすることにより発塵を防止している。
特開2006-265500号公報
 上記特許文献1の技術では、粉塵を含むガスが外部に拡散して発塵することを防止することはできるものの、赤熱コークスを装入した際には、冷却塔からその分に対応する量の高温の排ガスが粉塵をともなって集塵フードに排出され、この高温ガスが集塵ダクトを介して集塵器に供給されて排出されるため、この排ガスの顕熱を有効利用することができない。
 本発明の目的は、冷却塔に赤熱コークスを装入する際に、冷却塔からの粉塵を含むガスの発生自体を抑制することができるコークス乾式消火設備およびその操業方法を提供することにある。
 本発明の第1の観点によれば、コークス炉にて製造された赤熱コークスを冷却ガスにより冷却するコークス乾式消火設備であって、上部に赤熱コークスを装入する装入口を有し、その中に装入された赤熱コークスを冷却する冷却塔と、前記装入口を開閉する炉頂蓋と、前記冷却塔に向けて冷却ガスを通流する冷却ガス通流路および前記冷却塔内で前記冷却ガスが赤熱コークスと熱交換した後の高温ガスを通流する高温ガス通流路を有し、前記冷却ガスを含むガスを循環させるガス循環路と、前記ガス循環路にガスを循環させる循環機構と、前記ガス循環路に介装され、赤熱コークスと熱交換して高温になった冷却ガスの熱を回収する廃熱回収ボイラと、前記冷却塔および前記ガス循環路を循環する循環ガスの供給量と排気量とを調整する調整機構と、前記炉頂蓋を閉じて通常操業する際に、前記循環ガスの供給量と排気量とがバランスするように制御し、ガス前記炉頂蓋を開けて前記冷却塔に前記赤熱コークスを装入する際に、前記循環ガスの排気量が供給量よりも多くなるように制御する制御部とを具備する、コークス乾式消火設備が提供される。
 本発明の第2の観点によれば、上部に赤熱コークスを装入する装入口を有し、その中に装入された赤熱コークスを冷却する冷却塔と、前記装入口を開閉する炉頂蓋と、前記冷却塔に向けて冷却ガスを通流する冷却ガス通流路および前記冷却塔内で前記冷却ガスが赤熱コークスと熱交換した後の高温ガスを通流する高温ガス通流路を有し、前記冷却ガスを含むガスを循環させるガス循環路と、前記ガス循環路にガスを循環させる循環機構と、前記ガス循環路に介装され、赤熱コークスと熱交換して高温になった冷却ガスの熱を回収する廃熱回収ボイラとを有するコークス乾式消火設備の操業方法であって、前記炉頂蓋を閉じ、前記循環ガスの供給量と排気量とがバランスするようにして通常操業する工程と、前記炉頂蓋を開け、前記循環ガスの排気量が供給量よりも多くなるようにして前記冷却塔に前記赤熱コークスを装入する工程とを有する、コークス乾式消火設備の操業方法が提供される。
 本発明において、前記赤熱コークスを装入する際に、前記循環ガスの排気量と供給量との差を、装入するコークスの体積速度に相当する量とすることが好ましい。
 前記調整機構が、前記ガス循環路の前記冷却ガス通流路から冷却ガスを排出する冷却ガス排出機構を有し、前記制御部が前記赤熱コークスを装入する際に、前記冷却ガス排出機構から排出されるガス流量を制御することにより、前記循環ガスの排気量を制御するようにすることができる。また、前記調整機構が、前記高温ガス通流路に空気を吹き込んで前記高温ガスの可燃分を燃焼させ、高温ガスをさらに昇温させる空気吹き込み機構をさらに有し、前記制御部は、前記赤熱コークスを装入する際に、前記空気吹き込み機構からの空気吹き込み流量を、前記通常操業時よりも少なくなるようにして前記循環ガスの供給量を減少させるように制御するようにすることもできる。また、これらの両方を行ってもよい。
 前記冷却塔の頂部と前記高温ガス通流部との間を接続するバイパスダクトをさらに具備するようにし、前記赤熱コークスを装入する際に、前記冷却塔の装入口から吸引された空気を前記ガス排出部に供給するようにすることが好ましい。
本発明の一実施形態に係るコークス乾式消火設備を示す概略構成図である。
 以下、添付図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係るコークス乾式消火設備(CDQ)を示す概略構成図である。
 このコークス乾式消火設備(CDQ)100は、赤熱コークスが装入される冷却塔1と、冷却塔1の下部から冷却塔1の内部に冷却ガスを供給し、冷却塔1内で冷却ガスが赤熱コークスと熱交換した後の高温ガスを冷却塔1から排出してガスを循環させるガス循環部2と、冷却塔1から排出された高温のガスの顕熱および潜熱を蒸気として回収する廃熱回収ボイラ4とを有している。
 冷却塔1は、上部の予備室1aと下部の冷却室1bとから構成されており、予備室1aの上部にコークス炉から搬送されてきた赤熱コークスが装入される装入口11が形成され、装入口11を開閉する炉頂蓋12が設けられている。装入口11にはホッパ等を有する装入装置13が配置されており、赤熱コークスを収容したバケット14がクレーン等により運搬されて、装入装置13に至り、バケット14内の赤熱コークスが装入装置13を介して装入口11から冷却塔1内に装入される。
 装入装置13には集塵ダクト41が接続されており、集塵ダクト41には、サイクロン42、バグフィルタからなる集塵器43、排気ファン44が接続されており、集塵ダクト41の終端にはサイクロン42および集塵器43で除塵された排ガスを大気に放出する煙突45が接続されている。
 冷却室1bへは予備室1aから赤熱コークスが供給され、冷却室1bの下部において冷却ガスが上方に向かうように導入され、この冷却ガスにより冷却室1b内のコークスが冷却される。そして、冷却室1bの下端には冷却されたコークスを連続的に排出する排出装置16が設けられている。
 ガス循環部2は、冷却ガスが通流する冷却ガス通流部2aと、冷却ガスが赤熱コークスと熱交換した後の高温ガスが通流する高温ガス通流部2bと、ガスを循環させる循環ファン3とを有している。
 高温ガス通流部2bは、予備室1aの側壁に円管状に設けられ赤熱コークスと熱交換した後の高温ガスが流入する円環煙道24と、円環煙道24に接続され、高温ガスを回熱回収ボイラ4に導く流路22が形成された一次除塵器23とを有する。冷却塔1において冷却ガスが赤熱コークスと熱交換した後の高温ガスはフリュウ21を介して円環煙道24へ流出する。なお、冷却塔1の頂部と一次除塵器23とを繋ぐようにバイパスダクト71が設けられている。
 冷却ガス通流部2aは、廃熱回収ボイラ4で廃熱が回収された後のガスを冷却ガスとして供給する冷却ガス配管31と、冷却ガス配管31に設けられた二次除塵器としてのサイクロン32と、冷却ガス配管31から冷却塔1の冷却室1b下部に上方に向けて冷却ガスを導入する冷却ガス導入機構34とを有している。上記循環ファン3は冷却ガス配管31に設けられている。なお、冷却ガス配管31には、ガスクーラー35が設けられていてもよい。
 上記高温ガス通流部2bの一次除塵器23中の流路22は高温ガス通流路として機能し、上記冷却ガス通流部2aの冷却ガス配管31は冷却ガス通流路として機能し、これらによりガス循環路を構成しており、このガス循環路および冷却塔1に所定量のガスが循環されることとなる。
 廃熱回収ボイラ4は、内部に水を通流する伝熱管(図示せず)を有しており、伝熱管に通流している水を流路22からの高温ガスで加熱して蒸気に変換する。そして、生成された蒸気は蒸気タービン等へ供給され、有効利用される。
 コークス乾式消火設備100は、また、冷却ガスが赤熱コークスと熱交換した後に得られる高温ガスに空気を吹き込む空気吹き込み機構5と、冷却塔1に供給される冷却ガスを排出するガス排出機構6とを有しており、これらはガス循環路を循環する循環ガスの供給量および排気量を調整する調整機構として機能する。
 冷却塔1に装入される赤熱コークスは約1000℃の高温であり、コークス中の未乾留成分(揮発成分)が水素やメタン等の可燃性ガスになり、ガス循環路の循環ガス中に供給される。このため、空気吹き込み機構5は、冷却ガスが赤熱コークスと熱交換した後に得られる高温ガスに空気を供給して上述の可燃性ガスを燃焼させ、さらに昇温させる。これにより例えば900~1000℃の高温ガスを廃熱回収ボイラ4に供給して、蒸気生成効率を高める。空気吹き込み機構5は、円環煙道24、一次除塵器23の流路22、予備室1aに接続された複数の空気吹き込み配管51を有し、これら配管51は配管52に収束され、配管52には空気吹き込みファン53が設けられ、この空気吹き込みファン53により配管51を介して冷却ガス通流部2aを通流する高温の冷却ガスに空気が吹き込まれる。配管52には流量調整バルブ54および流量計55が設けられており、流量計55の値に基づいて流量調整バルブ54の開度を調整することにより空気吹き込み量を一括して制御可能となっている。また、各配管51の流量調整も行えるようになっており、各配管51の空気の分配比を調整可能となっている。
 ガス排出機構6は、赤熱コークスからの発生ガスや、空気吹き込みにより増加した循環ガスの余剰分を系外に排出するものであり、冷却ガス配管31の循環ファン3よりも下流側に接続されたガス排出配管61を有し、ガス排出配管61にはバルブ62および流量計63が設けられており、流量計63の値に基づいてバルブ62によりガス排出量を調整可能となっている。一方、冷却塔1の上部には圧力計64が設けられており、圧力計64の値に基づいてバルブ62を調整し、冷却塔1内の圧力を調整可能となっている。つまり、バルブ62は流量調整バルブおよび圧力調整バルブの両方の機能を有する。そして、バルブ62は通常の操業時(炉頂蓋12が閉)には圧力調整バルブとして機能し、コークス装入時(炉頂蓋12が開)には流量調整バルブとして機能する。ガス排出配管61は、集塵ダクト41に接続されており、ガス排出配管61に排出された冷却ガスは、集塵器43で集塵されて大気に排出される。
 コークス乾式消火設備100は、さらに、制御部7を有している。制御部7は、炉頂蓋12を閉じて通常操業している際には、冷却塔1およびガス循環路を循環する循環ガスの供給量と排気量とがバランスするように制御する。一方、制御部7は、コークス装入時に炉頂蓋12を開放した時点では、冷却塔1およびガス循環路を循環する循環ガスの排出量が循環ガスの供給量よりも多くなるように制御する。これにより、循環ガスの供給量と排出量のバランスが崩れた分だけ、装入口11から空気が吸引されてコークス装入時の発塵が防止される。循環ガスの排出量が循環ガスに対するガスの供給量よりも多くなるように制御するためには、循環ガスの排出量を増加させるか、循環ガスの供給量を減少させるか、またはその両方を行えばよい。このときの循環ガスの排気量と供給量との差は、装入するコークスの体積速度に相当する量であることが好ましい。これにより、コークス装入時にコークス装入口11から排出されるガス量をほとんどなくすことが可能になる。
 具体的には、制御部7は主に空気吹き込み機構5およびガス排出機構6を制御し、通常操業時には、炉頂蓋12を閉じた状態で、空気吹き込み機構5による空気の吹き込み量が予め定められた量になるように流量調整バルブ54を制御するとともに、冷却塔1内の圧力が一定になるように、バルブ62を圧力調整バルブとして機能させ、ガス排出配管61からのガスの排出を制御して、循環ガスの供給量と排気量とがバランスするようにする。一方、コークス装入時に炉頂蓋12を開放した際には、バルブ62を流量調整バルブとして機能させ、ガス排出機構6によりガスの排出量を通常操業時よりも増加させることにより、循環ガスの排気量を増加させて装入口11から所定流量の空気を吸引するように制御する。また、これに加えて、空気吹き込み機構5による空気吹き込み流量を通常の操業時よりも減じるように制御してもよい。これによって、循環ガスの供給量が減少し、ガス排気機構6からの排出量を増加させて循環ガスの排気量を増加させるのと同様に、循環ガスの供給量と排気量のバランスが崩れて、空気吹き込み量を減じた分だけ、必然的に装入口11から空気を吸引するようになる。このように、ガスの排出量を通常操業時よりも増加させることに加えて、空気吹き込み機構5による空気吹き込み流量を通常の操業時よりも減じるように制御することにより、ガス排出機構6からの排出流量を減じることができ、集塵器43の負荷を減らすことができる。なお、ガス排出機構6のバルブ62を流量一定のまま、もしくは開度一定のまま、空気吹き込み機構5の空気吹き込み流量を減じることのみで循環ガスの供給量を減少させて装入口11から空気を吸引するようにすることもできるのは言うまでもない。
 制御部7は、コークス装入時において、炉頂蓋12を開けた直後に循環ガスの供給量と排気量のバランスを制御することが好ましい。これは、装入口11は、通常、水封シールされており、炉頂蓋12が閉じている際に過度の負圧にすれば、冷却塔1内に水が侵入するおそれがあるからであり、炉頂蓋12を開いてからコークス装入までには、制御部7の操作が十分可能だからである。炉頂蓋12を開けた時点で、装入口11から有効に空気が吸引される。そして、コークスの装入が終了して炉頂蓋12が閉じる直前で操業時の制御に戻す。
 次に、このように構成されるコークス乾式消火設備100の動作について説明する。
 冷却塔1には赤熱コークスが装入され、操業時には炉頂蓋12が密閉された状態で冷却室1bの下部に設けられた冷却ガス導入機構34から上方に向けて冷却室1b内のコークスに冷却ガスを連続的に供給する。そしてこれにより冷却されたコークスは排出装置16により連続的に排出される。
 冷却室1bに供給された冷却ガスは、赤熱コークス中を上昇し、赤熱コークスと熱交換される。冷却ガスが赤熱コークスと熱交換されることにより高温ガスとなる。高温ガスは、ガス循環部2の高温ガス通流部2bの円環煙道24、一次集塵器23の流路22を介して廃熱回収ボイラ4に導かれる。そして、予備室1a、および冷却ガス通流部2aの円環煙道24、一次除塵器23に空気吹き込み機構5の配管51を介して空気が吹き込まれ、冷却ガスが赤熱コークスと熱交換した後の可燃成分を含んだ高温ガスが燃焼されて例えば900~1000℃の高温ガスとなる。これにより、廃熱回収ボイラ4における蒸気発生量を増加させて蒸気発生効率を高めることができる。
 廃熱回収ボイラ4においては高温ガスの顕熱および潜熱により蒸気を発生させ、この蒸気を蒸気タービン等に供給する。廃熱回収ボイラ4により廃熱が回収されて温度が低下した後のガスは、循環ファン3により再び冷却ガスとして冷却ガス供給部2の冷却ガス配管31に導かれ、二次除塵器としてのサイクロン32により除塵され、引き続き冷却ガス通流部2aの冷却配管31を経て冷却塔1の下部に存在する冷却ガス導入機構34から冷却塔1内に導入される。供給される冷却ガスは、必要に応じてガスクーラー35により冷却される。
 このようにして、通常操業時には、一次除塵器23中の流路22と冷却ガス配管31とにより構成されるガス循環路、および冷却塔1を通ってガスが循環され、この際に、このガス循環路の高温部分に空気吹き込み機構5から所定量の空気が吹き込まれ、かつ冷却塔1内の上部のガス圧力が一定になるようにガス排出配管61を介して冷却ガス循環路の低温部分から余剰の冷却ガスが排出され、循環ガスの供給量と排気量がバランスするようにされる。
 冷却室1bにおいてコークスが連続的に冷却されて排出されることにより、予備室1aから赤熱コークスが連続的に冷却室1bへ供給される。そして、予備室1a内の赤熱コークスが所定量以下になった時点、または従前の装入から所定時間経過した時点で、予備室1a内に赤熱コークスを装入する。このとき、炉頂蓋12を開放して。バケット14から装入装置13を介して赤熱コークスを冷却塔1の予備室1aに装入する。
 このとき、従来は、装入したコークスの体積に対応する量のガスが冷却塔1の装入口11から放出されることとなる。冷却塔1から放出されるガスは多量の粉塵をともなった可燃性の高温のガスであるため、装入口11の周囲で発塵するとともに、可燃成分も燃焼し、さらに高温となったガスがそのまま集塵器43に排出されることになり、高温ガスの熱エネルギーを有効利用することができない。また、集塵器43は、コークス装入時の負荷が過大となり、これに合わせて能力が決定されるため、通常操業では必要のない設備投資となる。
 そこで、本実施形態では、コークス装入時に、炉頂蓋12を開放した時点で、冷却塔1およびガス循環路を循環する循環ガスの排気量が供給量よりも多くなるようにしてバランスを崩すように制御する。
 具体的には、炉頂蓋12を閉じた状態の通常操業時には、空気吹き込み機構5による空気の吹き込み量が予め定められた量になるように流量調整バルブ54を制御するとともに、冷却塔1内の圧力が一定になるように、バルブ62を圧力調整バルブとして機能させ、ガス排出配管61からのガスの排出を制御して、循環ガスの供給量と排気量とがバランスするようにするのに対し、コークス装入時に炉頂蓋12を開けた際には、バルブ62を流量調整バルブとして機能させ、ガス排出機構6によりガスの排出量を通常操業時よりも増加させることにより、循環ガスの排気量を増加させて循環ガスの供給量と排気量のバランスを意図的に崩し、装入口から所定流量の空気を吸引するように制御する。このとき、これに加えて、空気吹き込み機構5による空気吹き込み流量を通常の操業時よりも減じるように制御するようにしてもよい。その際は、炉頂蓋12を開くのであるから、特に予備室1aに吹き込む空気を優先的に停止させたほうがよい。このように空気吹き込み流量を通常の操業時よりも減じることにより、循環ガスの供給量が減少し、ガス排気機構6からの排気量を増加させて循環ガスの排気量を増加させるのと同様に、循環ガスの供給量と排気量のバランスが崩れて、空気吹き込み量を減じた分だけ、必然的に装入口11から空気を吸引するようになる。また、ガス排出機構6からの排出量を減じることができ、集塵器43の負荷を減らすことができる。なお、ガス排出機構6のバルブ62を流量一定のまま、もしくは開度一定のまま、空気吹き込み機構5の空気吹き込み流量を減じることのみで循環ガスの供給量を減少させて装入口11から空気を吸引するようにしてもよい。
 このように、本実施形態では、炉頂蓋12を閉じて通常操業している際には循環ガスの供給量と排気量とをバランスさせていたのを、炉頂蓋12を開けてコークスを装入する際に、循環ガスの排気量が供給量よりも多くなるようにする。これにより、循環ガスの供給量と排気量のバランスが崩れた分だけ、装入口11から空気が吸引されて、コークス装入時に装入口11からのガスの排出が抑制されるので、発塵を発生源から防止することができる。このときの循環ガスの排気量と供給量との差は、装入するコークスの体積速度に相当する量であることが好ましい。これにより、コークス装入時にコークス装入口11から排出されるガス量をほとんどなくすことが可能になる。また、コークス装入時における冷却塔1からのガスの排出自体を抑制することができるので、熱回収されない高温ガスがそのまま排出されることが防止され、有効に熱回収を行うことができる。また、コークス装入時におけるガスの排出が抑制されることにより、集塵器に必要とされる能力は、炉頂蓋12を開けたときもほとんど変化がなく、上述した特許文献1のような専用の集塵器が不要となる。
 また、バイパスダクト71が設けられているので、装入口11から冷却塔1に空気が吸引された際に、吸引された空気がバイパスダクト71を介してガス通流部2aの一次除塵器23に供給されるので、吸引された空気が予備室1aの赤熱コークスを燃焼してしまうことを抑制することができる。この際、ガス排出機構6からの流量を一定のまま、空気吹き込み機構5の供給量を減じれば、減少した空気量に相当する空気が、装入口11から進入するが、前述の通り、予備室1aへの空気吹き込みが停止していれば、この空気の一部が、予備室1a内の可燃性ガスを燃焼させ、前記バイパスダクト71を介して、一次除塵器23に排気する。その際、予備室1a内での燃焼に寄与しなかった装入口11より進入した空気は、バイパスダクト71を介して一次除塵器23内で循環ガス内の燃焼成分を燃焼することに寄与することになり、結果的に、空気吹き込み機構5の供給量を減じる前と同等の燃焼が、廃熱回収ボイラ4の前段で維持されることになる。このことにより、廃熱回収ボイラ4の安定運転、すなわち効率的な運用が可能となる。
 このように、本実施形態では、炉頂蓋を閉じて通常操業する際には、循環ガスの供給量と排気量とをバランスさせ、炉頂蓋を開けて冷却塔に赤熱コークス装入する際に、循環ガスの排気量を供給量よりも多くなるようにして供給量と排気量とのバランスを崩すようにするので、炉頂蓋を開けた際に、排気量と供給量との差に応じて装入口から空気が吸引される。このため、コークスを装入する際に装入口からガスが発生することを抑制することができ、コークス装入時の発塵を根本的に防止することができる。
 なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記例では空気吹き込み機構5を設け、高温ガスに空気を吹き込んでさらに温度を上昇させる例について示したが、これに限るものではない。空気吹き込み機構5を設けない場合には、循環ガスの供給量と排気量とを調整する調整機構としてはガス排出機構のみを用いるようにすることが可能である。
 さらに、上記実施形態では、コークス装入時と通常操業時における循環ガスの流量を制御部により制御する例を示したが、オペレータの操作により循環ガスの流量を制御するようにしてもよい。
 さらにまた、本発明は、上記実施形態の構成要素を全て具備している必要はなく、本発明の範囲を逸脱しない限り、上記実施形態の構成要素を一部取り除いたものも本発明の範囲内である。
  1;冷却塔、1a;予備室、1b;冷却室、2;ガス循環部、2a;冷却ガス通流部、2b;高温ガス通流部、3;循環ファン、4;廃熱回収ボイラ、5;空気吹き込み機構、6;ガス排出機構、7;制御部、11;装入口、12;炉頂蓋、13;装入装置、16;排出装置、21;フリュウ、22;流路、23;一次除塵器、24;円環煙道、31;冷却ガス配管、32;サイクロン(二次除塵器)、34;冷却ガス導入機構、35;ガスクーラー、41;集塵ダクト、43;集塵器、51,52;配管、53;ファン、54;流量調整バルブ、55;流量計、61;ガス排出配管、62;バルブ、63;流量計、64;圧力計、71;バイパスダクト、100;コークス乾式消火設備(CDQ)

Claims (11)

  1.  コークス炉にて製造された赤熱コークスを冷却ガスにより冷却するコークス乾式消火設備であって、
     上部に赤熱コークスを装入する装入口を有し、その中に装入された赤熱コークスを冷却する冷却塔と、
     前記装入口を開閉する炉頂蓋と、
     前記冷却塔に向けて冷却ガスを通流する冷却ガス通流路および前記冷却塔内で前記冷却ガスが赤熱コークスと熱交換した後の高温ガスを通流する高温ガス通流路を有し、前記冷却ガスを含むガスを循環させるガス循環路と、
     前記ガス循環路にガスを循環させる循環機構と、
     前記ガス循環路に介装され、赤熱コークスと熱交換して高温になった冷却ガスの熱を回収する廃熱回収ボイラと、
     前記冷却塔および前記ガス循環路を循環する循環ガスの供給量と排気量とを調整する調整機構と、
     前記炉頂蓋を閉じて通常操業する際に、前記循環ガスの供給量と排気量とがバランスするように制御し、ガス前記炉頂蓋を開けて前記冷却塔に前記赤熱コークスを装入する際に、前記循環ガスの排気量が供給量よりも多くなるように制御する制御部と
    を具備する、コークス乾式消火設備。
  2.  前記制御部は、前記赤熱コークスを装入する際における前記循環ガスの排気量と供給量との差を、装入するコークスの体積速度に相当する量に制御する、請求項1に記載のコークス乾式消火設備。
  3.  前記調整機構は、前記ガス循環路の前記冷却ガス通流路から冷却ガスを排出する冷却ガス排出機構を有し、前記制御部は、前記赤熱コークスを装入する際に、前記冷却ガス排出機構から排出されるガス流量を制御することにより、前記循環ガスの排気量を制御する、請求項1または請求項2に記載のコークス乾式消火設備。
  4.  前記調整機構は、前記高温ガス通流路に空気を吹き込んで前記高温ガスの可燃分を燃焼させ、高温ガスをさらに昇温させる空気吹き込み機構をさらに有し、前記制御部は、前記赤熱コークスを装入する際に、前記空気吹き込み機構からの空気吹き込み流量を、前記通常操業時よりも少なくなるようにして前記循環ガスの供給量を減少させるように制御する、請求項1から請求項3のいずれか1項に記載のコークス乾式消火設備。
  5.  前記冷却塔の頂部と前記高温ガス通流路との間を接続するバイパスダクトをさらに具備する、請求項1から請求項4のいずれか1項に記載のコークス乾式消火設備。
  6.  上部に赤熱コークスを装入する装入口を有し、その中に装入された赤熱コークスを冷却する冷却塔と、前記装入口を開閉する炉頂蓋と、前記冷却塔に向けて冷却ガスを通流する冷却ガス通流路および前記冷却塔内で前記冷却ガスが赤熱コークスと熱交換した後の高温ガスを通流する高温ガス通流路を有し、前記冷却ガスを含むガスを循環させるガス循環路と、前記ガス循環路にガスを循環させる循環機構と、前記ガス循環路に介装され、赤熱コークスと熱交換して高温になった冷却ガスの熱を回収する廃熱回収ボイラとを有するコークス乾式消火設備の操業方法であって、
     前記炉頂蓋を閉じ、前記循環ガスの供給量と排気量とがバランスするようにして通常操業する工程と、
     前記炉頂蓋を開け、前記循環ガスの排気量が供給量よりも多くなるようにして前記冷却塔に前記赤熱コークスを装入する工程と
    を有する、コークス乾式消火設備の操業方法。
  7.  前記赤熱コークスを装入する工程において、前記循環ガスの排気量と供給量との差を、装入するコークスの体積速度に相当する量とする、請求項6に記載のコークス乾式消火設備の操業方法。
  8.  前記コークス乾式消火設備の前記調整機構が、前記ガス循環路の前記冷却ガス通流路から冷却ガスを排出する冷却ガス排出機構を有し、前記赤熱コークスを装入する工程において、前記冷却ガス排出機構から排出されるガス流量を増加させることにより、前記循環ガスの排気量を増加させる、請求項6または請求項7に記載のコークス乾式消火設備の操業方法。
  9.  前記コークス乾式消火設備の前記調整機構が、前記ガス循環路の前記高温ガス通流路に空気を吹き込んで前記高温ガスの可燃分を燃焼させ、高温ガスをさらに昇温させる空気吹き込み機構を有し、前記赤熱コークスを装入する工程において、前記冷却ガス排出機構から排出されるガス流量を増加させて前記循環ガスの排気量を増加させることに加えて、前記空気吹き込み機構からの空気吹き込み流量を、前記通常操業時よりも少なくなるようにして、前記循環ガスの供給量を減少させる、請求項6または請求項7に記載のコークス乾式消火設備の操業方法。
  10.  前記コークス乾式消火設備の前記調整機構が、前記ガス循環路の前記高温ガス通流路に空気を吹き込んで前記高温ガスの可燃分を燃焼させ、高温ガスをさらに昇温させる空気吹き込み機構をさらに具備し、前記赤熱コークスを装入する工程において、前記空気吹き込み機構からの空気吹き込み流量を、前記通常操業時よりも少なくなるようにして、前記循環ガスの供給量を減少させる、請求項6または請求項7に記載のコークス乾式消火設備の操業方法。
  11.  前記コークス乾式消火設備は、前記冷却塔の頂部と前記高温ガス通流路との間を接続するバイパスダクトをさらに具備し、前記赤熱コークスを装入する工程において、前記冷却塔の前記装入口から吸引された空気を前記高温ガス通流路に供給する、請求項7から請求項10のいずれか1項に記載のコークス乾式消火設備の操業方法。
PCT/JP2011/064280 2010-06-27 2011-06-22 コークス乾式消火設備およびその操業方法 WO2012002223A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11800688.1A EP2586850B1 (en) 2010-06-27 2011-06-22 Coke dry quenching plant and method for operating same
CN2011800318019A CN102959050A (zh) 2010-06-27 2011-06-22 干法熄焦设备及其操作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145714A JP5631073B2 (ja) 2010-06-27 2010-06-27 コークス乾式消火設備およびその操業方法
JP2010-145714 2010-06-27

Publications (1)

Publication Number Publication Date
WO2012002223A1 true WO2012002223A1 (ja) 2012-01-05

Family

ID=45401943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064280 WO2012002223A1 (ja) 2010-06-27 2011-06-22 コークス乾式消火設備およびその操業方法

Country Status (5)

Country Link
EP (1) EP2586850B1 (ja)
JP (1) JP5631073B2 (ja)
CN (1) CN102959050A (ja)
TW (1) TW201207096A (ja)
WO (1) WO2012002223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456823A (zh) * 2022-02-10 2022-05-10 华泰永创(北京)科技股份有限公司 一种气体循环系统及干熄焦设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160293B (zh) * 2013-03-15 2016-01-20 北京神雾环境能源科技集团股份有限公司 一种煤干馏多级连续干熄焦系统及方法
CN104650930A (zh) * 2013-11-18 2015-05-27 上海梅山钢铁股份有限公司 干熄焦空气导入控制方法
JP6531472B2 (ja) * 2015-04-02 2019-06-19 日本製鉄株式会社 コークス乾式消火設備の集塵方法及びコークス乾式消火設備の集塵装置
CN108977206A (zh) * 2017-05-31 2018-12-11 科利特环能科技(大连)有限公司 一种熄焦炉预存室的压力控制系统
CN108928653A (zh) * 2018-08-23 2018-12-04 贵州森环活性炭有限公司 一种活性炭生产中冷却输送装置
CN112898995B (zh) * 2021-01-15 2021-08-31 广东韶钢松山股份有限公司 装焦控制方法、装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070402A (ja) * 1973-10-25 1975-06-11
JPS5643076B2 (ja) * 1974-11-29 1981-10-08
JPS5993790A (ja) * 1982-11-19 1984-05-30 Nippon Steel Corp コ−クス乾式消化設備における赤熱コ−クス装入時の発塵等抑制方法
JPH07268338A (ja) * 1994-03-31 1995-10-17 Nkk Corp 赤熱コークス装入時の乾式消火設備の操業方法
JPH0873861A (ja) * 1994-09-01 1996-03-19 Nkk Corp コークス乾式消火設備のプレチャンバー圧力制御方法
JP2004231688A (ja) * 2003-01-28 2004-08-19 Nippon Steel Corp コークス乾式消火方法
JP2006265500A (ja) 2005-03-25 2006-10-05 Nippon Steel Corp コークス乾式消火設備の赤熱コークス装入装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2420564A1 (fr) * 1978-03-20 1979-10-19 Kawatetsu Chem Ind Co Procede pour recuperer le gaz superflu dans l'extinction a sec du coke et appareil utilisable pour la mise en oeuvre de ce procede
JPS591590A (ja) * 1982-06-28 1984-01-06 Ishikawajima Harima Heavy Ind Co Ltd コ−クス乾式消火設備におけるプリチヤンバ−圧力制御方法
DE3612922A1 (de) * 1986-04-17 1987-10-22 Thyssen Industrie Kokstrockenkuehleinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070402A (ja) * 1973-10-25 1975-06-11
JPS5643076B2 (ja) * 1974-11-29 1981-10-08
JPS5993790A (ja) * 1982-11-19 1984-05-30 Nippon Steel Corp コ−クス乾式消化設備における赤熱コ−クス装入時の発塵等抑制方法
JPH07268338A (ja) * 1994-03-31 1995-10-17 Nkk Corp 赤熱コークス装入時の乾式消火設備の操業方法
JPH0873861A (ja) * 1994-09-01 1996-03-19 Nkk Corp コークス乾式消火設備のプレチャンバー圧力制御方法
JP2004231688A (ja) * 2003-01-28 2004-08-19 Nippon Steel Corp コークス乾式消火方法
JP2006265500A (ja) 2005-03-25 2006-10-05 Nippon Steel Corp コークス乾式消火設備の赤熱コークス装入装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456823A (zh) * 2022-02-10 2022-05-10 华泰永创(北京)科技股份有限公司 一种气体循环系统及干熄焦设备

Also Published As

Publication number Publication date
JP5631073B2 (ja) 2014-11-26
EP2586850A4 (en) 2017-03-08
EP2586850B1 (en) 2018-04-25
CN102959050A (zh) 2013-03-06
EP2586850A1 (en) 2013-05-01
TW201207096A (en) 2012-02-16
JP2012007112A (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2012002223A1 (ja) コークス乾式消火設備およびその操業方法
BR102013002741B1 (pt) Sistema de controle de tiragem automática para coqueiras
CN105783532B (zh) 全封闭环冷机余热回收装置
JP5524502B2 (ja) コークス乾式消火設備および、この操業方法
WO2021082755A1 (zh) 一种干熄焦用除尘装置及提高干熄焦锅炉蒸汽产率的方法
CN108823352A (zh) 一种转炉烟气干式余热回收除尘装置及方法
JP5501841B2 (ja) 製鋼用アーク炉の廃熱回収設備および製鋼用アーク炉設備
JPH10158656A (ja) コークス乾式消火設備
JP2009173938A (ja) コークス乾式消火方法
JP4133372B2 (ja) コークス乾式消火方法
JP2017036359A (ja) コークス乾式消火設備
KR20200072328A (ko) Cdq 설비에서의 코크스의 건식 소화방법
KR101020358B1 (ko) 재가열로의 배열회수장치
JP2001192662A (ja) コークス乾式消火設備
JP5790045B2 (ja) 熱風発生装置
JPS6137893A (ja) 乾式消火方法およびその装置
JP2821985B2 (ja) コークス乾式消火設備の可燃ガス燃焼制御方法
JPS6140754Y2 (ja)
JP4035057B2 (ja) Cdqにおけるバイオマス処理時のガス導入方法
JP2001158883A (ja) コークス乾式消火方法及び消火装置
CN206635288U (zh) 一种干熄焦低负荷生产时旋风除尘器除尘高效率控制装置
JP2002256270A (ja) コークス乾式消火方法及び装置
KR101201775B1 (ko) 코크스 건식 소화 설비
JP3962308B2 (ja) コークス乾式消火設備におけるバイオマスの処理方法
JP3719077B2 (ja) コークス乾式消火設備の操業方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031801.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011800688

Country of ref document: EP