WO2011162345A1 - 接合方法および接合装置 - Google Patents

接合方法および接合装置 Download PDF

Info

Publication number
WO2011162345A1
WO2011162345A1 PCT/JP2011/064434 JP2011064434W WO2011162345A1 WO 2011162345 A1 WO2011162345 A1 WO 2011162345A1 JP 2011064434 W JP2011064434 W JP 2011064434W WO 2011162345 A1 WO2011162345 A1 WO 2011162345A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
current
joined
members
bonded
Prior art date
Application number
PCT/JP2011/064434
Other languages
English (en)
French (fr)
Inventor
徹 深見
牛嶋 研史
金堂 雅彦
秀昭 水野
茂木 克也
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP11798226.4A priority Critical patent/EP2586560A1/en
Priority to CN201180031260.XA priority patent/CN102958638B/zh
Priority to MX2012015256A priority patent/MX2012015256A/es
Priority to RU2013103142/02A priority patent/RU2550677C2/ru
Priority to BR112012033273A priority patent/BR112012033273A2/pt
Priority to US13/806,430 priority patent/US20130092662A1/en
Publication of WO2011162345A1 publication Critical patent/WO2011162345A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0004Resistance soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0214Resistance welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a joining method and joining apparatus using resistance heating and vibration friction.
  • Resistance welding is used as a method for joining conductive metal materials to each other.
  • Resistance welding is a method in which conductive metal materials are melt-bonded by resistance heating caused by contact resistance of the joint surface by sandwiching the conductive metal materials in contact with each other and applying current from the electrodes.
  • Patent Document 1 describes a method in which a pair of conductive metal materials to be bonded are vibrated in contact with each other, the vibration is stopped after the insulating coating on the surface is peeled off, and fusion bonding is performed by resistance heating. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a bonding method and a bonding apparatus that can uniformly bond the entire bonding surface.
  • the joining method according to the present invention that achieves the above object is a joining method for joining a pair of members to be joined having conductivity.
  • the bonding method the bonding surfaces of the members to be bonded are opposed to each other, and a pair of the members to be bonded are relatively slid, while a current is passed from one of the members to be bonded to the other by resistance heating.
  • the joining surfaces are joined together.
  • the joining device that achieves the above object is a joining device for joining a pair of members to be joined having conductivity.
  • the joining apparatus includes a pair of electrodes for supplying a current to each of the pair of members to be joined, a current supply unit for supplying a current to the electrodes, and a slide for relatively sliding the pair of members to be joined. Means.
  • the joining apparatus further includes the current supply means for supplying a current to the electrodes while relatively sliding a member to be joined with the joining surfaces opposed to perform resistance heating between the joining surfaces. And control means for controlling the sliding means.
  • another aspect of the joining method according to the present invention that achieves the above object is that the joining surfaces of the joined members having conductivity that are joined to each other are opposed to each other, and the pair of joined members are relatively slid.
  • it is a joining method in which a current is passed from one of the members to be joined to the other and the joining surfaces are joined by resistance heating.
  • a plurality of current input paths to the member to be joined are provided, and when a current flows through the member to be joined, a current input value in at least one of the current input paths is controlled.
  • the joining apparatus defines a plurality of current input paths to the member to be joined, a current input section capable of adjusting at least one current amount of the current input path, and a current supply for supplying current to the current input section Means.
  • the bonding apparatus further includes a resistance by passing a current from one of the members to be bonded to the other while sliding the pair of members to be bonded relatively with the bonding surfaces of the members to be bonded facing each other. Control means for controlling the current supply means and the sliding means to perform heating is provided.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1.
  • It is the schematic which shows typically the path
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG. It is a partial expanded side view which shows the electrode vicinity of the joining apparatus which concerns on 3rd Embodiment. It is a flowchart for demonstrating the 1st joining process in 3rd Embodiment.
  • the conductive material bonding apparatus 10 is an apparatus for bonding a pair of conductive members 1a and 1b having conductivity to each other as shown in FIGS.
  • the bonding apparatus 10 holds the bonded members 1a and 1b with the bonding surfaces 2a and 2b to be bonded to each other facing each other and pressurizes in the bonding surface direction Z (the normal direction of the bonding surfaces 2a and 2b).
  • the members to be joined 1a, 1b are joined together by resistance heating while sliding in the direction X.
  • the joining device 10 includes a pair of electrodes 20a and 20b (current input unit) that are in contact with each of the pair of members to be joined 1a and 1b, a current supply device 30 (current supply means) that applies current to the electrodes 20a and 20b, A pressurizing device 40 (pressurizing means) that pressurizes 20a, 20b in the joining surface direction Z of the members to be joined 1a, 1b. Furthermore, the joining apparatus 10 includes a vibration device 50 (vibration means, sliding means) that vibrates (slids) the member 1b to be joined, and a control device 60 (control means) that controls the joining apparatus 10. Have.
  • the members to be joined 1a and 1b in the present embodiment are made of a conductive material having a hollow shape with a rectangular cross section provided with through holes 3a and 3b penetrating in the joining surface direction Z. ing. Therefore, when the bonding surfaces 2a and 2b of the members to be bonded 1a and 1b are brought into contact with each other and arranged to face each other, the non-contact portions 4a and 4b that form spaces without being in contact with each other are formed on the respective bonding surfaces. It is provided so as to be surrounded by 2a and 2b.
  • the extended lines from the central axis Y of the electrodes 20a and 20b are located not in the joint surfaces 2a and 2b but in the non-contact portions 4a and 4b.
  • the non-contact portions 4a and 4b may be spaced apart from each other without contacting each other when the bonding surfaces 2a and 2b are placed in contact with each other.
  • the non-contact portions 4a and 4b may be through holes only in one of the members to be bonded 1a (or 1b). 3a (or 3b) may be provided. Further, the non-contact portions 4a and 4b may be recessed portions instead of the through holes.
  • the members 1a and 1b to be joined are not particularly limited as long as they are materials having conductivity, but in the present embodiment, cast aluminum (Al) is used.
  • a foil-shaped eutectic foil 5 having conductivity which is made of a eutectic reaction material that undergoes a eutectic reaction with the members 1a and 1b. Intermediate material) is sandwiched.
  • the eutectic foil 5 is preferably formed in conformity with the shape of the joint surfaces 2a and 2b, and in this embodiment is formed in a rectangular ring shape.
  • the eutectic foil 5 can be made of zinc (Zn), silicon (Si), or the like that reacts with aluminum.
  • the thickness of the eutectic foil 5 is preferably 10 to 100 ⁇ m, for example, but is not limited to this, and the thickness may be uniform or may vary depending on the site. Moreover, the eutectic foil 5 does not necessarily need to be provided.
  • Each electrode 20a, 20b has electrode main bodies 21a, 21b and electrode plates 23a, 23b, and a plurality of electrode plates 23a, 23b are provided on the surfaces of the electrode main bodies 21a, 21b facing the joined members 1a, 1b. They are connected by electrode plate fixing bolts 22 (four in this embodiment).
  • the electrode main bodies 21a and 21b are constituted by shaft-like portions 26a and 26b extending in a shaft shape, and fixing portions 27a and 27b to which the electrode plates 23a and 23b are fixed.
  • the electrode bodies 21a and 21b do not directly contact the members to be bonded 1a and 1b, but the electrode plates 23a and 23b contact the members to be bonded 1a and 1b.
  • the bonded member fixing bolts 24 can be inserted from the side opposite to the side facing the bonded members 1a and 1b, and the bonded member fixing bolts 24 are connected to the bonded members.
  • the members to be joined 1a and 1b can be fastened to the electrode bodies 21a and 21b by an axial force.
  • Each of the members to be joined 1a and 1b is fastened to the electrodes 20a and 20b by a plurality (8 in this embodiment) of the member to be joined fixing bolts 24 (current path adjusting means, fastening portions) (see FIG. 3).
  • the fastening axial force can be changed individually.
  • the electrode main bodies 21a and 21b also have a function as a holding member that holds the members 1a and 1b to be slidable relative to each other.
  • positioning holes 7 a and 7 b as positioning portions are formed in the bonded members 1 a and 1 b on the surfaces facing the electrodes 20 a and 20 b, and positioning positioning pins 11 a that are positioning members. 11b can be fitted.
  • Through holes 29a and 29b through which the positioning pins 11a and 11b pass are formed in the electrode plates 23a and 23b.
  • the positioning pins 11a and 11b are provided inside the fixing portions 27a and 27b of the electrode bodies 21a and 21b so as to be able to protrude and retract from the surface facing the members to be joined 1a and 1b.
  • the positioning pins 11a and 11b are urged in a direction (rearward) by the spring members 12a and 12b, and a positioning member actuating device which is an external hydraulic source or pneumatic source is positioned behind the positioning pins 11a and 11b.
  • Fluid supply portions 13a and 13b to which fluid is supplied from 14 (positioning member operating means) are formed.
  • the positioning member actuating device 14 is driven by being controlled by the control device 60, thereby supplying fluid to the fluid supply units 13a and 13b or discharging fluid from the fluid supply units 13a and 13b, thereby positioning pins 11a, 11b is moved forward and backward.
  • the positioning member operating device 14 by positioning the positioning pins 11a and 11b from the fixing portions 27a and 27b by the positioning member operating device 14 and inserting them into the positioning holes 7a and 7b of the members to be joined 1a and 1b,
  • the members 1a and 1b to be joined can be accurately positioned. Thereby, it becomes possible to accurately position the relative positions of the member 1a and the member 1b.
  • the positioning pins 11a and 11b are formed of a material having a larger electric resistance value than the electrodes 20a and 20b and the members to be joined 1a and 1b.
  • the positioning pins 11a and 11b are formed of an insulating material such as resin.
  • the positioning pins 11a and 11b can be formed of a conductive material such as iron.
  • the electrode plates 23a and 23b are preferably formed of the same material as or similar to the electrode bodies 21a and 21b.
  • the bolt through hole 25 (see FIG. 2) through which the member to be bonded fixing bolt 24 of the electrode plates 23a and 23b passes preferably has a sufficiently larger hole diameter than the diameter of the member fixing bolt 24 to be bonded.
  • the diameter of the bolt through hole 25 is approximately the same as the diameter of the bonded member fixing bolt 24, the current concentrates in the vicinity of the screw hole 6 into which the bonded member fixing bolt 24 of the bonded members 1a and 1b is screwed.
  • the hole diameter is sufficiently larger than the diameter of the to-be-joined member fixing bolt 24, it becomes difficult for the current to flow through the screw hole 6 and the occurrence of damage to the screw hole 6 can be suppressed.
  • the member-fixed bolts 24 are made of a material that is less likely to flow current than the electrode bodies 21a, 21b and the electrode plates 23a, 23b, and the current flows between the electrodes 20a, 20b and the member-fixed bolts 24 to be bonded. When flowing, the structure is such that the member-fixed bolts 24 are difficult to serve as a conductive medium.
  • the electrode bodies 21a and 21b are sandwiched between the electrode bodies 21a and 21b and the bonded members 1a and 1b, when the current flows from the electrodes 20a and 20b to the bonded members 1a and 1b, the electrode body
  • the contact resistance between 21a, 21b and the electrode plates 23a, 23b and the contact resistance between the electrode plates 23a, 23b and the joined members 1a, 1b exist. Accordingly, the two contact resistances are connected in series, and the same fastening is achieved as compared with the case where the electrode bodies 21a, 21b and the members 1a, 1b are in direct contact without the electrode plates 23a, 23b.
  • the total contact resistance in the axial force increases.
  • the total contact resistance between the electrodes 20a, 20b and the members 1a, 1b is increased by the change in the fastening axial force because the contact resistance sensitivity to the fastening axial force is increased by providing the electrode plates 23a, 23b. Increases the range of contact resistance adjustment. Further, since the electrode plates 23a and 23b are provided between the electrode main bodies 21a and 21b and the members to be bonded 1a and 1b, the electrode main bodies 21a and 21b which are difficult to replace are heated with resistance between the members to be bonded 1a and 1b. It can suppress that it melts by. In order to further increase the contact resistance sensitivity, a plurality of electrode plates 23a and 23b may be stacked.
  • the pressurizing device 40 is a device that pressurizes the pair of members to be joined 1a and 1b in the joining surface direction Z via the electrodes 20a and 20b.
  • a hydraulic cylinder or the like is incorporated therein.
  • the pressurizing device 40 is connected to the control device 60 and can arbitrarily control the pressurizing force.
  • the vibration device 50 is a device that vibrates one of the pair of members 1a and 1b in a direction X (a direction perpendicular to the normal line of the bonding surface) along the bonding surfaces 2a and 2b.
  • the mechanism of the vibration exciting device 50 is, for example, one using ultrasonic vibration, one using electromagnetic vibration, one using cam vibration, or the like.
  • the vibration device 50 is connected to the control device 60 and can arbitrarily control the vibration frequency, the vibration amplitude, the vibration force, and the like.
  • the vibration device 50 includes a displacement detector 51 (see FIG. 1) that detects the displacement of the member 1b to be slid.
  • the displacement detector 51 is, for example, a displacement sensor or a displacement detection encoder.
  • the current supply device 30 is a device that can apply a direct current or an alternating current to the electrodes 20a and 20b, and is connected to the control device 60 so that the current value and the voltage value can be arbitrarily controlled.
  • the control device 60 is an electronic computer that comprehensively controls the pressurizing device 40, the vibration device 50, the current supply device 30, and the positioning member operating device 14 described above.
  • the control device 60 includes a calculation unit, a storage unit, an input unit, and an output unit.
  • a program for controlling the entire joining device 10 is stored in the storage unit, and when this program is executed by the arithmetic unit, the joining device 1 advances the joining process S2 of the members 1a and 1b to be joined.
  • a contact resistance detector 70 (contact resistance detector) is provided in a path through which current flows from the current supply device 30 to the electrodes 20a and 20b.
  • the contact resistance detection device 70 is a voltmeter and an ammeter, and can measure a change in voltage and current to detect a contact resistance value between the bonded members 1a and 1b.
  • a detection signal from the contact resistance detection device 70 is input to the control device 60.
  • the contact resistance detection apparatus 70 may be installed in another position, if the contact resistance between the to-be-joined members 1a and 1b can be detected.
  • the vibration device 50 is provided with a friction force detection device 80 that detects the friction force between the joint surfaces 2a and 2b from the vibration force.
  • a detection signal from the frictional force detection device 80 is input to the control device 60.
  • to-be-joined members 1a and 1b to be joined together are prepared.
  • the positioning pins 11a and 11b are projected by the positioning member actuating device 14, and the electrode plates 23a and 23b ( The members to be joined 1a and 1b are fixed to the electrodes 20a and 20b in a state where the current input portion) is fixed to the electrode bodies 21a and 21b by the member fixing bolts 24 to be joined.
  • the positioning pins 11a and 11b are inserted into the positioning holes 7a and 7b of the members to be bonded 1a and 1b, and the members to be bonded 1a and 1b are accurately positioned with respect to the electrodes 20a and 20b.
  • the fastening axial force of the to-be-joined member fixing bolt 24 can be adjusted for each bolt.
  • the fastening axial force of the bonded member fixing bolt 24 is high, the contact resistance between the electrodes 20a and 20b and the bonded members 1a and 1b is reduced, and current easily flows. That is, by adjusting the fastening axial force of the to-be-joined member fixing bolt 24 for each bolt, each current in the plurality of current input paths from the electrode plates 23a and 23b, which are current input portions, to the to-be-joined members 1a and 1b. The amount can be adjusted.
  • FIG. 5 shows a model in which three current paths are simply provided on the joining surfaces 2a and 2b, but it is farther than the member-fixed bolt 24a to be joined near the central axis Y of the electrodes 20a and 20b.
  • the fastening axial force of the to-be-joined member fixing bolts 24b and 24c can be increased.
  • the fastening axial force of the member fixing bolts 24b and 24c far from the center axis Y of the electrodes 20a and 20b is applied.
  • the fastening axial force of the to-be-joined member fixing bolts 24 is adjusted so that the current values in the joining surfaces 2a and 2b are as uniform as possible, and the pressure applied by the pressurizing device 40 is kept constant.
  • the fastening axial force of the member to be joined fixing bolt 24 By adjusting the fastening axial force of the member to be joined fixing bolt 24 in this way, the current path flowing from the electrodes 20a and 20b to the members to be joined 1a and 1b can be changed or the current amount of each current input path can be adjusted.
  • the positioning pins 11a and 11b are retracted by the positioning member operating device 14 and pulled out from the positioning holes 7a and 7b. Thereby, in the subsequent steps, heat generation and wear of the positioning pins 11a and 11b caused by energization and sliding of the members to be joined 1a and 1b can be suppressed. Further, if the positioning pins 11a and 11b are made of a material having a larger electric resistance value than the electrodes 20a and 20b and the joined members 1a and 1b, it is difficult to energize the positioning pins 11a and 11b. Heat generation and wear of 11a and 11b can be suppressed.
  • the eutectic foil 5 is disposed between the members to be bonded 1 a and 1 b, the members to be bonded 1 a and 1 b are brought close to each other by the pressurizing device 40, and the members to be bonded 1 a and 1 b are interposed through the eutectic foil 5.
  • the pressure applied by the pressure device 40 is adjusted by the control device 60, and is preferably about 2 to 10 MPa, for example, but is not limited thereto.
  • the vibration device 50 is driven by the control device 60, so that the lower bonded member 1 b has a constant amplitude (or constant) in the direction along the bonding surfaces 2 a and 2 b.
  • Excitation force preliminary vibration step (preliminary sliding step) S1).
  • the excitation frequency and the excitation amplitude are not particularly limited.
  • the excitation amplitude is preferably about 100 to 1000 ⁇ m, and the excitation frequency is preferably about 10 to 100 Hz.
  • the vibration direction of the member 1b to be joined is a reciprocating motion in one direction along the joining surfaces 2a and 2b, so that the degree of freedom of the shape of the joining surfaces 2a and 2b is improved.
  • the joint surfaces 2a and 2b may not be flat. For example, a convex portion is fitted in a groove extending in one direction. Also good. Moreover, if there is no site
  • the revolving motion means that the bonded member 1b swings around in a circular orbit without rotating. Since the relative movement between the joining surfaces 2a and 2b does not stop if the member to be joined 1b vibrates so as to revolve, only the dynamic friction coefficient acts to stabilize the friction coefficient. The vibration becomes smooth and the joint surfaces 2a and 2b can be evenly worn.
  • the joint surfaces 2a and 2b slide and are heated by frictional heat, so that the material is softened, and the joint surfaces 2a and 2b. Wear and plastic flow, and the surface pressure between the joint surfaces 2a and 2b is made uniform to some extent. Further, the pre-vibration step S1 has the effect of reducing the variation in contact resistance due to the difference in the film thickness by removing the oxide film on the surface of the aluminum, and suppressing the variation in the amount of heat generated when resistance heating is performed in the subsequent process. Demonstrate.
  • the surface of the to-be-joined members 1a and 1b made of aluminum is degreased, and further, a treatment such as brushing with a wire brush to remove the oxide film on the surface becomes unnecessary, and workability is improved.
  • a treatment such as brushing may be performed before the preliminary vibration step S1.
  • the control device 60 specifies the contact resistance value between the joint surfaces 2a and 2b from the signal input from the contact resistance detection device 70, and as shown in FIG. Compare with When the contact pressure between the joining surfaces 2a and 2b becomes uniform, the contact resistance decreases. Therefore, when the contact resistance value becomes equal to or less than the threshold value L1, the control device 60 ends the preliminary excitation step S1 and continues to the next step. To the joining step S2.
  • the joining step S2 current is applied to the electrodes 20a and 20b by the current supply device 30 while maintaining the vibration by the vibration device 50, and both of the vibration heating and resistance heating are used in combination to join the members 1a and 1b.
  • Heat In the joining step S2, resistance heating is greatly applied and heated in the high contact pressure portion where current is concentrated, and the oxide film on the joining surfaces 2a and 2b is forcibly separated and the high contact pressure heated by the resistance heating is applied.
  • the pressure concentration and vibration are also applied to the part to cause wear, plastic flow and material diffusion, and the surface pressure of the high surface pressure part is lowered, so that the current concentration portion changes every moment. As a result, the current flow is dispersed and the joint surfaces 2a and 2b are heated uniformly.
  • the eutectic foil 5 becomes a liquid phase with a lower melting point than the bonded members 1a and 1b by the eutectic reaction, and plays a role of blocking oxygen and suppressing reoxidation of the bonding surface.
  • the eutectic foil 5 it is possible to perform bonding in the atmosphere with low heat input in a short time in the atmosphere against vacuum brazing which requires a vacuum atmosphere and a long time, and mass production is facilitated.
  • the eutectic foil 5 does not necessarily need to be provided.
  • the eutectic foil 5 can change a film thickness according to a site
  • a method of adjusting the film thickness of the eutectic foil 5 not only the film thickness is changed depending on the site, but also, for example, a plurality of eutectic foils separated for each part can be used, or a plurality of sheets can be stacked. .
  • the main joining step S2 since both frictional heating and resistance heating by vibration are used together, it is not necessary to apply a high pressure to the joining surfaces 2a and 2b, and the joined member 1a having a large area of the joining surfaces 2a and 2b. , 1b can be heated and joined in a later step. That is, for example, when joining by heating only by frictional heating by vibration, it is necessary to press the material at a high surface pressure to increase the amount of frictional heat input, but the material is deformed, so the limited area Only the to-be-joined members can be joined.
  • the current concentration location is changed without applying a high pressure to the joining surfaces 2a and 2b. Even when the bonding surfaces 2a and 2b have a large area or a complicated shape, they can be heated and finally bonded, and surface bonding with low distortion is possible.
  • the heating time can be shortened, and even in a cast product containing gas in the material, the gas in the material expands due to heating. Therefore, it is difficult to eject and good bonding can be realized.
  • the shape of the joining surface is limited to a circle
  • the shape of the joint surfaces 2a and 2b is not limited to a circle, and non-contact portions 4a and 4b can be provided. For this reason, even if it is a complicated shape etc. which have a fluid flow path inside, for example, the whole joining surface 2a, 2b can be heated and joined, maintaining airtightness.
  • the electrodes 20a and 20b are joined by heating with low heat input for a short time. be able to.
  • the fastening axial force of the to-be-joined member fixing bolts 24a, 24b, and 24c is adjusted so that the fastening axial force of the to-be-joined member fixing bolts 24b, 24c far from the central axis Y of the electrodes 20a, 20b is increased.
  • the current flowing into the joined members 1a and 1b is made as uniform as possible without depending on the distance from the central axis Y of the electrodes 20a and 20b. For this reason, when the contact surface pressure of the joining surfaces 2a and 2b is uniform, the whole joining surfaces 2a and 2b can be heated uniformly.
  • bolt 24 can also be set so that the electric current value in joining surface 2a, 2b may become small, so that the center axis Y of electrode 20a, 20b is approached.
  • the portion far from the central axis Y is preferentially heated, and then the pressurizing device.
  • the pressurizing force is increased by 40, and the portion close to the electrodes 20a and 20b can be heated.
  • the portion close to the electrodes 20a and 20b is arranged. Can be heated.
  • the fastening axial force of the member-fixed bolt 24 to be joined in the vicinity of the portion where the contact surface pressure is high can be lowered. This makes it difficult for current to flow at a portion where the contact surface pressure is high, and promotes the diversion to the low surface pressure portion, thereby enabling uniform heating as much as possible. Therefore, it is preferable to join by adjusting the fastening axial force of the to-be-joined member fixing bolt 24 so that the heat generation amount on the joining surfaces 2a and 2b is as uniform as possible.
  • the fastening axial force of the to-be-joined member fixing bolt 24 can be set so that the amount of heat generated on the joining surfaces 2a and 2b becomes smaller as it approaches the high surface pressure portion.
  • the low surface pressure portion is preferentially heated at the beginning of the joining step S2, and thereafter, the pressurizing device 40 can increase the pressure and heat the high surface pressure portion. That is, when the pressing force is increased by the pressurizing device 40, the influence of the fastening axial force on the current is reduced, and the current flows easily through the high surface pressure portion where the fastening axial force is low. it can.
  • the temperature of the members to be joined 1a and 1b is increased by resistance heating for a predetermined time (first joining step S2a), and thereafter, the amount of heat generated by resistance heating is reduced. And the amount of heat generated by vibration may be increased (second bonding step S2b).
  • a method for reducing the amount of heat generated by resistance heating and increasing the amount of heat generated by vibration can be realized simply by increasing the pressure applied by the pressure device 40. When the pressure applied by the pressurizing device 40 is increased, the contact pressure at the bonding surfaces 2a and 2b is increased, so that the contact resistance is reduced and the amount of heat generated by the resistance heating is reduced.
  • the softened material is agitated by vibration from the process of promoting the softening by increasing the temperature of the material by contact resistance.
  • the process moves to the process of promoting integration.
  • the method of reducing the amount of heat generated by resistance heating and increasing the amount of heat generated by vibration is not necessarily limited to the method of increasing the pressure of the pressurizing device 40.
  • the current supply device 30 or the vibration device 50 can be realized, or the pressurizing device 40 can be combined with another device.
  • the transition from the first joining step S2a to the second joining step S2b can be performed by the control device 60. However, as shown in FIG. 6, the transition is performed when a preset time (threshold value T1) has elapsed. Alternatively, the temperature of the members 1a and 1b to be joined can be measured and shifted when a preset temperature is reached.
  • the control device 60 identifies the contact resistance between the joining surfaces 2a and 2b from the signal input from the contact resistance detecting device 70, and compares it with a preset threshold value L2. When the bonding between the bonding surfaces 2a and 2b progresses, the contact resistance value decreases. Therefore, when the contact resistance value becomes equal to or less than the threshold value L2, the control device 60 determines that the bonding is completed and performs the bonding process S2. Is finished, and the process proceeds to the next cooling step S3.
  • the vibration device 50 is stopped. However, in order to join the members 1a and 1b to be joined at a desired relative position, the members to be joined 1a and 1b are finally obtained by the vibration device 50. Is positioned at the specified position. At this time, since the members to be joined 1a and 1b are positioned with high precision with respect to the electrodes 20a and 20b by the positioning pins 11a and 11b, the member to be joined 1a and the members to be joined are controlled by controlling the vibration exciter 50. 1b can be positioned accurately.
  • the vibration device 50 includes a servo mechanism that feedback-controls a vibration source (for example, a servo motor or the like) based on a displacement signal measured by the displacement detection unit 51, so that the bonded member 1a and the bonded member 1b are connected. Relative displacement can be positioned more accurately.
  • Control means for executing feedback control may be provided in the vibration device 50 or in the control device 60.
  • positioning accuracy will fall if the pressurization force of the pressurization apparatus 40 is large, you may reduce the pressurization force by the pressurization apparatus 40 before stopping the vibration excitation apparatus 50.
  • the pressure applied by the pressurizing device 40 When the pressure applied by the pressurizing device 40 is lowered, the positioning accuracy of the members to be joined 1a and 1b is improved, and the vibration device 50 is stopped in a state where the members to be joined 1a and 1b are in a desirable relative position. it can. Moreover, you may provide the other structure for positioning the to-be-joined member 1a, 1b separately.
  • the control device 60 stops the vibration device 50 and the current supply device 30, and increases the pressure applied by the pressurizing device 40.
  • a preset time threshold value T ⁇ b> 2
  • pressurization by the pressurizer 40 is terminated.
  • a signal input to the control device 60 from a thermometer not shown
  • it is determined that the cooling is finished, and the pressurizing device 40 The pressure can also be terminated.
  • the positioning member actuating device 14 causes the positioning pins 11a and 11b to project again and try to be inserted into the positioning holes 7a and 7b of the members to be joined 1a and 1b.
  • the positioning pins 11a and 11b can be inserted into the positioning holes 7a and 7b, it can be confirmed that the members to be joined 1a and 1b are joined at appropriate positions. Further, when the positioning pins 11a and 11b cannot be inserted into the positioning holes 7a and 7b, the holding force for the electrodes 20a and 20b of the members to be bonded 1a and 1b is insufficient in the preliminary vibration process S1 and the bonding process S2. It can be confirmed that there is a displacement or a large distortion due to thermal deformation. Thereafter, the to-be-joined member fixing bolt 24 is extracted from the to-be-joined members 1a and 1b, and the joined to-be-joined members 1a and 1b are removed from the apparatus.
  • the preliminary vibration step S1 can be omitted without necessarily providing it.
  • the current supply device 30 supplies current to the joint surfaces 2a and 2b so as to resist the resistance. It may be softened by heating.
  • the first joining step S2a and the second joining step S2b are combined into one joining step without decreasing the supply of current and increasing the applied pressure. Can also be implemented.
  • the cooling step S3 can be omitted without necessarily providing it.
  • the members to be bonded 1a and 1b are vibrated in the direction X along the bonding surface while applying pressure in the bonding surface direction Z, and bonded by resistance heating. Therefore, pressure and vibration act on the high surface pressure part heated by resistance heating, wear and plastic flow occur, and the surface pressure of the high surface pressure part decreases, so the current concentration location changes every moment. To do. As a result, the bonding surfaces 2a and 2b can be uniformly heated, and the entire bonding surfaces 2a and 2b can be bonded uniformly, and surface bonding with low distortion is possible.
  • the heating time can be shortened, and even in a cast product containing gas in the material, the gas in the material expands due to heating, It is difficult to eject, and good bonding can be realized.
  • non-contact portions 4a and 4b that are separated from each other are provided so that the members to be joined 1a and 1b are surrounded by the joining surfaces 2a and 2b.
  • the entire joining surfaces 2a and 2b can be joined while maintaining airtightness.
  • bonding surfaces 2a and 2b of the members to be bonded 1a and 1b are located outside the extension line of the central axis Y of the electrodes 20a and 20b, the entire surfaces of the bonding surfaces 2a and 2b can be bonded. Bonding can be done with time and low heat input.
  • a preliminary excitation step S1 for relatively vibrating the members to be joined 1a and 1b in the direction X along the joining surface while applying pressure in the joining surface direction Z without resistance heating is performed prior to the joining step S2. Therefore, the joint surfaces 2a and 2b slide and are heated by frictional heat to wear and plastic flow, and the surface pressure between the joint surfaces 2a and 2b can be made uniform.
  • the eutectic reaction material becomes a liquid phase at a low melting point by the eutectic reaction, shuts off oxygen, and Reoxidation can be suppressed. For this reason, joining with low heat input is possible for a short time in the atmosphere, and mass production becomes easy.
  • the eutectic reaction material is formed in a film shape having a different thickness depending on the part, so that the surface pressure at the joint surfaces 2a and 2b can be adjusted.
  • the eutectic reaction material is formed to have a relatively thick eutectic reaction material corresponding to a position having a relatively low surface pressure when pressure is applied to the bonding surfaces 2a and 2b. The surface pressure at the time of joining can be ensured.
  • the joining step S2 if the amount of heat generated by resistance heating is decreased and the amount of heat generated by vibration (sliding) is increased as the joining time elapses, the material is heated to high temperature by contact resistance and softening is promoted. Later, the softened material can be agitated by shaking to facilitate integration.
  • the joining step S2 if the applied pressure acting on the joining surfaces 2a and 2b is increased as the joining time elapses, the amount of heat generated by resistance heating can be easily reduced only by adjusting the pressure device 40. And the calorific value by vibration can be increased.
  • a plurality of currents can be prevented. There is no need to provide a transformer, and a simple device configuration is possible. Moreover, uniform surface bonding can be realized by adjusting the contact resistance at the bonding surfaces 2a and 2b.
  • the current path adjusting means has a plurality of bonded member fixing bolts 24 (fastening portions) for fastening the bonded members 1a and 1b to the electrodes 20a and 20b with an axial force, and individually changes the fastening axial force. By doing so, the contact resistance at the joint surfaces 2a and 2b can be adjusted, so that the contact resistance can be easily adjusted.
  • the fastening axial force of the member to be joined fixing bolt 24 (fastening portion) disposed in the vicinity of the position having a relatively high surface pressure is used as the fastening shaft of the other member to be joined fixing bolt 24.
  • the electric current flowing into the members to be joined 1a and 1b can be made as uniform as possible without depending on the distance from the central axis Y of the electrode.
  • the conductive electrode plates 23a and 23b are interposed between the members 1a and 1b and the electrode bodies 21a and 21b, when the current flows from the electrodes 20a and 20b to the members 1a and 1b, the electrode body The contact resistance between 21a, 21b and the electrode plates 23a, 23b and the contact resistance between the electrode plates 23a, 23b and the members to be joined exist. Accordingly, the two contact resistances are connected in series, and the total contact resistance between the electrodes 20a and 20b and the bonded members 1a and 1b is increased. For this reason, the contact resistance sensitivity with respect to the fastening axial force of the to-be-joined member fixing bolt 24 (fastening portion) is increased, and the adjustment range of the contact resistance is widened.
  • joining process S2 the contact resistance between the to-be-joined members 1a and 1b is detected by the contact resistance detection apparatus 70, and when the said contact resistance becomes below the preset threshold value L2, joining process S2 is stopped.
  • the contact resistance value decreases with the progress of the joining of the joining surfaces 2a and 2b, so that the completion of joining can be easily determined from the threshold value.
  • the frictional force detection apparatus 80 detects the frictional force between to-be-joined members 1a and 1b, and when the said frictional force becomes more than the preset dark value, joining process S2 is stopped. By doing so, the frictional force increases with the progress of the joining of the joining surfaces 2a and 2b, so that the completion of joining can be easily determined from the threshold value.
  • the joining surfaces 2a and 2b do not have to be flat because the vibration can be performed if the sliding is possible even in one direction.
  • the degree of freedom of the shape of the joint surfaces 2a and 2b is improved.
  • the vibration of the joined members 1a and 1b is performed by revolving motion, the relative motion between the joining surfaces 2a and 2b does not stop, so only the dynamic friction coefficient acts and the friction coefficient is stabilized.
  • the vibration at the time of vibration becomes smooth and the joint surfaces 2a and 2b can be evenly worn.
  • the pressure required for vibration heating can be suppressed low, and the members 1a, Even if the bonding surfaces 2a and 2b of 1b have a large area or a complicated shape, they can be bonded. Further, since the excitation force by the vibration device 50 and the pressure force by the pressure device 40 may be small, the pressure device 40 and the vibration device 50 can be kept small, and the joining device 10 can be made simple and space-saving. Can be configured.
  • the current supply apparatus 30 is configured to perform excitation resistance heating that supplies current to the electrodes 20a and 20b while exciting the pair of members to be bonded 1a and 1b.
  • a control device 60 for controlling the vibration device 50. For this reason, pressure and vibration are applied to the high surface pressure portions of the members 1a and 1b heated by resistance heating to cause wear and plastic flow, and the surface pressure of the high surface pressure portion is lowered to be moment by moment. And the current concentration changes.
  • the bonding surfaces 2a and 2b can be uniformly heated, and the entire bonding surfaces 2a and 2b can be bonded uniformly, and surface bonding with low distortion is possible.
  • control device 60 controls the current supply device 30 and the vibration device 50 so as to preliminarily vibrate the bonded members 1a and 1b without resistance heating before the vibration resistance heating.
  • 2a and 2b are heated by frictional heat and wear and plastic flow, and the surface pressure between the joining surfaces 2a and 2b can be made uniform.
  • control device 60 starts the excitation resistance heating when the contact resistance detected by the contact resistance detection device 70 is equal to or less than a preset threshold value L1 in the preliminary excitation, the contact resistance is increased. Can be transferred to the bonding step S2.
  • control device 60 increases the applied pressure of the pressurizing device 40 as the joining time elapses in the excitation resistance heating, the heat generation by the resistance heating can be easily performed only by adjusting the pressurizing device 40. The amount can be decreased and the amount of heat generated by vibration can be increased.
  • the member-fixed bolts 24 (current path adjusting means) for changing the current path in the members to be bonded 1a and 1b are provided, it is not necessary to provide a plurality of transformers for preventing the diversion, and a simple device configuration is possible. It becomes. Moreover, uniform surface bonding can be realized by adjusting the contact resistance at the bonding surfaces 2a and 2b.
  • the current path adjusting means is two or more member-fixed bolts 24 (fastening portions) for fastening the members 1a and 1b to the electrodes 20a and 20b by an axial force
  • the fastening axial force is individually set. Since the contact resistance at the joint surfaces 2a and 2b can be adjusted by changing to, the contact resistance can be easily adjusted.
  • control device 60 stops the excitation resistance heating when the contact resistance detected by the contact resistance detection device 70 becomes equal to or less than a preset threshold value L2 in the excitation resistance heating, the bonding is performed. Since the contact resistance value decreases with the progress of the joining of the surfaces 2a and 2b, the completion of the joining can be easily determined from the threshold value.
  • control device 60 stops the excitation resistance heating when the friction force detected by the friction force detection device 80 becomes equal to or higher than a preset threshold value in the excitation resistance heating, the bonding surface Since the frictional force increases with the progress of the joining of 2a and 2b, the completion of the joining can be easily determined by the threshold value.
  • the vibration by the vibration device 50 is a reciprocating motion
  • the vibration can be performed as long as it can slide in only one direction. Therefore, the joint surfaces 2a and 2b may not be flat. The degree of freedom of the shapes of 2a and 2b is improved.
  • the vibration by the vibration device 50 is a revolving motion
  • the relative motion between the joint surfaces 2a and 2b does not stop, so only the dynamic friction coefficient acts and the friction coefficient is stabilized.
  • the vibration at the time becomes smooth, and the joint surfaces 2a and 2b can be evenly worn.
  • control device 60 supplies the current supply device so that the total heat input to the bonded members 1a and 1b by resistance heating is larger than the total heat input to the bonded members 1a and 1b by frictional heating caused by vibration. 30, by controlling at least one of the vibration device 50 and the pressure device 40, the pressure force required for vibration heating can be kept low, and the bonding surfaces 2a and 2b of the members to be bonded 1a and 1b have a large area. Even in the case of or a complicated shape, it can be joined. Further, since the excitation force by the vibration device 50 and the pressure force by the pressure device 40 may be small, the pressure device 40 and the vibration device 50 can be kept small, and the joining device 10 can be made simple and space-saving. Can be configured.
  • FIGS. 8 to 10 show a cross section in the vicinity of the joining surface of a member to be joined which is another example, but as shown in FIG. 8, a non-contact portion 4c may be formed inside the circular cross section.
  • Reference numeral 20b represents an electrode.
  • the non-contact portions 4d and 4e may be a double tube having a circular cross section, and as shown in FIG. 9B, the non-contact portions 4f and 4g are rectangular cross sections.
  • the double pipe may be used.
  • the tube structure may be triple or more, and the cross-sectional shape may be a shape other than a rectangle or a circle.
  • the non-contact portion may not be formed, and the cross-sectional shape may be a rectangle, a circle, or another shape.
  • the non-contact part 4h may be formed so that the solid substance 8 located on the extension line
  • shaft Y may be provided in the inside of a tubular body.
  • two non-contact portions 4i and 4j are arranged side by side, and a wall body 9 between the two non-contact portions 4i and 4j is formed on the extension line of the electrode central axis Y. Good.
  • three or more non-contact portions may be arranged, and the wall body 9 may not exist on the extension line of the electrode central axis Y.
  • shaft-like portions 26a and 26b and the fixing portions 27a and 27b may be configured separately.
  • the joining apparatus 100 according to the second embodiment of the present invention is provided with a plurality of first electrodes 103a, 103b, 103c (current input portions) with respect to the member 101a to be joined, It differs from the joining apparatus 10 according to the first embodiment in that each current amount for the 101a can be controlled.
  • the bonding apparatus 100 includes a pair of first electrodes 103 and second electrodes 104 (hereinafter, the first electrode and the second electrode are also simply referred to as electrodes) in contact with each of the pair of members to be bonded 101a and 101b. ), A current supply device 105 (current supply means) for supplying current to the electrodes 103 and 104, and the electrodes 103 and 104 are added to the joining surface direction Z (direction orthogonal to the joining surfaces) of the members to be joined 101a and 101b. And a pressurizing device 106 (pressurizing means) for pressing.
  • the joining apparatus 100 includes a vibration device 107 (sliding means) that slides the member to be joined 101a, and a control device 108 (control means) that controls the devices 105, 106, and 107.
  • a vibration device 107 sliding means
  • a control device 108 control means
  • At least one of the electrodes 103 and 104 is provided by being divided into a plurality of electrodes.
  • the members to be joined 101a and 101b are aluminum (Al), but any material can be used as long as it has conductivity. Also, it can be applied to the dissimilar material joining such as aluminum (Al) -iron (Fe), aluminum (Al) -magnesium (Mg).
  • a foil-like eutectic material 101c made of a eutectic reaction material that undergoes a eutectic reaction with the members to be joined 101a and 101b is sandwiched.
  • the eutectic material 101c is preferably formed to match the shape of the bonding surfaces 102a and 102b.
  • the eutectic material 101c includes zinc (Zn), silicon (Si), copper (Cu), tin (Sn), silver (Ag), nickel, which reacts with aluminum. (Ni) or the like can be used.
  • any material can be used as a material instead of the eutectic material 101c as long as the material becomes a liquid phase at a temperature lower than the melting point of at least one of the members 101a and 101b.
  • the thickness of the eutectic material 101c is preferably 10 to 100 ⁇ m, for example. However, the thickness is not limited to this, and the thickness may be uniform or different depending on the part.
  • the pressurizing device 106 is a device that pressurizes the pair of members to be joined 101a and 101b in the joining surface direction Z through the electrodes 103 and 104, and includes, for example, a hydraulic cylinder.
  • the pressurizing device 106 is connected to the control device 108 and can arbitrarily control the pressurizing force.
  • the vibration exciter 107 is a device that slides one of the members to be joined 101a in a direction X (a direction orthogonal to the normal of the joining surface) along the joining surfaces 102a and 102b.
  • the bonding apparatus 100 includes a holding portion 109 (holding member) for holding the upper member to be bonded 101a movably along the direction X, and a fixing portion 111 (holding member) for fixing the lower member to be bonded 101b. ), And the vibration exciter 107 slides the member 101a to be joined via the holding portion 109.
  • the holding portion 109 and the fixing portion 111 function as positioning members for accurately positioning the relative positions of the member to be bonded 101a and the member to be bonded 101b.
  • the vibration exciter 107 includes a displacement detector 107a that detects the displacement of the member 10a to be slid.
  • the displacement detection unit 107a is, for example, a displacement sensor or a displacement detection encoder.
  • ultrasonic vibration, electromagnetic vibration, hydraulic vibration, cam vibration, or the like can be applied to the mechanism of the vibration device 107, but is not limited thereto as long as vibration can be performed.
  • the vibration device 107 is connected to the control device 108 and can arbitrarily control the vibration frequency, the vibration amplitude, the vibration force, and the like.
  • the current supply device 105 is a device that can apply a direct current or an alternating current to the electrodes 103 and 104, and is connected to the control device 108 so that the current value and the voltage value can be arbitrarily controlled.
  • the control device 108 is an electronic computer that comprehensively controls the pressurization device 106, the vibration device 107, and the current supply device 105 described above.
  • the control device 108 includes a calculation unit, a storage unit, an input unit, and an output unit.
  • a program for controlling the entire joining apparatus 100 is stored in the storage unit, and when the program is executed by the arithmetic unit, the joining members 101a and 101b are joined by the joining apparatus 100. .
  • each device may be manually operated without providing the control device 108.
  • the electrodes 103 and 104 do not necessarily need to be in direct contact with the members to be joined 101a and 101b, and may be in contact with each other through, for example, another member having conductivity.
  • the eutectic material 101c may not necessarily be provided. Further, a general brazing material or solder may be applied instead of the eutectic material 101c.
  • the pressurizing device 106 is provided on the first electrode 103 side in FIG. 13, it may be provided on the second electrode 104 side, or may be provided on both.
  • the pressurizing device 106 pressurizes the members to be bonded 101a and 101b through the electrodes 103 and 104, but directly pressurizes the members to be bonded 101a and 101b without using the electrodes 103 and 104. There may be.
  • another pressurizing device that pressurizes the bonded members 101a and 101b itself is provided.
  • the vibration device 107 may be configured to vibrate the bonded member 101b instead of the bonded member 101a, or may be configured to vibrate both of the bonded members 101a and 101b.
  • the eutectic material 101 c is sandwiched between the members to be bonded 101 a and 101 b to be bonded to each other, and the members to be bonded 101 a and 101 b are held between the electrodes 103 and 104.
  • the member to be bonded 101b is fixed to the fixing portion 111, and the member to be bonded 101a is held by the holding portion 109 so as to vibrate.
  • the members to be joined 101a and 101b are pressurized by the pressurizing device 106 with a preset pressure.
  • the pressure applied by the pressurizing device 106 is adjusted by the control device 108 and is preferably about 2 to 10 MPa, for example, but is not limited thereto.
  • the vibration device 107 is driven by the control device 108 to vibrate and slide the member to be bonded 101a in a direction along the bonding surfaces 102a and 102b (preliminary sliding step S11).
  • the excitation frequency and the excitation amplitude are not particularly limited. As an example, the excitation amplitude is preferably about 100 to 1000 ⁇ m, and the excitation frequency is preferably about 10 to 100 Hz.
  • the joint surfaces 102a and 102b slide and frictional heat is generated, the material is softened, and the joint surfaces 102a and 102b are worn. It plastically flows and the surface pressure between the joint surfaces 102a and 102b is made uniform to some extent. Further, the preliminary sliding step S11 has the effect of reducing the variation in contact resistance due to the difference in film thickness by removing the oxide film on the surface of aluminum, and suppressing the variation in the amount of heat generated when resistance heating is performed in the subsequent process. Demonstrate.
  • the first joining step S12 is performed after the preliminary sliding step S11.
  • the first bonding step S ⁇ b> 12 the first electrode 103 and the second electrode 104 are brought into contact with the members to be bonded 101 a and 101 b, and the sliding between the vibration devices 107 is maintained and the first electrode 103 and the second electrode 104 are maintained.
  • a current is supplied by the current supply device 105.
  • the members to be joined 101a and 101b are heated by using both friction heating and resistance heating in combination.
  • resistance heating is greatly applied and heated in the high surface pressure portion where currents concentrate on the bonding surfaces 102a and 102b, and the oxide films on the bonding surfaces 102a and 102b are forcibly separated.
  • the second joining step S13 is performed after the first joining step S12.
  • the frictional heat is increased by decreasing the supply of current by the current supply device 105 and increasing the pressurizing force by the pressurizing device 106.
  • the amount of heat generated by resistance heating is reduced, and the process proceeds to a process of promoting integration by stirring the softened material by sliding.
  • the supply of current by the current supply device 105 is finally stopped.
  • the increase in frictional heat can also be achieved by controlling the vibration device 107.
  • the vibration device 107 is stopped. However, in order to join the members to be joined 101a and 101b at a desired relative position, the member to be joined 101a is finally made by the vibration device 107. , 101b are positioned at desired positions. At this time, since the members to be joined 101a and 101b are held by the holding portion 109 and the fixing portion 111 which are positioning members, the member to be joined 101a and the member to be joined 101b are accurately controlled by controlling the vibration exciter 107. Can be positioned.
  • the vibration exciter 107 includes a servo mechanism that feedback-controls an excitation source (for example, a servo motor or the like) based on a displacement signal measured by the displacement detector 107a, so that the members to be joined 101a and 101b are joined. Relative displacement can be positioned more accurately.
  • the control means for executing the feedback control may be provided in the vibration device 107 or the control device 108. In addition, since positioning accuracy will fall if the pressurization force of the pressurization apparatus 106 is large, you may reduce the pressurization force by the pressurization apparatus 106 before stopping the vibration excitation apparatus 107.
  • the pressure applied by the pressurizing device 106 When the pressure applied by the pressurizing device 106 is lowered, the positioning accuracy of the members to be joined 101a and 101b is improved, and the vibration device 107 is stopped in a state where the members to be joined 101a and 101b are in a desirable relative position. it can. In addition, you may provide the other structure for positioning the to-be-joined member 1a, 1b separately.
  • the cooling step S14 is performed after the second joining step S13.
  • the control device 108 stops the vibration device 107 and the current supply device 105 and increases the pressure applied by the pressure device 106. Then, when a preset time has elapsed, it is determined that the cooling has been completed, and the pressurization by the pressurization device 106 is terminated.
  • a signal input to the control device 108 from a thermometer (not shown) that measures the temperature of the bonded members 101a and 101b becomes equal to or lower than a predetermined value, it is determined that the cooling is finished, and the pressurizing device 106 Pressurization can also be terminated. Thereafter, the electrodes 103 and 104 are retracted, and the joined members 101a and 101b are removed from the apparatus. Thereby, joining of the to-be-joined members 101a and 101b is completed.
  • Diffusion bonding surfaces bonded by diffusion of the material of the members to be bonded 101a and 101b and the materials of the members to be bonded 101a and 101b at the bonding interfaces of the members to be bonded 101a and 101b bonded by the bonding method of the present embodiment. Are formed by mixing a plastic flow joint surface joined by plastic flow and an intermediate layer interposed joint surface joined via the eutectic material 101c.
  • the eutectic material 101c becomes a liquid phase with a low melting point by a eutectic reaction, and the bonded members 101a and 101b or the bonded members 101a and 101b of the eutectic material 101c are combined. Promote mutual diffusion to Furthermore, since the eutectic material 101c plays a role of blocking oxygen and suppressing re-oxidation of the bonding surfaces 102a and 102b, it can be bonded in the atmosphere for a short time with low heat input, and mass production is easy. Become.
  • the current concentrated portion can be changed and uniform heating can be performed without applying high pressure to the bonding surfaces 102a and 102b.
  • 102b can be bonded even when they have a large area or a complicated shape, and uniform surface bonding with low distortion is possible.
  • the heating time can be shortened, and even in a cast product containing gas in the material, the gas in the material expands due to heating. Therefore, it is difficult to eject and good bonding can be realized.
  • the member to be bonded 101a is vibrated in one direction along the bonding surfaces 102a and 102b, but is not limited to this as long as it slides relatively.
  • the bonding surface 102a such as a revolving motion.
  • 102b can be vibrated in two directions.
  • the preliminary sliding step S11 can be omitted without necessarily providing it.
  • the current supply device 105 supplies current to the electrodes 103 and 104 instead of sliding by the vibration device 107, so that the joint surface 102a and 102b may be softened by resistance heating.
  • the first joining step S12 and the second joining step S13 are combined into one joining step without decreasing the current supply while increasing the pressure. Can also be implemented.
  • the cooling step S14 can be omitted without always being provided.
  • the bonding apparatus 100 includes a plurality of (three in the present embodiment, as an example) first electrodes 103 a and 103 b as the first electrodes 103 that supply current to the member 101 a to be slid. , 103c. Note that there is only one second electrode 104 that supplies current to the member to be bonded 101b.
  • the first electrodes 103a, 103b, and 103c that supply current to the bonded member 101a are larger than the second electrodes 104 that supply current to the bonded member 101b, and the total contact area of the first electrode 103 with respect to the bonded member 101a is larger.
  • the total contact area of the second electrode 104 with respect to the bonded member 101b is larger. For this reason, the current density of the first electrodes 103 a, 103 b, and 103 c is lower than that of the second electrode 104. Therefore, by sliding the member to be bonded 101a, wear and welding of the first electrodes 103a, 103b, 103c and the member to be bonded 101a when the first electrode 103a, 103b, 103c and the member to be bonded 101a slide are joined. This can be reduced as compared with the case where the member to be bonded 101b is slid.
  • Each of the first electrodes 103a, 103b, and 103c includes a first current adjustment unit 112a, a second current adjustment unit 112b, and a third current adjustment unit 112c (hereinafter referred to as a first current adjustment unit) controlled by the control device 108.
  • the second current adjusting unit and the third current adjusting unit are simply referred to as a current adjusting unit).
  • the amount of current supplied to each of the first electrodes 103a, 103b, and 103c can be controlled by controlling the current adjusting units 112a, 112b, and 112c by the control device 108.
  • a variable transformer is used for the current adjusting units 112a, 112b, and 112c, but a variable resistor can also be used.
  • a voltmeter 113 capable of measuring the voltage of the current supply device 105 is provided in a path through which current flows from the current supply device 105 to the first electrodes 103a, 103b, and 103c. Further, the first electrodes 103a and 103b are provided. , 103c, the first ammeter 114a, the second ammeter 114b, and the third ammeter 114c (hereinafter, the first ammeter, the second ammeter, and the third ammeter are simply referred to as ammeters). Also called).
  • Measured signals from the voltmeter 113 and the ammeters 114a, 114b, and 114c are all input to the control device 108. Therefore, in the control device 108, from the measurement results of the voltmeter 113 and the ammeters 114a, 114b, and 114c and the adjustment amounts of the current adjustment units 112a, 112b, and 112c, the first electrode 103a, 103b, and 103c to the second electrode 104 are obtained.
  • the contact resistance values of the joint surfaces 102a and 102b in the three current paths K1, K2, and K3 can be calculated.
  • the voltage in the first current path K1 can be calculated from the voltage measured by the voltmeter 113 and the voltage of the first current adjustment unit 112a. By dividing the value by the current value detected by the first ammeter 114a, the total resistance value in the first current path K1 can be calculated.
  • the total resistance value includes the contact resistance value of the bonding surfaces 102a and 102b, the resistance value of the bonded members 101a and 101b itself, the contact resistance value between the first electrode 103a and the bonded member 101a, and the second electrode 104
  • the contact resistance value between the members to be bonded 101b and the like are included, and the ratio of the contact resistance value of the bonding surfaces 102a and 102b to the total resistance value changes according to the applied pressure or the like. Therefore, for example, by creating a reference table in advance by experiment or analysis, the contact resistance values of the joint surfaces 102a and 102b can be calculated from the calculated total resistance values according to the measured conditions.
  • the second and third The contact resistance values of the joint surfaces 102a and 102b in the current paths K2 and K3 can be calculated.
  • the voltmeter 113, the ammeters 114a, 114b, and 114c, the current adjustment unit 112, and the control device 108 function as a contact resistance detection unit for calculating the contact resistance values of the joint surfaces 102a and 102b.
  • the contact resistance detection unit is not limited to the above configuration as long as it can detect the contact resistance values of the joint surfaces 102a and 102b of the members to be joined 101a and 101b, and can be designed as appropriate.
  • the uniformity of the contact surface pressure in joining surface 102a, 102b is discriminate
  • the threshold value can be set based on experiments, analysis, and the like.
  • the current adjustment units 112a and 112b are configured such that the amount of current decreases as the electrode is relatively closer to the center of gravity of the joint surfaces 102a and 102b.
  • 112c are controlled (S22).
  • the current value of the first electrode 103a is greater than the current values of the other first electrodes 103b and 103c.
  • At least one of the current adjustment units 112a, 112b, and 112c is controlled by the control device 108 so as to be smaller.
  • the adjustment amounts of the current adjustment units 112a, 112b, and 112c can be set based on experiments, analysis, and the like.
  • the contact surface pressure at the joint surfaces 102a and 102b is not uniform, it is detected that the contact surface pressure of the first electrode 103 in the vicinity of the portion with the high contact surface pressure, that is, the joint surfaces 102a and 102b is high. At least one of the current adjusting units 112a, 112b, and 112c is controlled so that the first electrode 103 has a smaller amount of current than the other first electrodes 103 (S23). By reducing the amount of current passing through the high surface pressure portion where current concentration occurs, the amount of current flowing through the joint surfaces 102a and 102b can be made more uniform. Note that the adjustment amounts of the current adjustment units 112a, 112b, and 112c can be set based on experiments, analysis, and the like.
  • the contact surface pressure uniformity of the members to be joined 101a and 101b may not necessarily be determined by providing a contact resistance detector. Therefore, when the contact surface pressure of the members to be bonded 101a and 101b is known before joining, or when the contact surface pressure is non-uniform and the contact surface pressure is high is known before joining.
  • the step is a step of adjusting and joining the current adjusting units 112a, 112b, and 112c without determining the contact surface pressure uniformity by the contact resistance detecting unit, omitting the determining step S21 shown in FIG. S22 or S23 can be implemented.
  • a plurality of current input paths (first electrodes 103a, 103b, 103c) to the member to be bonded 101a are provided, and at least one current input path is used when a current flows through the members to be bonded 101a, 101b.
  • the control device 108 since the current input values at the three first electrodes 103a, 103b, and 103c) can be controlled by the control device 108, the amount of heat generated at the joint surfaces 102a and 102b can be controlled.
  • first electrodes 103a, 103b, 103c having the same polarity for supplying current to the member to be joined 101a are provided, and by adjusting the current amount of the first electrodes 103a, 103b, 103c, In order to control the current input value, it is possible to control the amount of heat generated at the joint surfaces 102a and 102b simply by adjusting the amount of current.
  • the current of an electrode (for example, the first electrode 103a) that is relatively close to the center of gravity of the joint surfaces 102a and 102b.
  • the amount can be controlled to be relatively smaller than the current amount of the other electrodes (for example, the first electrodes 103b and 103c) (see step S22 in FIG. 16). Therefore, when it can be determined that the contact surface pressure of the bonding surfaces 102a and 102b is uniform, the amount of current flowing through the bonding surfaces 102a and 102b is reduced by reducing the current amount at the center of the bonding surfaces 102a and 102b where the current is superimposed.
  • the distance of the electrode 103 that is relatively close to a portion having a relatively high contact surface pressure on the joint surfaces 102a and 102b can be controlled to be relatively smaller than the amount of current of the other electrode 103 (see step S23 in FIG. 16). Therefore, when it can be determined that the contact surface pressure of the bonding surfaces 102a and 102b is not uniform, the amount of current flowing through the bonding surfaces 102a and 102b can be further reduced by reducing the amount of current passing through the high surface pressure portion where current concentration occurs. It can be made uniform.
  • the contact surface pressure at the joint surfaces 102a and 102b can be detected and the current amount of the first electrodes 103a, 103b, and 103c can be controlled based on the detected contact surface pressure, a desirable joint condition for each individual is automatically set. It becomes possible to join and discriminate.
  • the first electrodes 103a, 103b, and 103c that supply current to the member to be bonded 101a are larger than the second electrodes 104 that supply current to the member to be bonded 101b, the total contact area is large and the current density is small. Accordingly, since the electrode in contact with the member to be bonded 101a to be slid has the smaller current density, the first electrodes 103a, 103b, and 103c when the first electrode 103a, 103b, and 103c and the member to be bonded 101a slide are slid. Wear and welding can be reduced.
  • FIG. 17 shows a modification of the bonding apparatus according to the second embodiment.
  • the second electrode 104 that supplies a current to the member to be bonded 101b a plurality of (in this embodiment, three as an example) second electrodes are used. Electrodes 104a, 104b, 104c may be provided. Alternatively, it is possible to increase the number of second electrodes 104 in contact with the member to be bonded 101b rather than the first electrode 103 in contact with the member to be bonded 101a. Further, as in another modification of the joining apparatus of the second embodiment shown in FIGS. 18 and 19, the first electrodes 103d and 103e in contact with the member to be joined 101a and the second electrodes 104d and 104e in contact with the member to be joined 101b.
  • the amount of electricity flowing between the first electrodes 103d and 103e and the second electrodes 104d and 104e can be dispersed, and the amount of current flowing through the joint surfaces 102a and 102b can be made more uniform.
  • the joining device 120 controls each pressure applied to the joined member 101 a of the plurality of first electrodes 103 a, 103 b, and 103 c, thereby joining the joined members. It differs from the joining apparatus 100 according to the second embodiment in that the amount of heat generated in the plurality of current paths K1, K2, K3 in 101a, 101b is controlled.
  • the description is abbreviate
  • the bonding apparatus 120 includes a plurality of (three in the present embodiment, as an example) first electrodes 103a as the electrodes 103 that supply current to the bonded member 101a. 103b, 103c, and one second electrode 104 for supplying current to the member to be bonded 101b is provided.
  • the first electrodes 103a, 103b, and 103c are provided with pressurizing devices 106a, 106b, and 106c, respectively. By controlling the pressurizing devices 106a, 106b, and 106c independently, The applied pressure of the first electrodes 103a, 103b, 103c can be adjusted.
  • the plurality of pressure devices 106a, 106b, and 106c serve as current path adjusting means that adjust the current paths K1, K2, and K3 by changing the contact resistance between the first electrodes 103a, 103b, and 103c and the bonded member 101a. Also works.
  • a voltmeter 113 capable of measuring the voltage of the current supply device 105 is provided in a current path through which current flows from the current supply device 105 to the first electrodes 103a, 103b, and 103c. Further, the first electrodes 103a, 103b, Ammeters 114a, 114b, and 114c capable of measuring the amount of current flowing to each of 103c are provided.
  • the measurement signals in the voltmeter 113 and the ammeters 114a, 114b, 114c are all input to the control device 108. Therefore, in the control device 108, the measurement results of the voltmeter 113 and the ammeters 114a, 114b, and 114c are used in the three current paths K1, K2, and K3 from the first electrodes 103a, 103b, and 103c to the second electrode 104, respectively.
  • the total resistance value can be calculated.
  • the total resistance value includes the contact resistance value of the bonding surfaces 102a and 102b, the resistance value of the bonded members 101a and 101b itself, the contact resistance value between the first electrode 103a and the bonded member 101a, and the second electrode 104
  • the contact resistance value between the members to be bonded 101b is included, and the ratio of the contact resistance values of the bonding surfaces 102a and 102b of the members to be bonded 101a and 101b to the total resistance value changes according to the applied pressure and the like. Therefore, for example, by creating a reference table in advance by experiment or analysis, the contact resistance values of the joining surfaces 102a and 102b of the members to be joined 101a and 101b are calculated from the total resistance values calculated according to the measured conditions. Can be detected.
  • the resistance value can be detected.
  • the voltmeter 113, the ammeters 114a, 114b, and 114c and the control device 108 function as a contact resistance detector for calculating the contact resistance values of the joint surfaces 102a and 102b.
  • the contact resistance detection unit includes a voltmeter 113, ammeters 114a, 114b, and 114c, and a control device 108 as long as the contact resistance values of the joining surfaces 102a and 102b of the members to be joined 101a and 101b can be detected. It is not limited to the structure, and can be designed as appropriate.
  • the uniformity of the contact surface pressure in joining surface 102a, 102b is discriminate
  • the control device 108 determines that the difference between the detected contact surface pressures of the joining surfaces 102a and 102b is uniform if it is within a preset threshold range, and determines that it is non-uniform if it is outside the threshold range. it can.
  • the threshold value can be set based on experiments, analysis, and the like.
  • the pressure applied to the member to be bonded 101a is smaller as the electrode is relatively closer to the center of gravity of the bonding surfaces 102a and 102b.
  • the pressure devices 106a, 106b, and 106c are controlled.
  • the first electrode 103a is closer to the center of gravity of the bonding surfaces 102a and 102b than the first electrodes 103b and 103c, the pressure applied to the member 101a to be bonded by the first electrode 103a is reduced.
  • the contact resistance between the 1st electrode 103a and the to-be-joined member 101a increases, and the electric current amount which flows into the to-be-joined member 101a from the 1st electrode 103a reduces.
  • the amount of current in the vicinity of the center of gravity of the joint surfaces 102a and 102b where currents from a plurality of electrodes are easily superimposed can be reduced, and the amount of current flowing through the joint surfaces 102a and 102b can be made more uniform.
  • the adjustment amounts of the pressurizing devices 106a, 106b, and 106c can be set based on experiments, analysis, and the like.
  • the contact resistance value of the electrode 3 in the vicinity of the portion where the contact surface pressure is high, that is, the contact surfaces of the bonded members 101a and 101b is detected low.
  • the pressure device 106 is controlled by the control device 108 so that the pressure applied by the pressure device 106 that presses the first electrode 103 is reduced.
  • the contact resistance between the 1st electrode 103a and the to-be-joined member 101a increases, and the electric current amount which flows into the to-be-joined member 101a from the 1st electrode 103a reduces.
  • the adjustment amounts of the pressurizing devices 106a, 106b, and 106c can be set based on experiments and analysis.
  • the uniformity of the contact surface pressure on the joint surfaces 102a and 102b is not necessarily determined by providing a contact resistance detector. That is, when the contact surface pressure on the joint surfaces 102a and 102b is known to be uniform before joining, or when the contact surface pressure on the joint surfaces 102a and 102b is non-uniform and the contact surface pressure is high, the contact surface pressure is pre-joined. In the process of adjusting the current adjusting units 112a, 112b, and 112c without determining the contact surface pressure uniformity by the contact resistance detecting unit and omitting the determining step S31 shown in FIG. A certain step S32 or S33 can be carried out.
  • the current input path (this embodiment) is adjusted by adjusting the contact surface pressure between the first electrodes 103a, 103b, and 103c for supplying a current to the member to be bonded 101a and the member to be bonded 101a.
  • the current input values at the three first electrodes 103a, 103b, and 103c) are controlled, it is possible to control the amount of heat generated at the joint surfaces 102a and 102b.
  • first electrodes 103a, 103b, 103c having the same polarity for supplying current to the member to be joined 101a are provided, and the pressure applied to the contact target of the first electrodes 103a, 103b, 103c can be controlled independently. It is possible to control the amount of heat generated at the joint surfaces 102a and 102b.
  • the electrodes for example, the first electrode 103a that are relatively close to the center of gravity of the bonding surfaces 102a and 102b are covered.
  • the pressure applied to the bonding member 101a can be controlled to be relatively smaller than the pressure applied to the other electrodes (for example, the first electrodes 103b and 103c) (see step S32 in FIG. 21). ). Therefore, when the contact surface pressures of the bonding surfaces 102a and 102b can be determined to be uniform, the contact resistance between the first electrode 103a and the bonded member 101a that are relatively close to the center of gravity is increased to increase the first electrode.
  • the amount of current flowing from the joint surfaces 102a and 102b can be made more uniform by reducing the amount of current from 103a.
  • the first electrodes 103a, 103b, and 103c having the same polarity that are relatively close to each other from a portion having a relatively high contact surface pressure on the joint surfaces 102a and 102b. It is possible to control the pressure applied to the bonded member 101a of 103 to be relatively lower than the pressure applied to the other first electrode 103 (see step S33 in FIG. 21). Therefore, when it can be determined that the contact surface pressures of the joint surfaces 102a and 102b are not uniform, the amount of current passing through the high surface pressure portion where current concentration occurs is reduced, so that the current is diverted to the low surface pressure portion and the joint surface 102a. , 102b can be made more uniform.
  • each member to be joined 101a and 101b can be controlled. It is possible to automatically discriminate and join the desired joining conditions.
  • the number of the first electrodes 103 in the second and third embodiments may be two, or four or more.
  • the plurality of first electrodes 103 may have a structure in which the first electrode 103 is not in contact with the member to be bonded 101a from one direction but is in contact from different directions.
  • the current path adjusting means (bonded member fixing bolt 24) according to the first embodiment
  • the current path adjusting means (current adjusting portions 112a, 112b, 112c) according to the second embodiment
  • the current path adjusting means (pressurizing devices 106a, 106b, 106c) may be used in an appropriate combination.
  • the sliding acts on the high surface pressure portion heated by the resistance heating to cause wear and plasticity. Flow and material diffusion occur, and the surface pressure of the high surface pressure portion decreases, so that the current concentration point changes every moment. Thereby, a joining surface can be heated uniformly and the whole joining surface can be joined uniformly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 互いに接合される導電性を備えた一対の被接合部材(1a,1b)の接合面(2a,2b)を対向させ、前記被接合部材(1a,1b)の一方に対して他方を相対的に摺動させつつ、前記被接合部材(1a,1b)の一方から他方へ電流を流して抵抗加熱することで、接合面(2a,2b)の高面圧部に摩耗,塑性流動および材料拡散を生じさせ、時々刻々と電流集中箇所を変化させつつ接合面(2a,2b)同士を接合する。

Description

接合方法および接合装置
 本発明は、抵抗加熱および加振摩擦を用いた接合方法および接合装置に関する。
 従来、導電性の金属材料同士を互いに接合する方法として、抵抗溶接が使用されている。抵抗溶接は、導電性金属材料同士を接触させた状態で電極により挟み、電極から電流を与えることで、接合面の接触抵抗により生じる抵抗加熱により、導電性金属材料同士を溶融接合する方法である。特許文献1には、接合する対の導電性金属材料を接触させた状態で加振し、表面の絶縁被覆を剥がした後に加振を停止させ、抵抗加熱により溶融接合する方法が記載されている。
特開平11―138275号公報
 しかしながら、特許文献1に記載の方法では、電流を供給した際に、接合面における高面圧部に電流が集中するため、接合面における電流のあまり流れない部位は加熱されず、限定された面積および形状しか接合できない。
 本発明は、上記の課題を解決するためになされたものであり、接合面の全体を均一に接合可能な接合方法および接合装置を提供することを目的とする。
 上記目的を達成する本発明に係る接合方法は、導電性を備えた一対の被接合部材を接合するための接合方法である。当該接合方法は、互いに接合される被接合部材の接合面を対向させ、一対の前記被接合部材を相対的に摺動させつつ、前記被接合部材の一方から他方へ電流を流して抵抗加熱により前記接合面同士を接合する。
 上記目的を達成する本発明に係る接合装置は、導電性を備えた一対の被接合部材を接合するための接合装置である。当該接合装置は、一対の前記被接合部材の各々に電流を供給する一対の電極と、前記電極に電流を供給する電流供給手段と、一対の前記被接合部材を相対的に摺動させる摺動手段と、を有する。当該接合装置は、更に、前記接合面を対向させた被接合部材を相対的に摺動させつつ前記電極に電流を供給して前記接合面同士の間で抵抗加熱を行うように前記電流供給手段および摺動手段を制御する制御手段を有する。
 また、上記目的を達成する本発明に係る接合方法の他の様相は、互いに接合される導電性を備えた被接合部材の接合面を対向させ、一対前記被接合部材を相対的に摺動させつつ、前記被接合部材の一方から他方へ電流を流して抵抗加熱により前記接合面同士を接合する接合方法である。当該接合方法は、前記被接合部材への電流入力経路を複数設け、前記被接合部材に電流を流す際に、少なくとも1つの前記電流入力経路における電流入力値を制御する。
 また、上記目的を達成する本発明に係る接合装置の他の様相は、導電性を備えた一対の被接合部材を接合するための接合装置である。当該接合装置は、前記被接合部材への複数の電流入力経路を規定し、前記電流入力経路の少なくとも1つの電流量を調整可能な電流入力部と、前記電流入力部に電流を供給する電流供給手段と、を有する。当該接合装置は、更に、互いに接合される前記被接合部材の接合面を対向させて一対の前記被接合部材を相対的に摺動させつつ前記被接合部材の一方から他方へ電流を流して抵抗加熱を行うように前記電流供給手段および摺動手段を制御する制御手段を有する。
本実施形態に係る導電材料の接合装置を示す概略側面図である。 本実施形態に係る導電材料の接合装置の電極近傍を示す部分拡大側面図である。 図1のIII-III線に沿う断面図である。 図1のIV-IV線に沿う断面図である。 本実施形態に係る導電材料の接合装置の電極近傍における電流の経路を模式的に示す概略図である。 本実施形態に係る導電材料の接合装置により接合する際のフローチャートである。 本実施形態に係る導電材料の接合装置の運転条件の一例を示すグラフである。 断面が円形管の被接合部材の接合面近傍の断面図である。 断面が2重管の被接合部材の接合面近傍の断面図であり、(A)は断面が円形、(B)は断面が矩形の被接合部材を示す。 非接触部のない被接合部材の接合面近傍の断面図であり、(A)は断面が円形、(B)は断面が矩形の被接合部材を示す。 円形管の内部に中実部が形成された被接合部材の接合面近傍の断面図である。 矩形断面に2つの非接触部が並んだ被接合部材の接合面近傍の断面図である。 第2実施形態に用いられる接合方法の基本原理を説明するための接合装置を示す概略側面図である。 第2実施形態に用いられる接合方法のフローチャートである。 第2実施形態に係る接合装置の電極近傍を示す部分拡大側面図である。 第2実施形態における第1接合工程を説明するためのフローチャートである。 第2実施形態に係る接合装置の他の例を示す電極近傍の部分拡大側面図である。 第2実施形態に係る接合装置の更に他の例を示す電極近傍の部分拡大側面図である。 図18のXIX-XIX線に沿う断面図である。 第3実施形態に係る接合装置の電極近傍を示す部分拡大側面図である。 第3実施形態における第1接合工程を説明するためのフローチャートである。
 以下、図面を参照しながら、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 <第1実施形態>
 本発明の第1の実施形態に係る導電材料の接合装置10は、図1~4に示すように、導電性を有する一対の被接合部材1a,1bを互いに接合させる装置である。接合装置10は、被接合部材1a,1bを、互いに接合させる接合面2a,2bを対向させて保持し、接合面方向Z(接合面2a,2bの法線方向)に加圧しながら接合面2a,2bに沿う方向Xへ摺動させつつ、抵抗加熱を行うことで被接合部材1a,1b同士を接合する。
 接合装置10は、対の被接合部材1a,1bの各々に接する対の電極20a,20b(電流入力部)と、電極20a,20bに電流を与える電流供給装置30(電流供給手段)と、電極20a,20bを被接合部材1a,1bの接合面方向Zへ加圧する加圧装置40(加圧手段)とを有している。更に、接合装置10は、被接合部材1bを加振する(摺動させる)加振装置50(加振手段、摺動手段)と、接合装置10を制御する制御装置60(制御手段)とを有している。
 本実施形態における被接合部材1a,1bは、図2~4に示すように、接合面方向Zに貫通する貫通孔3a,3bを備えた、矩形断面の中空形状を有する導電性材料により構成されている。したがって、被接合部材1a,1bの接合面2a,2b同士を接触させて対向配置した際に、接触せずに互いに離間して空間部を形成する非接触部4a,4bが、各々の接合面2a,2bに囲まれるようにして設けられている。電極20a,20bの中心軸Yからの延長線は、接合面2a,2bではなく非接触部4a,4bに位置する。なお、非接触部4a,4bは、接合面2a,2b同士を接触させて対向配置した際に互いに接触せずに離間すればよく、例えば一方の被接合部材1a(または1b)にのみ貫通孔3a(または3b)が設けられてもよい。また、非接触部4a,4bは、貫通孔ではなく、凹部であってもよい。
 被接合部材1a,1bは、導電性を備える材料であれば特に限定されないが、本実施形態では鋳造されたアルミニウム(Al)が用いられる。
 対の被接合部材1a,1bの間には、図2に示すように、被接合部材1a,1bと共晶反応する共晶反応材料からなる導電性を備えた箔状の共晶箔5(中間材料)が挟まれる。共晶箔5は、接合面2a,2bの形状に一致して形成されることが好ましく、本実施形態では、矩形の環状に形成されている。被接合部材1a,1bがアルミの場合、共晶箔5には、アルミニウムと共晶反応する亜鉛(Zn)やケイ素(Si)等を用いることができる。共晶箔5の厚さは、例えば10~100μmであることが好ましいが、これに限定されず、また厚さが均一であっても部位に応じて異なってもよい。また、共晶箔5は、かならずしも設けられなくてもよい。
 各々の電極20a,20bは、電極本体21a,21bと、電極板23a,23bとを有し、電極板23a,23bは、電極本体21a,21bの被接合部材1a,1bと対向する面に複数(本実施形態では4本)の電極板固定ボルト22によって連結される。電極本体21a,21bは、図2に示すように、軸状に延びる軸状部26a,26bと、電極板23a,23bが固定される固定部27a,27bとで構成される。電極本体21a,21bは被接合部材1a,1bと直接的に接触せずに、電極板23a,23bが被接合部材1a,1bと接触する。電極本体21a,21bの固定部27a,27bには、被接合部材1a,1bと対向する側と反対側から被接合部材固定ボルト24を挿入可能であり、被接合部材固定ボルト24を被接合部材1a,1bに形成されるねじ孔6に螺合させることで、被接合部材1a,1bを電極本体21a,21bへ軸力によって締結可能である。被接合部材1a,1bの各々は、複数(本実施形態では8本)の被接合部材固定ボルト24(電流経路調整手段、締結部)によって電極20a,20bに締結され(図3参照)、各々の締結軸力を個別に変更可能となっている。本実施形態において、電極本体21a,21bは、被接合部材1a,1bを相対的に摺動可能に保持する保持部材としての機能をも備えている。
 被接合部材1a,1bには、図2に示すように、電極20a,20bと対向する面に位置決め部としての位置決め孔7a,7bが形成されており、位置決め部材である位置決め用の位置決めピン11a,11bが嵌合可能となっている。電極板23a,23bには、位置決めピン11a,11bが貫通する貫通孔29a,29bが形成されている。位置決めピン11a,11bは、電極本体21a,21bの固定部27a,27bの内部に、被接合部材1a,1bと対向する面から突出、後退が可能に設けられている。位置決めピン11a,11bは、ばね部材12a,12bにより後退する方向(後方)へ付勢されており、位置決めピン11a,11bの後方には、外部の油圧源または空圧源である位置決め部材作動装置14(位置決め部材作動手段)から流体が供給される流体供給部13a,13bが形成されている。位置決め部材作動装置14は、制御装置60により制御されて駆動されることで、流体供給部13a,13bに流体を供給し、または流体供給部13a,13bから流体を排出させて、位置決めピン11a,11bを進退動させる。したがって、位置決め部材作動装置14によって固定部27a,27bから位置決めピン11a,11bを突出させて、被接合部材1a,1bの位置決め孔7a,7bに挿入させることで、電極20a,20bに対して、被接合部材1a,1bを正確に位置決めできる。これにより、被接合部材1aと被接合部材1bの相対的な位置を、正確に位置決めすることが可能となる。
 位置決めピン11a,11bは、電極20a,20b、被接合部材1a,1bよりも電気抵抗値の大きい材料により形成される。位置決めピン11a,11bは、例えば樹脂等の絶縁材料により形成される。または、一例として、電極20a,20bが銅製で、被接合部材1a,1bがアルミニウム製である場合には、位置決めピン11a,11bを鉄等の導電材料により形成することもできる。
 電極板23a,23bは、電極本体21a,21bと同一の材料若しくは類似の材料により形成されることが好ましい。電極板23a,23bの被接合部材固定ボルト24が貫通するボルト貫通孔25(図2参照)は、被接合部材固定ボルト24の径よりも孔径が十分大きいことが好ましい。ボルト貫通孔25の径が被接合部材固定ボルト24の径と同程度の場合には、被接合部材1a,1bの被接合部材固定ボルト24が螺合するねじ孔6の近傍に電流が集中して流れ、ねじ孔6に負担が掛かるが、被接合部材固定ボルト24の径よりも孔径が十分大きければ、ねじ孔6に電流が流れ難くなり、ねじ孔6の破損の発生を抑制できる。
 なお、被接合部材固定ボルト24は、電極本体21a,21bおよび電極板23a,23bよりも電流が流れ難い材料により作製されており、電極20a,20bと被接合部材固定ボルト24の間で電流が流れる際に、被接合部材固定ボルト24が導電媒体となり難い構造となっている。
 電極本体21a,21bと被接合部材1a,1bの間には、電極板23a,23bが挟まれているため、電極20a,20bから被接合部材1a,1bへ電流が流れる際には、電極本体21a,21bと電極板23a,23bの間の接触抵抗と、電極板23a,23bと被接合部材1a,1bの問の接触抵抗が存在する。したがって、2つの接触抵抗が直列に接続された構成となり、電極板23a,23bが存在せずに電極本体21a,21bと被接合部材1a,1bが直接接触する場合と比較して、同一の締結軸力における総接触抵抗が大きくなる。したがって、電極20a,20bと被接合部材1a,1bの間の総接触抵抗は、電極板23a,23bが設けられることで、締結軸力に対する接触抵抗感度が増大するため、締結軸力の変更による接触抵抗の調整幅が広がる。また、電極板23a,23bが電極本体21a,21bと被接合部材1a,1bの間に設けられることで、取替えの困難な電極本体21a,21bが被接合部材1a,1bとの間の抵抗加熱により溶融されることを抑制できる。なお、接触抵抗感度をより増大させるために、電極板23a,23bを複数枚重ねて設置してもよい。
 加圧装置40は、電極20a,20bを介して対の被接合部材1a,1bを接合面方向Zに加圧する装置であり、例えば油圧シリンダ等が組み込まれている。加圧装置40は、制御装置60に接続されて加圧力を任意に制御可能となっている。
 加振装置50は、対の被接合部材1a,1bの一方を、接合面2a,2bに沿う方向X(接合面の法線に直交する方向)へ加振する装置である。加振装置50の機構は、例えば超音波振動によるもの、電磁式振動によるもの、またはカム式振動によるもの等である。加振装置50は、制御装置60に接続されて、加振周波数、加振振幅および加振力等を任意に制御可能となっている。加振装置50は、摺動される被接合部材1bの変位を検出する変位検出部51(図1参照)を備える。変位検出部51は、例えば変位センサーや変位検出用のエンコーダである。
 電流供給装置30は、直流電流または交流電流を電極20a,20bへ与えることができる装置であり、制御装置60に接続されて、電流値および電圧値を任意に制御可能となっている。
 制御装置60は、前述の加圧装置40、加振装置50、電流供給装置30および位置決め部材作動装置14を統括的に制御する電子計算機である。制御装置60は、演算部、記憶部、入力部および出力部を備えている。記憶部には、接合装置10全体を制御するためのプログラムが格納されており、このプログラムが演算部にて実行されることで、接合装置10に被接合部材1a,1bの接合工程S2を進行させる。
 電流供給装置30から電極20a,20bへ電流が流れる経路には、接触抵抗検知装置70(接触抵抗検知部)が設けられている。接触抵抗検知装置70は、電圧計かつ電流計であり、電圧かつ電流の変化を計測して、被接合部材1a,1bの間の接触抵抗値を検知できる。接触抵抗検知装置70による検知信号は、制御装置60に入力される。なお、接触抵抗検知装置70は、被接合部材1a,1bの間の接触抵抗を検知できるのであれば、他の位置に設置されてもよい。
 加振装置50には、加振力から、接合面2a,2bの間の摩擦力を検知する摩擦力検知装置80が設けられている。摩擦力検知装置80による検知信号は、制御装置60に入力される。
 次に、本実施形態に係る接合装置10により導電部材を接合する方法を、図6に示すフローチャートに沿って説明する。
 初めに、互いに接合する被接合部材1a,1bを準備し、図2に示すように、位置決め部材作動装置14により位置決めピン11a,11bを突出させ、電極板固定ボルト22によって電極板23a,23b(電流入力部)を電極本体21a,21bに固定した状態の電極20a,20bに、被接合部材固定ボルト24によって被接合部材1a,1bを固定する。これにより、位置決めピン11a,11bは、被接合部材1a,1bの位置決め孔7a,7bに挿入されて、被接合部材1a,1bが電極20a,20bに対して正確に位置決めされる。このとき、被接合部材固定ボルト24の締結軸力を、ボルト毎に調節することができる。被接合部材固定ボルト24の締結軸力が高いと、電極20a,20bと被接合部材1a,1bの間の接触抵抗が低下し、電流が流れやすくなる。すなわち、被接合部材固定ボルト24の締結軸力を、ボルト毎に調節することで、電流入力部である電極板23a,23bから被接合部材1a,1bへの複数の電流入力経路における各々の電流量を調整することができる。したがって、被接合部材固定ボルト24の位置に応じて締結軸力を変更することで、電極20a,20bから被接合部材1a,1bへ流れる電流の経路を調整することができる。一例として、図5は、簡易的に接合面2a,2bに3箇所の電流経路を有するとしたモデルを示すが、電極20a,20bの中心軸Yに近い被接合部材固定ボルト24aよりも、遠い被接合部材固定ボルト24b,24cの締結軸力を高くすることができる。被接合部材1a,1bには、電極20a,20bの中心軸Yに近い経路ほど電流が流れやすいため、電極20a,20bの中心軸Yから遠い被接合部材固定ボルト24b,24cの締結軸力を高くすることで、被接合部材1a,1bに流入する電流を、電極20a,20bの中心軸Yからの距離に依存させずに極力均一化することができる。したがって、接合面2a,2bにおける電流値が極力均一となるように、被接合部材固定ボルト24の締結軸力を調整し、加圧装置40による加圧力は一定として接合することが好ましい。このように被接合部材固定ボルト24の締結軸力を調整することで、電極20a,20bから被接合部材1a,1bに流入する電流の経路を変更または各電流入力経路の電流量を調整できるため、分流防止のために複数のトランス(変圧器)を設ける必要がなく、簡素な装置構成が可能となってコスト削減および省スペース化が可能となる。
 被接合部材固定ボルト24により被接合部材1a,1bを電極20a,20bに対して固定した後、位置決め部材作動装置14により位置決めピン11a,11bを後退させ、位置決め孔7a,7bから引き抜く。これにより、この後の工程において、被接合部材1a,1bの通電、摺動によって生じる位置決めピン11a,11bの発熱や摩耗を抑制できる。また、位置決めピン11a,11bが、電極20a,20b、被接合部材1a,1bよりも電気抵抗値の大きい材料により形成されていれば、位置決めピン11a,11bに通電し難くなり、通電による位置決めピン11a,11bの発熱や摩耗を抑制できる。
 次に、共晶箔5を被接合部材1a,1bの間に配置し、加圧装置40により被接合部材1a,1bを近接させて、共晶箔5を介して被接合部材1a,1b同士を予め設定された加圧力で加圧する。加圧装置40による加圧力は、制御装置60で調整され、例えば2~10MPa程度が好ましいが、これに限定されない。
 次に、図6,7に示すように、制御装置60により加振装置50が駆動されて、下側の被接合部材1bを、接合面2a,2bに沿う方向へ一定の振幅(または、一定の加振力)で加振する(予備加振工程(予備摺動工程)S1)。加振周波数および加振振幅は、特に限定されないが、一例として、加振振幅は100~1000μm程度が好ましく、加振周波数は10~100Hz程度が好ましい。被接合部材1bの加振方向は、接合面2a,2bに沿う1方向への往復運動とすることで、接合面2a,2bの形状の自由度が向上する。すなわち、1方向にさえ摺動可能であれば加振が可能であるため、接合面2a,2bが平面でなくてもよく、例えば一方向に延びる溝に凸部が嵌合する形態であってもよい。また、接合面2a,2bに互いに嵌合するような部位がなければ、被接合部材1bが接合面2a,2bに沿って公転運動するように加振することもできる。ここで公転運動とは、被接合部材1bが自転せずに円軌道を描くように振れ回ることを意味する。被接合部材1bが公転運動するように加振すれば、接合面2a,2b同士の相対的な運動が停止しないことから、動摩擦係数のみが作用して摩擦係数が安定するため、加振時の振動が滑らかとなり、接合面2a,2bを均一に摩耗させることができる。
 上記のように加圧力を与えながら加振する予備加振工程S1が行われると、接合面2a,2bが摺動するとともに摩擦熱により加熱されることにより材料が軟化され、接合面2a,2bが摩耗,塑性流動し、接合面2a,2bの間の面圧がある程度均一化される。更に、予備加振工程S1は、アルミニウムの表面の酸化皮膜を除去して皮膜厚さの違いによる接触抵抗のばらつきを低減させ、後の工程で抵抗加熱した際の発熱量のばらつきを抑える効果を発揮する。したがって、接合する前に、アルミニウムである被接合部材1a,1bの表面を脱脂し、更にワイヤブラシによりブラッシングして表面の酸化膜を除去する等の処置が不要となり、作業性が向上する。なお、当然、予備加振工程S1の前にブラッシング等の処置を行ってもよい。
 予備加振工程S1では、制御装置60において、接触抵抗検知装置70より入力される信号から接合面2a,2b間の接触抵抗値を特定し、図6に示すように、予め設定された閾値L1と比較する。接合面2a,2bの間の面圧が均一化すると、接触抵抗が低下するため、制御装置60は、接触抵抗値が閾値L1以下となった際に予備加振工程S1を終了させて、次の接合工程S2へ移行させる。
 接合工程S2では、加振装置50による加振を維持しつつ、電流供給装置30により電極20a,20bへ電流を付与し、加振加熱および抵抗加熱の両方を併用して被接合部材1a,1bを加熱する。接合工程S2では、電流が集中する高面圧部において抵抗加熱が大きく作用して加熱され、接合面2a,2bの酸化膜が強制的に剥離されるとともに、抵抗加熱により加熱された高面圧部に加圧力と加振も作用して摩耗,塑性流動および材料拡散が生じ、高面圧部の面圧が低下することにより時々刻々と電流集中箇所が変化する。これにより、電流の流れが分散し、接合面2a,2bが均一に加熱される。
 共晶箔5は、共晶反応により被接合部材1a,1bよりも低融点で液相化し、酸素を遮断して接合面の再酸化を抑制する役割を果たす。共晶箔5を用いることで、真空雰囲気と長時間が必要であった真空ろう付けに対し、大気中における短時間、低入熱での接合が可能となり、量産化が容易となる。なお、共晶箔5は、かならずしも設けられなくてもよい。
 共晶箔5は、膜厚を部位に応じて変化させることができ、これにより、接合面2a,2bにおける面圧を調整することできる。すなわち、接合面2a,2bの低面圧部に対応する共晶箔5の部位を厚くすることで、接合の際の面圧を確保することができる。なお、共晶箔5の膜厚を調整する方法として、膜厚を部位に応じて変更するだけでなく、例えば複数毎に分かれた共晶箔を用いたり、または複数枚重ねたりすることもできる。
 本接合工程S2では、加振による摩擦加熱および抵抗加熱の両方を併用するため、接合面2a,2bに高い加圧力を付与する必要がなく、接合面2a,2bの面積の大きな被接合部材1a,1bであっても加熱して、後の工程で接合することができる。すなわち、例えば加振による摩擦加熱のみで加熱して接合する場合には、摩擦入熱量を稼ぐために高面圧で材料を押し付ける必要があるが、材料が変形してしまうため、限定された面積や形状の被接合部材しか接合できない。また、例えば抵抗加熱のみで加熱して接合する場合には、高面圧部に電流が集中して流れて接合されることになり、接合面の接合箇所が不均一になるため、やはり接合面の大きさや形状が限定される。また、例えば高周波加熱を利用して加熱して接合する場合には、接合面の外周しか加熱できず、やはり接合面の大きさや形状が限定される。
 これに対し、本実施形態では、接合工程S2において、加振による摩擦加熱および抵抗加熱を併用して加熱させるため、接合面2a,2bに高い加圧力を付与せずとも電流集中箇所が変化し、接合面2a,2bが大面積の場合や複雑な形状の場合であっても加熱して最終的に接合することができ、かつ低歪みな面接合が可能である。
 また、接合面2a,2bの表層のみを溶融して接合するため、加熱時間を短縮でき、更に、材料内に気体を含有している鋳造品であっても、加熱により材料内の気体が膨張、噴出し難く、良好な接合を実現できる。
 また、例えば被接合部材の一方を回転させて接合面で摩擦熱を発生させて接合する場合には、接合面の形状が円形に限定されるのに対し、本接合工程S2では、加振により摩擦熱を発生させるため、接合面2a,2bの形状が円形に限定されず、かつ非接触部4a,4bを設けることもできる。このため、例えば内部に流体の流路を有する複雑な形状等であっても、接合面2a,2bの全体を気密性を保ちつつ加熱して接合することができる。
 また、電極20a,20bの中心軸Yからの延長線が、接合面2a,2bではなく非接触部4a,4bに位置するものであっても、短時間、低入熱で加熱して接合することができる。
 そして、電極20a,20bの中心軸Yから遠い被接合部材固定ボルト24b,24cの締結軸力が高くなるように、被接合部材固定ボルト24a,24bおよび24cの締結軸力が調整されているため、被接合部材1a,1bに流入する電流が、電極20a,20bの中心軸Yからの距離に依存せずに極力均一化されている。このため、接合面2a,2bの接触面圧が均一な場合に、接合面2a,2bの全体を均一に加熱することができる。
 なお、被接合部材固定ボルト24の締結軸力を、電極20a,20bの中心軸Yに近づくほど、接合面2a,2bにおける電流値が小さくなるように設定することもできる。このようにすれば、接合工程S2の始めにおいて、電極20a,20bの中心軸Yから遠い部位に電流が流れやすいため、中心軸Yから遠い部位を優先的に加熱し、この後、加圧装置40により加圧力を上昇させ、電極20a,20bから近い部位を加熱することができる。すなわち、加圧装置40により加圧力を上昇させると、電流に対する締結軸力の影響が小さくなり、中心軸Yから近い部位には本来的に電流が流れやすいため、電極20a,20bから近い部位を加熱することができる。
 また、接合面2a,2bにおける接触面圧が不均一の場合、接触面圧が高い部位の近傍の被接合部材固定ボルト24の締結軸力を低くすることもできる。これにより、接触面圧が高い部位において電流を流れ難くし、低面圧部への分流を促して、極力均一な加熱を行ことができる。したがって、接合面2a,2bにおける発熱量が極力均一となるように被接合部材固定ボルト24の締結軸力を調整して接合することが好ましい。
 また、被接合部材固定ボルト24の締結軸力を、高面圧部に近づくほど、接合面2a,2bにおける発熱量が小さくなるように設定することもできる。このようにすれば、接合工程S2の始めにおいて、低面圧部が優先的に加熱され、この後、加圧装置40により加圧力を上昇させ、高面圧部を加熱することができる。すなわち、加圧装置40により加圧力を上昇させると、電流に対する締結軸力の影響が小さくなり、締結軸力の低い高面圧部にも電流が流れやすくなるため、接合面を加熱することができる。
 このように、締結軸力や加圧力を調整することで、加熱される部位を任意に変更でき、望ましい運転条件を適宜設定することが可能である。
 接合工程S2においては、図6,7に示すように、所定時間、抵抗加熱により被接合部材1a,1bの温度を上昇させ(第1接合工程S2a)、この後、抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させてもよい(第2接合工程S2b)。抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させる方法としては、加圧装置40による加圧力を増加させるだけで実現できる。加圧装置40による加圧力が増加すると、接合面2a,2bにおける面圧が高くなることで接触抵抗が減少し、抵抗加熱による発熱量が減少する。さらに、接合面2a,2bにおける面圧が高くなることで接合面2a,2bにおける摩擦力が増大し、加振による発熱量が増加する。このように、抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させることで、接触抵抗により材料を高温にして軟化を促進する過程から、軟化された材料を加振によって掻き混ぜるようにして一体化を促進する過程へ移行する。なお、抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させる方法としては、かならずしも加圧装置40の加圧力を増加させる方法に限定されず、例えば電流供給装置30や加振装置50を制御することでも実現でき、または加圧装置40に他の装置を組み合わせて実現することもできる。
 なお、第1接合工程S2aから第2接合工程S2bへの移行は、制御装置60により行うことができるが、図6に示すように、予め設定した時間(閾値T1)を経過した際に移行させたり、または被接合部材1a,1bの温度等を計測して、予め設定した温度に達した際に移行させることもできる。
 第2接合工程S2bでは、制御装置60において、接触抵抗検知装置70から入力される信号から接合面2a,2b間の接触抵抗を特定し、予め設定された閾値L2と比較する。接合面2a,2bの間の接合が進行すると、接触抵抗値が低下するため、制御装置60は、接触抵抗値が閾値L2以下となった際に、接合が完了したと判断して接合工程S2を終了させて、次の冷却工程S3へ移行させる。
 なお、接合の完了を判断する方法として、接触抵抗値の変化により判断するのではなく、摩擦力検知装置80により検知される接合面2a,2bにおける摩擦力により判断することもできる。摩擦力は、接合が進行するほど大きくなるため、計測される摩擦力が、予め設定された閾値以上になった際に、接合が完了したと判断して接合工程S2を終了させる。なお、摩擦力の計測は、他の方法により行われてもよい。
 接合工程S2を終了する際には、加振装置50を停止させるが、被接合部材1a,1bを望ましい相対的位置で接合するために、最終的に加振装置50によって被接合部材1a,1bを規定の位置に位置決めする。このとき、被接合部材1a,1bが位置決めピン11a,11bによって電極20a,20bに対して高精度に位置決めされているため、加振装置50を制御することで、被接合部材1aと被接合部材1bを正確に位置決めできる。加振装置50は、変位検出部51により計測される変位信号に基づいて加振源(例えば、サーボモータ等)をフィードバック制御するサーボ機構を備えることで、被接合部材1aと被接合部材1bの相対的変位をより正確に位置決めできる。フィードバック制御を実行する制御手段は、加振装置50内に設けられても、制御装置60に設けられてもよい。なお、加圧装置40の加圧力が大きいと位置決め精度が低下するため、加振装置50を停止させる前に、加圧装置40による加圧力を低下させてもよい。加圧装置40による加圧力を低下させると、被接合部材1a,1bの位置決め精度が向上し、被接合部材1a,1bが望ましい相対的位置となった状態で加振装置50を停止させることができる。また、被接合部材1a,1bを位置決めするための他の構成を別途設けてもよい。
 冷却工程S3では、制御装置60が、加振装置50および電流供給装置30を停止させ、加圧装置40による加圧力を上昇させる。図6に示すように、予め設定した時間(閾値T2)を経過した際に、冷却が終了したと判断し、加圧装置40による加圧を終了させる。または被接合部材1a,1bの温度を計測する温度計(不図示)から制御装置60へ入力される信号が所定値以下となった後、冷却が終了したと判断し、加圧装置40による加圧を終了させることもできる。冷却工程S3の終了直前には、位置決め部材作動装置14により位置決めピン11a,11bを再び突出させ、被接合部材1a,1bの位置決め孔7a,7bに挿入させることを試みる。そして、位置決めピン11a,11bを位置決め孔7a,7bに挿入可能であった場合には、被接合部材1a,1bが適正な位置で接合されたことを確認できる。また、位置決めピン11a,11bを位置決め孔7a,7bに挿入できない場合には、予備加振工程S1や接合工程S2において、被接合部材1a,1bの電極20a,20bに対する保持力が不足する等によって位置ずれが生じていること、または熱変形による歪みが大きいことを確認できる。この後、被接合部材固定ボルト24を被接合部材1a,1bから抜き取り、接合された被接合部材1a,1bが装置から取り外される。
 なお、予備加振工程S1は、かならずしも設けずに省略することができる。また、予備加振工程S1の代わり若しくは予備加振工程S1の前に、加振装置50により摺動させるのではなしに、電流供給装置30により電流を供給することで、接合面2a,2bを抵抗加熱により軟化させてもよい。また、第1接合工程S2aと第2接合工程S2bの間で、電流の供給を減少させる一方で加圧力を増加させることなしに、第1接合工程S2aおよび第2接合工程S2bを1つの接合工程として実施することもできる。また、冷却工程S3も、かならずしも設けずに省略することができる。
 本実施形態に係る導電部材の接合方法によれば、接合面方向Zに加圧力を加えながら被接合部材1a,1b同士を接合面に沿う方向Xへ相対的に振動させつつ、抵抗加熱により接合するため、抵抗加熱により加熱された高面圧部に加圧力と振動が作用して、摩耗,塑性流動が生じ、高面圧部の面圧が低下することにより時々刻々と電流集中箇所が変化する。これにより、接合面2a,2bを均一に加熱し、接合面2a,2bの全体を均一に接合でき、かつ低歪みな面接合が可能である。また、接合面2a,2bの表層のみを溶融して接合するため、加熱時間を短縮でき、かつ材料内に気体を含有している鋳造品であっても、加熱により材料内の気体が膨張、噴出し難く、良好な接合を実現できる。
 また、被接合部材1a,1bは、互いに離間する非接触部4a,4bが接合面2a,2bに囲まれて設けられるため、例えば内部に流体の流路を有する複雑な形状等であっても、接合面2a,2bの全面を気密性を保ちつつ接合することができる。
 また、被接合部材1a,1bの接合面2a,2bが、電極20a,20bの中心軸Yの延長線に対して外側に位置しても、接合面2a,2bの全面を接合できるため、短時間、低入熱で接合することができる。
 また、接合工程S2の前に、抵抗加熱せずに接合面方向Zに加圧力を加えながら被接合部材1a,1b同士を接合面に沿う方向Xへ相対的に振動させる予備加振工程S1を有するため、接合面2a,2bが摺動するとともに摩擦熱により加熱されて摩耗,塑性流動し、接合面2a,2bの間の面圧を均一化することができる。
 また、予備加振工程S1において、接触抵抗検知装置70により検知される接触抵抗が、予め設定された閾値L1以下となった際に接合工程S2を開始させることで、接触抵抗が均一化した後に、接合工程S2に移行することができる。
 また、被接合部材1a,1b同士の間に共晶反応材料(中間材料)を介在させることで、共晶反応材料が共晶反応により低融点で液相化し、酸素を遮断して接合面の再酸化を抑制できる。このため、大気中における短時間、低入熱での接合が可能となり、量産化が容易となる。
 また、共晶反応材料が、部位により厚さの異なる膜状に形成されることで、接合面2a,2bにおける面圧を調整することできる。
 また、共晶反応材料が、接合面2a,2bに加圧力を加えた際の相対的に面圧の低い位置に対応する共晶反応材料の厚さを相対的に厚く形成されることで、接合の際の面圧を確保することができる。
 また、接合工程S2において、接合時間の経過に伴い、抵抗加熱による発熱量を減少させるとともに加振(摺動)による発熱量を増加させれば、接触抵抗により材料を高温にして軟化を促進した後、軟化された材料を加振によって掻き混ぜるようにして一体化を促進することができる。
 また、接合工程S2において、接合時間の経過の伴い、接合面2a,2bに作用する加圧力を増加させれば、加圧装置40を調節するのみで、容易に抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させることができる。
 また、被接合部材固定ボルト24(電流経路調整手段)により被接合部材1a,1bにおける電流経路を調整することで、接合面2a,2bにおける接触抵抗を調整すれば、分流防止のために複数のトランスを設ける必要がなく、簡素な装置構成が可能となる。また、接合面2a,2bにおける接触抵抗を調整することで、均一な面接合を実現できる。
 また、電流経路調整手段が、被接合部材1a,1bを電極20a,20bに対して軸力で締結する複数の被接合部材固定ボルト24(締結部)を有し、締結軸力を個別に変更することで接合面2a,2bにおける接触抵抗を調整できるため、容易に接触抵抗を調整することができる。
 また、被接合部材固定ボルト24(締結部)の締結軸力を、電極20a,20bの中心軸Yから離れるにしたがって大きくすることで、中心軸Yから離れた部位に電流を流れやすくすることができる。これにより、被接合部材1a,1bに流入する電流を、電極20a,20bの中心軸Yからの距離に依存させずに極力均一化することができる。
 また、接合面2a,2bにおいて、相対的に面圧の高い位置の近傍に配置される被接合部材固定ボルト24(締結部)の締結軸力を、他の被接合部材固定ボルト24の締結軸力よりも小さくすれば、相対的に面圧の高い位置の近傍に電流が流れ難くすることができる。これにより、被接合部材1a,1bに流入する電流を、電極の中心軸Yからの距離に依存させずに極力均一化することができる。
 また、被接合部材1a,1bと電極本体21a,21bの間に導電性の電極板23a,23bを介在させるため、電極20a,20bから被接合部材1a,1bへ電流が流れる際に、電極本体21a,21bと電極板23a,23bの間の接触抵抗と、電極板23a,23bと被接合部材の間の接触抵抗が存在することになる。したがって、2つの接触抵抗が直列に接続された構成となり、電極20a,20bと被接合部材1a,1bの間の総接触抵抗が大きくなる。このため、被接合部材固定ボルト24(締結部)の締結軸力に対する接触抵抗感度が増大し、接触抵抗の調整幅が広がる。
 また、接合工程S2において、接触抵抗検知装置70により被接合部材1a,1bの間の接触抵抗を検知し、当該接触抵抗が予め設定された閾値L2以下となった際に接合工程S2を停止するようにすれば、接合面2a,2bの接合の進行に応じて接触抵抗値が低下するため、閾値により容易に接合の完了を判断できる。
 また、接合工程S2において、摩擦力検知装置80により被接合部材1a,1bの間の摩擦力を検知し、当該摩擦力が予め設定された闇値以上となった際に接合工程S2を停止するようにすれば、接合面2a,2bの接合の進行に応じて摩擦力が大きくなるため、閾値により容易に接合の完了を判断できる。
 また、被接合部材1a,1bの加振を、往復運動により行えば、1方向にさえ摺動可能であれば加振が可能であるため、接合面2a,2bが平面でなくてもよく、接合面2a,2bの形状の自由度が向上する。
 また、被接合部材1a,1bの加振を、公転運動により行えば、接合面2a,2b同士の相対的な運動が停止しないことから、動摩擦係数のみが作用して摩擦係数が安定するため、加振時の振動が滑らかとなり、接合面2a,2bを均一に摩耗させることができる。
 また、接合面2a,2bにおける抵抗加熱の総入熱量が、加振による摩擦加熱の総入熱量よりも大きければ、加振加熱に必要な加圧力を低く抑えることができ、被接合部材1a,1bの接合面2a,2bが大面積の場合や複雑な形状の場合であっても接合することができる。また、加振装置50による加振力および加圧装置40による加圧力が小さくてよいため、加圧装置40や加振装置50を小型に抑えることができ、接合装置10を簡素かつ省スペースに構成することができる。
 本実施形態に係る導電部材の接合装置10によれば、一対の被接合部材1a,1bを加振しつつ電極20a,20bに電流を供給する加振抵抗加熱を行うように、電流供給装置30および加振装置50を制御する制御装置60を有している。このため、抵抗加熱により加熱された被接合部材1a,1bの高面圧部に加圧力と振動が作用して摩耗,塑性流動が生じ、高面圧部の面圧が低下することにより時々刻々と電流集中箇所が変化する。これにより、接合面2a,2bを均一に加熱し、接合面2a,2bの全体を均一に接合でき、かつ低歪みな面接合が可能である。
 また、制御装置60が、加振抵抗加熱を行う前に、被接合部材1a,1bを抵抗加熱させずに予備加振するように電流供給装置30および加振装置50を制御するため、接合面2a,2bが摩擦熱により加熱されて摩耗,塑性流動し、接合面2a,2bの間の面圧を均一化することができる。
 また、制御装置60が、予備加振において、接触抵抗検知装置70により検知される接触抵抗が予め設定された閾値L1以下となった際に加振抵抗加熱を開始させるようにすれば、接触抵抗が均一化した後に、接合工程S2に移行することができる。
 また、制御装置60が、加振抵抗加熱において、接合時間の経過に伴い加圧装置40の加圧力を増加させるようにすれば、加圧装置40を調節するのみで、容易に抵抗加熱による発熱量を減少させ、かつ加振による発熱量を増加させることができる。
 また、被接合部材1a,1bにおける電流経路を変更する被接合部材固定ボルト24(電流経路調整手段)を有するため、分流防止のために複数のトランスを設ける必要がなく、簡素な装置構成が可能となる。また、接合面2a,2bにおける接触抵抗を調整することで、均一な面接合を実現できる。
 また、電流経路調整手段が、被接合部材1a,1bを電極20a,20bに対して軸力によって締結する2つ以上の被接合部材固定ボルト24(締結部)であれば、締結軸力を個別に変更することで接合面2a,2bにおける接触抵抗を調整できるため、容易に接触抵抗を調整することができる。
 また、制御装置60が、加振抵抗加熱において、接触抵抗検知装置70により検知される接触抵抗が予め設定された閾値L2以下となった際に加振抵抗加熱を停止させるようにすれば、接合面2a,2bの接合の進行に応じて接触抵抗値が低下するため、閾値により容易に接合の完了を判断できる。
 また、制御装置60が、加振抵抗加熱において、摩擦力検知装置80により検知される摩擦力が予め設定された閾値以上となった際に加振抵抗加熱を停止させるようにすれば、接合面2a,2bの接合の進行に応じて摩擦力が大きくなるため、閾値により容易に接合の完了を判断できる。
 また、加振装置50による加振が、往復運動であれば、1方向にさえ摺動可能であれば加振が可能であるため、接合面2a,2bが平面でなくてもよく、接合面2a,2bの形状の自由度が向上する。
 また、加振装置50による加振が、公転運動であれば、接合面2a,2b同士の相対的な運動が停止しないことから、動摩擦係数のみが作用して摩擦係数が安定するため、加振時の振動が滑らかとなり、接合面2a,2bを均一に摩耗させることができる。
 また、抵抗加熱による被接合部材1a,1bへの総入熱量が、加振により生じる摩擦加熱による被接合部材1a,1bへの総入熱量よりも大きくなるように、制御装置60が電流供給装置30、加振装置50および加圧装置40の少なくとも1つを制御すれば、加振加熱に必要な加圧力を低く抑えることができ、被接合部材1a,1bの接合面2a,2bが大面積の場合や複雑な形状の場合であっても接合することができる。また、加振装置50による加振力および加圧装置40による加圧力が小さくてよいため、加圧装置40や加振装置50を小型に抑えることができ、接合装置10を簡素かつ省スペースに構成することができる。
 なお、被接合部材は、接合面が接触した状態で加振可能であれば、形状は限定されない。例えば、図8~10は、他の例である被接合部材の接合面近傍における断面を示すが、図8に示すように、円形断面の内部に非接触部4cが形成されてもよい。なお、符号20bは、電極を表している。
 また、図9(A)に示すように、非接触部4d,4eが円形断面の2重管であってもよく、図9(B)に示すように、非接触部4f,4gが矩形断面の2重管であってもよい。また、管構造は3重巻以上であってもよく、断面形状が矩形や円形以外の形状であってもよい。
 また、図10(A),(B)に示すように、非接触部が形成されなくてもよく、断面形状が矩形や円形、または他の形状であってもよい。また、図11に示すように、管体の内部に、電極中心軸Yの延長線上に位置する中実体8が設けられるように非接触部4hが形成されてもよい。また、図12に示すように、2つの非接触部4i,4jが並んで配置され、電極中心軸Yの延長線上に2つの非接触部4i,4jの間の壁体9が形成されてもよい。なお、図12の形態において、非接触部が3つ以上並んでもよく、壁体9が電極中心軸Yの延長線上に存在しなくてもよい。
 なお、軸状部26a,26bと固定部27a,27bは、別体で構成されてもよい。
 <第2実施形態>
 本発明の第2実施形態に係る接合装置100は、図15に示すように、被接合部材101aに対して複数の第1電極103a,103b,103c(電流入力部)が設けられ、被接合部材101aに対する各々の電流量を制御できる点で、第1実施形態に係る接合装置10と異なる。
 接合装置100は、図13に示すように、対の被接合部材101a,101bの各々に接する対の第1電極103および第2電極104(以下、第1電極および第2電極を単に電極ともいう。)と、電極103,104に電流を供給する電流供給装置105(電流供給手段)と、電極103,104を被接合部材101a,101bの接合面方向Z(接合面に直交する方向)へ加圧する加圧装置106(加圧手段)とを有している。更に、接合装置100は、被接合部材101aを摺動させる加振装置107(摺動手段)と、各装置105,106,107を制御する制御装置108(制御手段)とを有している。電極103,104の少なくとも一方(本実施形態では、電極103)は、複数の電極に分かれて設けられる。
 被接合部材101a,101bは、アルミニウム(Al)であるが、導電性を備える材料であれば特に限定されずに適用できる。また、アルミニウム(Al)-鉄(Fe)、アルミニウム(Al)-マグネシウム(Mg)等の異材接合であっても、適用可能である。
 対の被接合部材101a,101bの間には、被接合部材101a,101bと共晶反応する共晶反応材料からなる箔状の共晶材101cが挟まれる。共晶材101cは、接合面102a,102bの形状に一致して形成されることが好ましい。被接合部材101a,101bがアルミニウムの場合、共晶材101cには、アルミニウムと共晶反応する亜鉛(Zn)、ケイ素(Si)、銅(Cu)、錫(Sn)、銀(Ag)、ニッケル(Ni)等を用いることができる。なお、被接合部材101a,101bの少なくとも一方の融点よりも低い温度で液相化する材料であれば、共晶材101cの替わりに材料として適用することもできる。共晶材101cの厚さは、例えば10~100μmであることが好ましいが、これに限定されず、また厚さが均一であっても部位に応じて異なってもよい。
 加圧装置106は、電極103,104を介して対の被接合部材101a,101bを接合面方向Zに加圧する装置であり、例えば油圧シリンダ等が組み込まれている。加圧装置106は、制御装置108に接続されて加圧力を任意に制御可能となっている。
 加振装置107は、一方の被接合部材101aを、接合面102a,102bに沿う方向X(接合面の法線に直交する方向)へ摺動させる装置である。接合装置100は、上方の被接合部材101aを方向Xに沿って移動可能に保持するための保持部109(保持部材)と、下方の被接合部材101bを固定するための固定部111(保持部材)とを備えており、加振装置107は、保持部109を介して被接合部材101aを摺動させる。保持部109および固定部111は、被接合部材101aおよび被接合部材101bの相対的な位置を正確に位置決めするための位置決め部材として機能する。加振装置107は、摺動される被接合部材10aの変位を検出する変位検出部107aを備える。変位検出部107aは、例えば変位センサーや変位検出用のエンコーダである。
 加振装置107の機構には、例えば超音波加振、電磁式加振、油圧式加振またはカム式加振等が適用できるが、加振可能であればこれらに限定されない。加振装置107は、制御装置108に接続されて、加振周波数、加振振幅および加振力等を任意に制御可能となっている。
 電流供給装置105は、直流電流または交流電流を電極103,104へ与えることができる装置であり、制御装置108に接続されて、電流値および電圧値を任意に制御可能となっている。
 制御装置108は、前述の加圧装置106、加振装置107および電流供給装置105を統括的に制御する電子計算機である。制御装置108は、演算部、記憶部、入力部および出力部を備えている。記憶部には、接合装置100全体を制御するためのプログラムが格納されており、このプログラムが演算部にて実行されることで、接合装置100による被接合部材101a,101bの接合が遂行される。
 なお、制御装置108を設けずに、各々の装置を手動で作動させてもよい。
 また、電極103,104は、かならずしも被接合部材101a,101bに直接接触しなくてもよく、例えば導電性を有する他の部材を介して接触してもよい。
 また、共晶材101cは、かならずしも設けられなくてもよい。また、共晶材101cの替わりに、一般的なろう材やはんだを適用してもよい。
 また、加圧装置106は、図13では第1電極103側に設けられるが、第2電極104側に設けられてもよく、または両方に設けられてもよい。また、加圧装置106は、電極103,104を介して被接合部材101a,101bを加圧しているが、電極103,104を介さずに直接的に被接合部材101a,101bを加圧する構成であってもよい。この場合には、電極103,104を加圧する加圧装置106に加え、被接合部材101a,101b自体を加圧する他の加圧装置が設けられる。
 また、加振装置107は、被接合部材101aではなくて被接合部材101bを加振する構成でもよく、または被接合部材101a,101bの両方を加振する構成でもよい。
 次に、接合装置100を用いて被接合部材101a,101bを接合する方法を、図14に示すフローチャートに沿って説明する。
 初めに、図13に示すように、互いに接合する被接合部材101a,101bの間に共晶材101cを挟み、電極103,104の間に被接合部材101a,101bを保持する。被接合部材101bは固定部111に固定され、被接合部材101aは保持部109に振動可能に保持される。
 続いて、加圧装置106によって、被接合部材101a,101b同士を予め設定された加圧力で加圧する。加圧装置106による加圧力は、制御装置108で調節され、例えば2~10MPa程度が好ましいが、これに限定されない。
 次に、制御装置108により加振装置107を駆動させて、被接合部材101aを、接合面102a,102bに沿う方向へ加振して摺動させる(予備摺動工程S11)。加振周波数および加振振幅は、特に限定されないが、一例として、加振振幅は100~1000μm程度が好ましく、加振周波数は10~100Hz程度が好ましい。
 上記のように加圧しながら摺動させる予備摺動工程S11が行われると、接合面102a,102bが摺動するとともに摩擦熱が発生して材料が軟化され、接合面102a,102bが摩耗しつつ塑性流動し、接合面102a,102bの間の面圧がある程度均一化される。更に、予備摺動工程S11は、アルミニウムの表面の酸化皮膜を除去して皮膜厚さの違いによる接触抵抗のばらつきを低減させ、後の工程で抵抗加熱した際の発熱量のばらつきを抑える効果を発揮する。したがって、接合する前に、アルミニウムである被接合部材1a,1bの表面を脱脂し、更にワイヤブラシによりブラッシングして表面の酸化膜を除去する等の処置が不要となり、作業性が向上する。なお、当然、予備摺動工程S11の前にブラッシング等の処置を行ってもよい。
 予備摺動工程S11の後には、第1接合工程S12を行う。第1接合工程S12では、第1電極103および第2電極104を被接合部材101a,101bに接触させ、加振装置107による摺動を維持しつつ、第1電極103と第2電極104の間に電流供給装置105によって電流を供給する。このようにして、摩擦加熱および抵抗加熱の両方を併用して被接合部材101a,101bを加熱する。第1接合工程S12では、接合面102a,102bにおける電流が集中する高面圧部において抵抗加熱が大きく作用して加熱され、接合面102a,102bの酸化膜が強制的に剥離される。更に、抵抗加熱により加熱された高面圧部に加圧力と摺動が作用して塑性流動および材料拡散が生じ、かつ高面圧部が摩耗して時々刻々と電流集中箇所が変化する。これにより、電流の流れが分散し、接合面102a,102bが均一に加熱される。
 第1接合工程S12の後には、第2接合工程S13が行われる。第2接合工程S13では、電流供給装置105による電流の供給を減少させる一方、加圧装置106による加圧力を増加させることによって摩擦熱が増加させられる。これにより、抵抗加熱による発熱量が減少し、軟化された材料を摺動によって掻き混ぜるようにして一体化を促進する過程へ移行することになる。なお、電流供給装置105による電流の供給は、最終的には停止される。また、摩擦熱の増加は、加振装置107を制御することによっても達成することが可能である。
 第2接合工程S13を終了する直前には、加振装置107を停止させるが、被接合部材101a,101bを望ましい相対的位置で接合するために、最終的に加振装置107によって被接合部材101a,101bを望ましい位置に位置決めする。このとき、被接合部材101a,101bが、位置決め部材である保持部109および固定部111に保持されているため、加振装置107を制御することで、被接合部材101aと被接合部材101bを正確に位置決めできる。加振装置107は、変位検出部107aにより計測される変位信号に基づいて加振源(例えば、サーボモータ等)をフィードバック制御するサーボ機構を備えることで、被接合部材101aと被接合部材101bの相対的変位をより正確に位置決めできる。フィードバック制御を実行する制御手段は、加振装置107内に設けられても、制御装置108に設けられてもよい。なお、加圧装置106の加圧力が大きいと位置決め精度が低下するため、加振装置107を停止させる前に、加圧装置106による加圧力を低下させてもよい。加圧装置106による加圧力を低下させると、被接合部材101a,101bの位置決め精度が向上し、被接合部材101a,101bが望ましい相対的位置となった状態で加振装置107を停止させることができる。なお、被接合部材1a,1bを位置決めするための他の構成を別途設けてもよい。
 第2接合工程S13の後には、冷却工程S14を行う。冷却工程S14では、制御装置108が、加振装置107および電流供給装置105を停止させ、加圧装置106による加圧力を上昇させる。そして、予め設定した時間が経過した際に、冷却が終了したと判断し、加圧装置106による加圧を終了させる。または、被接合部材101a,101bの温度を計測する温度計(不図示)から制御装置108へ入力される信号が所定値以下となった後、冷却が終了したと判断し、加圧装置106による加圧を終了させることもできる。この後、電極103,104を後退させて、接合された被接合部材101a,101bが装置から取り外される。これにより、被接合部材101a,101bの接合が完了する。
 本実施形態の接合方法によって接合された被接合部材101a,101bの接合界面には、被接合部材101a,101bの材料が拡散することで接合される拡散接合面、被接合部材101a,101bの材料が塑性流動することで接合される塑性流動接合面、および共晶材101cを介在して接合される中間層介在接合面が混在して形成される。
 共晶材101cは、第1接合工程S12および第2接合工程S13において、共晶反応により低融点で液相化し、被接合部材101a,101b同士、または共晶材101cの被接合部材101a,101bへの相互拡散を促進させる。さらに、共晶材101cは、酸素を遮断して接合面102a,102bの再酸化を抑制する役割を果たすため、大気中における短時間、低入熱での接合が可能となり、量産化が容易となる。
 本接合方法では、摺動および抵抗加熱を併用して接合するため、接合面102a,102bに高い加圧力を付与せずとも、電流集中箇所が変化して均一な加熱が可能となり、接合面102a,102bが大面積の場合や複雑な形状の場合であっても接合することができ、かつ低歪みで均一な面接合が可能である。また、接合面102a,102bの表層のみを溶融して接合するため、加熱時間を短縮でき、更に、材料内に気体を含有している鋳造品であっても、加熱により材料内の気体が膨張、噴出し難く、良好な接合を実現できる。
 なお、被接合部材101aは、接合面102a,102bに沿う1方向に加振されるが、相対的に摺動するのであればこれに限定されず、例えば公転運動等のように、接合面102a,102bに沿う2方向へ加振することもできる。
 また、予備摺動工程S11は、かならずしも設けずに省略することができる。また、予備摺動工程S11の替わり若しくは予備摺動工程S11の前に、加振装置107により摺動させるのではなしに、電流供給装置105により電極103,104へ電流を供給することで、接合面102a,102bを抵抗加熱により軟化させてもよい。また、第1接合工程S12と第2接合工程S13の間で、電流の供給を減少させる一方で加圧力を増加させることなしに、第1接合工程S12および第2接合工程S13を1つの接合工程として実施することもできる。また、冷却工程S14も、かならずしも設けずに省略することができる。
 次に、第2実施形態に係る接合装置100の具体的な構成を説明する。接合装置100は、図15に示すように、摺動される被接合部材101aに電流を供給する第1電極103として、複数の(本実施形態では、一例として3つの)第1電極103a,103b,103cを備えている。なお、被接合部材101bに電流を供給する第2電極104は、1つのみである。被接合部材101aに電流を供給する第1電極103a,103b,103cが、被接合部材101bに電流を供給する第2電極104よりも多く、第1電極103の被接合部材101aに対する接触総面積が、第2電極104の被接合部材101bに対する接触総面積よりも大きくなる。このため、第1電極103a,103b,103cの電流密度が、第2電極104よりも低くなる。したがって、被接合部材101aを摺動させることで、第1電極103a,103b,103cと被接合部材101aが摺動する際の第1電極103a,103b,103cおよび被接合部材101aの摩耗や溶着を、被接合部材101bを摺動させる場合よりも低減させることができる。
 そして、第1電極103a,103b,103cの各々には、制御装置108によって制御される第1電流調整部112a、第2電流調整部112b、第3電流調整部112c(以下、第1電流調整部、第2電流調整部および第3電流調整部を単に電流調整部という。)が接続されている。そして、制御装置108によって電流調整部112a,112b,112cを制御することで、各々の第1電極103a,103b,103cに供給される電流量を制御可能となっている。電流調整部112a,112b,112cには、例えば可変変圧器を用いるが、可変抵抗器を用いることも可能である。
 また、電流供給装置105から第1電極103a,103b,103cへ電流が流れる経路には、電流供給装置105の電圧を計測可能な電圧計113が設けられており、更に、第1電極103a,103b,103cの各々へ流れる電流量を計測可能な第1電流計114a、第2電流計114b、第3電流計114c(以下、第1電流計、第2電流計および第3電流計を単に電流計ともいう。)が設けられている。
 そして、電圧計113、電流計114a,114b,114cにおける計測信号は、いずれも制御装置108に入力される。したがって、制御装置108では、電圧計113および電流計114a,114b,114cの計測結果並びに電流調整部112a,112b,112cの調整量から、各々の第1電極103a,103b,103cから第2電極104への3つの電流経路K1,K2,K3における、接合面102a,102bの接触抵抗値を算出することができる。
 すなわち、例えば第1電極103aから第2電極104への電流経路K1においては、電圧計113により計測される電圧および第1電流調整部112aの電圧から第1電流経路K1における電圧を算出でき、この値を第1電流計114aにより検出される電流値で割ることで、第1電流経路K1における総抵抗値を算出できる。この総抵抗値には、接合面102a,102bの接触抵抗値、被接合部材101a,101b自体の抵抗値、第1電極103aと被接合部材101aの間の接触抵抗値、および第2電極104と被接合部材101bの間の接触抵抗値等が含まれており、総抵抗値に対する接合面102a,102bの接触抵抗値の比率は、加圧力等に応じて変化する。したがって、例えば予め実験や解析等により参照テーブルを作成しておくことで、計測された条件に応じて、算出された総抵抗値から接合面102a,102bの接触抵抗値を算出できる。
 同様にして、電圧計113により計測される電圧および第2,第3電流調整部112b、112cの電圧、第2,第3電流計114b,114cにより検出される電流値から、第2,第3電流経路K2,K3における接合面102a,102bの接触抵抗値を算出できる。このように、電圧計113、電流計114a,114b,114c、電流調整部112および制御装置108は、接合面102a,102bの接触抵抗値を算出するための接触抵抗検知部として機能する。なお、接触抵抗検知部は、被接合部材101a,101bの接合面102a,102bの接触抵抗値を検出できるのであれば、上記した構成に限定されず、適宜設計可能である。
 そして、第1接合工程S12において、図16に示すように、接触抵抗検知部により検出された接触抵抗値から、接合面102a,102bにおける接触面圧の均一性を判別する(S21)。判別は、例えば、制御装置108において、検出された電流経路K1,K2,K3における接合面102a,102bの接触抵抗値の差が、予め設定された閾値範囲内にあれば均一とし、閾値範囲外であれば、不均一と判別できる。なお、閾値は、実験や解析等に基づいて設定することができる。
 接合面102a,102bにおける接触面圧が均一と判別された場合には、接合面102a,102bの重心からの距離が相対的に近い電極ほど、電流量が小さくなるように電流調整部112a,112b,112cを制御する(S22)。本実施形態では、第1電極103aが、第1電極103b,103cよりも接合面102a,102bの重心に近いため、第1電極103aの電流値が他の第1電極103b,103cの電流値よりも小さくなるように、電流調整部112a,112b,112cの少なくとも1つを制御装置108によって制御する。これにより、複数の電極からの電流が重畳しやすい接合面102a,102bの重心近傍の電流量を減少させ、接合面102a,102bに流れる電流量をより均一化できる。なお、電流調整部112a,112b,112cの調整量は、実験や解析等に基づいて設定することができる。
 接合面102a,102bにおける接触面圧が不均一と判別された場合には、接触面圧が高い部位の近傍の第1電極103、すなわち接合面102a,102bの接触面圧が高いと検知された第1電極103ほど、他の第1電極103よりも電流量が小さくなるように電流調整部112a,112b,112cの少なくとも1つを制御する(S23)。電流集中が起きる高面圧部を通過する電流量を減少させることで、接合面102a,102bに流れる電流量をより均一化できる。なお、電流調整部112a,112b,112cの調節量は、実験や解析等に基づいて設定することができる。
 第1接合工程S12が終了すると、図14に示す第2接合工程S13へ戻ることになる。
 なお、被接合部材101a,101bの接触面圧の均一性は、かならずしも接触抵抗検知部も設けて判別する構成でなくてもよい。したがって、被接合部材101a,101bの接触面圧が均一であることが接合前にわかっている場合や、接触面圧が不均一であって接触面圧の高い部位が接合前にわかっている場合には、接触抵抗検知部により接触面圧の均一性を判別せずに、図16に示す判別工程S21を省略して、電流調整部112a,112b,112cを調整して接合する工程であるステップS22またはS23を実施することができる。
 本実施形態によれば、被接合部材101aへの電流入力経路(第1電極103a,103b,103c)が複数設けられ、被接合部材101a,101bに電流を流す際に、少なくとも1つの電流入力経路(本実施形態では、3つの第1電極103a,103b,103c)における電流入力値を制御装置108で制御できるため、接合面102a,102bにおける発熱量を制御することが可能である。
 また、被接合部材101aに電流を供給するための同極の第1電極103a,103b,103cが複数設けられ、第1電極103a,103b,103cの電流量を調節することで、電流入力経路における電流入力値を制御するため、電流量を調節するだけで、接合面102a,102bにおける発熱量を制御することが可能となる。
 また、本実施形態では、同極である複数の第1電極103a,103b,103cのうち、接合面102a,102bの重心からの距離が相対的に近い電極(例えば、第1電極103a)の電流量を、他の電極(例えば、第1電極103b,103c)の電流量よりも相対的に小さくするように制御することができる(図16のステップS22を参照)。したがって、接合面102a,102bの接触面圧が均一と判断できる場合に、電流が重畳する接合面102a,102bの中心部の電流量を減少させ、接合面102a,102bに流れる電流量をより均一化できる。
 また、本実施形態では、同極である複数の第1電極103a,103b,103cのうち、接合面102a,102bにおける接触面圧が相対的に高い部位からの距離が相対的に近い電極103の電流量を、他の電極103の電流量よりも相対的に小さくするように制御することができる(図16のステップS23を参照)。したがって、接合面102a,102bの接触面圧が不均一と判断できる場合に、電流集中が起きる高面圧部を通過する電流量を減少させることで、接合面102a,102bに流れる電流量をより均一化できる。
 また、接合面102a,102bにおける接触面圧を検出して、検出された接触面圧に基づいて第1電極103a,103b,103cの電流量を制御できるため、個体毎の望ましい接合条件を自動的に判別して接合可能となる。
 また、被接合部材101aに電流を供給する第1電極103a,103b,103cは、被接合部材101bに電流を供給する第2電極104よりも多いため、接触総面積が大きく電流密度の小さい。したがって、摺動される被接合部材101aと接する電極が電流密度の小さい方であるため、第1電極103a,103b,103cと被接合部材101aが摺動する際の第1電極103a,103b,103cの摩耗や溶着を低減させることができる。
 なお、図17は、第2実施形態の接合装置の変形例を示すが、被接合部材101bに電流を供給する第2電極104として、複数の(本実施形態では、一例として3つの)第2電極104a,104b,104cを備えてもよい。または、被接合部材101aに接する第1電極103よりも、被接合部材101bに接する第2電極104を多くすることも可能である。また、図18,19に示す第2実施形態の接合装置の他の変形例のように、被接合部材101aに接する第1電極103d,103eと、被接合部材101bに接する第2電極104d,104eを、接合面方向Zに重ならないようにすることもできる。このようにすることで、第1電極103d,103eと第2電極104d,104eの間で流れる電量を分散させ、接合面102a,102bに流れる電流量をより均一化することができる。
 <第3実施形態>
 本発明の第3実施形態に係る接合装置120は、図20に示すように、複数の第1電極103a,103b,103cの被接合部材101aに対する各々の加圧力を制御することで、被接合部材101a,101bにおける複数の電流経路K1,K2,K3の発熱量を制御する点で、第2実施形態に係る接合装置100と異なる。なお、第2の実施形態と同様の機能を有する部位については同一の符号を使用し、重複を避けるため、その説明を省略する。
 第3実施形態に係る接合装置120は、第2実施形態と同様に、被接合部材101aに電流を供給する電極103として、複数の(本実施形態では、一例として3つの)第1電極103a,103b,103cを備えており、かつ被接合部材101bに電流を供給する第2電極104が1つ設けられている。各々の第1電極103a,103b,103cには、加圧装置106a,106b,106cが独立して設けられており、各々の加圧装置106a,106b,106cを独立して制御することで、各々の第1電極103a,103b,103cの加圧力を調節可能となっている。複数の加圧装置106a,106b,106cは、第1電極103a,103b,103cと被接合部材101aの間の接触抵抗を変化させることで電流経路K1,K2,K3を調節する電流経路調節手段としても機能する。
 電流供給装置105から第1電極103a,103b,103cへ電流が流れる電流経路には、電流供給装置105の電圧を計測可能な電圧計113が設けられており、更に、第1電極103a,103b,103cの各々へ流れる電流量を計測可能な電流計114a,114b,114cが設けられている。
 そして、電圧計113および電流計114a,114b,114cにおける計測信号は、いずれも制御装置108に入力される。したがって、制御装置108では、電圧計113および電流計114a,114b,114cの計測結果から、各々の第1電極103a,103b,103cから第2電極104への3つの電流経路K1,K2,K3における総抵抗値を算出できる。この総抵抗値には、接合面102a,102bの接触抵抗値、被接合部材101a,101b自体の抵抗値、第1電極103aと被接合部材101aの間の接触抵抗値、および第2電極104と被接合部材101bの間の接触抵抗値等が含まれており、総抵抗値に対する被接合部材101a,101bの接合面102a,102bの接触抵抗値の比率は、加圧力等に応じて変化する。したがって、例えば予め実験や解析等により参照テーブルを作成しておくことで、計測された条件に応じて、算出された総抵抗値から被接合部材101a,101bの接合面102a,102bの接触抵抗値を検出できる。
 同様にして、電圧計113により計測される電圧値および第2,第3電流計114b,114cにより検出される電流値から、第2,第3電流経路K2,K3における接合面102a,102bの接触抵抗値を検出できる。このように、電圧計113、電流計114a,114b,114cおよび制御装置108は、接合面102a,102bの接触抵抗値を算出するための接触抵抗検知部として機能する。なお、接触抵抗検知部は、被接合部材101a,101bの接合面102a,102bの接触抵抗値を検出できるのであれば、電圧計113、電流計114a,114b,114cおよび制御装置108により構成される構造に限定されず、適宜設計可能である。
 そして、第1接合工程S12において、図21に示すように、接触抵抗検知部により検出された接触抵抗値から、接合面102a,102bにおける接触面圧の均一性を判別する。判別は、例えば、制御装置108において、検出された接合面102a,102bの接触面圧の差が、予め設定された閾値範囲内にあれば均一とし、閾値範囲外であれば、不均一と判別できる。なお、閾値は、実験や解析等に基づいて設定することができる。
 接合面102a,102bにおける接触面圧が均一と判別された場合には、接合面102a,102bの重心からの距離が相対的に近い電極ほど、被接合部材101aに対する加圧力が小さくなるように加圧装置106a,106b,106cを制御する。本実施形態では、第1電極103aが、第1電極103b,103cよりも接合面102a,102bの重心に近いため、第1電極103aの被接合部材101aに対する加圧力を減少させる。このため、第1電極103aと被接合部材101aの間の接触抵抗は増加し、第1電極103aから被接合部材101aへ流れる電流量が減少する。これにより、複数の電極からの電流が重畳しやすい接合面102a,102bの重心近傍の電流量を減少させ、接合面102a,102bに流れる電流量をより均一化できる。なお、加圧装置106a,106b,106cの調整量は、実験や解析等に基づいて設定することができる。
 接合面102a,102bにおける接触面圧が不均一と判別された場合には、接触面圧が高い部位の近傍の電極3、すなわち被接合部材101a,101bの接触面の接触抵抗値が低く検知された第1電極103を押圧する加圧装置106の加圧力が小さくなるように、加圧装置106を制御装置108により制御する。これにより、第1電極103aと被接合部材101aの間の接触抵抗が増大し、第1電極103aから被接合部材101aへ流れる電流量が減少する。これにより、電流集中が起きる高面圧部を通過する電流量を減少させて、接合面102a,102bにおける電流のばらつきを低減させることができる。加圧装置106a,106b,106cの調整量は、実験や解析等に基づいて設定することができる。
 なお、接合面102a,102bにおける接触面圧の均一性は、かならずしも接触抵抗検知部も設けて判別する構成でなくてもよい。すなわち、接合面102a,102bにおける接触面圧が均一であることが接合前にわかっている場合や、接合面102a,102bにおける接触面圧が不均一であって接触面圧の高い部位が接合前にわかっている場合には、接触抵抗検知部により接触面圧の均一性を判別せずに、図21に示す判別工程S31を省略して、電流調整部112a,112b,112cを調整する工程であるステップS32またはS33を実施することができる。
 本実施形態によれば、被接合部材101aに電流を供給するための第1電極103a,103b,103cと被接合部材101aとの間の接触面圧を調整することで、電流入力経路(本実施形態では、3つの第1電極103a,103b,103c)における電流入力値を制御するため、接合面102a,102bにおける発熱量を制御することが可能となる。
 また、被接合部材101aに電流を供給するための同極の第1電極103a,103b,103cが複数設けられ、第1電極103a,103b,103cの接触対象に対する加圧力を独立して制御できるため、接合面102a,102bにおける発熱量を制御することが可能である。
 また、本実施形態では、同極である複数の第1電極103a,103b,103cのうち、接合面102a,102bの重心からの距離が相対的に近い電極(例えば、第1電極103a)の被接合部材101a(接触対象)に対する加圧力を、他の電極(例えば、第1電極103b,103c)の加圧力よりも相対的に小さくするように制御することができる(図21のステップS32を参照)。したがって、接合面102a,102bの接触面圧が均一と判別できる場合に、重心からの距離が相対的に近い第1電極103aと被接合部材101aとの間の接触抵抗を増加させて第1電極103aからの電流量を減少させて、接合面102a,102bに流れる電流量をより均一化できる。
 また、本実施形態では、同極である複数の第1電極103a,103b,103cのうち、接合面102a,102bにおける接触面圧が相対的に高い部位からの距離が相対的に近い第1電極103の被接合部材101aに対する加圧力を、他の第1電極103の加圧力よりも相対的に低くするように制御することができる(図21のステップS33を参照)。したがって、接合面102a,102bの接触面圧が不均一と判別できる場合に、電流集中が起きる高面圧部を通過する電流量を減少させることで、低面圧部へ分流させて接合面102a,102bに流れる電流量をより均一化できる。
 また、接合面102a,102bにおける接触面圧を検出して、検出された接触面圧に基づいて第1電極103a,103b,103cの加圧力を制御できるため、被接合部材101a,101bの個体毎の望ましい接合条件を自動的に判別して接合することができる。
 以上、本発明の実施形態について説明したが、これらの実施形態は、本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は、それらの実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。例えば、第2,第3実施形態における複数の第1電極103は、2つであっても、または4つ以上であってもよい。また、複数の第1電極103は、被接合部材101aに対して一方向から接触するのではなく、異なる方向から接触する構造であってもよい。更に、上記実施形態の各要素は適宜組み合わせて使用してもよい。例えば、第1実施形態に係る電流経路調整手段(被接合部材固定ボルト24)と、第2実施形態に係る電流経路調整手段(電流調整部112a,112b,112c)と、第3実施形態に係る電流経路調節手段(加圧装置106a,106b,106c)とを、適宜の組み合わせで併用してもよい。
 本出願は、2010年6月24日に出願された日本国特許願第2010-143880号および2010年12月15日に出願された日本国特許願第2010-279811号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
 本発明にかかる接合方法および接合装置によれば、被接合部材を摺動させつつ抵抗加熱を行って接合するため、抵抗加熱により加熱された高面圧部に摺動が作用して摩耗,塑性流動および材料拡散が生じ、高面圧部の面圧が低下することにより時々刻々と電流集中箇所が変化する。これにより、接合面を均一に加熱し、接合面の全体を均一に接合できる。
 1a,1b,101a,101b  被接合部材
 2a,2b,102a,102b  接合面
 4a,4b  非接触部
 5  共晶箔(共晶反応材料)
 7a,7b  位置決め孔(位置決め部)
 14  位置決め部材作動装置(位置決め部材作動手段)
 11a,11b  位置決めピン(位置決め部材)
 10,100,120  接合装置
 20a,20b  電極(電流入力部、保持部材)
 103,103a,103b,103c,103d,103e  第1電極(電流入力部)
 104,104a,104b,104c,104d,104e  第2電極
 21a,21b  電極本体
 23a,23b  電極板(電流入力部)
 24  被接合部材固定ボルト(電流経路調整手段 締結部)
 25  ボルト貫通孔
 30,105  電流供給装置(電流供給手段)
 40,106,106a,106b,106c  加圧装置(加圧手段)
 50,107  加振装置(摺動手段)
 60,108  制御装置(制御手段)
 70  接触抵抗検知装置(接触抵抗検知部)
 80  摩擦力検知装置(摩擦力検知部)
 101c  共晶材(共晶反応材料)
 109  保持部(保持部材、位置決め部材)
 111  固定部(保持部材、位置決め部材)
 112a,112b,112c  電流調整部
 113  電圧計
 114a,114b,114c  電流計
 L1  閾値
 L2  閾値
 S1,S11  予備加振工程(予備摺動工程)
 S2  接合工程
 S2a,S12  第1接合工程
 S2b,S13  第2接合工程
 S3,S14  冷却工程
 X  接合面に沿う方向
 Y  電極中心軸
 Z  接合面方向

Claims (58)

  1.  導電性を備えた被接合部材を接合するための接合方法であって、
     互いに接合される前記被接合部材の接合面を対向させ、一対の前記被接合部材を相対的に摺動させつつ、前記被接合部材の一方から他方へ電流を流して抵抗加熱により前記接合面同士を接合する接合工程を有する接合方法。
  2.  前記接合工程の前に、抵抗加熱せずに、互いに接合される前記被接合部材の接合面を対向させ、一対の当該被接合部材を相対的に摺動させる予備摺動工程を有する、請求項1に記載の接合方法。
  3.  前記接合工程において、前記被接合部材の対向する接合面の間に加圧力を作用させつつ相対的に摺動させて抵抗加熱した後、前記加圧力を低減させて摺動を停止させることで前記被接合部材同士を位置決めする、請求項1または2に記載の接合方法。
  4.  前記接合工程の前に、一対の前記被接合部材を相対的に摺動可能に保持する保持部材に対して位置を規定する位置決め部材により、前記被接合部材の位置決めを行う、請求項1~3のいずれか1項に記載の接合方法。
  5.  前記位置決め部材は、前記被接合部材に形成される位置決め部に挿入可能であって前記保持部材から進退動可能な位置決め部材であり、
     当該位置決め部材を前記被接合部材の位置決め部に挿入させて前記被接合部材の位置決めを行った後、前記接合工程の前に、前記位置決め部材を後退させて前記被接合部材の位置決め部から引き抜く、請求項4に記載の接合方法。
  6.  前記位置決め部材は、前記被接合部材に形成される位置決め部に挿入可能であって前記保持部材から進退動可能な位置決め部材であり、
     前記接合工程の後に、前記当該位置決め部材を前記被接合部材の位置決め部に挿入させる、請求項4または5に記載の接合方法。
  7.  前記位置決め部材に、前記被接合部材および前記保持部材よりも電気抵抗値の大きい材料を適用する、請求項4~6のいずれか1項に記載の接合方法。
  8.  前記予備摺動工程において、互いに接合される前記被接合部材の間の接触抵抗を検知する接触抵抗検知部により接触抵抗を検知し、当該検知された接触抵抗が予め設定された閾値以下となった際に前記接合工程を開始する、請求項2に記載の接合方法。
  9.  互いに接合される前記接合面の間に、前記被接合部材の少なくとも一方よりも融点の低い導電性の中間材料を介在させる、請求項1~8のいずれか1項に記載の接合方法。
  10.  前記中間材料は、部位により厚さの異なる膜状に形成されてなる、請求項9に記載の接合方法。
  11.  前記中間材料は、対向する前記接合面の間に加圧力を作用させた際の相対的に面圧の低い部位に対応する厚さが相対的に厚く形成された、請求項10に記載の接合方法。
  12.  前記接合工程において、接合時間の経過に伴い、抵抗加熱による発熱量を減少させるとともに摺動による摩擦の発熱量を増加させる、請求項1~11のいずれか1項に記載の接合方法。
  13.  前記接合工程において、前記被接合部材の対向する接合面の間に加圧力を作用させつつ相対的に摺動させて抵抗加熱し、接合時間の経過に伴い、前記接合面に作用する加圧力を増加させる、請求項12に記載の接合方法。
  14.  前記被接合部材における電流経路を調整する電流経路調整手段により電流経路を調整することで、前記接合面における接触抵抗を調整する、請求項1~13のいずれか1項に記載の接合方法。
  15.  前記接合工程において、互いに接合される前記被接合部材の間の接触抵抗を検知する接触抵抗検知部により接触抵抗を検知し、当該接触抵抗が予め設定された閾値以下となった際に、前記接合工程を停止する、請求項1~14のいずれか1項に記載の接合方法。
  16.  前記接合工程において、互いに接合される前記被接合部材の間の摩擦力を検知する摩擦力検知部により摩擦力を検知し、当該摩擦力が予め設定された閾値以上となった際に、前記接合工程を停止する、請求項1~15のいずれか1項に記載の接合方法。
  17.  前記被接合部材の摺動は、往復運動により行われる、請求項1~16のいずれか1項に記載の接合方法。
  18.  前記被接合部材の摺動は、公転運動により行われる、請求項1~16のいずれか1項に記載の接合方法。
  19.  前記抵抗加熱による前記被接合部材への総入熱量は、前記摺動により生じる摩擦加熱による前記被接合部材への総入熱量よりも大きい、請求項1~18のいずれか1項に記載の接合方法。
  20.  互いに接合される前記被接合部材は、互いに離間する非接触部が前記接合面に囲まれて形成される、請求項1~19のいずれか1項に記載の接合方法。
  21.  前記接合面は、前記被接合部材に接する電極よりも中心軸の延長線に対して外側に位置する、請求項20に記載の接合方法。
  22.  前記被接合部材への同極から電流入力経路を複数設け、前記被接合部材に電流を流す際に、同極の前記電流入力経路のうち少なくとも1つの電流入力経路における電流入力値を独立して調整する請求項1~21のいずれか1項に記載の接合方法。
  23.  前記被接合部材に電流を流す際に、前記被接合部材へ電流を供給する同極の複数の電極の少なくとも1つの電流量を独立して調整することで、前記電流入力経路における電流入力値を調整する、請求項22に記載の接合方法。
  24.  前記同極の複数の電極のうち、前記接合面の重心からの距離が相対的に近い電極の電流量を、他の同極の電極の電流量よりも相対的に小さくするように調整する、請求項23に記載の接合方法。
  25.  前記同極の複数の電極のうち、前記接合面における接触面圧が相対的に高い部位からの距離が相対的に近い電極の電流量を、他の同極の電極の電流量よりも相対的に小さくするように調整する、請求項23に記載の接合方法。
  26.  前記接合面における接触面圧を検出し、検出された当該接触面圧に基づいて前記電極の電流量を調整する、請求項24または25に記載の接合方法。
  27.  前記被接合部材に電流を流す際に、前記被接合部材へ電流を供給する電極の被接合部材に対する接触面圧を調整することで、前記電流入力経路における電流入力値を調整する、請求項22~26のいずれか1項に記載の接合方法。
  28.  前記被接合部材へ電流を供給する同極の複数の電極のうち少なくとも1つの電極の接触対象に対する加圧力を独立して調整することで、前記電流入力経路における電流入力値を調整する、請求項27に記載の接合方法。
  29.  前記同極の複数の電極のうち、前記接合面の重心からの距離が相対的に近い電極の前記接触対象に対する加圧力を、他の同極の電極の電流量よりも相対的に小さくするように調整する、請求項28に記載の接合方法。
  30.  前記同極の複数の電極のうち、前記接合面における接触面圧が相対的に高い部位からの距離が相対的に近い電極の前記接触対象に対する加圧力を、他の同極の電極の加圧力よりも相対的に低くするように調整する、請求項28に記載の接合方法。
  31.  前記接合面における接触面圧を検出し、検出された当該接触面圧に基づいて前記電極の加圧力を調整する、請求項29または30に記載の接合方法。
  32.  前記被接合部材の各々に電流を供給する各極の電極の接触対象に対する接触総面積を異ならせ、前記接触総面積が大きい極の電極から電流を供給される一方の被接合部材を摺動させる、請求項28~31のいずれか1項に記載の接合方法。
  33.  前記被接合部材を前記電極に対して軸力で締結する複数の締結部の締結軸力を個別に変更することで前記接合面における接触抵抗を調整する、請求項14または27に記載の接合方法。
  34.  前記締結部の締結軸力を、前記被接合部材に接する電極の中心軸から離れるにしたがって大きくする、請求項33に記載の接合方法。
  35.  前記接合面における相対的に面圧の高い位置の近傍に配置される前記締結部の締結軸力を、他の締結部の締結軸力よりも小さくする、請求項33に記載の接合方法。
  36.  前記締結部により、前記電極を構成する電極本体に前記被接合部材を締結し、電気的に接続される前記被接合部材と電極本体の間に導電性の部材を介在させる、請求項33~35のいずれか1項に記載の接合方法。
  37.  導電性を備えた一対の被接合部材を接合するための接合装置であって、
     一対の前記被接合部材に電流を供給する電流入力部と、
     前記電流入力部に電流を供給する電流供給手段と、
     一対の前記被接合部材を、当該被接合部材の互いに接合される接合面を対向させて相対的に摺動させる摺動手段と、
     一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱を行うように前記電流供給手段および摺動手段を制御する制御手段と、を有する接合装置。
  38.  前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱を行う前に、一対の前記被接合部材を抵抗加熱させずに相対的に摺動させる予備摺動を行うように前記摺動手段を制御する、請求項37に記載の接合装置。
  39.  対向する前記接合面の間に加圧力を作用させる加圧手段を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱させた後、前記加圧力を低減させて摺動を停止させることで前記接合面同士を位置決めするように前記加圧手段および摺動手段を制御する、請求項37または38に記載の接合装置。
  40.  一対の前記被接合部材を相対的に摺動可能に保持する保持部材と、
     前記保持部材に対する前記被接合部材の位置を規定する位置決め部材と、を有する請求項37~39のいずれか1項に記載の接合装置。
  41.  前記位置決め部材は、前記被接合部材に形成される位置決め部に挿入可能であって前記保持部材から進退動可能な位置決め部材であり、
     前記位置決め部材を進退動させる位置決め部材作動手段を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱を行う前に、前記位置決め部材作動手段を制御して前記位置決め部材を後退させて前記被接合部材の位置決め部から引き抜く、請求項40に記載の接合装置。
  42.  前記位置決め部材は、前記被接合部材に形成される位置決め部に挿入可能であって前記保持部材から進退動可能な位置決め部材であり、
     前記位置決め部材を進退動させる位置決め部材作動手段を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱させた後、前記位置決め部材作動手段を制御して前記当該位置決め部材を前記被接合部材の位置決め部に挿入させる、請求項40または41に記載の接合装置。
  43.  前記位置決め部材は、前記被接合部材および前記保持部材よりも電気抵抗値の大きい材料により形成される、請求項40~42のいずれか1項に記載の接合装置。
  44.  互いに接合される前記被接合部材の間の接触抵抗を検知する接触抵抗検知部を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給する前に一対の前記被接合部材を相対的に摺動させる予備摺動において、前記接触抵抗検知部により検知される接触抵抗が予め設定された閾値以下となった際に、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱を開始させる、請求項38に記載の接合装置。
  45.  前記被接合部材の対向する接合面の間に加圧力を作用させる加圧手段を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱を開始した後、時間の経過に伴い前記加圧手段の加圧力を増加させる、請求項37~44のいずれか1項に記載の接合装置。
  46.  前記被接合部材における電流経路を変更する電流経路調整手段を有する、請求項37~45のいずれか1項に記載の接合装置。
  47.  前記電流入力部は、前記被接合部材に電流を供給する電極であり、
     前記電流経路調整手段は、前記被接合部材を前記電極に対して軸力によって締結する2つ以上の締結部である、請求項46に記載の接合装置。
  48.  互いに接合される前記被接合部材の間の接触抵抗を検知する接触抵抗検知部を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱させた後において、前記接触抵抗検知部により検知される接触抵抗が予め設定された閾値以下となった際に前記電流供給手段および摺動手段を停止させる、請求項37~47のいずれか1項に記載の接合装置。
  49.  互いに接合される前記被接合部材の間の摩擦力を検知する摩擦力検知部を有し、
     前記制御手段は、前記電流供給手段および摺動手段を作動させて一対の前記被接合部材を相対的に摺動させつつ前記電流入力部に電流を供給して対向する前記接合面の間で抵抗加熱させた後において、前記摩擦力検知部により検知される摩擦力が予め設定された閾値以上となった際に前記電流供給手段および摺動手段を停止させる、請求項37~47のいずれか1項に記載の接合装置。
  50.  前記摺動手段による摺動は、往復運動である、請求項37~49のいずれか1項に記載の接合装置。
  51.  前記摺動手段による摺動は、公転運動である、請求項37~49のいずれか1項に記載の接合装置。
  52.  前記被接合部材の対向する接合面の間に加圧力を作用させる加圧手段を有し、
     前記制御手段は、前記抵抗加熱による前記被接合部材への総入熱量が、前記摺動により生じる摩擦加熱による前記被接合部材への総入熱量よりも大きくなるように前記電流供給手段、摺動手段および加圧手段の少なくとも1つを制御する、請求項37~51のいずれか1項に記載の接合装置。
  53.  前記電流入力部は、前記被接合部材への複数の電流入力経路を規定し、該電流入力経路の少なくとも1つの電流量を調整可能である、請求項37~52のいずれか1項に記載の接合装置。
  54.  前記電流入力部は、前記被接合部材に電流を供給する同極の複数の電極であり、
     当該複数の電極の少なくとも1つの電流量を調整するための電流調整部を有する、請求項53に記載の接合装置。
  55.  前記電流入力部は、前記被接合部材に電流を供給する同極の複数の電極であり、
     当該複数の電極の少なくとも1つの接触対象に対する加圧力を調整可能な加圧手段を有する、請求項53に記載の接合装置。
  56.  前記被接合部材における電流経路を変更する電流経路調整手段を有し、前記電流経路調整手段は、前記被接合部材を前記電極に対して軸力によって締結する2つ以上の締結部である、請求項53に記載の接合装置。
  57.  前記電極は、前記締結部により前記被接合部材に締結される電極本体と、電気的に接続される前記被接合部材と電極本体の間に介在される導電性の部材と、を有する、請求項56に記載の接合装置。
  58.  前記被接合部材の各々に電流を供給する各極の電極の接触対象に対する接触総面積が異なり、
     前記摺動装置は、前記接触総面積が大きい極の電極から電流を供給される一方の被接合部材を摺動させる、請求項53~57のいずれか1項に記載の接合装置。
PCT/JP2011/064434 2010-06-24 2011-06-23 接合方法および接合装置 WO2011162345A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11798226.4A EP2586560A1 (en) 2010-06-24 2011-06-23 Joining method and joining apparatus
CN201180031260.XA CN102958638B (zh) 2010-06-24 2011-06-23 接合方法及接合装置
MX2012015256A MX2012015256A (es) 2010-06-24 2011-06-23 Metodo de union y aparato de union.
RU2013103142/02A RU2550677C2 (ru) 2010-06-24 2011-06-23 Способ соединения и аппаратная установка соединения
BR112012033273A BR112012033273A2 (pt) 2010-06-24 2011-06-23 método de união e equipamento de união
US13/806,430 US20130092662A1 (en) 2010-06-24 2011-06-23 Joining method and joining apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010143880 2010-06-24
JP2010-143880 2010-06-24
JP2010-279811 2010-12-15
JP2010279811A JP5799501B2 (ja) 2010-06-24 2010-12-15 接合方法および接合装置

Publications (1)

Publication Number Publication Date
WO2011162345A1 true WO2011162345A1 (ja) 2011-12-29

Family

ID=45371511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064434 WO2011162345A1 (ja) 2010-06-24 2011-06-23 接合方法および接合装置

Country Status (8)

Country Link
US (1) US20130092662A1 (ja)
EP (1) EP2586560A1 (ja)
JP (1) JP5799501B2 (ja)
CN (1) CN102958638B (ja)
BR (1) BR112012033273A2 (ja)
MX (1) MX2012015256A (ja)
RU (1) RU2550677C2 (ja)
WO (1) WO2011162345A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148386A1 (en) * 2012-03-30 2013-10-03 Siemens Energy, Inc. Method for resistance brazing
EP2679328A1 (de) * 2012-06-29 2014-01-01 Volkswagen Aktiengesellschaft Fügen von zwei Fügepartnern mittels einer Kombination eines elektrischen Widerstandsschweißens und eines Reibschweißens
JP2014091151A (ja) * 2012-11-05 2014-05-19 Mitsubishi Materials Corp 多孔質複合金属体の製造方法及び製造装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602857B (zh) * 2012-09-03 2017-08-29 日本轻金属株式会社 中空容器的制造方法及构件的接合方法
JP6249019B2 (ja) * 2013-08-01 2017-12-20 新日鐵住金株式会社 摩擦圧接方法
JP6547595B2 (ja) * 2015-11-06 2019-07-24 株式会社Ihi 線形摩擦接合装置
JP2018079472A (ja) * 2016-11-14 2018-05-24 国立大学法人山梨大学 アルミニウム母材と金属母材の固相接合方法
JP6872915B2 (ja) * 2017-01-30 2021-05-19 Art−Hikari株式会社 絶縁物及び異物の処理方法及びその装置
US20190061032A1 (en) * 2017-08-25 2019-02-28 GM Global Technology Operations LLC System and method for joining structures of dissimilar material
JP7187993B2 (ja) * 2018-11-06 2022-12-13 マツダ株式会社 抵抗溶接装置を用いた抵抗溶接方法
WO2020110866A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 高周波加熱装置
CN109828155B (zh) * 2019-02-28 2024-01-12 兰州大学 一种可控温度下三向加载接触电阻测试装置
JPWO2020179855A1 (ja) * 2019-03-05 2020-09-10
DE102019110664A1 (de) * 2019-04-25 2020-10-29 Kuka Deutschland Gmbh Verfahren und Vorrichtung zum Reibstromfügen
CN111482686A (zh) * 2020-04-23 2020-08-04 西安工业大学 一种金属焊接方法
CN112427792A (zh) * 2020-10-26 2021-03-02 中船黄埔文冲船舶有限公司 一种铝合金薄板的电阻焊方法
US11668847B2 (en) 2021-01-04 2023-06-06 Saudi Arabian Oil Company Generating synthetic geological formation images based on rock fragment images
JP7465552B2 (ja) * 2021-02-10 2024-04-11 Aiメカテック株式会社 基板貼り付け装置及び基板貼り付け方法
CN112916994A (zh) * 2021-03-12 2021-06-08 华中科技大学 一种用于异种金属超声电阻点焊装置及方法
WO2023166871A1 (ja) * 2022-03-04 2023-09-07 国立大学法人大阪大学 線形摩擦接合方法及び線形摩擦接合継手並びに接合構造物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146492A (en) * 1981-03-05 1982-09-09 Toshiba Corp Ultrasonic welding method
JPH05337639A (ja) * 1992-06-10 1993-12-21 Showa Alum Corp アルミニウム材の接合方法
JPH07116868A (ja) * 1993-10-22 1995-05-09 Masafumi Sakuranaka 金属材料の接合方法及び装置
JPH07282675A (ja) * 1994-04-13 1995-10-27 Anden Kk 回転式接点接合方法
JP2004174546A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp 金属部材の接合方法
JP2007118059A (ja) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd 異種金属材料の接合方法及び異種金属材料の接合構造
JP2009000700A (ja) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010184260A (ja) * 2009-02-12 2010-08-26 Nag System Co Ltd アルミニウム箔の接合方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE968008C (de) * 1953-12-31 1958-01-02 Siemens Ag Verfahren zum Widerstandsschweissen, insbesondere Punktschweissen, von Leichtmetallen wie Aluminium u. dgl. unter Ultraschall-Schwingungen
CH458568A (de) * 1966-05-26 1968-06-30 Schlatter Ag Verfahren zum Stumpfschweissen
JPS5273150A (en) * 1975-12-16 1977-06-18 Matsushita Electric Ind Co Ltd Threeeleaved projection welding process
JPS53147648A (en) * 1977-05-31 1978-12-22 Mitsubishi Electric Corp Welding method
SU688309A1 (ru) * 1977-08-10 1979-09-30 Московский вечерний металлургический институт Способ сварки трением
US4408114A (en) * 1980-08-11 1983-10-04 Nissan Motor Company, Limited Resistance welding with pressure control in response to deviation between welding voltage and time varying reference values therefor
JPS63317267A (ja) * 1987-06-18 1988-12-26 Nippon Steel Corp チタンクラッド鋼の製造方法
SU1754365A1 (ru) * 1990-06-11 1992-08-15 Институт Электросварки Им.Е.О.Патона Способ сварки давлением
JPH067966A (ja) * 1992-06-29 1994-01-18 Suzuki Motor Corp 拡散接合法
FR2696116B1 (fr) * 1992-09-29 1994-12-16 Ugine Sa Procédé et dispositif de soudage par points de deux tôles composites.
JPH1050758A (ja) * 1996-08-01 1998-02-20 Hitachi Ltd 超音波接合方法及び接合構造
JP3928682B2 (ja) * 1999-06-22 2007-06-13 オムロン株式会社 配線基板同士の接合体、配線基板同士の接合方法、データキャリアの製造方法、及び電子部品モジュールの実装装置
JP2002336974A (ja) * 2001-05-15 2002-11-26 Denso Corp 超音波溶接装置
JP2003080378A (ja) * 2001-09-10 2003-03-18 Furukawa Electric Co Ltd:The 平面型ヒートパイプの製造方法および実装方法
JP2006315040A (ja) * 2005-05-13 2006-11-24 Nippon Techno:Kk 通電拡散接合方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146492A (en) * 1981-03-05 1982-09-09 Toshiba Corp Ultrasonic welding method
JPH05337639A (ja) * 1992-06-10 1993-12-21 Showa Alum Corp アルミニウム材の接合方法
JPH07116868A (ja) * 1993-10-22 1995-05-09 Masafumi Sakuranaka 金属材料の接合方法及び装置
JPH07282675A (ja) * 1994-04-13 1995-10-27 Anden Kk 回転式接点接合方法
JP2004174546A (ja) * 2002-11-27 2004-06-24 Toyota Motor Corp 金属部材の接合方法
JP2007118059A (ja) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd 異種金属材料の接合方法及び異種金属材料の接合構造
JP2009000700A (ja) * 2007-06-20 2009-01-08 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010184260A (ja) * 2009-02-12 2010-08-26 Nag System Co Ltd アルミニウム箔の接合方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013148386A1 (en) * 2012-03-30 2013-10-03 Siemens Energy, Inc. Method for resistance brazing
EP2679328A1 (de) * 2012-06-29 2014-01-01 Volkswagen Aktiengesellschaft Fügen von zwei Fügepartnern mittels einer Kombination eines elektrischen Widerstandsschweißens und eines Reibschweißens
JP2014091151A (ja) * 2012-11-05 2014-05-19 Mitsubishi Materials Corp 多孔質複合金属体の製造方法及び製造装置

Also Published As

Publication number Publication date
RU2013103142A (ru) 2014-07-27
CN102958638B (zh) 2015-06-17
RU2550677C2 (ru) 2015-05-10
JP5799501B2 (ja) 2015-10-28
US20130092662A1 (en) 2013-04-18
JP2012024840A (ja) 2012-02-09
CN102958638A (zh) 2013-03-06
EP2586560A1 (en) 2013-05-01
MX2012015256A (es) 2013-02-07
BR112012033273A2 (pt) 2016-11-22

Similar Documents

Publication Publication Date Title
WO2011162345A1 (ja) 接合方法および接合装置
US11045898B2 (en) Friction stir spot welding method and friction stir spot welding apparatus
US20110233173A1 (en) Seam welding method and machine therefor
JP2004154790A (ja) 摩擦攪拌接合装置とその接合方法
JP2019155389A (ja) 抵抗スポット溶接方法および抵抗スポット溶接装置
JP5427746B2 (ja) スポット溶接装置
US9868175B2 (en) Seam welding method and seam welding device
JP2005230827A (ja) 異種金属薄板の液相拡散接合方法及び液相拡散接合装置
JP5519457B2 (ja) スポット溶接方法及びその装置
US20070220743A1 (en) Electric current bonding apparatus and electric current bonding method
JP4479416B2 (ja) 摩擦点接合方法およびその装置
CN110831745A (zh) 接合系统及接合方法
CN107708909B (zh) 点焊方法和点焊装置
JP2022530484A (ja) 摩擦電流接合方法および摩擦電流接合装置
JP4533401B2 (ja) 小接合面用パルス通電接合装置
JP7187993B2 (ja) 抵抗溶接装置を用いた抵抗溶接方法
JP2012125809A (ja) 接合方法および接合装置
JP5740959B2 (ja) 接合方法および接合装置
Reddy et al. Application of triz methodology in diffusion welding system optimization
WO2020263902A1 (en) System and method for forming a weld along a length
JP2017506583A (ja) 異種材料の接合方法
JP2003112264A (ja) 小接合面用パルス通電接合方法、接合装置及び接合体
KR101553175B1 (ko) 파이프 제조장치
JP5864363B2 (ja) 抵抗溶接装置及び抵抗溶接方法
JP5822904B2 (ja) スポット溶接方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031260.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798226

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/015256

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13806430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201006696

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2013103142

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011798226

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012033273

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012033273

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121226