WO2011162240A1 - ブリッジ回路の断線検出回路および断線検出手段を有するシステム - Google Patents

ブリッジ回路の断線検出回路および断線検出手段を有するシステム Download PDF

Info

Publication number
WO2011162240A1
WO2011162240A1 PCT/JP2011/064137 JP2011064137W WO2011162240A1 WO 2011162240 A1 WO2011162240 A1 WO 2011162240A1 JP 2011064137 W JP2011064137 W JP 2011064137W WO 2011162240 A1 WO2011162240 A1 WO 2011162240A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
disconnection
bridge circuit
bridge
disconnection detection
Prior art date
Application number
PCT/JP2011/064137
Other languages
English (en)
French (fr)
Inventor
松本 昌大
中野 洋
半沢 恵二
山田 雅通
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP11798124.1A priority Critical patent/EP2587270B1/en
Priority to US13/806,827 priority patent/US9229040B2/en
Priority to CN201180030636.5A priority patent/CN102959411B/zh
Publication of WO2011162240A1 publication Critical patent/WO2011162240A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the present invention relates to a disconnection detection circuit for a bridge circuit, and more particularly to a disconnection detection circuit for a bridge circuit that has little influence on the output voltage of the bridge circuit.
  • a conventional example of a disconnection detection circuit for a bridge circuit includes a sensor bridge circuit described in Japanese Patent Laid-Open No. 6-249730.
  • the prior art described in Japanese Patent Application Laid-Open No. 6-249730 is provided with a resistor 19 and a resistor 20 at the output of a bridge circuit composed of sensor element resistors 15, 16, 17, and 18, respectively.
  • the output voltage of the bridge circuit is greatly changed, and the sensor circuit obtained by amplifying the output voltage of the bridge circuit with the amplifier 21 is greatly changed to disconnect the bridge circuit. Detect that.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a disconnection detection circuit for a bridge circuit that suppresses changes in sensor characteristics to a minimum.
  • a current is supplied from the output terminal of the bridge circuit to a predetermined potential, a potential difference between the potential of the output terminal of the bridge circuit and the predetermined potential is detected, and disconnection is performed based on the potential difference. This is achieved by detecting.
  • the influence of the disconnection detection circuit on the output voltage of the sensor bridge circuit can be reduced, the offset voltage and temperature characteristics of the sensor bridge output can be improved, and the disconnection of the sensor bridge can be detected with high accuracy.
  • a sensor with high accuracy and high reliability can be provided.
  • the circuit diagram of the disconnection detection circuit of the bridge circuit of a 2nd Example. The drain current characteristics of the transistors 24 and 25.
  • the circuit diagram of the disconnection detection circuit of the bridge circuit of a 3rd Example. The timing chart of the control signal of switches 26, 28, 29, 30, 31, 32.
  • the circuit diagram of the disconnection detection circuit of the bridge circuit of a 6th Example. The circuit diagram of the disconnection detection circuit of the bridge circuit of 7th Example.
  • FIG. 1 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the first embodiment.
  • the detection element 1 is composed of a bridge circuit in which a series circuit consisting of sensor element resistances 2 and 4 and a series resistance consisting of sensor element resistances 3 and 5 are connected in parallel, and the sensor element resistances 2, 3, 4, 5
  • the intermediate voltage between the sensor element resistances 2 and 4 and the intermediate voltage between the sensor element resistances 3 and 5 are changed by changing the resistance value according to the measured physical quantity.
  • the intermediate voltage between the sensor element resistors 3 and 5 is input to the output terminal A and is taken out from the output terminal A to the outside of the detection element 1. Further, an intermediate voltage between the sensor element resistors 2 and 4 is input to the output terminal B, and is taken out from the detection element 1 from the output terminal B.
  • the output voltage (voltage between the output terminals A and B) of the bridge circuit taken out from the output terminal A and the output terminal B is amplified by the amplifier 6 and output to the outside as a sensor output via the switching circuit 7. .
  • platinum Pt
  • tantalum Ti
  • molybdenum Mo
  • silicon Si
  • the like is selected as the sensor element resistance.
  • the disconnection detection circuit 8a includes a resistor 10 for supplying current to the output terminal A, a resistor 9 for supplying current to the output terminal B, a reference voltage source 11 for generating a reference voltage, a voltage at the output terminal A, and a voltage at the reference voltage source 11. Comparing the comparator 12 that detects the disconnection of the output terminal A by comparison, the comparator 13 that compares the voltage of the output terminal B and the voltage of the reference voltage source 11 to detect the disconnection of the output terminal B, and the comparator 12 OR circuit 14 for obtaining the logical sum of the units 13.
  • the switching circuit 7 fixes the sensor output to the ground voltage or the power supply voltage.
  • the disconnection detection circuit 8a detects disconnection of the output terminal A and the output terminal B.
  • the potential of the output terminal A becomes the ground potential by the resistor 10.
  • the potential of the output terminal A is compared with the voltage of the reference voltage source 11 by the comparator 12, and is reflected in the output of the comparator 12 when the output terminal A is disconnected.
  • the potential of the output terminal B becomes the ground potential by the resistor 9.
  • the potential of the output terminal B is compared with the voltage of the reference voltage source 11 by the comparator 13, and is reflected in the output of the comparator 13 when the output terminal B is disconnected.
  • the disconnection detection circuit 8 can detect disconnection of the output terminal A and the output terminal B.
  • the disconnection detection circuit 8a is a target circuit for the output terminals A and B of the bridge circuit of the detection element 1, the influence of the detection element 1 on the output voltage of the bridge circuit can be minimized. That is, the circuit connected to the output terminal A is the resistor 10 and the comparator 12, and the circuit connected to the output terminal B is the same circuit as the resistor 9 and the comparator 13. The influence of the disconnection detection circuit 8a on the output terminal B is the same. Thereby, it is possible to reduce the influence on the output voltage of the bridge circuit of the detection element 1 (the difference voltage between the output terminal A and the output terminal B).
  • FIGS. 3 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the second embodiment
  • FIG. 4 is a drain current characteristic of the transistors 24 and 25.
  • the disconnection detection circuit of the bridge circuit of the second embodiment is obtained by changing the resistors 9 and 10 of the disconnection detection circuit of the bridge circuit of the first embodiment to a current mirror circuit composed of transistors 23, 24, and 25. It is.
  • the resistors 9 and 10 are changed to a current mirror circuit composed of transistors 23, 24, and 25, and the transistor 24, The characteristics of the 25 drain currents are as shown in FIG. As a result, when the output terminals A and B are not disconnected, the impedance of the transistors 24 and 25 viewed from the output terminals A and B can be increased, so that the influence on the output voltage of the bridge circuit can be further reduced. Is possible.
  • the impedance of the transistors 24 and 25 viewed from the output terminals A and B can be reduced, so that the voltage at the output terminals A and B at the time of the disconnection can be reduced. Since the threshold margin can be increased, the disconnection detection accuracy can be improved.
  • FIGS. 5 is a circuit diagram of the disconnection detection circuit of the bridge circuit according to the third embodiment
  • FIG. 6 is a timing chart of control signals of the switches 26, 28, 29, 30, 31, 32.
  • switches 26, 28, 29, 30, 31, and 32 and capacitors 27, 33, and 34 are added to the first embodiment.
  • switches 26, 28, 29, 30, 31, and 32 and capacitors 27, 33, and 34 are added so that bridge voltage detection and disconnection detection can be performed in a time-sharing manner. That is, at the timing P1, the switches 26 and 30 are connected, and the output terminals A and B are connected to the amplifier 6 to detect the output voltage of the bridge circuit. At this time, the switches 28 and 29 are opened and completely disconnected from the disconnection detection circuit 8c, so that the disconnection detection circuit 8c does not affect the output voltage of the bridge circuit.
  • a capacitor 27 is provided in order to hold the voltage at the timing P1 when the switches 26 and 30 are opened at the timing P2.
  • the switches 28, 29, 31, and 32 are connected, and the disconnection of the output terminals A and B of the bridge circuit is detected by connecting the output terminals A and B to the disconnection detection circuit 8c.
  • the switches 26 and 30 are in an open state and are completely disconnected from the amplifier 6, the input resistance of the amplifier 6 does not affect the disconnection detection circuit 8.
  • capacitors 33 and 34 are provided to hold the voltage at the timing P2 when the switches 28, 29, 31, and 32 are opened at the timing P1.
  • FIG. 7 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the fourth embodiment.
  • the detection element 35 is a half bridge circuit composed of sensor element resistances 36 and 37, and the voltage at the output terminal of the bridge circuit is changed by changing the sensor element resistances 36 and 37 according to the measured physical quantity.
  • the output voltage of the half bridge circuit is amplified by the amplifier 39 and output to the outside as a sensor output.
  • a power supply voltage Vcc is connected to the power supply terminal of the bridge circuit, and a predetermined voltage is supplied to the ground terminal via the reference voltage source 38.
  • the disconnection detection circuit 41 also includes a constant current source 42 for supplying current to the output terminal of the half bridge circuit, a reference voltage source 43 for generating a reference voltage, and the voltage of the output terminal of the half bridge circuit and the value of the reference voltage source 43.
  • the comparator 44 detects the disconnection of the output terminal by comparison. When the disconnection detection circuit 41 detects a disconnection, the switching circuit 40 fixes the sensor output to the ground voltage or the power supply voltage.
  • This disconnection detection circuit detects disconnection of the output terminal of the half bridge circuit.
  • the potential of the output terminal becomes a ground potential by the constant current source 42. Since the potential of the output terminal is compared with the voltage of the reference voltage source 43 by the comparator 44, if the output terminal is disconnected, it is reflected in the output of the comparator 44. As a result, the disconnection detection circuit 41 detects disconnection of the output terminal.
  • the sensor element resistance 36 is an element such as a thermistor whose resistance value changes by several digits according to temperature
  • the voltage of the output terminal changes from the vicinity of the voltage of the power supply terminal of the detection element 35 to the vicinity of the voltage of the ground terminal.
  • a voltage of several volts was applied to the ground terminal voltage of the detection element 35 using the reference voltage source 38.
  • the sensor element resistance 36 is an element such as a thermistor whose resistance value changes by several digits according to temperature
  • the voltage at the output terminal is changed from the voltage at the power supply terminal of the detection element 35 to the voltage at the ground terminal. Only the voltage of the reference voltage source 38 is changed.
  • the current of the constant current source 42 is equal to or lower than the voltage of the reference voltage source 38 when the output terminal of the detection element 35 is disconnected, so that the current of the constant current source 42 can be reduced.
  • the voltage of the reference voltage source 43 which is a reference value for disconnection detection, can be set to the voltage of the reference voltage source 38, the threshold margin of the comparator 44 can be increased and the accuracy of disconnection detection can be improved. Is possible.
  • FIG. 8 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the fifth embodiment. Note that the disconnection detection circuit of the bridge circuit of the fifth embodiment reduces the voltage of the power supply terminal of the detection element 35 by several volts using the reference voltage source 45, contrary to the disconnection detection circuit of the bridge circuit of the fourth embodiment. It has been made.
  • the detection element 35 is a half bridge circuit composed of sensor element resistances 36 and 37, and the voltage at the output terminal of the bridge circuit is changed by changing the sensor element resistances 36 and 37 according to the measured physical quantity.
  • the output voltage of the bridge circuit is amplified by the amplifier 39 and output to the outside as a sensor output.
  • the power supply terminal of the bridge circuit is connected from the power supply voltage Vcc via the reference voltage source 45, and is supplied with a voltage lower than the power supply voltage Vcc by the voltage of the reference voltage source 45. A ground potential is supplied to the ground terminal.
  • the disconnection detection circuit 46 detects a disconnection of the output terminal by comparing a constant current source 47 for supplying a current to the output terminal, a reference voltage source 48 for generating a reference voltage, and comparing the voltage of the output terminal and the value of the reference voltage source 48. And a comparator 49.
  • the switching circuit 40 fixes the sensor output to the ground voltage or the power supply voltage.
  • This disconnection detection circuit detects disconnection of the output terminal.
  • the potential of the output terminal becomes the power supply potential by the constant current source 47. Since the potential of the output terminal is compared with the voltage of the reference voltage source 48 by the comparator 49, if the output terminal is disconnected, it is reflected in the output of the comparator 49. As a result, the disconnection detection circuit 46 detects disconnection of the output terminal.
  • the sensor element resistance 36 is an element such as a thermistor whose resistance value changes by several digits according to temperature
  • the voltage at the output terminal changes from the voltage at the power supply terminal of the detection element 35 to the voltage at the ground terminal.
  • the voltage of the power supply terminal is the power supply voltage Vcc
  • the current of the constant current source 47 is increased, the influence on the sensor output is increased.
  • the threshold margin of the comparator 49 is almost eliminated, and the accuracy of disconnection detection is improved. It will decline.
  • the voltage of the power supply terminal of the detection element 35 is lowered from the power supply voltage Vcc of several volts using the reference voltage source 45.
  • the sensor element resistance 36 is an element such as a thermistor whose resistance value changes by several digits according to temperature
  • the voltage of the output terminal is determined from the power supply voltage that is the voltage of the power supply terminal of the detection element 35. It only changes from a voltage that has dropped several volts to the ground voltage. For this reason, it is sufficient that the current of the constant current source 47 is close to the power supply voltage with a margin corresponding to the voltage of the reference voltage source 45 when the output terminal of the detection element 35 is disconnected. It is possible.
  • the voltage of the reference voltage source 48 which is a reference value for disconnection detection, can be set with a margin corresponding to the voltage of the reference voltage source 45, the margin of the threshold value of the comparator 49 can be increased. It is possible to improve the accuracy.
  • FIG. 9 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the sixth embodiment.
  • the detection element 50 is a bridge circuit composed of sensor element resistances 51, 52, 53, and 54.
  • the output terminal of the bridge circuit is provided.
  • the voltage of A and B is changed.
  • the output voltage of the bridge circuit (the voltage between the output terminals A and B) is AD-converted by a delta-sigma modulator 55 (hereinafter referred to as a ⁇ modulator) and output to the outside as a sensor output.
  • the ⁇ modulator 55 includes switches 56, 58, 63, 65 that operate at the timing P1 shown in FIG. 6, switches 59, 60, 61, 62 and capacitors 57, 64, 62 that operate at the timing P2 shown in FIG.
  • the disconnection detection circuit 72 operates at the timing P2 shown in FIG. 6 to connect the output terminal A and the constant current source 76, and operates at the timing P2 shown in FIG. A switch 73 for connecting the current source 75, a constant current source 76 for supplying a current to the output terminal A, a constant current source 75 for supplying a current to the output terminal B, a constant current source 75 at a timing P2 shown in FIG.
  • a sample-and-hold circuit composed of switches 77 and 78 for sampling the voltage at both ends of 76 and capacitors 79 and 80, a reference voltage source 81 for generating a reference voltage, a voltage between both ends of the capacitor 79 and the value of the reference voltage source 81
  • a comparator 82 that detects disconnection of the output terminal A
  • a comparator 83 that detects a disconnection of the output terminal B by comparing the voltage across the capacitor 80 and the value of the reference voltage source 81, and a comparator 82
  • the ⁇ modulator 55 discharges the capacitors 57 and 64 at timing P2, samples the output voltage of the bridge circuit at timing P1, and charges it by the SC integrator.
  • the disconnection detection circuit 72 operates at a timing P2 that is a non-sampling period of the ⁇ modulator 55 so as not to affect the operation of the ⁇ modulator 55.
  • the disconnection detection circuit 72 turns on the switches 73, 74, 77, 78 at the timing P2, and allows a constant current to flow through the output terminals A, B of the bridge circuit. If the output terminal A or the output terminal B is disconnected at this time, the voltage across the constant current sources 75 and 76 corresponding to the output terminal A or the output terminal B drops to almost the ground potential. This voltage is held by a sample and hold circuit composed of switches 77 and 78 and capacitors 79 and 80, and this voltage is compared by comparators 82 and 83 to detect disconnection of output terminals A and B.
  • this disconnection detection circuit 72 is a target circuit for the output terminals A and B of the bridge circuit of the detection element 50, the influence of the detection element 50 on the output voltage of the bridge circuit can be minimized.
  • the disconnection detection circuit 72 since the disconnection detection circuit 72 operates during the non-sampling period of the ⁇ modulator 55, the operation of the disconnection detection circuit 72 does not affect the ⁇ modulator 55. Conversely, the operation of the ⁇ modulator 55 does not affect the disconnection detection circuit 72.
  • the ⁇ modulator 55 when used in the output voltage detection circuit of the bridge circuit, it is very easy because the output signal can be fixed to a value that cannot be output as a normal sensor output only by the AND circuit.
  • FIG. 10 is a circuit diagram of the disconnection detection circuit of the bridge circuit of the seventh embodiment.
  • the constant current sources 75 and 76 of the sixth embodiment are replaced with a switched capacitor circuit including switches 85 and 87 and capacitors 86 and 88.
  • the constant current sources 75 and 76 are replaced with switched capacitor circuits, so that detection can be performed at a higher speed than when the constant current sources 75 and 76 are used. This is because the switched capacitor circuit has a smaller impedance than the constant current source. As a result, the operating clock of the ⁇ modulator 55 can be increased, and the accuracy and responsiveness of the ⁇ modulator 55 can be improved.
  • FIG. 11 is a block diagram of a system having a disconnection detecting means of the eighth embodiment.
  • an air flow sensor 89 for detecting the air flow rate Q
  • an intake air temperature sensor 90 for detecting the intake air temperature Ta
  • a disconnection detector 91 for detecting disconnection of the intake air temperature sensor 90
  • an output signal of the air flow sensor 89 The correction circuit 92 that corrects the air flow rate Q with the intake air temperature Ta that is an output signal of the intake air temperature sensor 90, and the signal of the intake air temperature Ta that is passed to the correction circuit 92 when the disconnection detector 91 detects disconnection is fixed at 25 ° C.
  • the switching circuit 93 is configured.
  • FIG. 12 is a block diagram of a system having a disconnection detecting means of the ninth embodiment.
  • the present embodiment is a system having a disconnection detecting means in which the switching circuit 93 of the system having the disconnection detecting means according to the eighth embodiment is changed to a switching circuit 94.
  • the switching circuit 93 is changed to the switching circuit 94, and when the intake air temperature sensor is disconnected, the correction circuit 92 is bypassed to prevent extreme correction. By doing so, it is possible to suppress an error in the sensor output even if the intake air temperature sensor 90 is disconnected.
  • FIG. 13 is a block diagram of a system having a disconnection detecting means of the tenth embodiment.
  • the present embodiment is a system having a disconnection detecting means in which the circuit temperature sensor 95 is added to the system having the disconnection detecting means of the eighth embodiment to change the switching destination when the switching circuit 93 is disconnected.
  • the circuit temperature sensor 95 is added to change the switching destination when the switching circuit 93 is disconnected, and when the intake temperature sensor is disconnected, the switching destination of the correction circuit 92 is changed to the circuit temperature sensor 95.
  • the correction was prevented. This utilizes the fact that there is no significant difference between the intake air temperature Ta and the circuit temperature Tlsi in the steady state. By doing so, it is possible to suppress an error in the sensor output even if the intake air temperature sensor 90 is disconnected.

Abstract

 従来のブリッジ回路の断線検出回路ではブリッジ出力のオフセット電圧や温度特性が悪化することに対して配慮が欠けていた。センサの特性の変化を微小に抑えるブリッジ回路の断線検出回路を提供する。 本発明によるブリッジ回路の断線検出回路8aはブリッジ回路の出力端子から所定の電位に対して電流を流す通電手段9,10と、前記ブリッジ回路の出力端子の電位と前記所定の電位との電位差を検出する電位差検出手段12,13と、前記電位差検出手段の出力に基づいて断線を検出する断線検出手段14と、から構成される(図1参照)。

Description

ブリッジ回路の断線検出回路および断線検出手段を有するシステム
 本発明はブリッジ回路の断線検出回路に係り、特にブリッジ回路の出力電圧に与える影響が小さいブリッジ回路の断線検出回路に関する。
 ブリッジ回路の断線検出回路の従来例には特開平6-249730号公報に記載されたセンサ用ブリッジ回路などがある。
特開平6-249730号公報
 特開平6-249730号公報に記載されている従来技術は図2に示す様にセンサ素子抵抗15,16,17,18で構成されるブリッジ回路の出力に抵抗19と抵抗20をそれぞれ電源とグランドに接続し、ブリッジ回路の出力が断線した場合はブリッジ回路の出力電圧を大きく変化させ、ブリッジ回路の出力電圧を増幅器21で増幅して得られるセンサ出力を大きく変化させることでブリッジ回路が断線したことを検出する。
 しかしながら、上記断線検出回路では、センサブリッジに対して非対称に抵抗19,20が並列に接続されるのでセンサのオフセット電圧や温度特性が悪化することに対して配慮が欠けていた。
 本発明は上記事情に鑑みてなされたものであり、その目的はセンサの特性の変化を微小に抑えるブリッジ回路の断線検出回路を提供することにある。
 上記課題を解決するためには、ブリッジ回路の出力端子から所定の電位に対して電流を流し、ブリッジ回路の出力端子の電位と前記所定の電位との電位差を検出し、この電位差に基づいて断線を検出することにより達成される。
 本発明によれば、断線検出回路がセンサブリッジ回路の出力電圧に与える影響を低減できるので、センサブリッジ出力のオフセット電圧や温度特性が改善でき、且つ、高精度にセンサブリッジの断線を検出できるので高精度且つ高信頼性を持つセンサを提供できる。
第1の実施例のブリッジ回路の断線検出回路の回路図。 従来技術のブリッジ回路の断線検出回路。 第2の実施例のブリッジ回路の断線検出回路の回路図。 トランジスタ24,25のドレイン電流特性。 第3の実施例のブリッジ回路の断線検出回路の回路図。 スイッチ26,28,29,30,31,32の制御信号のタイミングチャート。 第4の実施例のブリッジ回路の断線検出回路の回路図。 第5の実施例のブリッジ回路の断線検出回路の回路図。 第6の実施例のブリッジ回路の断線検出回路の回路図。 第7の実施例のブリッジ回路の断線検出回路の回路図。 第8の実施例の断線検出手段を有するシステムの構成図。 第9の実施例の断線検出手段を有するシステムの構成図。 第10の実施例の断線検出手段を有するシステムの構成図。
 以下、本発明の実施の形態について、図1~図13を用いて説明する。
 まず、本発明の第1の実施例であるブリッジ回路の断線検出回路を図1により説明する。なお、図1は第1の実施例のブリッジ回路の断線検出回路の回路図である。
 検出素子1はセンサ素子抵抗2と4からなる直列回路と、センサ素子抵抗3と5からなる直列抵抗とを並列に接続したブリッジ回路から構成されており、センサ素子抵抗2,3,4,5の抵抗値が測定物理量に応じて変化することによって、センサ素子抵抗2と4との中間電圧と、センサ素子抵抗3と5の中間電圧とが変化する構成となっている。なお、センサ素子抵抗3と5との中間電圧は出力端子Aに入力され、出力端子Aから検出素子1の外部に取り出される。また、センサ素子抵抗2と4との中間電圧は出力端子Bに入力され、出力端子Bから検出素子1の外部に取り出される。出力端子Aおよび出力端子Bから取り出されたブリッジ回路の出力電圧(出力端子A,B間の電圧)は増幅器6によって出力電圧が増幅され、切換え回路7を介してセンサ出力として外部に出力される。センサ素子抵抗は例えば、白金(Pt),タンタル(Ta),モリブデン(Mo),シリコン(Si)等が選定される。
 断線検出回路8aは出力端子Aに電流を流す抵抗10と出力端子Bに電流を流す抵抗9と、基準電圧を発生する基準電圧源11と、出力端子Aの電圧と基準電圧源11の電圧を比較して出力端子Aの断線を検出する比較器12と、出力端子Bの電圧と基準電圧源11の電圧を比較して出力端子Bの断線を検出する比較器13と、比較器12と比較器13の論理和を求めるオア回路14とにより構成される。そして、断線検出回路8aが断線と検出した場合には切換え回路7によりセンサ出力をグランド電圧あるいは電源電圧に固定する。
 次に、断線検出回路8aの動作について説明する。断線検出回路8aでは出力端子Aおよび出力端子Bの断線を検出する。
 まず、出力端子Aが断線した場合には出力端子Aの電位は抵抗10によってグランド電位になる。出力端子Aの電位は比較器12によって基準電圧源11の電圧と比較されており、出力端子Aが断線すると比較器12の出力に反映される。
 また、出力端子Bが断線した場合には出力端子Bの電位は抵抗9によってグランド電位になる。出力端子Bの電位は比較器13によって基準電圧源11の電圧と比較されており、出力端子Bが断線すると比較器13の出力に反映される。
 従って、出力端子Aあるいは出力端子Bが断線すると比較器12および13の出力の論理和をとるオア回路14の出力に反映される。このような構成により断線検出回路8で出力端子Aおよび出力端子Bの断線を検出することが可能となる。
 次に、本実施例の断線検出回路8aの特徴について説明する。断線検出回路8aは検出素子1のブリッジ回路の出力端子A,Bに対して対象な回路であるため、検出素子1のブリッジ回路の出力電圧への影響を最小にすることができる。つまり、出力端子Aに接続される回路は抵抗10と比較器12であり、出力端子Bに接続される回路は抵抗9と比較器13と同一の回路が接続されているため、出力端子Aと出力端子Bに断線検出回路8aが与える影響は同一になる。このことにより、検出素子1のブリッジ回路の出力電圧(出力端子Aと出力端子Bの差電圧)への影響を低減することが可能である。
 次に、本発明の第2の実施例であるブリッジ回路の断線検出回路を図3,図4により説明する。なお、図3は第2の実施例のブリッジ回路の断線検出回路の回路図、図4はトランジスタ24,25のドレイン電流特性である。なお、第2の実施例のブリッジ回路の断線検出回路は第1の実施例のブリッジ回路の断線検出回路の抵抗9,10をトランジスタ23,24,25で構成されるカレントミラー回路に変更したものである。
 本実施例のブリッジ回路の断線検出回路8bでは抵抗9,10をトランジスタ23,24,25で構成されるカレントミラー回路に変更し、トランジスタ23には定電流源22を接続することでトランジスタ24,25のドレイン電流の特性を図4に示すようにした。このことにより、出力端子A,Bが断線していない時には出力端子A,Bから見たトランジスタ24,25のインピーダンスを高くすることができるのでブリッジ回路の出力電圧への影響を更に低減することが可能である。
 また、出力端子Aあるいは出力端子Bの断線検出時には出力端子A,Bから見たトランジスタ24,25のインピーダンスを小さくできるので断線時の出力端子A,Bの電圧を低くでき比較器12,13の閾値のマージンを増やすことができるので断線検出の精度を向上させることが可能になる。
 次に、本発明の第3の実施例であるブリッジ回路の断線検出回路を図5,図6により説明する。なお、図5は第3の実施例のブリッジ回路の断線検出回路の回路図、図6はスイッチ26,28,29,30,31,32の制御信号のタイミングチャートである。なお、第3の実施例では第1の実施例にスイッチ26,28,29,30,31,32およびコンデンサ27,33,34を付加したものである。
 本実施例ではスイッチ26,28,29,30,31,32およびコンデンサ27,33,34を付加することでブリッジ電圧の検出と断線検出を時分割で実行できるようにした。つまり、タイミングP1ではスイッチ26,30が接続され、出力端子A,Bを増幅器6へ接続することでブリッジ回路の出力電圧を検出する。なお、この時スイッチ28,29は開放状態になり断線検出回路8cからは完全に切り離されるので断線検出回路8cがブリッジ回路の出力電圧へ影響を与えることはない。また、タイミングP2でスイッチ26,30が開放された時のためにコンデンサ27を設けておりタイミングP1での電圧を保持するようにした。
 次に、タイミングP2ではスイッチ28,29,31,32が接続され、出力端子A,Bを断線検出回路8cへ接続することでブリッジ回路の出力端子A,Bの断線を検出する。なお、この時、スイッチ26,30は開放状態にあり、増幅器6からは完全に切り離されているので増幅器6の入力抵抗が断線検出回路8へ影響を与えることはない。また、タイミングP1でスイッチ28,29,31,32が開放された時のためにコンデンサ33,34を設けてタイミングP2での電圧を保持するようにした。
 次に、本発明の第4の実施例であるブリッジ回路の断線検出回路を図7により説明する。なお、図7は第4の実施例のブリッジ回路の断線検出回路の回路図である。
 まず、検出素子35はセンサ素子抵抗36,37で構成されるハーフブリッジ回路であり、センサ素子抵抗36,37が測定物理量に応じて変化することによってブリッジ回路の出力端子の電圧を変化させる。また、ハーフブリッジ回路の出力電圧は増幅器39によって増幅されセンサ出力として外部に出力される。また、ブリッジ回路の電源端子には電源電圧Vccが接続され、接地端子には基準電圧源38を介して所定の電圧が供給される。また、断線検出回路41はハーフブリッジ回路の出力端子に電流を流す定電流源42と、基準電圧を発生する基準電圧源43と、ハーフブリッジ回路の出力端子の電圧と基準電圧源43の値を比較して出力端子の断線を検出する比較器44とにより構成される。また、断線検出回路41が断線と検出した場合には切換え回路40によりセンサ出力をグランド電圧あるいは電源電圧に固定する。
 次に、本断線検出回路の動作について説明する。本断線検出回路ではハーフブリッジ回路の出力端子の断線を検出する。まず、出力端子が断線した場合には出力端子の電位は定電流源42によってグランド電位になる。出力端子の電位は比較器44によって基準電圧源43の電圧と比較されているので、出力端子が断線すると比較器44の出力に反映される。このことにより断線検出回路41は出力端子の断線を検出する。
 次に、本断線検出回路の特徴について説明する。センサ素子抵抗36がサーミスタの様に温度に応じて数桁抵抗値が変化する様な素子の場合、出力端子の電圧は検出素子35の電源端子の電圧近傍から接地端子の電圧近傍まで変化する。
 ここで接地端子の電圧が0Vの場合、出力端子の断線を確実検出するには定電流源42の電流を大きくすると共に基準電圧源43の電圧をほとんど0Vに設定する必要がある。これは、検出素子35の正常時の出力が検出素子35の電源端子の電圧近傍から接地端子の電圧近傍まで変化するため、この外側の電圧に断線時の電圧が成るようにするとともに、比較器44の比較電圧である基準電圧源43の電圧も正常時の出力の外側の電圧にする必要があるから、このため、断線時に確実に正常時の出力の外側の電圧、つまり0V近傍にするためには定電流源42の電流を大きくする必要があり、かつ、比較器44の比較電圧もほとんど0V近傍にする必要がある。しかし、定電流源42の電流を大きくするとセンサ出力への影響が大きくなり、基準電圧源43の電圧をほとんど0Vにすると比較器44の閾値のマージンがほとんどなくなってしまい断線検出の精度が低下してしまう。
 そこで、本実施例では検出素子35の接地端子の電圧を基準電圧源38を用いて数ボルトの電圧を印加した。この場合、センサ素子抵抗36がサーミスタの様に温度に応じて数桁抵抗値が変化する様な素子であったとしても、出力端子の電圧は検出素子35の電源端子の電圧から接地端子の電圧である基準電圧源38の電圧までしか変化しない。このため、定電流源42の電流は検出素子35の出力端子の断線時に基準電圧源38の電圧以下になれば十分であるので定電流源42の電流を小さくすることが可能である。また、断線検出の基準値である基準電圧源43の電圧も基準電圧源38の電圧に設定することができるので比較器44の閾値のマージンを大きくすることができ断線検出の精度を向上させることが可能である。
 次に、本発明の第5の実施例であるブリッジ回路の断線検出回路を図8により説明する。なお、図8は第5の実施例のブリッジ回路の断線検出回路の回路図である。なお、第5の実施例のブリッジ回路の断線検出回路は第4の実施例のブリッジ回路の断線検出回路とは逆に検出素子35の電源端子の電圧を基準電圧源45を用いて数ボルト低下させたものである。
 まず、検出素子35はセンサ素子抵抗36,37で構成されるハーフブリッジ回路であり、センサ素子抵抗36,37が測定物理量に応じて変化することによってブリッジ回路の出力端子の電圧を変化させる。また、ブリッジ回路の出力電圧は増幅器39によって増幅されセンサ出力として外部に出力される。また、ブリッジ回路の電源端子には電源電圧Vccから基準電圧源45を介して接続され、電源電圧Vccから基準電圧源45の電圧だけ低下した電圧が供給される。また、接地端子にはグランド電位が供給される。断線検出回路46は出力端子に電流を流す定電流源47と、基準電圧を発生する基準電圧源48と、出力端子の電圧と基準電圧源48の値を比較して出力端子の断線を検出する比較器49とにより構成される。また、断線検出回路46が断線と検出した場合には切換え回路40によりセンサ出力をグランド電圧あるいは電源電圧に固定する。
 次に、本断線検出回路の動作について説明する。本断線検出回路は出力端子の断線を検出する。まず、出力端子が断線した場合には出力端子の電位は定電流源47によって電源電位になる。出力端子の電位は比較器49によって基準電圧源48の電圧と比較されているので、出力端子が断線すると比較器49の出力に反映される。このことにより断線検出回路46は出力端子の断線を検出する。
 次に、本断線検出回路の特徴について説明する。センサ素子抵抗36がサーミスタの様に温度に応じて数桁抵抗値が変化する様な素子の場合、出力端子の電圧は検出素子35の電源端子の電圧から接地端子の電圧まで変化する。ここで電源端子の電圧が電源電圧Vccの場合、出力端子の断線を確実検出するには定電流源47の電流を大きくすると共に基準電圧源48の電圧をほとんど電源電圧Vccに設定する必要がある。しかし、定電流源47の電流を大きくするとセンサ出力への影響が大きくなり、基準電圧源48の電圧をほとんど電源電圧Vccにすると比較器49の閾値のマージンがほとんどなくなってしまい断線検出の精度が低下してしまう。
 そこで、本実施例では検出素子35の電源端子の電圧を基準電圧源45を用いて数ボルト電源電圧Vccから低下させた。この場合、センサ素子抵抗36がサーミスタの様に温度に応じて数桁抵抗値が変化する様な素子であったとしても、出力端子の電圧は検出素子35の電源端子の電圧である電源電圧から数ボルト低下した電圧から接地電圧までしか変化しない。このため、定電流源47の電流は検出素子35の出力端子の断線時に基準電圧源45の電圧分だけの余裕を持って電源電圧に近づけば十分であるので定電流源47の電流を小さくすることが可能である。また、断線検出の基準値である基準電圧源48の電圧も基準電圧源45の電圧分だけ余裕を持って設定することができるので比較器49の閾値のマージンを大きくすることができるので断線検出の精度を向上させることが可能である。
 次に、本発明の第6の実施例であるブリッジ回路の断線検出回路を図9により説明する。なお、図9は第6の実施例のブリッジ回路の断線検出回路の回路図である。
 まず、検出素子50はセンサ素子抵抗51,52,53,54で構成されるブリッジ回路であり、センサ素子抵抗51,52,53,54が測定物理量に応じて変化することによってブリッジ回路の出力端子A,Bの電圧を変化させる。また、ブリッジ回路の出力電圧(出力端子A,B間の電圧)はデルタシグマ変調器55(以下、ΔΣ変調器という。)によってAD変換され、センサ出力として外部に出力される。なお、ΔΣ変調器55は図6で示したタイミングP1で動作するスイッチ56,58,63,65と図6で示したタイミングP2で動作するスイッチ59,60,61,62とコンデンサ57,64,66,68と増幅器67とで構成されるSC積分器と、SC積分器の出力を比較する比較器69と、比較器69の出力に応じて電圧を出力する局部DA変換器70とから構成される。また、断線検出回路72は図6で示したタイミングP2で動作して出力端子Aと定電流源76とを接続するスイッチ74と、図6で示したタイミングP2で動作して出力端子Bと定電流源75とを接続するスイッチ73と、出力端子Aに電流を流す定電流源76と、出力端子Bに電流を流す定電流源75と、図6で示したタイミングP2で定電流源75,76の両端電圧をサンプリングするスイッチ77,78とコンデンサ79,80とで構成されるサンプル&ホールド回路と、基準電圧を発生する基準電圧源81と、コンデンサ79の両端電圧と基準電圧源81の値を比較して出力端子Aの断線を検出する比較器82と、コンデンサ80の両端電圧と基準電圧源81の値を比較して出力端子Bの断線を検出する比較器83と、比較器82と比較器83の論理和を求めるオア回路84とにより構成される。また、断線検出回路72が断線と検出した場合にΔΣ変調器55の出力をグランドに固定するアンド回路71がある。
 次に、本実施例の動作について説明する。ΔΣ変調器55はタイミングP2でコンデンサ57,64を放電し、タイミングP1ではブリッジ回路の出力電圧をサンプリングしてSC積分器によって充電する。断線検出回路72はΔΣ変調器55の動作に影響を与えない様にするためにΔΣ変調器55の非サンプリング期間であるタイミングP2で動作する。断線検出回路72はタイミングP2でスイッチ73,74,77,78をオン状態にしてブリッジ回路の出力端子A,Bに定電流を流す。この時に出力端子Aあるいは出力端子Bが断線していた場合にはそれに対応する定電流源75,76の両端電圧がほぼグランド電位まで低下する。この電圧をスイッチ77,78とコンデンサ79,80で構成されるサンプル&ホールド回路で保持し、この電圧を比較器82,83で比較することで出力端子A,Bの断線を検出する。
 次に、本実施例の特徴について説明する。本断線検出回路72は検出素子50のブリッジ回路の出力端子A,Bに対して対象な回路であるため、検出素子50のブリッジ回路の出力電圧への影響を最小にすることができる。
 また、ΔΣ変調器55の非サンプルリング期間に本断線検出回路72は動作するのでΔΣ変調器55に断線検出回路72の動作が影響することはない。また、逆に断線検出回路72にΔΣ変調器55の動作が影響することもない。
 また、ブリッジ回路の出力電圧の検出回路にΔΣ変調器55を使用した場合、出力信号を通常のセンサ出力として出力し得ない値に固定することがアンド回路のみで行えるので非常に容易である。
 次に、本発明の第7の実施例であるブリッジ回路の断線検出回路を図10により説明する。なお、図10は第7の実施例のブリッジ回路の断線検出回路の回路図である。なお、本実施例は第6の実施例の定電流源75,76をスイッチ85,87およびコンデンサ86,88によって構成されるスイッチド・キャパシタ回路に置き換えたものである。
 本実施例では定電流源75,76をスイッチド・キャパシタ回路に置き換えることで、定電流源75,76を使用するよりも高速な検出を可能にした。これは、スイッチド・キャパシタ回路の方が定電流源よりもインピーダンスが小さいからである。このことによりΔΣ変調器55の動作クロックの高速化を可能にでき、ΔΣ変調器55の精度および応答性の改善を図ることが可能である。
 次に、本発明の第8の実施例である断線検出手段を有するシステムを図11により説明する。なお、図11は第8の実施例の断線検出手段を有するシステムの構成図である。
 本実施例では空気流量Qを検出するエアフローセンサ89と、吸気温度Taを検出する吸気温度センサ90と、吸気温度センサ90の断線を検出する断線検出器91と、エアフローセンサ89の出力信号である空気流量Qを吸気温度センサ90の出力信号である吸気温度Taによって補正する補正回路92と、断線検出器91が断線と検出した場合に補正回路92に渡す吸気温度Taの信号を25℃に固定する切換え回路93により構成される。
 本実施は吸気温度センサ90が断線し極端に誤差の大きな信号を出した場合に補正回路92で過剰な補正処理が行われ、センサ出力(空気流量信号)に極端に誤差の大きな信号を出力しないようにしたシステムである。本実施例では吸気温度センサ90が断線した場合には補正回路92に与える吸気温度Taの信号を25℃に切換え回路93で固定することで極端な補正を防いだ。こうすることで吸気温度センサ90が断線してもセンサ出力の誤差を抑えることが可能である。特に、自動車の吸入空気量を計測するエアフローセンサではエアフローセンサの誤差が大きいとエンジンが始動しなくなると言う致命的な現象が生じる。特に、エアフローセンサ89が故障していないにも関わらず、吸気温度センサ90の故障でセンサ出力が極端に異常になることは避ける必要があり、本システムではこれを避けることが可能である。
 次に、本発明の第9の実施例である断線検出手段を有するシステムを図12により説明する。なお、図12は第9実施例の断線検出手段を有するシステムの構成図である。なお、本実施例は第8の実施例である断線検出手段を有するシステムの切換え回路93を切換え回路94に変更した断線検出手段を有するシステムである。
 本実施例では切換え回路93を切換え回路94に変更し、吸気温度センサが断線した場合には補正回路92を迂回させることで極端な補正を防いだ。こうすることで吸気温度センサ90が断線してもセンサ出力の誤差を抑えることが可能である。
 次に、本発明の第10の実施例である断線検出手段を有するシステムを図13により説明する。なお、図13は第10の実施例の断線検出手段を有するシステムの構成図である。なお、本実施例は第8の実施例である断線検出手段を有するシステムに回路温度センサ95を付加して切換え回路93の断線時の切換え先を変更した断線検出手段を有するシステムである。
 本実施例では回路温度センサ95を付加して切換え回路93の断線時の切換え先を変更し、吸気温度センサが断線した場合には補正回路92の切換え先を回路温度センサ95にすることで極端な補正を防いだ。これは定常状態では吸気温度Taと回路温度Tlsiとの間に大きな差が無いことを利用している。こうすることで吸気温度センサ90が断線してもセンサ出力の誤差を抑えることが可能である。
1,35,50 検出素子
2,3,4,5,15,16,17,18,36,37,51,52,53,54 センサ素子抵抗
6,21,39,67 増幅器
7,40,93,94 切換え回路
8,8a,8b,8c,41,46 断線検出回路
9,10,19,20 抵抗
11,38,43,45,48,81 基準電圧源
12,13,44,49,69,82,83 比較器
14,84 オア回路
22,42,47,75,76 定電流源
23,24,25 トランジスタ
26,28,29,30,31,32,56,58,59,60,61,62,63,65,73,74,77,78,85,87 スイッチ
27,33,34,57,64,66,68,79,80,86,88 コンデンサ
55 ΔΣ変調器
70 局部DA変換器
71 アンド回路
72 断線検出回路
89 エアフローセンサ
90 吸気温度センサ
91 断線検出器
92 補正回路

Claims (21)

  1.  物理量に応じて抵抗値が変化するセンサ素子抵抗と、前記センサ素子抵抗を含む複数の抵抗から構成されるブリッジ回路と、前記ブリッジ回路の中間電圧を外部に取り出す出力端子と、前記出力端子から取り出された前記中間電圧を検出するブリッジ出力検出回路とを有し、前記出力端子に接続されるブリッジ回路の断線検出回路において、
     前記断線検出回路は、
     前記ブリッジ回路の出力端子から所定の電位に対して電流を流す通電手段と、
     前記ブリッジ回路の出力端子の電位と前記所定の電位との電位差を検出する電位差検出手段と、
     前記電位差検出手段の出力に基づいて断線を検出する断線検出手段と、を有することを特徴とするブリッジ回路の断線検出回路。
  2.  請求項1に記載のブリッジ回路の断線検出回路において、
     前記断線検出手段が断線と検出した時に前記ブリッジ出力検出回路の出力を電源電圧あるいはグランド電圧に固定する切換え手段を有することを特徴とするブリッジ回路の断線検出回路。
  3.  請求項1または2のいずれかに記載のブリッジ回路の断線検出回路において、
     前記通電手段は、前記出力端子に接続されることを特徴とするブリッジ回路の断線検出回路。
  4.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記出力端子と前記通電手段、および、前記出力端子と前記ブリッジ出力検出回路との間にそれぞれ切換えスイッチを設けたことを特徴とするブリッジ回路の断線検出回路。
  5.  請求項4に記載のブリッジ回路の断線検出回路において、
     前記切換えスイッチは、前記ブリッジ出力検出回路と前記通電手段とが交互に切換わるタイミングでスイッチ動作することを特徴とするブリッジ回路の断線検出回路。
  6.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記ブリッジ回路の電源端子の電圧が前記通電手段の所定の電位に対して低電位であることを特徴とするブリッジ回路の断線検出回路。
  7.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記ブリッジ回路の接地端子の電圧が前記通電手段の所定の電位に対して高電位であることを特徴とするブリッジ回路の断線検出回路。
  8.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記通電手段は、抵抗で構成されたことを特徴とするブリッジ回路の断線検出回路。
  9.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記通電手段は、カレントミラー回路で構成されたことを特徴とするブリッジ回路の断線検出回路。
  10.  請求項3に記載のブリッジ回路の断線検出回路において、
     前記通電手段は、スイッチド・キャパシタ回路で構成されたことを特徴とするブリッジ回路の断線検出回路。
  11.  請求項1に記載のブリッジ回路の断線検出回路において、
     前記ブリッジ出力検出回路は、デルタシグマ変調器であることを特徴とするブリッジ回路の断線検出回路。
  12.  請求項11に記載のブリッジ回路の断線検出回路において、
     前記断線検出手段が断線と検出した時に前記デルタシグマ変調器の出力をハイレベルあるいはローレベルに固定する手段を有することを特徴とするブリッジ回路の断線検出回路。
  13.  請求項11に記載のブリッジ回路の断線検出回路において、
     前記ブリッジ回路の出力端子を前記デルタシグマ変調器の非サンプリング期間に前記通電手段に切換えることを特徴とするブリッジ回路の断線検出回路。
  14.  第1の物理量に応じて信号を出力する第1のセンサと、第2の物理量に応じて信号を出力する第2のセンサと、第2のセンサの出力に応じて第1のセンサ特性を補正する補正手段と、第2のセンサの断線を検出する断線検出手段とを有する物理量検出システムにおいて、
     前記断線検出手段が断線を検出した時に前記補正手段の動作を変更する変更手段を有することを特徴とする物理量検出システム。
  15.  請求項14に記載の物理量検出システムにおいて、
     前記断線検出手段は請求項1~12に記載の断線検出回路であることを特徴とする物理量検出システム。
  16.  請求項15に記載の物理量検出システムにおいて、
     前記変更手段は、前記断線検出手段が断線を検出した時に前記第2のセンサの出力信号を所定の値に固定して前記補正手段に入力することを特徴とする物理量検出システム。
  17.  請求項15に記載の物理量検出システムにおいて、
     前記変更手段は、前記断線検出手段が断線を検出した時に前記第2のセンサの出力信号を第3のセンサの信号に切換えて前記補正手段に入力することを特徴とする物理量検出システム。
  18.  請求項15に記載の物理量検出システムにおいて、
     前記変更手段は、前記断線検出手段が断線を検出した時に前記補正手段の動作を停止することを特徴とする物理量検出システム。
  19.  請求項14に記載の物理量検出システムにおいて、
     前記第1のセンサが空気流量を検出するセンサであることを特徴とする物理量検出システム。
  20.  請求項14に記載の物理量検出システムにおいて、
     前記第2のセンサが空気温度を検出するセンサであることを特徴とする物理量検出システム。
  21.  請求項17に記載の物理量検出システムにおいて、
     前記第3のセンサが回路温度を検出するセンサであることを特徴とする物理量検出システム。
PCT/JP2011/064137 2010-06-25 2011-06-21 ブリッジ回路の断線検出回路および断線検出手段を有するシステム WO2011162240A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11798124.1A EP2587270B1 (en) 2010-06-25 2011-06-21 Circuit for detecting disconnection of bridge circuit
US13/806,827 US9229040B2 (en) 2010-06-25 2011-06-21 Disconnection detection circuit for bridge circuit and system including disconnection detecting means
CN201180030636.5A CN102959411B (zh) 2010-06-25 2011-06-21 桥电路的断路检测电路和具有断路检测单元的系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010144413A JP5517777B2 (ja) 2010-06-25 2010-06-25 ブリッジ回路の断線検出回路および断線検出手段を有するシステム
JP2010-144413 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162240A1 true WO2011162240A1 (ja) 2011-12-29

Family

ID=45371423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064137 WO2011162240A1 (ja) 2010-06-25 2011-06-21 ブリッジ回路の断線検出回路および断線検出手段を有するシステム

Country Status (5)

Country Link
US (1) US9229040B2 (ja)
EP (1) EP2587270B1 (ja)
JP (1) JP5517777B2 (ja)
CN (1) CN102959411B (ja)
WO (1) WO2011162240A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471737A (zh) * 2013-09-02 2013-12-25 深圳市大族激光科技股份有限公司 热电偶温度检测系统
EP2728766A1 (en) * 2012-10-30 2014-05-07 LSIS Co., Ltd. Disconnection detecting apparatus and method
CN104487806A (zh) * 2012-07-25 2015-04-01 日立汽车系统株式会社 传感器件

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071592A1 (en) * 2012-09-10 2014-03-13 Electric Power Research Institute, Inc. Apparatus and method for monitoring substation disconnects and transmission line switches
JP5851973B2 (ja) 2012-11-02 2016-02-03 日立オートモティブシステムズ株式会社 熱式流量計
JP6012515B2 (ja) * 2013-03-15 2016-10-25 日立オートモティブシステムズ株式会社 ガスセンサ
EP2787331B1 (en) 2013-04-01 2018-12-26 ams AG Sensor arrangement for light sensing and temperature sensing and method for light sensing and temperature sensing
JP2015118068A (ja) * 2013-12-20 2015-06-25 株式会社ノーリツ アナログ信号入力回路
US9322732B2 (en) * 2014-01-17 2016-04-26 Hamilton Sundstrand Corporation Strain gauge pressure sensor circuit with sensor disconnect detection
JP6450223B2 (ja) * 2015-03-06 2019-01-09 エイブリック株式会社 センサ装置及びその検査方法
CN104793096A (zh) * 2015-04-07 2015-07-22 上海新时达电气股份有限公司 电子器件的工作状态检测电路
JP6603695B2 (ja) * 2017-09-15 2019-11-06 矢崎総業株式会社 異常検出装置
KR102443076B1 (ko) * 2017-09-29 2022-09-14 주식회사 만도 차량, 전자 제어 장치 및 전자 제어 장치 제어방법
JP6909764B2 (ja) * 2018-08-24 2021-07-28 日立Astemo株式会社 流量センサ
CN109781292A (zh) * 2019-01-31 2019-05-21 大禹电气科技股份有限公司 三线制铂热电阻断线检测电路和检测装置及检测方法
JP2021167740A (ja) 2020-04-09 2021-10-21 ミネベアミツミ株式会社 故障検出回路および検出システム
CN113009313B (zh) * 2021-01-29 2022-05-27 南京英锐创电子科技有限公司 传感器诊断装置和传感器检测电路
CN115574854B (zh) * 2022-12-05 2023-04-11 泉州昆泰芯微电子科技有限公司 故障诊断电路装置、诊断方法、计算机、存储介质及程序

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109371U (ja) * 1991-03-06 1992-09-22 日本電気ホームエレクトロニクス株式会社 半導体加速度センサの診断回路
JPH06249730A (ja) 1992-12-30 1994-09-09 Hokuriku Electric Ind Co Ltd センサ用ブリッジ回路
JPH0728502A (ja) * 1993-07-08 1995-01-31 Toshiba Corp プラント制御装置
JPH09312525A (ja) * 1996-05-20 1997-12-02 Toshiba Corp 増幅回路
JP2004093171A (ja) * 2002-08-29 2004-03-25 Tokyo Gas Co Ltd 積算流量計
JP2004226289A (ja) * 2003-01-24 2004-08-12 Hitachi Ltd 熱式空気流量測定装置及びその診断方法
JP2005156193A (ja) * 2003-11-20 2005-06-16 Nec San-Ei Instruments Ltd 変換器の異常検出装置及び変換器の異常検出方法
JP2007121052A (ja) * 2005-10-27 2007-05-17 Nec Electronics Corp 電流検出回路
JP2008245473A (ja) * 2007-03-28 2008-10-09 Mitsuba Corp モータ制御方法及びモータ制御装置
JP2009150655A (ja) * 2007-12-18 2009-07-09 Advics Co Ltd 車両挙動センサ温度補正装置
JP2009276212A (ja) * 2008-05-15 2009-11-26 Advics Co Ltd 車両運動量センサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279164A (en) * 1990-12-18 1994-01-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor pressure sensor with improved temperature compensation
EP0592205B1 (en) * 1992-10-07 1998-01-07 Nec Corporation Semiconductor sensor with fault detecting circuit
JPH081390B2 (ja) * 1992-10-07 1996-01-10 日本電気株式会社 故障検出回路付半導体センサ装置
JP3575573B2 (ja) * 1996-08-28 2004-10-13 株式会社デンソー 熱式空気流量計
JP3478994B2 (ja) * 1999-05-31 2003-12-15 株式会社日立製作所 センサ装置
US6422088B1 (en) * 1999-09-24 2002-07-23 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP2003065876A (ja) * 2001-08-21 2003-03-05 Showa Corp トルクセンサの異常検知装置
JP2003254850A (ja) * 2002-03-01 2003-09-10 Denso Corp 自己診断機能付きセンサ出力処理回路
US6949977B2 (en) * 2003-06-26 2005-09-27 Siemens Medical Solutions, Usa Circuit arrangement having a transimpedance amplifier connected to a current limiter circuit
JP4749132B2 (ja) * 2005-11-21 2011-08-17 富士通セミコンダクター株式会社 センサ検出装置及びセンサ
JP4814209B2 (ja) * 2007-12-21 2011-11-16 オンセミコンダクター・トレーディング・リミテッド Adコンバータ
JP5024259B2 (ja) * 2008-09-30 2012-09-12 株式会社デンソー センサ装置及びセンサ装置の自己診断方法
JP5278114B2 (ja) * 2009-03-31 2013-09-04 株式会社デンソー センサ装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109371U (ja) * 1991-03-06 1992-09-22 日本電気ホームエレクトロニクス株式会社 半導体加速度センサの診断回路
JPH06249730A (ja) 1992-12-30 1994-09-09 Hokuriku Electric Ind Co Ltd センサ用ブリッジ回路
JPH0728502A (ja) * 1993-07-08 1995-01-31 Toshiba Corp プラント制御装置
JPH09312525A (ja) * 1996-05-20 1997-12-02 Toshiba Corp 増幅回路
JP2004093171A (ja) * 2002-08-29 2004-03-25 Tokyo Gas Co Ltd 積算流量計
JP2004226289A (ja) * 2003-01-24 2004-08-12 Hitachi Ltd 熱式空気流量測定装置及びその診断方法
JP2005156193A (ja) * 2003-11-20 2005-06-16 Nec San-Ei Instruments Ltd 変換器の異常検出装置及び変換器の異常検出方法
JP2007121052A (ja) * 2005-10-27 2007-05-17 Nec Electronics Corp 電流検出回路
JP2008245473A (ja) * 2007-03-28 2008-10-09 Mitsuba Corp モータ制御方法及びモータ制御装置
JP2009150655A (ja) * 2007-12-18 2009-07-09 Advics Co Ltd 車両挙動センサ温度補正装置
JP2009276212A (ja) * 2008-05-15 2009-11-26 Advics Co Ltd 車両運動量センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587270A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104487806A (zh) * 2012-07-25 2015-04-01 日立汽车系统株式会社 传感器件
DE112013003667B4 (de) 2012-07-25 2019-05-09 Hitachi Automotive Systems, Ltd. Sensorvorrichtung
EP2728766A1 (en) * 2012-10-30 2014-05-07 LSIS Co., Ltd. Disconnection detecting apparatus and method
CN103792458A (zh) * 2012-10-30 2014-05-14 Ls产电株式会社 断开检测装置和方法
US9312915B2 (en) 2012-10-30 2016-04-12 Lsis Co., Ltd. Disconnection detecting apparatus and method
CN103471737A (zh) * 2013-09-02 2013-12-25 深圳市大族激光科技股份有限公司 热电偶温度检测系统

Also Published As

Publication number Publication date
US20130093432A1 (en) 2013-04-18
JP5517777B2 (ja) 2014-06-11
EP2587270B1 (en) 2021-08-18
CN102959411A (zh) 2013-03-06
JP2012008014A (ja) 2012-01-12
CN102959411B (zh) 2015-06-24
EP2587270A1 (en) 2013-05-01
EP2587270A4 (en) 2018-04-18
US9229040B2 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
JP5517777B2 (ja) ブリッジ回路の断線検出回路および断線検出手段を有するシステム
KR101919256B1 (ko) 전류 측정 동안 참조 전류에 의한 전류 센서들의 캘리브레이션
US9128127B2 (en) Sensor device
JP2004219414A (ja) 絶縁不良を検出する回路および方法
TW201033781A (en) Self auto-calibration of analog circuits in a mixed signal integrated circuit device
WO2018087991A1 (ja) サーミスタ駆動回路
US9638761B2 (en) Magnetic sensor circuit with power supply fluctuation detection
WO2017037780A1 (ja) 電力変換装置、および、半導体装置
JP2008164519A (ja) スイッチングトランジスタの故障検出方法、及び、故障検出回路
KR101740581B1 (ko) 배터리에 대한 전류 감지 회로에서 증폭기들에 대한 보상 기술
US8207778B2 (en) Physical quantity sensor
JP2002257869A (ja) 電流検出回路
US9837997B2 (en) Comparison circuit and sensor device
JP5024259B2 (ja) センサ装置及びセンサ装置の自己診断方法
CN109564139B (zh) 传感器装置
JP2012169712A (ja) チャージアンプ
US10897234B2 (en) Fully differential operational amplifier common mode current sensing feedback
TW201234328A (en) Display driving circuit and operation method applicable thereto
JP4242800B2 (ja) センサ回路
JPH11248756A (ja) フライング・キャパシタ回路
JP2008232636A (ja) 電圧印加電流測定回路
US20220200614A1 (en) Method for precisely detecting a signal for example of a sensor
JP2008203202A (ja) センサ閾値回路
JP2019035634A (ja) 過電流検出機能付き電流センサ
JP2006010337A (ja) 電流検出器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030636.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798124

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011798124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806827

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE