WO2011162125A1 - 前面板付表示パネル、表示装置及び樹脂組成物 - Google Patents

前面板付表示パネル、表示装置及び樹脂組成物 Download PDF

Info

Publication number
WO2011162125A1
WO2011162125A1 PCT/JP2011/063570 JP2011063570W WO2011162125A1 WO 2011162125 A1 WO2011162125 A1 WO 2011162125A1 JP 2011063570 W JP2011063570 W JP 2011063570W WO 2011162125 A1 WO2011162125 A1 WO 2011162125A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
display panel
front plate
monomer
panel
Prior art date
Application number
PCT/JP2011/063570
Other languages
English (en)
French (fr)
Inventor
藤井 暁義
登喜生 田口
千明 三成
吉澤 隆
勝久 千田
充俊 内藤
英治 片上
翼 椎根
Original Assignee
シャープ株式会社
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 協立化学産業株式会社 filed Critical シャープ株式会社
Priority to KR1020137001253A priority Critical patent/KR101476063B1/ko
Priority to CN201180030334.8A priority patent/CN102985960B/zh
Priority to US13/805,866 priority patent/US8815406B2/en
Priority to JP2012521430A priority patent/JP5728010B2/ja
Publication of WO2011162125A1 publication Critical patent/WO2011162125A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a display panel with a front plate, a display device, and a resin composition. More specifically, a display panel with a front panel on the front of the display is provided with glass, plastic, etc. from the viewpoint of display surface protection, large display crack prevention, design, and touch panel from the viewpoint of interactiveness.
  • the present invention relates to a display device and a resin composition.
  • a display (display device) that uses a display panel such as a liquid crystal panel is indispensable from business use to general household use.
  • Various things up to large size such as information displays have been proposed and put into practical use.
  • Some of these displays have a touch panel installed on the front of the display in view of the importance of not only display but also interactiveness in recent years.
  • liquid crystal panels use thin glass as a substrate, and depending on the application, glass or a transparent plastic plate is installed on the front surface to protect the display surface or to make it difficult to break on large displays.
  • a glass plate is installed on the front surface of the display because it is desired that the surface is hard, glossy and flat from the viewpoint of design.
  • a front plate Glass, plastic, a touch panel, etc. (hereinafter referred to as a front plate) installed on the front of these displays have been installed with a gap in front of the display surface, that is, the surface on which the polarizing plate is bonded.
  • the display image appears double due to the reflection on the display side (inside) of the front plate and the refractive index interface between the polarizing plate surface and the air.
  • the problem is that either an anti-reflection coating is applied to each surface or the air layer is formed on the front plate or polarizing plate.
  • a resin elastic modulus after curing in order to eliminate unevenness generated on the display due to stress caused by shrinkage generated when the front plate is bonded and the resin is cured. It is disclosed that the value is set to a certain value or less (see, for example, Patent Document 3).
  • a liquid crystal panel with a front panel is made with a guide so that it becomes a dam around the resin filled between the front panel and the liquid crystal panel, and a photo-curable resin is buried in it and bonded together Is disclosed (for example, see Patent Document 4).
  • a liquid crystal display element in which liquid crystal is held between a counter substrate and a transparent substrate, an optical film provided on the transparent substrate of the liquid crystal display element and having a smaller outer dimension than the transparent substrate, the optical film, and the optical
  • a display device including a transparent plate bonded to the surface of the transparent substrate on the outer periphery of the film via a photocurable transparent adhesive (see, for example, Patent Document 5).
  • a method of manufacturing a display device comprising a liquid crystal display element in which liquid crystal is sealed in a gap between a transparent substrate and a counter substrate, and a transparent touch switch, wherein the transparent touch switch or the display surface of the liquid crystal display element is transparently bonded
  • a method of manufacturing a display device including a step of applying an agent is disclosed (for example, see Patent Document 6).
  • the maximum loss tangent (tan ⁇ ) of the adhesive layer in the optical laminate obtained by sequentially laminating the antireflection film, polarizing film, adhesive layer, liquid crystal display glass cell, adhesive layer and polarizing film.
  • An optical laminated body in which the ratio (B / A) between the value A and the maximum loss tangent B of the adhesive layer is 1.1 or more is disclosed (for example, see Patent Document 7).
  • the maximum value of the loss tangent is the dynamic storage elastic modulus (E ′) obtained by heating the pressure-sensitive adhesive layer in the range from ⁇ 70 ° C. to 200 ° C. at a rate of temperature increase of 4 ° C./min and a frequency of 1 Hz.
  • UV curable resin In a display panel having a front plate, for example, when the front plate is bonded to a large display with an ultraviolet curable resin (UV curable resin), shrinkage that occurs during the curing process becomes a problem. As described in Patent Document 3 described above, the liquid crystal display is certainly distorted by stress due to curing shrinkage and display unevenness occurs. Therefore, lowering the elastic modulus is one means.
  • UV curable resins generally have a shrinkage rate of 4 to 5%, and there are examples in which the elastic modulus is lowered and the viscosity remains after curing, or in a gel form.
  • unevenness generated in the display surface may be randomly generated in the surface, but streaky unevenness (peripheral stripes) generated along the display outer periphery is also present.
  • the unevenness that occurs randomly in the surface is relatively easy to deal with because it eliminates the unevenness of the coating thickness by eliminating the unevenness of the coating thickness, reducing the elastic modulus, and decreasing the shrinkage of curing.
  • peripheral streaks hereinafter also referred to as peripheral unevenness, or uneven stripes around the display area, etc.
  • Peripheral streaks are thought to be generated by the following mechanism.
  • the followability is good and no warpage occurs (cross-sectional view of FIG. 14).
  • UV curing ultraviolet curing
  • the resin shrinks when cured with UV light, and it is considered that the panel is pulled in the center direction due to the curing shrinkage.
  • the glass of the front plate is thicker than the liquid crystal panel and is considered to be hard with respect to the liquid crystal panel, the liquid crystal panel is relatively stressed and distorted. Accordingly, the panel warps in the direction of being concave on the resin side.
  • the liquid crystal panel is generally composed of two glass substrates (TFT side glass and color filter side glass), it is 2 due to glass bending. There will be a dimensional difference between the sheets of glass. Further, the liquid crystal panels are bonded to each other by a sealing resin near the end face and fixed to each other. Therefore, in this case, in order to eliminate the dimensional difference, the CF side substrate close to the front plate is distorted so that the end surface is wavy, which causes a change in the thickness of the liquid crystal cell, resulting in peripheral streaks (peripheral uneven portions 31). This is considered (FIG. 15). Here, the portion where the cell thickness is thick becomes the white uneven portion 31a, and the portion where the cell thickness is thin becomes the black uneven portion 31b.
  • the panel Along with the shrinkage, the panel receives a stress in the same direction as that during the curing shrinkage, and is bent to cause a stripe.
  • the state is different from the same stress relationship when UV-cured at room temperature, it is considered that the state of the peripheral streak changes compared to that after UV-curing, and it is likely to be observed.
  • thermosetting the high temperature at which the thermosetting reaction is promoted is the starting point without stress, and the shrinkage stress caused by the polymerization due to the curing reaction and the stress caused by the difference in thermal expansion coefficient when the temperature drops from the reaction are generated. is there.
  • the stress due to resin shrinkage changes the peripheral cell thickness near the edge, and the conditions such as the relationship between the voltage and transmittance in the cell change locally. It has been found that there is a new problem that this streak may become clear after a high temperature heat history. For example, in the display device having the cross-sectional structure shown in FIG.
  • stripes are recognized around the display area. Specifically, white and black stripes are generated at the end of the panel. In FIG. 18, uneven stripes are generated around the display area in the range of 5 to 10 mm with parentheses.
  • Patent Document 7 describes that an acrylic resin material has been devised in order to correct a display defect due to stress for an adhesive resin (adhesive, glue) used for a polarizing plate of a liquid crystal panel.
  • adhesive resin adhesive, glue
  • a polarizing plate adhesive layer on both sides of the panel that is, a resin layer between a panel substrate and a polarizing film (polarizing plate) is an object. That is, there is no description about the resin used between the panel and the front plate, and no suggestion about peripheral unevenness. Furthermore, there is no description of the technical significance of defining the range for tan ⁇ , in other words, there is no logical description of why it is defined, and it is not recognized at all how it is related to the peripheral unevenness. .
  • Patent Document 8 describes an optical resin composition having shock absorption necessary for protecting an image display device and having adhesive strength with excellent moisture resistance reliability. There is no suggestion about.
  • the transparent sheet was obtained and it was bonded to the liquid crystal panel, the malfunction by the cure shrinkage at the time of forming a hardening body layer from a resin composition does not become a problem.
  • An object of the present invention is to provide a display panel with a front plate and a display device that can improve display quality by being suppressed.
  • the present inventors have made various studies on a display panel with a front panel having a resin composition cured body layer between the front panel and the display panel without forming a gap between the front panel and the display panel, and a display device constituted by the panel.
  • peripheral unevenness occurs in addition to the conventional display unevenness associated with the curing shrinkage of the resin composition. Further, the peripheral unevenness is observed even after the heat history is applied by using the display panel (after the reliability test). It turns out that there is a new problem that arises. These are presumed to be due to the situation in the periphery of the display panel being different from the central part.
  • the present invention is a display panel with a front plate in which the front plate is disposed via a resin composition cured body layer, and the resin composition cured body layer has a loss tangent of 2 or less at 0 to 70 ° C.
  • a display panel with a front panel is a display panel with a front plate in which the front plate is disposed via a resin composition cured body layer, and the resin composition cured body layer has a loss tangent of 2 or less at 0 to 70 ° C.
  • the loss tangent of the cured resin composition layer at 0 to 70 ° C. is 2 or less.
  • the loss tangent (tan ⁇ ) is a ratio of the loss elastic modulus to the storage elastic modulus after the resin composition is cured, and can be obtained by (loss elastic modulus) / (storage elastic modulus).
  • 0 to 70 ° C. is the operating temperature range of the display panel.
  • the loss tangent is 0.2 or more.
  • the resin is adjusted so that the storage elastic modulus after curing is reduced and the ratio to the loss elastic modulus is about 0.2 to 2 in the operating temperature range. This is equivalent to increasing the shearing property of the resin, making it easier for the resin to move along the internal stress, and leaving the resin molecules in a state that does not undergo phase transition such as liquefaction. growing).
  • tan ⁇ not exceed 2.0 in the above operating temperature range, it is possible to make it difficult to cause a phase change or a phase change physical property change in the operating temperature range.
  • cured material can fully be suppressed.
  • the operating temperature range is high (usually around 60 ° C.)
  • the resin gradually transitions to a rubber-like shape, resulting in a state where the followability is improved. It can be.
  • the internal stress can be easily relaxed, or the intermolecular cross-linking can be maintained, and the resin can be left in a molecular skeleton.
  • the lower limit value of tan ⁇ is preferably 0 or more, and more preferably 0.2 or more as described above, but this makes it possible to make the cured body elastically sufficiently soft.
  • tan ⁇ may have a maximum in the use temperature range (0 to 70 ° C.) or may not have a maximum.
  • the said resin composition hardening body layer is formed from the resin composition containing a monomer component.
  • the cured resin composition layer is used to fill a gap between the front plate and the display panel, or to adhere and bond the front plate to the display panel.
  • a structural component of the resin composition forming the cured resin composition layer one containing a monomer and an oligomer is preferable.
  • a plasticizer is suitable.
  • the monomer one or more (meth) acrylate monomers as shown in Table 1 described later can be used.
  • oligomer it is a dimer or more multimer which consists of 1 type, or 2 or more types of monomer units, and what is normally used as an oligomer with a monomer in the resin composition of an optical use can be used, for example, And those having a weight average molecular weight of 500 to 100,000.
  • the said resin composition may contain the crosslinking agent which is a compound which has two or more (meth) acryloyl groups in a molecule
  • numerator as a monomer component.
  • a polymer may be included.
  • a polymerization initiator is used.
  • the polymerization initiator for example, photopolymerization initiators such as benzophenone compounds, anthraquinone compounds, benzoin compounds, sulfonium salts, diazonium salts, and onium salts can be used as long as they are photopolymerization by ultraviolet irradiation.
  • the thermal polymerization initiator an organic peroxide, an azo compound, or the like can be used. These can use 1 type (s) or 2 or more types.
  • the blending amount of the polymerization initiator is preferably 0.01 to 10% by mass, more preferably 0.1 to 7% by mass in 100% by mass of the resin composition, and 1 to 5% by mass. More preferably it is.
  • the cured resin composition layer is formed from a resin composition containing a monomer component, and (1) the monomer component is composed of a monomer having a glass transition temperature other than 20 to 80 ° C. Or, specifically, the monomer component is composed of a monomer having a glass transition temperature of 20 ° C. or lower and / or a monomer having a glass transition temperature of 80 ° C. or higher, or (2) the above The monomer component is composed of a monomer having a glass transition temperature of 20 to 80 ° C.
  • the glass transition temperature is 80 ° C. or higher with respect to 100% by mass of the resin composition. This is a form in which the monomer is 3% by mass or more.
  • the glass transition temperature of a monomer is a glass transition temperature when it is set as a homopolymer (homopolymer).
  • the compatibility with the polymer blend is first described below.
  • the polymer blend state described below conceptually indicates the state of the cured resin composition, and is inferred to explain the configuration of the resin composition for achieving the above tan ⁇ range.
  • FIG. 19 is a graph showing the storage elastic modulus with respect to temperature in a completely compatible resin composition cured body and an incompatible resin composition cured body.
  • 20 and 21 are schematic views showing a cured resin composition in an incompatible state (sea-island structure).
  • FIG. 22 is a schematic diagram showing the resin composition cured body 123 in a compatible state.
  • polymer A and polymer B are in an incompatible state
  • a transition point of polymer A and a transition point of polymer B are generated.
  • the polymer A and the polymer B are in a compatible state (FIG.
  • the graph showing the storage elastic modulus with respect to temperature in the cured resin composition has only a transition point derived from the glass transition temperature.
  • the UV curable resin is usually an assembly of random copolymers. In such a random copolymer, a polymer group having different temperature characteristics exists in a sea-island structure. That is, it is a type of resin in which the transition point of polymer A and the transition point of polymer B are generated.
  • the resin used in the present invention is usually a type of resin (UV curable resin) in which such a transition point of the polymer A and a transition point of the polymer B are generated.
  • a preferred form of the cured resin composition layer is one formed from a resin composition containing a monomer component, and the monomer component is a form composed of a monomer having a glass transition temperature other than 20 to 80 ° C. .
  • the monomer having a glass transition temperature other than 20 to 80 ° C. is a monomer having a glass transition temperature of 20 ° C. or lower and / or a monomer having a glass transition temperature of 80 ° C. or higher. More preferably, it includes an oligomer component and a monomer component, and the monomer component is configured as described above.
  • the oligomer normally used has a glass transition temperature lower than 40 degreeC. When a monomer having a glass transition temperature of 20 ° C.
  • the transition point is generated so as to overlap with the transition point of the sea polymer 122 (mutation point appearing first when viewed from the low temperature side).
  • a transition point is generated at 80 ° C. or higher other than the transition point of the sea polymer 122. Any form or a combination of these can prevent the transition point from occurring at 20 to 80 ° C.
  • a preferred form of the resin composition cured body layer is also formed from a resin composition containing a monomer component.
  • the monomer component includes a monomer having a glass transition temperature of 20 to 80 ° C. and a glass transition temperature of 80 ° C.
  • a monomer having a glass transition temperature of 80 ° C. or higher is 3% by mass or more with respect to 100% by mass of the resin composition. More preferably, it includes an oligomer component and a monomer component, and the monomer component is configured as described above. Even in such a form, the mutation point can be shifted to a higher temperature side than when only a monomer having a glass transition temperature of 20 to 80 ° C. is used. A transition point will occur. In other words, it is possible to prevent the transition point from occurring at 20 to 80 ° C., thereby achieving the loss tangent value in the present invention.
  • a preferable embodiment of the present invention includes an embodiment in which the cure shrinkage rate of the resin composition is lowered and the initial cure shrinkage stress is reduced. That is, in the present invention, the resin composition cured body layer preferably has a volume shrinkage ratio (also referred to as a curing shrinkage ratio) of 4.5% or less when the resin composition becomes a cured body.
  • the curing reaction usually proceeds near room temperature when the resin composition becomes a cured product, so that the contribution by temperature is small and the cure shrinkage rate of the resin is a stress-generating driving. It can be a force.
  • the initial cure shrinkage stress can be reduced, and after cure shrinkage when the resin composition becomes a cured body
  • the unevenness around the display area can be suppressed.
  • a suitable lower limit is 3.3% or more.
  • the resin composition cured body layer is also a product of volume shrinkage (%) when the resin composition becomes a cured body and storage elastic modulus (MPa) in the resin composition cured body layer (in the present specification, A mode in which the shrinkage rate * also referred to as elastic modulus) is 0.16 or less at 60 ° C. is preferable. A more preferable form is 0.1 or less. A suitable lower limit of the product is 0.005 or more. Thereby, coupled with the reduction in the curing shrinkage rate, distortion can be suppressed, and the generation of peripheral streaks can be more effectively suppressed.
  • the storage elastic modulus of the resin composition is preferably small in a wide temperature range and small overall. For example, at 60 to 100 ° C., the storage elastic modulus is preferably 0.03 MPa or less. More preferably, it is 0.02 MPa or less, and still more preferably, 0.01 MPa or less.
  • the shrinkage rate contributes to the generation of stress during curing from a liquid, but the movement in the operating temperature range after curing is considered to have a large contribution of the elastic modulus.
  • the product of the elastic modulus and the shrinkage rate is a value intended to serve as a measure of strain.
  • the formula log ⁇ It is preferable to satisfy ⁇ 6.6 ⁇ 10 ⁇ 3 x + 0.53.
  • curing shrinkage stress.
  • a Poisson's ratio (adhesive is about 0.4 to 0.5).
  • E an elastic modulus (storage elastic modulus).
  • V represents a curing shrinkage rate (volume shrinkage rate when the resin composition becomes a cured body).
  • the range of x satisfying the above formula is, for example, 10 or more as a lower limit, and preferably 25 or more.
  • the upper limit of x is, for example, 80 or less, preferably 60 or less.
  • the measurement conditions for the storage elastic modulus and the loss elastic modulus are preferably as follows.
  • the storage elastic modulus and loss elastic modulus were measured using a dynamic viscoelasticity measuring device (DMS-6100, manufactured by Seiko Instruments Inc.), test piece 50 ⁇ 10 ⁇ 4 mm, measurement temperature ⁇ 100 to 100 ° C. (temperature increase rate) 2 ° C./min), frequency 1 Hz, and mode tension. Further, tan ⁇ was calculated from the ratio between the measured storage elastic modulus and loss elastic modulus.
  • DMS-6100 dynamic viscoelasticity measuring device
  • a plasticizer usually used in the technical field of the present invention can be used.
  • the plasticizer include the following. Examples include polymers, oligomers, phthalates, castor oils and the like that are compatible with non-reactive components.
  • the oligomer or polymer include polyisoprene-based, polybutadiene-based, and xylene-based oligomers or polymers.
  • These softening ingredients are commercially available from Kuraray as the LIR series and from Degussa as the polyoil series. These softening components can be used alone or in combination of two or more.
  • the non-reactive component preferably has a phase transformation temperature and a phase change temperature higher than the phase transformation temperature and the phase change temperature of the skeleton-forming component (oligomer and monomer component). As a result, it is possible to prevent the occurrence of uneven stripes due to the phase transformation / phase change of the non-reactive component.
  • the mixing ratio of the skeleton-forming component and the non-reacting component is preferably 30:70 to 70:30 by mass ratio. More preferably, it is 40:60 to 60:40.
  • the resin composition cured body layer in the present invention may be formed between the front plate and the display panel.
  • the resin composition is applied or filled, and the front plate and the display panel are bonded to each other.
  • the composition is cured to form a cured resin composition layer.
  • the resin composition is suitably applied to a form in which the resin composition is applied to the front plate and / or the display panel, or is cured after being filled in the gap between the front plate and the display panel.
  • the cured resin composition layer may be formed by sandwiching a sheet (also referred to as a sheet-like resin or an adhesive sheet) in a state where the resin composition is cured between the front plate and the display panel.
  • the resin composition When the resin composition is applied or filled, after the resin composition is applied to either or both of the front plate and display panel of the bonding surface, the front plate and the display surface are bonded to each other via the resin composition. It is common to combine and then cure with UV light.
  • an adhesive sheet use a sheet-shaped resin sandwiched with a transparent film. For example, first paste the sheet-like resin on the front plate, then paste the display surface and the sheet-like resin surface on the front plate. Is done.
  • the sheet-like pressure-sensitive adhesive uses a resin that has been crosslinked (cured). Therefore, instead of shrinkage due to curing, the UV curing type shrinks due to a reaction during crosslinking. Therefore, in the UV curable type, a display panel such as a liquid crystal display is distorted by a stress generated by curing shrinkage, and display unevenness occurs.
  • the sheet-like pressure-sensitive adhesive may be held by a film, which requires a process to finish in this form, and these films are discarded during the process, so they are more expensive than the resin alone.
  • thermosetting resin the high temperature at which curing is started is a point where there is no stress, and the stress as described above is generated due to the temperature drop after curing.
  • the present invention peripheral unevenness due to such curing shrinkage can be suppressed, and unevenness after high-temperature heat history can be effectively suppressed. Therefore, the present invention is suitably applied when using a UV curing type.
  • the front panel that constitutes the display panel is provided with glass, plastic, etc. from the viewpoint of protection of the display surface, prevention of cracking of the large display and design from the front of the display, and a touch panel from the viewpoint of interactiveness. It is composed of glass, plastic, touch panel and the like.
  • the thickness of the front plate of the large TV display is usually 1 mm or more. Preferably, it is 2.5 to 3.0 mm.
  • the transparent substrates (such as glass substrates) of the pair of substrates constituting the liquid crystal display panel are usually 0.4 to 1.0 mm.
  • This invention is also a display apparatus provided with the display panel with a front plate of this invention.
  • the suitable form of the display apparatus of this invention is the same as the suitable form of the display panel with a front plate of this invention mentioned above.
  • Examples of such a display device include a liquid crystal display device, an EL (Electroluminescence) display device, a plasma display, and the like, which can be applied from a small size such as a mobile phone or a game machine to a large size such as a TV or an outdoor information display.
  • it is suitable as a standard touch panel display device. From the viewpoint of sufficiently reducing the creep property, it is preferable that a mechanism for supporting the panel is provided on the housing side (the side opposite to the display surface side).
  • Other components are not particularly limited.
  • the present invention is also a resin composition used for forming the cured resin composition layer of the display panel with a front panel of the present invention.
  • the suitable form of the resin composition of this invention is the same as the suitable form of the resin composition in the display panel with a front plate of this invention described in this specification.
  • Other constituent components are not particularly limited as long as the effects of the present invention are exhibited.
  • the display panel with a front plate and the display device of the present invention it is possible to sufficiently eliminate the uneven stripes around the display area.
  • FIG. 1 is a schematic cross-sectional view illustrating a liquid crystal display panel with a front plate according to Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating a liquid crystal display panel with a front plate according to Embodiment 1.
  • FIG. It is a schematic diagram which shows the resin composition hardening body which has a sea-island structure which concerns on Embodiment 1.
  • FIG. It is a graph which shows the storage elastic modulus with respect to temperature in the resin composition hardening body which has the sea-island structure shown in FIG.
  • It is a graph which shows the loss tangent (tan-delta) with respect to temperature in the resin composition hardening body which has the sea-island structure shown in FIG.
  • FIG. 1 It is a schematic diagram which shows the sea island structure of the resin composition hardening body which concerns on Embodiment 1.
  • FIG. 2 is a schematic diagram which shows the sea island structure of the resin composition hardening body which concerns on Embodiment 1.
  • FIG. 2 is a schematic diagram which shows the sea island structure of the resin composition hardening body which concerns on Embodiment 1.
  • FIG. It is a graph which shows the storage elastic modulus with respect to the temperature of a resin composition hardening body. It is a graph which shows the loss elastic modulus with respect to the temperature of a resin composition hardening body. It is a graph which shows the loss tangent (tan-delta) with respect to the temperature of a resin composition hardening body.
  • group It is a schematic diagram which shows the resin composition hardening body of an incompatible state (sea island structure). It is a schematic diagram which shows the resin composition hardening body of an incompatible state (sea island structure). It is a schematic diagram which shows the resin composition hardening body of a compatible state.
  • the glass transition temperature (Tg) of 20 to 80 ° C. means that the glass transition temperature is higher than 20 ° C. and lower than 80 ° C.
  • the other numerical ranges indicated by “to” include an upper limit value and a lower limit value.
  • FIG. 1 is a schematic cross-sectional view illustrating a liquid crystal display panel with a front plate according to the first embodiment.
  • FIG. 1 schematically shows a cross section taken along line AA ′ of the liquid crystal display panel shown in FIG. 2 to be described later.
  • FIG. 1 shows a display panel 100 with a front panel in which a front glass 10 that is a front panel is installed via an adhesive resin 11 that is a cured resin composition layer.
  • the adhesive resin 11 is provided on the polarizing plate 13 installed on the display surface side (viewer side) of the liquid crystal display panel 14.
  • a polarizing plate 15 and a backlight unit 16 are provided in this order.
  • the liquid crystal display panel 14 and the backlight unit 16 are joined via, for example, a frame.
  • the thickness of the front plate can usually be 2.5 mm or more and 3.0 mm or less.
  • the thickness of the cured resin composition layer is usually 0.05 to 15 mm when the front plate and the display surface are bonded to each other through the resin composition and then cured with UV light or the like. In a more preferred embodiment, the thickness can be 0.1 to 0.5 mm.
  • the transparent substrates (such as glass substrates) of the pair of substrates constituting the liquid crystal display panel can usually be 0.4 to 1.0 mm.
  • the thickness can be set to 0.1 to 1 mm, for example.
  • FIG. 2 is a schematic plan view illustrating the liquid crystal display panel with a front plate according to the first embodiment.
  • the polarizing plate 13 on the display surface side of the liquid crystal display panel 14 and the polarizing plate 15 on the back side of the liquid crystal display panel 14 are usually attached to be smaller than the outer periphery of the liquid crystal display panel 14. Yes.
  • the cured resin composition layer has a loss tangent at 0 to 70 ° C. of 0.2 or more and 2 or less.
  • the cured resin composition in the liquid crystal display panel of Embodiment 1 can be cured at 20 to 30 ° C., for example.
  • the resin composition has an early-curing component and a delayed-curing component in the curing reaction, whereby the early-curing component cures at an early stage to determine the volume, and the volume contraction rate when the resin composition becomes a cured body. And a desired elastic modulus after curing can be obtained by the delayed curing component. It is also possible to reduce creep properties.
  • FIG. 3 is a schematic view showing a cured resin composition having a sea-island structure according to the first embodiment.
  • FIG. 4 is a graph showing the storage elastic modulus with respect to temperature in the cured resin composition having the sea-island structure shown in FIG.
  • FIG. 5 is a graph showing the loss tangent (tan ⁇ ) with respect to temperature in the cured resin composition having the sea-island structure shown in FIG.
  • the cured resin composition layer is formed from a resin composition containing a monomer component, and the monomer component is composed of a monomer having a glass transition temperature other than 20 to 80 ° C. is there. As a result, as shown in FIG.
  • the monomer component is preferably in the form of a monomer having a glass transition temperature of 20 ° C. or lower and a monomer having a glass transition temperature of 80 ° C. or higher.
  • the cured resin composition layer is formed from a resin composition containing a monomer component.
  • the monomer component includes a monomer having a glass transition temperature of 20 to 80 ° C., a monomer having a glass transition temperature of 80 ° C. or higher, and the like.
  • the monomer composition having a glass transition temperature of 80 ° C. or more and 3% by mass or more with respect to 100% by mass of the resin composition may be used.
  • the loss tangent can be suitably adjusted to achieve the loss tangent range of the first embodiment.
  • 6 to 8 are schematic views showing the sea-island structure of the cured resin composition according to the first embodiment. 6 to 8 schematically show that the island polymer ratio decreases in this order. By setting the island polymer ratio to 20% or less, it is possible to suitably adjust the loss tangent and achieve the loss tangent range of the first embodiment.
  • Examples of monomers (monomers) that can be used in the resin composition of Embodiment 1 are shown in Table 1 below.
  • the monomers shown in Table 1 can be appropriately used in consideration of the glass transition temperature and the blending ratio of the monomers.
  • non-reactive component that can be used in the resin composition of Embodiment 1, those exemplified as the non-reactive component can be used.
  • the phase transformation and phase change temperature of the non-reactive component are on the higher temperature side than that of the skeleton-forming component.
  • Examples 1 to 8, Comparative Examples 1 and 2 The constitutions of the monomer components in the resin compositions forming the resin composition cured body layers in Examples 1 to 8 and Comparative Examples 1 and 2 are shown in Tables 2 and 3 below.
  • Tables 2 and 3 In the following table, in each item of “oligomer”, “monomer A”, “monomer B”, “monomer C”, “monomer D”, “non-reactive component A”, “non-reactive component B”, ⁇ is resin It means that the component was used in the composition, and x indicates that the component was not used in the resin composition.
  • the Tg range of the monomer used is as follows. Monomer A to C: Tg range 20 to 80 ° C., Monomer D: Tg range 80 ° C. or more.
  • FIG. 9 is a graph showing the storage elastic modulus with respect to the temperature of the cured resin composition.
  • the storage elastic moduli of the resin compositions in Examples 1 to 5, 7 and Comparative Example 2 are shown.
  • peripheral unevenness was solved to such a degree that it could be said to be a good product.
  • the peripheral unevenness is substantially eliminated.
  • the elastic modulus is small in a wide temperature range and the elastic modulus is preferably small as a whole among the examples and comparative examples shown in FIG.
  • peripheral unevenness occurred in Comparative Example 2 in which the elastic modulus became extremely small from around room temperature to around 60 ° C.
  • the comparative example 2 requires a state in which the cross-linked molecular skeleton remains because the phase-change in physical properties is observed near 60 ° C.
  • FIG. 10 is a graph showing the loss elastic modulus with respect to the temperature of the cured resin composition.
  • FIG. 11 is a graph showing the loss tangent (tan ⁇ ) with respect to the temperature of the cured resin composition.
  • FIG. 12 is a graph showing a loss tangent (tan ⁇ ) with respect to temperature of the cured resin composition.
  • FIG. 13 is a graph showing the product of the shrinkage rate and the storage elastic modulus with respect to the temperature of the cured resin composition.
  • the physical properties of the cured resin composition of the display panel with a front plate in Examples 1 to 8 and Comparative Examples 1 and 2 are shown in Tables 4 and 5 below.
  • “naked eye OK” means that peripheral unevenness is not observed with the gray scale (32 gradation levels when 256 gradations and white is 255 gradations).
  • the “naked eye level” is a level in which peripheral unevenness is observed with the naked eye, but is not visible when observed through an ND 10% filter (an ND filter with a transmittance of 10%, ND8%, ND5%, ND3% is also the same meaning).
  • ND10% means that no unevenness is observed when observed through an ND10% filter, but peripheral irregularities are visible when observed through an ND8% filter.
  • ND8% indicates that the peripheral unevenness is not observed through the ND8% filter, but the level observed with the ND5% filter is ND5%.
  • the peripheral unevenness is not observed through the ND5% filter, but is observed with ND3%.
  • a level of ND 3% means that it is also observed through an ND 3% filter.
  • the order is as follows in ascending order of peripheral unevenness (good order). : "Naked eye OK" ⁇ "naked eye level" ⁇ ND 10% ⁇ ND 8% ⁇ ND 5% ⁇ ND 3%
  • Each item in the table is as follows.
  • the curing conditions are those obtained by irradiating with ultraviolet light having a wavelength of 350 nm using an iGraphics metal hydride lamp ORK illuminometer.
  • Type A hardness was measured at 25 ° C. in accordance with “JIS Handbook Rubber-1 2007, K-6253 Rubber Hardness Test Method”.
  • the shrinkage rate indicates the volume shrinkage rate.
  • the storage elastic modulus was measured using a dynamic viscoelasticity measuring device (DMS-6100 manufactured by Seiko Instruments Inc.), test piece 50 ⁇ 10 ⁇ 4 mm, measurement temperature ⁇ 100 to 100 ° C. (heating rate 2 ° C./min) , Frequency 1 Hz, measured by mode tension.
  • the G / G adhesive strength is obtained by pasting a sample on a glass / glass cross with a diameter of 5 mm and a thickness of 0.3 mm, and curing it with UV. The lower glass was fixed, the upper glass was pulled at a tensile test speed of 5 mm / min, and the value of the maximum load when the test piece was peeled was defined as the adhesive strength.
  • Transmittance and YI are set to a sample thickness of 0.3 mm, and UV-cured by sandwiching between glass and glass, and 400 nm of the cured product with an ultraviolet / visible spectrophotometer JASCO V-570 (manufactured by JASCO Corporation). The light transmittance at 800 nm was measured. YI was calculated from the measured value.
  • Peripheral unevenness was evaluated using the samples shown in the above table. In Examples 1 to 7, initial unevenness (peripheral unevenness in observation after pasting and UV curing) was not observed. In Examples 2 to 5, in addition to the initial unevenness, peripheral unevenness was not observed even after being left at 60 ° C. In Examples 1 to 5, the peripheral unevenness and the amount of bubbles were almost the same. In curing from a liquid, since the curing reaction proceeds near room temperature, the contribution by temperature is small, and the shrinkage rate can be considered as a driving force for generating stress. If the level up to the naked eye level is a non-defective product, there is a relationship with the elastic modulus described below, but it is preferable to set it to 4.5% or less.
  • the movement after curing is considered to have a large contribution of the elastic modulus.
  • the product of the elastic modulus and the shrinkage rate is plotted as a measure of strain, it is in Examples 2 to 5 that peripheral unevenness is not observed after being left at 60 ° C., and the shrinkage rate * elastic modulus is 0.16 or less at 60 ° C. It is preferable that it is 0.37 or less at 25 ° C.
  • the comparative example 2 is in the above range, the peripheral unevenness occurs. For this reason, it is not sufficient to simply lower the storage modulus. Therefore, looking at the tan ⁇ graphs (FIGS. 11 and 12), it can be seen that Comparative Example 2 has a large peak around 50 ° C.
  • Example 2 and Example 4 have a tan ⁇ that is larger than those of the other Examples and Comparative Examples and has a gradual maximum. This is not as dramatic a change as the phase transition. For example, it is considered that the resin gradually transitions to a rubbery state, and the state in which the followability to stress is improved but does not flow. Therefore, in addition to being in a state where internal stress is likely to be relaxed, intermolecular cross-linking is maintained, so that large stress is not generated with a temperature drop.
  • tan ⁇ is preferably 0 ⁇ tan ⁇ ⁇ 2 (preferably 0 ⁇ tan ⁇ ⁇ 2) in the operating temperature range (0 to 70 ° C.), which is effective for peripheral unevenness.
  • a preferable form is a form where 0.2 ⁇ tan ⁇ ⁇ 2.0 (more preferably 0.2 ⁇ tan ⁇ ⁇ 2.0) at 10 to 60 ° C. Satisfying the above numerical range in the operating temperature range (0 to 70 ° C.) is also one preferred mode.
  • Example 1 has a low elastic modulus
  • Examples 2 and 4 are low shrinkage / low elastic modulus products
  • Example 3 is a low shrinkage product. Met.
  • the present embodiment may be a display device including the display panel with a front plate according to the first embodiment.
  • Examples of the display device include a form in which the front plate is a touch panel and a form in which the front plate is a protective plate.
  • the liquid crystal display panel has been described in Embodiment 1, the present invention can be applied to other various display panels such as an EL display panel.
  • a mechanism for supporting the panel is preferably provided on the housing side (the side opposite to the display surface side).
  • Display panel with front plate 10 Front glass 11: Adhesive resin 13, 15: Polarizing plate 14: Liquid crystal display panel 14a: Sealing material 16: Backlight unit 31: Peripheral uneven portion 31a: White uneven portion 31b: Black uneven portion 121: island polymer 122: sea polymer 123: cured resin composition in a compatible state

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 本発明は、表示エリア周辺のスジムラが十分に解消された前面板付表示パネル及び表示装置を提供する。 本発明の前面板付表示パネル(100)は、前面板(10)が樹脂組成物硬化体層(11)を介して設置されたものであって、上記樹脂組成物硬化体層(11)の0~70℃における損失正接は、2以下である。

Description

前面板付表示パネル、表示装置及び樹脂組成物
本発明は、前面板付表示パネル、表示装置及び樹脂組成物に関する。より詳しくは、ディスプレイの前面に、ディスプレイ面の保護、大型ディスプレイの割れ防止、デザイン性の観点からガラス、プラスティック等が設置され、また、インタラクティブ性の観点からタッチパネルが設置された前面板付表示パネル、表示装置及び樹脂組成物に関するものである。
ディスプレイ(表示装置)は、液晶パネル等の表示パネルを使用したものがビジネス用途から一般家庭用途に至るまでなくてはならないものとなっていて、携帯電話やゲーム機等の小型から、TVや野外インフォメーションディスプレイ等の大型サイズまで様々なものが提案され、実用化されている。
これらのディスプレイでは、近年表示のみではなくインタラクティブ性が重視されることを踏まえ、タッチパネルをディスプレイの前面に設置したものがある。一方液晶パネルは薄いガラスを基板として使用していることもあって、用途によってはディスプレイ面を保護するためや、大型のディスプレイでは割れ難くするために前面にガラスや透明なプラスティック板を設置するものもある。さらに表面が硬く光沢があってフラットな表面であることがデザイン性の観点から望まれることもあって、ディスプレイ前面にガラス板を設置するモデルがある。
これらディスプレイの前面に設置されるガラス、プラスティック、タッチパネル等(以下、前面板という)はディスプレイ面、つまり偏光板が貼合されている面の前面に、隙間を空けて設置されていた。ところが隙間をあけて設置すると、前面板のディスプレイ側(内側)と、偏光板表面それぞれと空気との屈折率界面で引き起こされる表面反射のために、表示画像が二重に見えることや、移りこんだ像で見え難くなるとの課題があった。これは前記したとおり空気と前面板の材質との屈折率差で引起されるものであるから、この課題は、それぞれの面に反射防止用のコーティングを施すか、空気層を前面板や偏光板の機材屈折率に近い材料で置き換えることによって解決される。例えば、液晶パネルにおいて、前面板との隙間に樹脂を埋め込んだ例が開示されている(例えば、特許文献1等参照)。また、プラズマパネルにおいて、前面板との間を樹脂で接着した例が開示されている(例えば、特許文献2等参照)。
従来の前面板付表示パネルとしては、例えば、前面板を貼合し樹脂を硬化させた時に生じる収縮に起因する応力でディスプレイ表示上に生じるムラを解消するために硬化後の樹脂弾性率をある一定の値以下に設定することが開示されている(例えば、特許文献3参照)。また、前面板を持つ液晶パネルで前面板と液晶パネルとの間に充填される樹脂の周りにダムとなるようにガイドを作り、その中に光硬化性の樹脂を埋めて貼合した液晶パネルが開示されている(例えば、特許文献4参照)。更に、対向基板と透明基板の間に液晶が保持された液晶表示素子と、前記液晶表示素子の前記透明基板に設けられ、前記透明基板より外形寸法の小さい光学フィルムと、前記光学フィルムと前記光学フィルムの外周にある前記透明基板の表面に光硬化型透明接着剤を介して接着された透明板と、を備えた表示装置が開示されている(例えば、特許文献5参照)。そして、透明基板と対向基板の間隙に液晶が封入された液晶表示素子と、透明タッチスイッチとを備える表示装置の製造方法であって、透明タッチスイッチ、または、液晶表示素子の表示面に透明接着剤を塗布する工程等を有する表示装置の製造方法が開示されている(例えば、特許文献6参照)。
なお、粘接着用樹脂に関して、反射防止フィルム、偏光フィルム、粘着層、液晶表示用ガラスセル、粘着層及び偏光フィルムを順次積層してなる光学積層体において、粘着層の損失正接(tanδ)の最大値Aと粘着層の損失正接の最大値Bとの比(B/A)が1.1以上である光学積層体が開示されている(例えば、特許文献7参照)。ここで、損失正接の最大値とは、当該粘着層を-70℃から200℃までの範囲で昇温速度4℃/分、周波数1Hzで加熱することにより、動的貯蔵弾性率(E’)と動的損失弾性率(E”)とを測定し、上記温度範囲の中で測定されたE”/E’(=tanδ)の最大値である。
また(A)アクリル酸系誘導体ポリマー、(B)アクリル酸系誘導体及び(C)架橋剤を含有する光学用樹脂組成物であって、硬化反応後の樹脂組成物が、60℃での粘着力が3N/25mm以上、かつ60℃でのtanδが0.40以上である光学用樹脂組成物が開示されている(例えば、特許文献8参照)。
特開2005-55641号公報 特開2007-94191号公報 特開2008-282000号公報 特開2008-129159号公報 特許第3842347号明細書 特許第3220403号明細書 特開2006-113574号公報 特開2009-294360号公報
前面板を持つ表示パネルにおいて、例えば、大型ディスプレイに紫外線硬化樹脂(UV硬化型樹脂)で前面板を貼合する場合には、硬化過程で生じる収縮が問題となる。上述した特許文献3に記載されているように、確かに硬化収縮による応力によって液晶ディスプレイは歪を受け表示ムラが発生するため、弾性率を下げることが一つの手段となる。例えば、UV硬化型樹脂は一般に4~5%の収縮率を持つため、弾性率を落とし硬化後も粘性が残る大変柔らかい状態や、ゲル状としている例もある。
ところが、本発明者らが実際に検討したところによると、表示面内に生じるムラは、面内にランダムに発生するムラもあるが、表示外周に沿って生じるスジ状のムラ(周辺スジ)もあることがわかった。面内にランダムに発生するムラは、塗布厚ムラをなくすことで応力分布を均一にする方法や、弾性率を下げること、硬化収縮率を下げることで解消するため、比較的対処しやすいが、周辺スジ(以下、周辺ムラ、又は、表示エリア周辺のスジムラ等ともいう。)は単に弾性率を下げるのみではなかなか解消しないことがわかった。
周辺スジは次のようなメカニズムで発生していると考えられる。樹脂塗布時は、樹脂が液状のため追従性がよく反りは発生しない(図14の断面図)。次に紫外線硬化(UV硬化)を試みる。樹脂はUV光で硬化されることにより収縮するが、この硬化収縮によって、パネルは中心方向に引っ張られると考えられる。このとき、例えば前面板のガラスが液晶パネルよりも厚く、液晶パネルに対して硬いと考えられる場合、相対的に液晶パネルがその応力を大きく受け歪むことになる。したがって、パネルは樹脂側に凹となる方向に反ることになるが、一般に液晶パネルは2枚のガラス基板(TFT側ガラスとカラーフィルタ側ガラス)で構成されているため、ガラスの撓みによって2枚のガラスの間で寸法差が生じることになる。また液晶パネルは、端面近くで封止樹脂によって接着されて互いに固定されている。したがって、この場合は寸法差を解消するために、前面板に近いCF側基板は端面に波打ちが生じるように歪み、これによって液晶セル厚に変化が生じ、周辺スジ(周辺ムラ部31)が発生すると考えられる(図15)。ここで、セル厚が厚い部位が白ムラ部31aとなり、セル厚が薄い部位が黒ムラ部31bとなる。
周辺スジは、UV硬化を常温でした後で見られない場合であっても、一度高温(使用温度範囲の上方。例えば50~60℃。場合によっては70℃)にした後常温に戻した時点で観察されることもある。このように、表示パネルの使用によって熱履歴がかかった後(信頼性試験後)に周辺スジが生じるという課題もあることがわかった。これは、次のように推察される。すなわち、高温にすることで、樹脂の弾性率が下がることにより応力が開放され周辺スジも解消される方向に動く。ところが常温に戻る過程で、再び樹脂の弾性率が上がる一方、高温で樹脂が膨張していた分が戻り、この分が重なって新たに応力が発生したものと考えられる(図16[高温時]、図17[冷却後])。つまり、高温時では、前面板を接着している樹脂はゲル状に近く非常に柔らかくなる上に樹脂自体は膨張する。このため基板の撓みは元に戻りやすく、硬化収縮やそれに伴うパネルの撓みによる応力は開放される方向に動く。そのため撓み量は減少し周辺スジも見かけ上解消するか、薄くなる。ところが、冷却されると、樹脂の収縮と共に弾性率も回復する。収縮と共にパネルは硬化収縮時と同じ方向に応力を受け、撓みが発生しスジムラが生じる。しかし室温でUV硬化した時の同じ応力関係とは状態が異なるため、UV硬化後と比較して、周辺スジの状態が変化し、観察されやすくなる場合も生じると考えられる。
この観点で考察すると、熱硬化型の樹脂では、この周辺スジは解消しないことが容易に類推される。なぜなら熱硬化では、まず熱硬化反応が推進される高温が応力の無いスタートポイントとなり、硬化反応による重合でおきる収縮応力と更に反応時から温度降下時に熱膨張率差によって起きる応力が発生するからである。
このように、樹脂の硬化収縮による応力で、端部に近い周辺のセル厚が変化し、セルにおける電圧と透過率との関係等の条件が局所的に変わるため、周辺スジとして認識され、また、高温熱履歴を経た後にこの周辺スジが鮮明になることもあるという新たな課題があることがわかった。
例えば、図14に示した断面構造の表示装置においては、ガラスにパネルを貼合し、硬化した後、表示すると表示エリア周辺にスジムラが認識される。具体的には、パネル端部に白、黒のスジが発生する。図18中、カッコを付した5~10mmの範囲の表示エリア周辺にスジムラが発生している。
従来においては、上記特許文献のいずれも表示エリア周辺にスジムラが生じることが記載されてはおらず、上述した観点を認識して表示品位を向上させるための検討がなされていない。例えば、特許文献7においては、液晶パネルの偏光板に用いられる粘着樹脂(接着剤、糊)について、応力による表示の不具合を直すため、アクリル系の樹脂材料を工夫したことが記載されている。構成要件としては、表示面側は、0.85<tanδ<1.46、裏面は、1.3<tanδ<1.85とすることが記載され、実施例においては、かなり小さい弾性率を持つもののみが示されている。収縮率が問題となる領域と弾性率が問題となる領域とを分けて、それぞれで対処し、そこで初めて当該特許文献において認識された課題が解決されるものである。しかしながら、この特許文献においては、パネル両面の偏光板粘着層、すなわちパネル基板と偏光フィルム(偏光板)との間の樹脂層が対象となっている。つまり、パネルと前面板との間に用いられる樹脂については何ら記載がなく、周辺ムラについては何ら示唆されていない。更に、tanδについて範囲を規定する技術的意義の記載がない、言い換えれば、なぜそのように規定するのかの論理的記述がなく、また、周辺ムラとどのように関連するのかが全く認識されていない。
また特許文献8においては、画像表示用装置の保護に必要な衝撃吸収性を有し、耐湿信頼性に優れた粘着力を有する光学用樹脂組成物が記載されているが、これについても周辺ムラについては何ら示唆されていない。なお、実施例においては、透明シートを得てそれを液晶パネルに貼合しているため、樹脂組成物から硬化体層を形成する際の硬化収縮による不具合が問題とはならないものである。
本発明は、上記現状に鑑みてなされたものであり、前面板が貼合された表示パネルにおける周辺スジが充分に解消され、しかも使用後の高温熱履歴を経た後であっても周辺スジが抑制されることによって、表示品位を向上することができる前面板付表示パネル及び表示装置を提供することを目的とするものである。
本発明者らは、前面板と表示パネルとの間に隙間をつくらずにその間に樹脂組成物硬化体層を有する前面板付表示パネル及びそれによって構成される表示装置について種々検討したところ、上述したように、樹脂組成物の硬化収縮に伴う従来の表示ムラに加えて、周辺ムラが生じること、更に、表示パネルの使用によって熱履歴がかかった後(信頼性試験後)においても周辺ムラが生じるという新たな課題があることがわかった。これらは、表示パネル周辺部における状況が中央部分とは異なることによるものと推察される。このような周辺ムラの発生が前面板と表示パネルとを介する樹脂組成物の硬化特性及び硬化体としての内部応力等の特性に関連していることに着目し、特に、硬化体において使用温度範囲のなかの加熱・冷却を受ける過程で、硬化された樹脂が液相・固相状態を亘るような相変化を起こしにくくすればよいこと、そのためには、硬化後の貯蔵弾性率と損失弾性率との比tanδ(損失正接)を特定値以下とすればよいことを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。例えば、高温の熱履歴によってムラが顕著になるのは、当該高温時では、弾性率が低下することで内部応力に沿って樹脂が力学的平衡点に向かって変位、変形を起こし応力緩和がなされる。これは比較的ゆっくりと進むと考えられるが、逆に高温から低温に移ると弾性率が復活すると共に、平衡点も変わる。このとき、樹脂が高温時と同じように変位、変形が起きれば問題ないが、既に弾性率が復活して動き辛くなっている、そのため再び応力を内包して固定されてしまうことに起因するものと考えられる。
そして、上記tanδの範囲を達成するための樹脂組成物の構成についても、その構成成分とガラス転移温度(Tg)との関係が重要であることを見いだしたものである。
すなわち、本発明は、前面板が樹脂組成物硬化体層を介して設置された前面板付表示パネルであって、上記樹脂組成物硬化体層は、0~70℃における損失正接が2以下である前面板付表示パネルである。
本発明の前面板付表示パネルは、樹脂組成物硬化体層の0~70℃における損失正接が2以下である。損失正接(tanδ)は、樹脂組成物硬化後の貯蔵弾性率に対する損失弾性率の比であり、(損失弾性率)/(貯蔵弾性率)により求めることができる。0~70℃は、表示パネルの使用温度範囲である。好ましくは、上記損失正接が0.2以上である。好ましい実施形態においては、硬化後の貯蔵弾性率も小さくすると共に、損失弾性率との比が、使用温度範囲で0.2~2くらいになるように、樹脂を調整する。これは、樹脂のズリ性を上げ、内部応力に沿って樹脂が動き易くすると共に、樹脂分子が液状化のような相転移しない状態としておくことに相当する(相転移では、該比が異常に大きくなる)。
上記使用温度範囲でtanδが2.0を超えないものとすることにより、使用温度範囲で相変化ないし相変化的な物性変化を起こしにくいものとすることができる。
これにより、硬化物の発散傾向を充分に抑制できる。例えば、使用温度範囲において高温(通常、60℃近傍)となっても、相転移ほどの劇的な変化はなく、樹脂がゴム状へ緩やかに移行し、追従性が良くなった状態になるだけとすることができる。この結果、内部応力の緩和が起こりやすい状態としたり、分子間の架橋が維持され、樹脂を架橋した分子骨格が残った状態としたりすることができる。したがって、温度降下にともなって大きな応力が発生しないようにすることができ、表示エリア周辺の使用温度範囲において発生するスジムラを充分に抑制することができ、信頼性を大幅に向上することができる。
また、tanδの下限値としては、0以上とすることが好ましく、上記のように0.2以上とすることがより好ましいが、これにより硬化体を弾性的に充分に柔らかくすることができる。
上記のようなtanδを持つ樹脂組成物硬化体層においては、使用温度範囲(0~70℃)にtanδが極大を持つ形態であってもよく、極大を持たない形態であってもよい。
上記樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであることが好ましい。樹脂組成物硬化体層は、前面板と表示パネルとの隙間を埋めたり、前面板を表示パネルに粘着、接着したりするために用いられる。樹脂組成物硬化体層を形成する樹脂組成物の構成成分としては、モノマーとオリゴマーとを含むものが好ましい。また、可塑剤を含むものが好適である。
上記モノマーとしては、後述する表1に示されるような(メタ)アクリレート系モノマーを1種又は2種以上用いることができる。脂肪族(メタ)アクリレート、グリコール系(メタ)アクリレート、ヒドロキシル基を有する(メタ)アクリレート及び脂環式(メタ)アクリレートからなる群より選択される少なくとも1種を用いることが好ましい。
上記オリゴマーとしては、1種又は2種以上のモノマー単位からなる二量体以上の多量体であり、通常、光学用途の樹脂組成物においてモノマーとともにオリゴマーとして用いられるものを使用することができ、例えば、重量平均分子量が500~100000のものが挙げられる。
また、上記樹脂組成物は、モノマー成分として(メタ)アクリロイル基を分子内に2個以上有する化合物である架橋剤を含んでいてもよい。オリゴマー、モノマー以外に、ポリマーを含んでいてもよい。
上記樹脂組成物の硬化においては、紫外線照射による光重合を用いることが好ましいが、熱重合やその他の光重合、電子線重合等を用いてもよい。通常では重合開始剤を用いることになる。重合開始剤としては、例えば、紫外線照射による光重合であれば、ベンゾフェノン系化合物、アントラキノン系化合物、ベンゾイン系化合物、スルホニウム塩、ジアゾニウム塩、オニウム塩等の光重合開始剤を用いることができる。熱重合開始剤としては、有機過酸化物、アゾ系化合物等を用いることができる。これらは、1種又は2種以上を用いることができる。重合開始剤の配合量としては、樹脂組成物100質量%中、0.01~10質量%であることが好ましく、0.1~7質量%であることがより好ましく、1~5質量%であることが更に好ましい。
上述のように、上記tanδの範囲を達成するための樹脂組成物の構成について、その構成成分とガラス転移温度(Tg)との関係が重要であることを見いだしたものであり、その好ましい実施形態としては、次のものが挙げられる。
すなわち、上記樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであり、(1)上記モノマー成分は、ガラス転移温度が20~80℃以外のモノマーによって構成されたものである形態、具体的には、上記モノマー成分は、ガラス転移温度が20℃以下のモノマー及び/又はガラス転移温度が80℃以上のモノマーによって構成されたものである形態、又は、(2)上記モノマー成分は、ガラス転移温度が20~80℃のモノマーとガラス転移温度が80℃以上のモノマーとによって構成されたものであり、樹脂組成物100質量%に対してガラス転移温度が80℃以上のモノマーが3質量%以上である形態である。なお、モノマーのガラス転移温度は、ホモポリマー(単独重合体)としたときのガラス転移温度である。
これらの好ましい形態を説明するために、先ず、ポリマーブレンドと相溶性に関して以下に述べる。下記するポリマーブレンド状態は、樹脂組成物硬化体の状態を概念的に示し、上記tanδの範囲を達成するための樹脂組成物の構成を説明するために推察したものである。
図19は、完全相溶系の樹脂組成物硬化体及び非相溶系の樹脂組成物硬化体における温度に対する貯蔵弾性率を示すグラフである。図20及び図21は、非相溶状態(海島構造)の樹脂組成物硬化体を示す模式図である。図22は、相溶状態の樹脂組成物硬化体123を示す模式図である。
一般的に、2種類のポリマー(以下、ポリマーAとポリマーBという。)が非相溶状態である場合(図20、図21)は、ポリマーAの変移点とポリマーBの変移点が発生する。また、ポリマーAとポリマーBとが相溶状態である場合(図22)は、樹脂組成物硬化体における温度に対する貯蔵弾性率を示すグラフでは、ガラス転移温度に由来する変移点があるのみである。
UV硬化樹脂は、通常はランダム共重合体の集合であるところ、このようなランダム共重合体においては、異なる温度特性のポリマー群が海島構造で存在することになる。すなわち、ポリマーAの変移点とポリマーBの変移点が発生するタイプの樹脂である。
本発明で用いられる樹脂は、通常は、このようなポリマーAの変移点とポリマーBの変移点が発生するタイプの樹脂(UV硬化樹脂)である。このような樹脂において島ポリマー121を制御することにより、すなわち、島ポリマー121の変移点温度・島ポリマー率を制御することにより、tanδを制御することができ、上記したtanδ範囲を達成することができる。
上記樹脂組成物硬化体層における好ましい形態は、モノマー成分を含む樹脂組成物から形成されたものであり、上記モノマー成分は、ガラス転移温度が20~80℃以外のモノマーによって構成された形態である。ガラス転移温度が20~80℃以外のモノマーとは、具体的には、ガラス転移温度が20℃以下のモノマー及び/又はガラス転移温度が80℃以上のモノマーである。より好ましくは、オリゴマー成分及びモノマー成分を含み、モノマー成分が上記のように構成された形態である。なお、通常用いられるオリゴマーは、ガラス転移温度が40℃よりも低い。
ガラス転移温度が20℃以下のモノマーを用いた場合は、海ポリマー122の変移点(低温側から見て初めに現れる変異点)に重なる形で変移点が発生することとなる。また、ガラス転移温度が80℃以上のモノマーを用いた場合は、海ポリマー122の変移点以外であって、80℃以上に変移点が発生することとなる。いずれの形態、又はこれらを組み合わせた形態であっても、20~80℃に変移点が発生することを防止することができる。
上記樹脂組成物硬化体層における好ましい形態はまた、モノマー成分を含む樹脂組成物から形成されたものであり、上記モノマー成分は、ガラス転移温度が20~80℃のモノマーとガラス転移温度が80℃以上のモノマーとによって構成されたものであり、樹脂組成物100質量%に対してガラス転移温度が80℃以上のモノマーが3質量%以上の形態である。より好ましくは、オリゴマー成分及びモノマー成分を含み、モノマー成分が上記のように構成された形態である。このような形態によっても、ガラス転移温度が20~80℃のモノマーだけを用いた場合と比べて変異点を高温側にずらすことができ、海ポリマー122の変移点以外であって、80℃以上に変移点が発生することとなる。すなわち、20~80℃に変移点が発生することを防止することができ、これにより本発明における損失正接の値を達成することが可能となる。
更に、本発明の好ましい形態としては、樹脂組成物の硬化収縮率を下げ、初期硬化収縮応力の低減がなされた形態が挙げられる。すなわち、本発明において上記樹脂組成物硬化体層は、樹脂組成物から硬化体となるときの体積収縮率(硬化収縮率ともいう。)が4.5%以下である形態が好ましい。本発明における液体状の樹脂組成物においては、通常、樹脂組成物から硬化体となる際に硬化反応は室温付近で進行するため、温度による寄与は少なく、樹脂の硬化収縮率が応力発生のドライビングフォースとなり得ると考えられる。この硬化収縮率を小さくすること、すなわち上記したように硬化収縮率の上限値を設定することにより、初期硬化収縮応力を低減することができ、樹脂組成物から硬化体となるときの硬化収縮後における表示エリア周辺のスジムラを抑制することができる。中でも、3.7%以下に設定するのが特に好ましい。好適な下限値は、3.3%以上である。
上記樹脂組成物硬化体層はまた、樹脂組成物から硬化体となるときの体積収縮率(%)と、樹脂組成物硬化体層における貯蔵弾性率(MPa)との積(本明細書中、収縮率*弾性率ともいう。)が60℃で0.16以下である形態が好ましい。より好ましい形態は、0.1以下である。上記積の好適な下限値としては、0.005以上が挙げられる。これにより、上記硬化収縮率の低減と相まって、歪みを抑制することができ、周辺スジの発生を更に効果的に抑制することができる。
上記樹脂組成物の貯蔵弾性率としては、広い温度領域で小さく、全体的に小さいことが好ましい。例えば、60~100℃において、貯蔵弾性率が0.03MPa以下であることが好ましい。より好ましくは、0.02MPa以下であり、更に好ましくは、0.01MPa以下である。
上記樹脂組成物においては、液体からの硬化の際に収縮率が応力発生に寄与すると考えられるが、硬化後の使用温度範囲における動きは、弾性率の寄与が大きいと考えられる。
上記弾性率と収縮率の積は、歪の目安とすることを目的とした値である。上記樹脂組成物硬化体層は、樹脂組成物から硬化体となるときの体積収縮率(%)と、温度x(℃)における貯蔵弾性率(MPa)との積をyとすると、式logy<-6.6×10-3x+0.53を満たすことが好ましい。
上記式は、式σ=-E(1-2ν)・(-V/3)を用いて、算出することができる。
式中、σは、硬化収縮応力を表す。νは、ポアソン比(接着剤はおおよそ0.4~0.5程度)を表す。Eは、弾性率(貯蔵弾性率)を表す。Vは、硬化収縮率(樹脂組成物から硬化体となるときの体積収縮率)を表す。
なお、上記式を満たすxの範囲は、下限値としては例えば10以上であり、好ましくは25以上である。またxの上限値としては例えば80以下であり、好ましくは60以下である。
本発明において、上記貯蔵弾性率及び上記損失弾性率の測定条件は、次のようにすることが好ましい。
上記貯蔵弾性率及び損失弾性率は、動的粘弾性測定装置(セイコーインスツールメント社製 DMS-6100)を使用し、試験片 50×10×4mm、測定温度-100~100℃(昇温速度 2℃/min)、周波数 1Hz、モード 引張にて測定した。
また、tanδは、測定した貯蔵弾性率と損失弾性率との比から算出した。
上記非反応成分は、本発明の技術分野において通常用いられる可塑剤を用いることができる。上記可塑剤とは、例えば、次のようなものを挙げることができる。
非反応成分と相溶するポリマー、オリゴマー、フタル酸エステル類、ヒマシ油類等が挙げられる。オリゴマー又はポリマーとして、ポリイソプレン系、ポリブタジエン系又はキシレン系のオリゴマー又はポリマーを例示できる。これらの柔軟化成分は、クラレからLIRシリーズ、デグッサ社からポリオイルシリーズとして市販されている。これらの柔軟化成分は、1種類又は2種類以上を使用できる。
上記非反応成分は、その相変態温度、相変化温度が骨格形成成分(オリゴマー及びモノマー成分)の相変態温度、相変化温度よりも高温側にあることが好ましい。これにより、非反応成分の相変態・相変化に起因するスジムラの発生を防止することができる。
上記骨格形成成分と上記非反応成分との配合比は、質量比で30:70~70:30であることが好ましい。より好ましくは、40:60~60:40である。
本発明における樹脂組成物硬化体層は、前面板と表示パネルとの間に形成されればよく、通常では樹脂組成物が塗布又は充填されて、前面板と表示パネルとが貼合し、樹脂組成物が硬化して樹脂組成物硬化体層が形成されることになる。本発明においては、樹脂組成物が前面板及び/又は表示パネルに塗布され、又は、前面板と表示パネルとの隙間に充填された後に硬化するという形態に好適に適用されることになる。
その他にも、例えば、樹脂組成物が硬化した状態のシート(シート状樹脂又は粘着シートともいう。)を前面板と表示パネルとで挟むことによって樹脂組成物硬化体層を形成してもよい。
樹脂組成物が塗布又は充填される場合、貼合面の前面板か表示パネルかの何れか又は両方に樹脂組成物を塗布した後、この樹脂組成物を介して前面板とディスプレイ面を互いに貼合せ、その後UV光で硬化させるのが一般的である。粘着シートを用いる場合、シート状樹脂を透明なフィルムで侠持したものを用い、例えば前面板にシート状樹脂をまず貼り、その後ディスプレイ表面と前面板に貼られたシート状樹脂面とを貼合させることが行われる。
なお、樹脂組成物が塗布又は充填される場合(UV硬化タイプ)とシート状の粘着剤を用いる場合とを比較すると、シート状の粘着剤は、架橋(硬化)が終了した樹脂を使用しているため、硬化による収縮は発生しない代わりに、UV硬化タイプは架橋時の反応で収縮が発生する。したがって、UV硬化タイプでは硬化収縮によって生じた応力によって液晶ディスプレイ等の表示パネルに歪が生じ、表示ムラが発生することになる。一方シート状の粘着剤は、フィルムで侠持していることもあって、この形態に仕上げる工程が必要になること、これらフィルムは工程途上で廃棄されるため、樹脂単体よりも高価になること、工程途上で気泡が混入したときの対策がシート状では困難であることから、場合によっては脱泡用の減圧チャンバーが必要となるなど、設備が大掛かりになることもある。近年、例えば、上述したようにTV用のディスプレイに前面板を貼合したモデルがデザインの観点からも提案されているが、TV用の大型液晶ディスプレイには、上記のようにコスト、設備の観点からUV硬化型の樹脂で貼合される場合が望ましく考えられている。
そして、大型ディスプレイにUV樹脂で前面板を貼合する場合には、硬化過程で生じる収縮を抑えることが課題となる。また、熱硬化型の樹脂では、硬化が開始される高温が応力の無いポイントで、硬化後の温度降下で上記の様な応力が発生することから、周辺スジは解消しにくいといえる。本発明においては、このような硬化収縮による周辺ムラを抑え、また高温熱履歴後のスジムラを効果的に抑制することができることから、UV硬化タイプを用いる場合に好適に適用されることになる。
上記表示パネルを構成する前面板は、ディスプレイの前面に、ディスプレイ面の保護、大型ディスプレイの割れ防止、デザイン性の観点からガラス、プラスティック等が設置され、また、インタラクティブ性の観点からタッチパネルが設置されたものであり、ガラス、プラスティック、タッチパネル等によって構成されることになる。
上記TV用大型ディスプレイの前面板の厚みは、通常は、1mm以上である。好ましくは、2.5~3.0mmであることが好ましい。なお、表示パネルが液晶表示パネルの場合は、液晶表示パネルを構成する一対の基板のそれぞれの透明基板(ガラス基板等)は、通常は、0.4~1.0mmである。
本発明はまた、本発明の前面板付表示パネルを備える表示装置でもある。
本発明の表示装置の好適な形態は、上述した本発明の前面板付表示パネルの好適な形態と同様である。このような表示装置としては、液晶表示装置、EL(Electroluminescence)表示装置、プラズマディスプレイ等が挙げられ、携帯電話やゲーム機等の小型から、TVや野外インフォメーションディスプレイ等の大型サイズまで適用することができ、また、タッチパネル標準装備表示装置として好適である。クリープ性を充分に低減する観点からは、筐体側(表示面側と反対側)にパネルを支える機構が備わっていることが好ましい。その他の構成要素については、特に限定されるものではない。
本発明は更に、本発明の前面板付表示パネルの樹脂組成物硬化体層を形成するのに用いられる樹脂組成物でもある。
本発明の樹脂組成物の好適な形態は、本明細書中に記載した本発明の前面板付表示パネルにおける樹脂組成物の好適な形態と同様である。その他の構成成分等については、本発明の効果を発揮する限り、特に限定されるものではない。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の前面板付表示パネル及び表示装置によれば、表示エリア周辺のスジムラを充分に解消することができる。
実施形態1に係る前面板付液晶表示パネルを示す断面模式図である。 実施形態1に係る前面板付液晶表示パネルを示す平面模式図である。 実施形態1に係る海島構造を有する樹脂組成物硬化体を示す模式図である。 図3に示した海島構造を有する樹脂組成物硬化体における温度に対する貯蔵弾性率を示すグラフである。 図3に示した海島構造を有する樹脂組成物硬化体における温度に対する損失正接(tanδ)を示すグラフである。 実施形態1に係る樹脂組成物硬化体の海島構造を示す模式図である。 実施形態1に係る樹脂組成物硬化体の海島構造を示す模式図である。 実施形態1に係る樹脂組成物硬化体の海島構造を示す模式図である。 樹脂組成物硬化体の温度に対する貯蔵弾性率を示すグラフである。 樹脂組成物硬化体の温度に対する損失弾性率を示すグラフである。 樹脂組成物硬化体の温度に対する損失正接(tanδ)を示すグラフである。 樹脂組成物硬化体の温度に対する損失正接(tanδ)を示すグラフである。 樹脂組成物硬化体の温度に対する収縮率と貯蔵弾性率との積を示すグラフである。 従来の前面板付液晶表示パネルを示す断面模式図である。 従来の前面板付液晶表示パネルを示す断面模式図である。 従来の前面板付液晶表示パネルを示す断面模式図である。 従来の前面板付液晶表示パネルを示す断面模式図である。 従来の前面板付液晶表示パネルを示す写真である。 完全相溶系の樹脂組成物硬化体及び非相溶系の樹脂組成物硬化体における温度に対する貯蔵弾性率を示すグラフである。 非相溶状態(海島構造)の樹脂組成物硬化体を示す模式図である。 非相溶状態(海島構造)の樹脂組成物硬化体を示す模式図である。 相溶状態の樹脂組成物硬化体を示す模式図である。
以下に実施形態を掲げ、本発明を、図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。なお、本明細書中、ガラス転移温度(Tg)が20~80℃とは、ガラス転移温度が20℃を超え、80℃未満であることをいう。その他の「~」で示した数値範囲については、上限値及び下限値を含むものである。
実施形態1
図1は、実施形態1に係る前面板付液晶表示パネルを示す断面模式図である。なお、図1では後述する図2に示す液晶表示パネルのA-A’線に沿う断面が模式的に示されている。
図1には、前面板である前面ガラス10が、樹脂組成物硬化体層である接着樹脂11を介して設置された前面板付表示パネル100が示されている。接着樹脂11は、液晶表示パネル14の表示面側(観者側)の表面に設置された偏光板13上に設けられている。液晶表示パネル14の背面側には、偏光板15及びバックライトユニット16がこの順で設けられている。液晶表示パネル14とバックライトユニット16との間は、例えばフレームを介して接合されている。
上記前面板の厚みは、通常は、2.5mm以上、3.0mm以下とすることができる。また、樹脂組成物硬化体層の厚みとしては、樹脂組成物を介して前面板とディスプレイ面を互いに貼合せ、その後UV光等で硬化させた場合は通常は0.05~15mmとすることができ、より好適な態様としては、0.1~0.5mmとすることができる。また、表示パネルが液晶表示パネルの場合は、液晶表示パネルを構成する一対の基板のそれぞれの透明基板(ガラス基板等)は、通常は、0.4~1.0mmとすることができる。なお、粘着シートを用いた場合、例えば0.1~1mmとすることができる。
図2は、実施形態1に係る前面板付液晶表示パネルを示す平面模式図である。
図2に示されるように、液晶表示パネル14の表示面側の偏光板13と液晶表示パネル14の背面側の偏光板15は、通常は、液晶表示パネル14の外周よりも小さく貼り付けられている。
実施形態1では、該樹脂組成物硬化体層は、0~70℃における損失正接が0.2以上、2以下である。
実施形態1の液晶表示パネルにおける樹脂組成物硬化体は、例えば、20~30℃で硬化を実施することができる。樹脂組成物が、硬化反応において、早期硬化成分と遅延硬化成分をもち、これにより、早期硬化成分が、早い段階で硬化が進み体積を決めて樹脂組成物から硬化体となるときの体積収縮率を低減するとともに、遅延硬化成分により、硬化後の所望の弾性率を得ることができる。また、クリープ性を低減することも可能である。
図3は、実施形態1に係る海島構造を有する樹脂組成物硬化体を示す模式図である。図4は、図3に示した海島構造を有する樹脂組成物硬化体における温度に対する貯蔵弾性率を示すグラフである。図5は、図3に示した海島構造を有する樹脂組成物硬化体における温度に対する損失正接(tanδ)を示すグラフである。
実施形態1では、樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであり、該モノマー成分は、ガラス転移温度が20~80℃以外のモノマーによって構成されたものである。これにより、図4に示されるように、20~80℃において変異点が発生することを充分に防止することができる。そして、図5では、使用温度範囲におけるtanδの値を充分に小さくすることができることが示されている。中でも、上記モノマー成分は、ガラス転移温度が20℃以下のモノマーとガラス転移温度が80℃以上のモノマーとによって構成されたものである形態が好ましい。
上記樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであり、上記モノマー成分は、ガラス転移温度が20~80℃のモノマーとガラス転移温度が80℃以上のモノマーとによって構成されたものであり、樹脂組成物100質量%に対してガラス転移温度が80℃以上のモノマーが3質量%以上である形態であってもよい。
上述したようにモノマー成分を構成するモノマーのガラス転移温度を調整することにより、損失正接を好適に調整し、実施形態1の損失正接範囲を達成することができる。
図6~図8は、実施形態1に係る樹脂組成物硬化体の海島構造を示す模式図である。
図6~図8は、この順に島ポリマー率が減少していることを模式的に現している。島ポリマー率を20%以下とすることによっても、損失正接を好適に調整し、実施形態1の損失正接範囲を達成することが可能である。
実施形態1の樹脂組成物において用いることができるモノマー(単量体)の例について、下記表1に示す。上述したガラス転移温度と単量体の配合割合を考慮したうえで、例えば表1に示した単量体を適宜用いることができる。
Figure JPOXMLDOC01-appb-T000001
実施形態1の樹脂組成物において用いることができる非反応成分としては、上記非反応成分として例示したものを用いることができる。
非反応成分の相変態、相変化温度は、骨格形成成分のそれよりも高温側にある。
実施例1~8、比較例1、2
実施例1~8及び比較例1、2における樹脂組成物硬化体層を形成する樹脂組成物におけるモノマー成分の構成について、下記表2及び表3に示す。下記表中、「オリゴマー」、「モノマーA」、「モノマーB」、「モノマーC」、「モノマーD」、「非反応成分A」、「非反応成分B」の各項目において、○は、樹脂組成物中にその成分を使用したことを意味し、×は、樹脂組成物中にその成分を使用しなかったことを示す。使用モノマーのTg範囲は、下記のようになる。モノマーA~C:Tg範囲20~80℃、モノマーD:Tg範囲80℃以上。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
図9は、樹脂組成物硬化体の温度に対する貯蔵弾性率を示すグラフである。
実施例1~5、7、比較例2における樹脂組成物の貯蔵弾性率を示す。後述する表4に示すように、実施例1~5で周辺ムラが良品といえる程度に解消した。特に、実施例2及び実施例4においては周辺ムラが実質的に解消したといえる。
実施例2及び実施例4は、図9に示した実施例・比較例の中でも広い温度領域で弾性率が小さく、弾性率は全体的に小さいほうが好ましいことがわかる。
一方、室温付近から60℃付近で弾性率が極端に小さくなる比較例2では、周辺ムラが発生した。
したがって、小さいとはいえ急激な変化は周辺ムラには不適応で、新たな応力発生の原因となり得る。
この点は、tanδをみると、比較例2は相変化的な物性変化が60℃近傍で起きていることが伺われることから、架橋した分子骨格が残った状態が必要であることがいえる。
図10は、樹脂組成物硬化体の温度に対する損失弾性率を示すグラフである。
図11は、樹脂組成物硬化体の温度に対する損失正接(tanδ)を示すグラフである。
図12は、樹脂組成物硬化体の温度に対する損失正接(tanδ)を示すグラフである。
図13は、樹脂組成物硬化体の温度に対する収縮率と貯蔵弾性率との積を示すグラフである。
実施例1~8及び比較例1、2における前面板付表示パネルの樹脂組成物硬化体の物性について、下記表4及び表5に示す。ここでスジムラのレベル表記で、「裸眼OK」は、グレースケール(256階調で、白を255階調としたときの32階調レベル)裸眼で周辺ムラが観察されないことを意味する。「裸眼レベル」とは、裸眼で周辺ムラが観察されるが、ND10%フィルター(透過率10%のNDフィルター、以下ND8%、ND5%、ND3%も同様の意味。)を通して観察すると見えないレベルを言う。ND10%とは、ND10%フィルターを通して観察すると、スジムラが確認されないが、ND8%フィルターを通しての観察では周辺ムラが見えることを言う。以下同様に、ND8%とはND8%フィルターを通して周辺ムラが観察されないが、ND5%フィルターで観察されるレベルを、ND5%とは、ND5%フィルターを通して周辺ムラが観察されないが、ND3%で観察されるレベルを、ND3%とは、ND3%フィルターを通しても観察されることを示す。言い換えれば、周辺ムラの程度が小さい順(良順)に、下記のようになる。:「裸眼OK」<「裸眼レベル」<ND10%<ND8%<ND5%<ND3%
また、表中の各項目については以下の通りである。硬化条件は、アイグラフィックス メタルハイドライトランプ ORK照度計を用いて波長350nmの紫外光を照射し、硬化を行ったものである。タイプA硬度は、「JISハンドブック ゴム-1 2007年、K-6253 ゴム硬さ試験方法」に準拠し、25℃で測定した。収縮率は、体積収縮率を示す。貯蔵弾性率は、動的粘弾性測定装置(セイコーインスツールメント社製 DMS-6100)を使用し、試験片50×10×4mm、測定温度-100~100℃(昇温速度2℃/min)、周波数1Hz、モード引張にて測定した。G/G接着強度は、試料をφ5mm、厚さ0.3mmでガラス/ガラス十文字に貼合せし、UV硬化させる。下ガラスを固定して、引張り試験速度:5mm/minにて上ガラスを引っ張り、試験片が剥がれた時点の最大荷重の値を接着強度とした。透過率及びYI(黄色度)は、試料厚0.3mmtを設定し、ガラスとガラスに挟んでUV硬化させ、紫外・可視分光光度計 JASCO V-570(日本分光社製)により硬化物の400nmから800nmの光透過率を測定した。測定値よりYIを算出した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
上記表に示したサンプルで周辺スジムラ(周辺ムラ)を評価した。実施例1~7は、初期ムラ(貼合せ、UV硬化後の観察での周辺ムラ)が観察されなかった。実施例2~5は、初期ムラに加えて60℃放置後においても周辺ムラが観察されなかった。また実施例1~5は、周辺ムラ及び気泡量において、ほぼ同等であった。
液体からの硬化においては、硬化反応は室温付近で進行するため、温度による寄与は少なく、収縮率が応力発生のドライビングフォースと成り得ると考えられる。裸眼レベルまでを良品とすれば、次に述べる弾性率との関係もあるが、4.5%以下に設定するのが良い。
硬化後の動きは、弾性率の寄与が大きいと考えられる。
弾性率と収縮率の積を歪の目安としてプロットすると、60℃放置後において周辺ムラが観察されないのは実施例2~5であり、収縮率*弾性率は、60℃で0.16以下、25℃で0.37以下であることが好適である。
しかし、比較例2は、上記範囲にあるにも拘らず、周辺ムラが発生している。このことから、単に貯蔵弾性率を下げるだけでは不充分である。
そこでtanδのグラフ(図11、図12)を見てみると、比較例2は50℃を越えた辺りに大きなピークがあって発散傾向があることがわかり、収縮率と弾性率の積のグラフ(図13)でも40℃から60℃にかけて大きく落ち込んでいる。
これは、樹脂の相転移に相当する変態があることを示しており、端的には、樹脂が液状に近くなっていると考えられる。したがって、60℃以上では、流動を伴って応力状態を緩和しやすい状態と考えられる。ところが60℃以上で応力が緩和された状態から温度降下するときには、膨張係数の違い等から平衡点が移り新たな応力が発生し始めるときに、弾性が急激に復活するため、流動し難くなり応力を内包しやすくなると考えられる。そして室温では応力を内包した状態になったと考えられる。
一方、図11を見ると、実施例2及び実施例4は、tanδが他の実施例・比較例よりは大きく緩やかな極大を持ちつつある。これは相転移ほどの劇的な変化ではなく、たとえば樹脂がゴム状へ緩やかに移行し、応力への追従性が良くなった状態ではあるが流動はしない状態であると考えられる。よって内部応力の緩和が起こりやすい状態となっていることに加え、分子間の架橋が維持されているので、温度降下にともなって大きな応力発生とならない。
この結果より、tanδは、使用温度範囲(0~70℃)において、0≦tanδ≦2(好ましくは、0<tanδ<2)であることが良く、周辺ムラに対して有効である。また、好適な形態としては、10~60℃で0.2≦tanδ≦2.0(より好ましくは、0.2<tanδ<2.0)である形態が挙げられる。使用温度範囲(0~70℃)で上記数値範囲を満たすことも好ましい形態の一つである。
実施例においては、使用温度範囲(0~70℃)における損失正接を2以下とすることにより当該温度範囲における相変態等の急激な物性変化を防止することができる。その結果、表示エリアのスジムラを充分に防止することができる。また0.2以上とすることにより、弾性的に柔らかいものとすることができ、これによってもスジムラを防止することができる。なお、改良コンセプトとしては、実施例1は低弾性率化であり、実施例2及び実施例4は低収縮・低弾性率品とすることであり、実施例3は低収縮率品とすることであった。
本実施形態は、実施形態1に係る前面板付表示パネルを備える表示装置であってもよい。表示装置としては、例えば、前面板がタッチパネルである形態、前面板が保護板である形態が挙げられる。また、実施形態1においては液晶表示パネルについて説明したが、本発明はEL表示パネル等のその他の種々の表示パネルについて適用することが可能である。なお、筐体側(表示面側と反対側)にパネルを支える機構が備わっていることが好ましい。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。また、本願明細書における「以上」、「以下」は、当該数値を含むものである。すなわち、「以上」とは、不少(当該数値及び当該数値以上)を意味するものである。
なお、本願は、2010年6月21日に出願された日本国特許出願2010-140409号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
100:前面板付表示パネル
10:前面ガラス
11:接着樹脂
13、15:偏光板
14:液晶表示パネル
14a:シール材
16:バックライトユニット
31:周辺ムラ部
31a:白ムラ部
31b:黒ムラ部
121:島ポリマー
122:海ポリマー
123:相溶状態の樹脂組成物硬化体

Claims (8)

  1. 前面板が樹脂組成物硬化体層を介して設置された前面板付表示パネルであって、
    該樹脂組成物硬化体層は、0~70℃における損失正接が2以下であることを特徴とする前面板付表示パネル。
  2. 前記樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであり、
    該モノマー成分は、ガラス転移温度が20~80℃以外のモノマーによって構成されたものであることを特徴とする請求項1に記載の前面板付表示パネル。
  3. 前記モノマー成分は、ガラス転移温度が20℃以下のモノマー及び/又はガラス転移温度が80℃以上のモノマーによって構成されたものであることを特徴とする請求項2に記載の前面板付表示パネル。
  4. 前記樹脂組成物硬化体層は、モノマー成分を含む樹脂組成物から形成されたものであり、
    前記モノマー成分は、ガラス転移温度が20~80℃のモノマーとガラス転移温度が80℃以上のモノマーとによって構成されたものであり、樹脂組成物100質量%に対してガラス転移温度が80℃以上のモノマーが3質量%以上であることを特徴とする請求項1に記載の前面板付表示パネル。
  5. 前記樹脂組成物硬化体層は、樹脂組成物から硬化体となるときの体積収縮率が4.5%以下であることを特徴とする請求項1~4のいずれかに記載の前面板付表示パネル。
  6. 前記樹脂組成物硬化体層は、樹脂組成物から硬化体となるときの体積収縮率(%)と、樹脂組成物硬化体層における貯蔵弾性率(MPa)との積が60℃で0.16以下であることを特徴とする請求項1~5のいずれかに記載の前面板付表示パネル。
  7. 請求項1~6のいずれかに記載の前面板付表示パネルを備えることを特徴とする表示装置。
  8. 請求項1~6のいずれかに記載の前面板付表示パネルの樹脂組成物硬化体層を形成するのに用いられることを特徴とする樹脂組成物。
PCT/JP2011/063570 2010-06-21 2011-06-14 前面板付表示パネル、表示装置及び樹脂組成物 WO2011162125A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137001253A KR101476063B1 (ko) 2010-06-21 2011-06-14 전방면판 부착 표시 패널, 표시 장치 및 수지 조성물
CN201180030334.8A CN102985960B (zh) 2010-06-21 2011-06-14 带前表面板显示面板、显示装置、及树脂组合物
US13/805,866 US8815406B2 (en) 2010-06-21 2011-06-14 Display panel equipped with front plate, display device, and resin composition
JP2012521430A JP5728010B2 (ja) 2010-06-21 2011-06-14 前面板付表示パネル、表示装置及び樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010140409 2010-06-21
JP2010-140409 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162125A1 true WO2011162125A1 (ja) 2011-12-29

Family

ID=45371319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063570 WO2011162125A1 (ja) 2010-06-21 2011-06-14 前面板付表示パネル、表示装置及び樹脂組成物

Country Status (6)

Country Link
US (1) US8815406B2 (ja)
JP (1) JP5728010B2 (ja)
KR (1) KR101476063B1 (ja)
CN (1) CN102985960B (ja)
TW (1) TWI457298B (ja)
WO (1) WO2011162125A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299520A1 (en) * 2012-10-15 2015-10-22 Hitachi Chemical Company, Ltd. Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP2016075807A (ja) * 2014-10-07 2016-05-12 エルジー ディスプレイ カンパニー リミテッド ディスプレイ用フィルム、ディスプレイおよびそれらの製造方法
CN106960849A (zh) * 2016-01-11 2017-07-18 三星显示有限公司 可折叠显示装置
JP2021140176A (ja) * 2015-10-13 2021-09-16 コーニング インコーポレイテッド 屈曲性電子装置モジュール、物品及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114212B1 (ko) * 2012-08-10 2020-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
TWI612235B (zh) * 2014-05-08 2018-01-21 鍋屋百泰股份有限公司 聯結器
JP6804310B2 (ja) * 2016-03-07 2020-12-23 日東電工株式会社 光学用粘着シート、粘着剤層付偏光フィルム、および液晶表示装置
CN111725269B (zh) * 2020-06-02 2022-09-09 武汉华星光电半导体显示技术有限公司 显示面板其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094366A (ja) * 2005-08-29 2007-04-12 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2007108553A (ja) * 2005-10-17 2007-04-26 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2009104002A (ja) * 2007-10-24 2009-05-14 Three M Innovative Properties Co 画像表示装置用保護フィルム及びそれを含む画像表示装置
JP2009271489A (ja) * 2007-07-17 2009-11-19 Sony Chemical & Information Device Corp 画像表示装置及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220403A (ja) 1990-01-25 1991-09-27 Fujitsu Ltd 走査型トンネル顕微鏡の探針着脱機構
EP1291812A3 (en) 1996-02-09 2004-06-23 Seiko Instruments Inc. Display unit, manufacturing method of the same and electronic device
JP2005055641A (ja) 2003-08-04 2005-03-03 Yokogawa Electric Corp 液晶表示装置
TWI380900B (zh) * 2004-09-17 2013-01-01 Sumitomo Chemical Co 光學疊層體
JP4839744B2 (ja) 2004-09-17 2011-12-21 住友化学株式会社 光学積層体及びその製造方法
JP2007094191A (ja) 2005-09-29 2007-04-12 Dainippon Printing Co Ltd フラットディスプレイ用耐衝撃吸収材、プラズマディスプレイ用光学フィルタ、プラズマディスプレイパネル、及びフラットディスプレイ用耐衝撃吸収材の製造方法
CN103289025B (zh) 2006-07-14 2017-09-26 迪睿合电子材料有限公司 树脂组成物以及显示装置
JP2008129159A (ja) 2006-11-17 2008-06-05 Hitachi Chem Co Ltd 保護板付き画像表示装置の製造方法
CN101652803B (zh) * 2007-04-03 2015-02-04 迪睿合电子材料有限公司 图像显示装置的制造方法
KR101702248B1 (ko) 2007-04-03 2017-02-03 데쿠세리아루즈 가부시키가이샤 화상 표시 장치의 제조 방법
KR101445897B1 (ko) 2007-04-04 2014-09-29 데쿠세리아루즈 가부시키가이샤 화상 표시 장치의 제조 방법
JP2009186957A (ja) 2007-04-09 2009-08-20 Sony Chemical & Information Device Corp 樹脂組成物及び表示装置
JP5401824B2 (ja) 2007-04-09 2014-01-29 デクセリアルズ株式会社 画像表示装置
WO2008126868A1 (ja) 2007-04-09 2008-10-23 Sony Chemical & Information Device Corporation 画像表示装置
JP5470735B2 (ja) 2007-04-10 2014-04-16 デクセリアルズ株式会社 画像表示装置の製造方法
ATE524413T1 (de) * 2007-07-03 2011-09-15 Em Microelectronic Marin Sa Verfahren zur herstellung von mikromechanischen teilen aus kristallinischem material
JP4711354B2 (ja) 2007-07-17 2011-06-29 ソニーケミカル&インフォメーションデバイス株式会社 画像表示装置の製造方法
JP2009186962A (ja) 2007-07-17 2009-08-20 Sony Chemical & Information Device Corp 表示装置の製造方法
JP5291973B2 (ja) 2007-07-17 2013-09-18 デクセリアルズ株式会社 表示装置の製造方法
JP5343391B2 (ja) 2007-07-17 2013-11-13 デクセリアルズ株式会社 樹脂組成物及び画像表示装置
JP5382403B2 (ja) 2008-06-04 2014-01-08 日立化成株式会社 光学用樹脂組成物及びこの組成物を用いた光学用樹脂材料並びに画像表示用装置
US8545708B2 (en) * 2009-04-30 2013-10-01 Sharp Kabushiki Kaisha Mold and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007094366A (ja) * 2005-08-29 2007-04-12 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2007108553A (ja) * 2005-10-17 2007-04-26 Epson Imaging Devices Corp 電気光学装置及び電子機器
JP2009271489A (ja) * 2007-07-17 2009-11-19 Sony Chemical & Information Device Corp 画像表示装置及びその製造方法
JP2009104002A (ja) * 2007-10-24 2009-05-14 Three M Innovative Properties Co 画像表示装置用保護フィルム及びそれを含む画像表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299520A1 (en) * 2012-10-15 2015-10-22 Hitachi Chemical Company, Ltd. Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP2016075807A (ja) * 2014-10-07 2016-05-12 エルジー ディスプレイ カンパニー リミテッド ディスプレイ用フィルム、ディスプレイおよびそれらの製造方法
JP2021140176A (ja) * 2015-10-13 2021-09-16 コーニング インコーポレイテッド 屈曲性電子装置モジュール、物品及びその製造方法
CN106960849A (zh) * 2016-01-11 2017-07-18 三星显示有限公司 可折叠显示装置
JP2017126061A (ja) * 2016-01-11 2017-07-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. フォルダブル表示装置
CN106960849B (zh) * 2016-01-11 2023-04-25 三星显示有限公司 可折叠显示装置

Also Published As

Publication number Publication date
US20130095339A1 (en) 2013-04-18
CN102985960B (zh) 2015-04-29
JPWO2011162125A1 (ja) 2013-08-19
TWI457298B (zh) 2014-10-21
KR20130020922A (ko) 2013-03-04
US8815406B2 (en) 2014-08-26
CN102985960A (zh) 2013-03-20
KR101476063B1 (ko) 2014-12-30
TW201210960A (en) 2012-03-16
JP5728010B2 (ja) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5728010B2 (ja) 前面板付表示パネル、表示装置及び樹脂組成物
KR102309118B1 (ko) 양면 점착제 부착 광학 필름 및 그것을 사용한 화상 표시 장치의 제조 방법, 그리고 양면 점착제 부착 광학 필름의 컬 억제 방법
US11008484B1 (en) Optical adhesive, method for manufacturing optical adhesive, and display device
TWI420190B (zh) Resin composition and image display device
TWI643756B (zh) Image display device
KR101566060B1 (ko) 점착 필름, 이를 위한 점착제 조성물 및 이를 포함하는 디스플레이 부재
JP6523098B2 (ja) 粘着性組成物、粘着剤、粘着シートおよび表示体
JP6201330B2 (ja) 透明両面接着性シート
KR20180015718A (ko) 아크릴-기반 가요성 조립체 층
JP6895266B2 (ja) 粘着シート
JP2010066756A (ja) 粘着剤付き光学フィルムとそれを用いた光学積層体
WO2014125961A1 (ja) 透明両面接着性シート、これを用いた画像表示装置構成用積層体、この積層体の製造方法、及びこの積層体を用いてなる画像表示装置
KR101780542B1 (ko) 점착 필름 및 이를 포함하는 플렉시블 디스플레이 장치
JP6126857B2 (ja) 画像表示装置構成用積層体の製造方法、及びこの積層体を用いてなる画像表示装置
JP2016106275A (ja) 画像表示装置及びその製造方法
KR20210103479A (ko) 점착제층 구비 광학 필름, 화상 표시 패널 및 화상 표시 장치
JP6067895B1 (ja) 曲面画像表示パネル用偏光板
JP5793783B2 (ja) 光学部材用粘着剤組成物並びにそれを使用した粘着シート、粘着剤層付き光学部材及びフラットパネルディスプレイ
JP2009294360A (ja) 光学用樹脂組成物及びこの組成物を用いた光学用樹脂材料並びに画像表示用装置
JP6383081B1 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
WO2013027657A1 (ja) 粘着剤組成物、粘着剤シート、粘着剤付き光学フィルム及び光学積層体
JP4499995B2 (ja) 反射防止層用保護フィルム及び反射防止層付き光学部材
JP5515780B2 (ja) 液晶パネル
US20240158675A1 (en) Adhesive sheet and method for manufacturing structure
KR20160109445A (ko) 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030334.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521430

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13805866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137001253

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11798011

Country of ref document: EP

Kind code of ref document: A1