WO2011162078A1 - コロイド結晶用組成物 - Google Patents

コロイド結晶用組成物 Download PDF

Info

Publication number
WO2011162078A1
WO2011162078A1 PCT/JP2011/062594 JP2011062594W WO2011162078A1 WO 2011162078 A1 WO2011162078 A1 WO 2011162078A1 JP 2011062594 W JP2011062594 W JP 2011062594W WO 2011162078 A1 WO2011162078 A1 WO 2011162078A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
monomer
shell
weight
composition
Prior art date
Application number
PCT/JP2011/062594
Other languages
English (en)
French (fr)
Inventor
昌樹 林
高村 真澄
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to CN201180029028.2A priority Critical patent/CN102958944B/zh
Priority to US13/806,593 priority patent/US8906505B2/en
Priority to JP2012521390A priority patent/JP5708647B2/ja
Priority to EP11797964.1A priority patent/EP2586799B1/en
Publication of WO2011162078A1 publication Critical patent/WO2011162078A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/10Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/306Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and polyethylene oxide chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present disclosure relates to a composition for producing a colloidal crystal that can be used as a coloring material or an optical element exhibiting a structural color, a colloidal crystal cured film obtained therefrom, and a method for producing the colloidal crystal cured film.
  • the composition for colloidal crystals and the cured colloidal crystal of the present disclosure are useful for applications in the optical technical field such as optical elements and optical functional materials.
  • colloidal crystals in which monodisperse particles are regularly arranged in three dimensions are called colloidal crystals.
  • diffraction and interference occur, and light of a specific wavelength is reflected mainly depending on the periodic structure (Bragg reflection).
  • a colloidal crystal of submicron-sized particles reflects light in the range of ultraviolet light to visible light and further infrared light depending on the particle size.
  • the wavelength of the reflected light is generated in the visible light region, the color of the colloidal crystal can be visually recognized as the structural color development. Numerous studies have been conducted on colloidal crystals, and development of various optical elements such as photonic crystals and optical functional materials is expected.
  • the colloidal crystal can be applied to, for example, various color materials including paints, inks, cosmetics, optical filters, optical memory materials, display devices, optical switches, sensors, lasers, and the like.
  • colloidal crystals can be broadly classified into “close-packed” (hard) and “non-close-packed” colloidal crystals. “Non-close-packed” colloidal crystals are further classified as “non-close-packed” (soft) System] ”colloidal crystals and“ non-close-packed (quasi-soft) ”colloidal crystals.
  • the “close-packed [hard type]” colloidal crystal is an aggregate in which particles such as silica and polystyrene are densely packed, and the particles in the colloidal crystal are in contact with each other.
  • a colloidal crystal in a dry state can be obtained by growing the crystal using the accumulation of particles accompanying evaporation of the water-soluble solvent. For this reason, innumerable voids exist between the particles. Since the hard colloidal crystals are accumulated only by contact, the mechanical strength is very weak, and the colloidal crystals are broken by a slight external force.
  • a manufacturing method in which a binder such as a monomer or a polymer is applied to the obtained colloidal crystal in order to fill a binder that fixes the particles in the voids between the particles (see, for example, Patent Document 1). ). Also disclosed is a production method in which the shell part fills voids between the particles by using core-shell particles in which the surface of the core part (particles) prepared by two-stage emulsion polymerization is coated with the resin of the shell part. (For example, refer to Patent Document 2).
  • a “non-close-packed [soft type]” colloidal crystal can be obtained by removing an ionic substance from a particle dispersion using a water-soluble solvent as a dispersion medium (for example, Patent Document 3). See).
  • the electric double layer on the particle surface expands due to deionization, and mutual electrostatic repulsion acts between the particles.
  • the Brownian motion of the particles is suppressed, and the particles take a regular arrangement in the entire dispersion medium. become.
  • the [soft system] colloidal crystal is in a liquid state, the regular arrangement of particles easily collapses due to the influence of a slight external force such as vibration or a temperature change.
  • the “non-close-packed [quasi-soft type]” colloidal crystal contains core-shell particles in which a linear polymer forming the shell portion is bonded to the surface of the particle (core portion). Since the core-shell particles obtained by the two-stage emulsion polymerization described in Patent Document 2 are particles in which the surface of the core portion is coated with the resin of the shell portion, the core used in the [quasi-soft type] colloidal crystal Different from shell particles. The linear polymer of core-shell particles used in this [quasi-soft] colloidal crystal is dissolved in an organic solvent. However, since the linear polymer is bonded to the surface of the core part, it does not leave the core part, and contributes to the dispersion stabilization of the core part.
  • the [quasi-soft] colloidal crystals like the [soft] colloidal crystals, have a liquid particle dispersion medium. For practical use, it is necessary to fix the colloidal crystals while maintaining the regular arrangement of the particles. is there.
  • [Quasi-soft type] A method is disclosed in which a small amount of monomer is contained in an organic solvent of colloidal crystal, and the monomer is polymerized to fix the colloidal crystal with a polymer gel (for example, Patent Document 7). reference).
  • Patent Document 1 In the [hard system] colloidal crystal described in Patent Document 1, when a hydrophobic binder is added during the drying process of the particle dispersion, the particles are aggregated and the particles are not regularly arranged (Patent Document 2 (No. 1). See page 14)). Then, after producing a colloidal crystal, applying a binder is performed, but the colloidal crystal may break down in that case. For this reason, a manufacturing method in which an adhesive layer is formed on a substrate in advance has been disclosed, but it requires a complicated multi-step operation. In addition, it is difficult to completely fill the voids between the particles with a binder, and the voids often remain randomly. This disorderly remaining void causes light scattering, and the resulting colloidal crystal has a cloudiness.
  • Hard colloidal crystals tend to generate numerous cracks in the coating film during the drying process. This is because the distance between particles gradually decreases in the drying process, but if the shrinkage does not occur uniformly, a part of the crystal breaks and cracks occur. These cracks vary in size from cracks of a size that can be sufficiently observed visually to micro cracks of about several ⁇ m that are difficult to visually confirm. These countless cracks also scatter light, resulting in a cloudiness in the resulting colloidal crystal. In order to prevent the occurrence of cracks, a method of forming a colloidal crystal on a substrate having a deep section is disclosed, but a specially shaped substrate is required (see, for example, Patent Document 1).
  • the member filling the void is a polymer having poor fluidity as compared with a low-molecular binder. It is difficult to completely fill In addition, it is difficult to prevent all cracks with the shell polymer alone. As described above, there are problems that immobilization of colloidal crystals requires a complicated procedure and a substrate, and white turbidity is caused by remaining voids and cracks.
  • the [soft type] colloidal crystals described in Patent Documents 4 to 5 are formed by utilizing electrostatic repulsion due to the surface charge of the particles, it is necessary to use a water-soluble solvent having a high dielectric constant as the dispersion medium. . For this reason, it can be immobilized only in a gel state containing a water-soluble solvent.
  • a colloidal crystal is formed using a hydrophobic monomer as a dispersion medium, and this monomer is cured (polymerized). For example, it is expected that colloidal crystals can be fixed as a cured film.
  • the colloidal crystal fixed by the method described in Patent Document 7 is fixed as a gel containing about 50% of an organic solvent.
  • the colloidal crystal fixed as a gel containing a water-soluble solvent or an organic solvent has low mechanical strength, it has been difficult to put it into practical use as an optical functional material.
  • the regular wavelength of the particles collapses due to the volatilization of the solvent, and the reflection wavelength changes due to the change in the distance between the particles, resulting in poor stability.
  • the solvent content is 30% by weight or less, but the monomer serving as the binder is limited to a water-soluble polyalkylene glycol monomer.
  • the inventors limited the solubility parameters of the shell part of the core-shell particle (A) and the monomer (B) as a binder in the [quasi-soft] colloidal crystal. Furthermore, a method for obtaining a cured film exhibiting a vivid structural color by further limiting the acrylic equivalent of the monomer (B) has been previously found (Patent Document 8).
  • the cured film obtained by this production method is excellent in mechanical strength, excellent in stability because it does not volatilize the solvent, and more excellent in that it can form a cured film that exhibits structural coloring by a simple method. There are advantages.
  • the reflectance of the reflection peak indicating the color is sufficiently high, and the haze value indicating turbidity is small, and the optical properties are high in transparency. It is done.
  • One method for increasing the reflectance of the reflection peak is to increase the film thickness and increase the number of colloidal crystal layers. In this case, however, the haze value also increases. In general, in order to use a cured colloidal crystal as a coloring material, it is necessary that the reflectance of the reflection peak is 50% or more and the haze value is 10% or less.
  • the colloidal crystal maintaining the regular arrangement of particles can be fixed by a simple process, and the reflectance of the reflection peak is 50% or more and the haze value is 10% or less. It is an object to provide a colloidal crystal composition capable of producing a colloidal crystal, a colloidal crystal cured film obtained therefrom, and a method for producing the same.
  • core-shell particles having a linear polymer having a high refractive index in the shell portion relative to the core portion, and a single material having a high refractive index serving as a binder have found that a composition for colloidal crystals comprising a monomer can improve the optical properties of a cured colloidal crystal.
  • the first aspect of the present disclosure is a composition for colloidal crystals, comprising core-shell particles (A) having a core part and a shell part, and the monomer (B1) represented by the following formula (1). Because Containing 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the monomer (B1);
  • the core part has an average particle size of 50 to 900 nm,
  • the shell part is formed of a linear polymer composed of at least one of styrene and a monomer (B2) represented by the following formula (1), One end of the linear polymer is covalently bonded to the core part,
  • the refractive index (n (core)) of the core portion satisfies the following formulas (2) and (3).
  • R 1 is a hydrogen atom or a methyl group, and y is 0 or 1] n (shell) ⁇ n (core) ⁇ 0.07 (2) [Where n (shell) represents the refractive index of the shell portion] n (B) ⁇ n (core) ⁇ 0.07 (3) [Where n (B) represents the refractive index after curing of the monomer (B1)]
  • the second aspect of the present disclosure is represented by the core-shell particles (A) having a core part and a shell part, the monomer (B1) represented by the following formula (1), and the following formula (4).
  • a composition for colloidal crystals comprising a mixture of monomers (C1), 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the mixture, provided that the monomer (B1) is 5% by weight or more, and the monomer (C1) Is 70% by weight or less
  • the core part has an average particle size of 50 to 900 nm
  • the shell part is formed of a linear polymer composed of at least one of styrene and a monomer (B2) represented by the following formula (1), One end of the linear polymer is covalently bonded to the core part,
  • the refractive index (n (core)) of the core portion satisfies the following expressions (3) and (5).
  • R 1 is a hydrogen atom or a methyl group, and y is 0 or 1]
  • R 2 is a hydrogen atom or a methyl group, X is an oxygen atom or a sulfur atom, and z is 0 or 1]
  • n (shell) ⁇ n (core) ⁇ 0.07 (3)
  • n (shell) represents the refractive index of the shell portion]
  • n (B + C) ⁇ n (core) ⁇ 0.07
  • n (B + C) represents the refractive index after curing of the mixture]
  • the third aspect of the present disclosure is represented by the core-shell particles (A) having a core part and a shell part, the monomer (B1) represented by the following formula (1), and the following formula (6).
  • a composition for colloidal crystals comprising a mixture of monomers (C2), 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the mixture, provided that the monomer (B1) is 5% by weight or more, and the monomer (C2) Is 70% by weight or less
  • the core part has an average particle size of 50 to 900 nm
  • the shell part is formed of a linear polymer composed of at least one of styrene and a monomer (B2) represented by the following formula (1), One end of the linear polymer is covalently bonded to the core part,
  • the refractive index (n (core)) of the core portion satisfies the following expressions (3) and (7).
  • R 1 is a hydrogen atom or a methyl group, and y is 0 or 1]
  • R 3 is a hydrogen atom or a methyl group, and p is 1 or 2]
  • n (shell) ⁇ n (core) ⁇ 0.07 (3)
  • n (shell) represents the refractive index of the shell portion]
  • n (B + C) ⁇ n (core) ⁇ 0.07 (7)
  • n (B + C) represents the refractive index after curing of the mixture]
  • the fourth aspect of the present disclosure is represented by the core-shell particles (A) having a core part and a shell part, the monomer (B1) represented by the following formula (1), and the following formula (8).
  • a composition for colloidal crystals comprising a mixture of monomers (C3), 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the mixture, provided that the monomer (B1) is 5% by weight or more, and the monomer (C3) Is 70% by weight or less
  • the core part has an average particle size of 50 to 900 nm
  • the shell part is formed of a linear polymer composed of at least one of styrene and a monomer (B2) represented by the following formula (1), One end of the linear polymer is covalently bonded to the core part,
  • the colloidal crystal composition, wherein the refractive index (n (core)) of the core part satisfies the following formulas (3) and (9).
  • R 1 is a hydrogen atom or a methyl group, and y is 0 or 1]
  • R 4 is a hydrogen atom or a methyl group, and q is 1 or 2]
  • n (shell) ⁇ n (core) ⁇ 0.07 (3)
  • n (shell) represents the refractive index of the shell portion]
  • n (B + C) ⁇ n (core) ⁇ 0.07 (9)
  • n (B + C) represents the refractive index after curing of the mixture]
  • the fifth aspect of the present disclosure includes a core-shell particle (A) having a core part and a shell part, and a mixture of the monomer (B1) and the monomer (C) represented by the following formula (1):
  • a composition for colloidal crystals comprising: 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the mixture, provided that the monomer (B1) is 5% by weight or more, and the monomer (C) Is 70% by weight or less,
  • the monomer (C) is represented by the monomer (C1) represented by the following formula (4), the monomer (C2) represented by the following formula (6), and the following formula (8).
  • the core part has an average particle size of 50 to 900 nm
  • the shell part is formed of a linear polymer composed of at least one of styrene and a monomer (B2) represented by the following formula (1), One end of the linear polymer is covalently bonded to the core part,
  • the refractive index (n (core)) of the core portion satisfies the following expressions (3) and (10).
  • R 1 is a hydrogen atom or a methyl group, and y is 0 or 1]
  • R 2 is a hydrogen atom or a methyl group, X is an oxygen atom or a sulfur atom, and z is 0 or 1]
  • R 3 is a hydrogen atom or a methyl group, and p is 1 or 2]
  • R 4 is a hydrogen atom or a methyl group, and q is 1 or 2]
  • n (shell) represents the refractive index of the shell portion]
  • n (B + C) represents the refractive index after curing of the mixture]
  • a sixth aspect of the present disclosure is a composition for colloidal crystals, and 0.1 to 10 parts by weight of a polymerization initiator is further added to 100 parts by weight of the composition for colloidal crystals of any of the first to fifth aspects. It is characterized by including a part.
  • the seventh aspect of the present disclosure is a composition for colloidal crystals, and further comprises 5 to 500 parts by weight of an organic solvent with respect to 100 parts by weight of the composition for colloidal crystals of any of the first to sixth aspects. It is characterized by.
  • An eighth aspect of the present disclosure is a cured colloidal crystal, which is a cured film obtained by curing any of the compositions for colloidal crystals according to the first to seventh aspects with heat or active energy rays.
  • the thickness is 1 to 100 ⁇ m.
  • the ninth aspect of the present disclosure is a method for producing a cured colloidal crystal film having a film thickness of 1 to 100 ⁇ m. After the colloidal crystal composition of the seventh aspect is applied to a substrate, the organic solvent is volatilized. And a step of forming a colloidal crystal by curing, and a step of curing the crystallized composition with heat or active energy rays.
  • the reason why the above object is achieved by the colloidal crystal composition of the present disclosure is not necessarily clear, but the inventors speculate as follows.
  • the linear polymer, the monomer (B1), and the monomer constituting the shell part of the core-shell particle (A) It is considered that it is important for the cured product of (C1 to C3) to be compatible in maintaining the regular arrangement of particles during curing.
  • the shell part before curing is dissolved in the monomer (B1) and the monomers (C1 to C3), which contributes to the dispersion stability of the particles.
  • phase separation occurs, the particles are aggregated and the regular arrangement of the particles is lost.
  • the colloidal crystal composition of the first aspect forms a colloidal crystal having excellent dispersion stability of the particles because the shell part of the core-shell particles (A) and the monomer (B1) have good solubility. be able to. Furthermore, the polymerization of the monomer (B1) can be performed to fix the colloidal crystal maintaining the regular arrangement of the particles, the refractive index difference between the core part and the shell part, and the core part and the monomer ( Since the difference in refractive index from B1) satisfies the conditions represented by the above formulas (2) and (3), a cured colloidal crystal exhibiting good optical characteristics can be produced.
  • the reflection wavelength of Bragg reflection of the cured colloidal crystal film is in the range from ultraviolet light to infrared light, and the colloidal crystal cured film is applied to various optical elements. Can be used practically.
  • the colloidal crystal composition of the second to fifth aspects can produce a cured colloidal crystal that exhibits substantially the same effect as the first aspect. Furthermore, since the monomer (B1) and the monomers (C1 to C3) form a crosslinked structure, the resulting colloidal crystal cured film has thermal properties such as heat resistance, mechanical properties such as hardness, Chemical properties can be improved.
  • the monomer (B1) and the monomers (C1 to C3) of the colloidal crystal composition according to any one of the first to fifth aspects are rapidly polymerized and cured.
  • a cured colloidal crystal film in which a regular arrangement of particles is maintained can be easily produced.
  • the dispersibility of the core-shell particles can be improved by including an organic solvent in the composition for colloidal crystals of any one of the first to sixth aspects, Further, the viscosity of the composition can be adjusted and the paintability can be improved. Furthermore, colloidal crystallization of the composition can be promoted by drying the organic solvent after coating.
  • the colloidal crystal cured film according to the eighth aspect is prepared by curing the monomer (B1) and the monomers (C1 to C3) in the colloidal crystal composition according to any one of the first to seventh aspects. And shows Bragg reflection. For this reason, the colloidal crystal cured film maintains an ordered arrangement of particles and can exhibit excellent optical characteristics. Furthermore, the colloidal crystal cured film has thermal characteristics, mechanical characteristics, and chemical resistance necessary for practical use as an optical functional material.
  • the method for producing a cured colloidal crystal film according to the ninth aspect can efficiently produce a cured colloidal crystal film that exhibits substantially the same effect as that of the seventh aspect. Furthermore, since this method does not require a specially shaped substrate or flat plate, a colloidal crystal cured film can be produced on a three-dimensional shaped product.
  • the composition for colloidal crystals of the present disclosure contains a core-shell particle (A) having a core part and a shell part and a monomer (B1), or a core-shell particle (A) and a monomer (B1). ) And a mixture of monomers (C1 to C3).
  • A core-shell particle
  • B1 core part and a shell part and a monomer
  • B1 core-shell particle
  • C1 to C3 a mixture of monomers
  • the monomer (B) (monomer (B1) and monomer (B2)) is a (meth) acrylate compound having a biphenyl skeleton represented by the following formula (1).
  • R 1 is a hydrogen atom or a methyl group
  • y is 0 or 1
  • the monomer (B1) and monomer (B2) contained in the composition for colloidal crystals may be the same compound or different compounds.
  • One or both of the monomer (B1) and the monomer (B2) may contain a plurality of compounds.
  • Examples of the monomer (B) include 2-phenylphenyl (meth) acrylate and 2-phenylphenoxyethyl (meth) acrylate.
  • the term “(meth) acrylate” means both “acrylate” and “methacrylate”. The same applies to the term “(meth) acryl”.
  • the monomer (C1) is a di (meth) acrylate compound having a biphenyl skeleton represented by the following formula (4).
  • R 2 is a hydrogen atom or a methyl group
  • X is an oxygen atom or a sulfur atom
  • z is 0 or 1
  • Examples of the monomer (C1) include bis (4- (meth) acryloxyphenyl) sulfide, bis (4- (meth) acryloxyethoxyphenyl) sulfide, and bis (4- (meth) acryloylthiophenyl) sulfide. And bis (4- (meth) acryloxyethylthiophenyl) sulfide) and the like.
  • the monomer (C2) is a di (meth) acrylate compound having a fluorene skeleton represented by the following formula (6).
  • R 3 is a hydrogen atom or a methyl group, and p is 1 or 2.
  • the monomer (C2) for example, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [4- (2- (2- (meth)) Acryloyloxyethoxy) ethoxy) phenyl] fluorene.
  • the monomer (C3) is a di (meth) acrylate having a bisphenol A skeleton represented by the following formula (8).
  • R 4 is a hydrogen atom or a methyl group, and q is 1 or 2]
  • Monomers (C3) include 2,2-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] propane, 2,2-bis [4- (2- (2- (meth) acryloyloxy) Ethoxy) ethoxy) phenyl] propane.
  • the core-shell particle (A) has a core part composed of particles and a shell part formed of a linear polymer bonded to the surface of the core part.
  • core part inorganic particles, organic polymer particles, or hollow particles containing pores (air) in these particles can be used.
  • the inorganic particles desirably have a low refractive index, and magnesium fluoride, silica, or the like can be used.
  • the inorganic particles are preferably formed of silica in terms of refractive index, dispersion stability, and cost.
  • organic polymer particles acrylic resin, polyester resin, polycarbonate resin, polyamide resin, urethane resin, fluororesin, polyolefin resin, melamine resin, and copolymers thereof can be used.
  • the organic polymer particles are preferably formed of an acrylic resin because of its low refractive index and easy particle diameter control.
  • a (meth) acrylic acid ester monomer or a (meth) acrylamide monomer is used as a monomer that can be used to manufacture the core part. be able to.
  • a polymerizable monomer such as a styrene monomer, vinyl acetate, acrylonitrile, a water-soluble monomer, an ionic monomer, or another monomer having a functional group may be used in combination. good.
  • a crosslinkable monomer having two or more polymerizable groups in one molecule may be used in combination.
  • (meth) acrylic acid ester monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meta ) Acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl isocyanate, N, N-dimethylamino Ethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth
  • Examples of the (meth) acrylamide monomer include N, N-dimethyl (meth) acrylamide and N-isopropyl (meth) acrylamide.
  • a (meth) acrylic acid ester monomer because of its low refractive index and easy control of the particle diameter.
  • the said monomer can be used individually or in combination of 2 or more types according to the objective.
  • Examples of crosslinkable monomers include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and trimethylolpropane. Examples include tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, triallyl isocyanurate, diallyl phthalate, and divinylbenzene.
  • the core part of the core-shell particles (A) has an arithmetic average particle diameter of 50 to 900 nm measured by dynamic light scattering.
  • the average particle size of the core part is preferably 80 to 600 nm, more preferably 100 to 300 nm.
  • the average particle size of the core part is smaller than 50 nm, it is difficult to suppress the aggregation between the core and shell particles.
  • the average particle size of the core part is larger than 900 nm, the sedimentation of the core-shell particles is difficult. It is difficult to suppress colloidal crystals.
  • the particle size distribution of the core portion is represented by a CV value [(particle diameter standard deviation / average particle size) ⁇ 100 (%)], and the CV value is preferably 25% or less, more preferably 20% or less. It is.
  • the CV value is 0% in the case of monodispersion in which all particle diameters are the same.
  • the CV value of the core portion is larger than 25%, it is difficult to form a colloidal crystal because the particle diameters are not uniform.
  • the shell part of the core-shell particle (A) is formed of a linear polymer obtained by polymerizing styrene and / or the monomer (B2) represented by the formula (1).
  • Styrene and the monomer (B2) can be used alone or in combination as appropriate under the conditions satisfying the formula (2).
  • the resulting colloidal crystal cured film has a high peak reflectivity and a cured film having a low haze value and high transparency. be able to.
  • the linear polymer constituting the shell part does not have a branched structure, and one end thereof is bonded to the core part by a covalent bond. Since the linear polymer is bonded to the core portion, it does not desorb from the core portion even when dissolved in a monomer or a solvent. Thereby, the dispersion stability of the core-shell particles can be improved.
  • the shell part is bonded to the core part by physical adsorption, or is arranged around the core part by forming a three-dimensional network structure so as to surround the core part. .
  • the shell part is easily detached from the core part, so the shell part does not contribute to the dispersion stability of the core-shell particles.
  • the shell part is arranged around the core part by a three-dimensional network structure, the dispersion stability of the core-shell particles cannot be ensured.
  • the graft ratio (%) of the shell part is represented by [(shell part mass / core part mass) ⁇ 100], preferably 3 to 500%, and more preferably 5 to 200%.
  • the graft ratio of the shell part is lower than 3%, the effect of steric repulsion by the linear polymer is reduced and it becomes difficult to suppress the aggregation of the core-shell particles, so that it is difficult to form a colloidal crystal.
  • the graft ratio of the shell part is higher than 500%, the ratio of the core part becomes small and the colloidal crystal does not have sufficient optical properties.
  • the graft ratio of the shell part correlates to some extent with the thickness of the shell part.
  • the average particle diameter of the core-shell particles (A) is measured by dynamic light scattering or the like as the sum of twice the thickness of the shell portion and the average particle diameter of the core particles.
  • the average particle diameter of the core-shell particles is 60 to 1,000 nm, preferably 90 to 700 nm, and more preferably 110 to 400 nm.
  • the average particle diameter of the core-shell particles is smaller than 60 nm, it becomes difficult to suppress the aggregation of the core-shell particles, and when the average particle diameter of the core-shell particles is larger than 1,000 nm, the core-shell It becomes difficult to suppress sedimentation of particles and it becomes difficult to form colloidal crystals.
  • the reflection wavelength of the obtained colloidal crystal can be controlled by the average particle diameter of the core-shell particles and the content of the core-shell particles in the composition for colloidal crystals.
  • the particle diameter of the core-shell particles is determined by the particle diameter of the core part and the thickness of the shell part.
  • the thickness of the shell part correlates to some extent with the graft ratio, but when the graft ratio is 200% or less, the effect of the shell part thickness is smaller than the effect of the particle diameter of the core part. For this reason, it is more important to control the particle diameter of the core part.
  • the colloidal crystals are visible light when the average particle diameter of the core part is about 100 to 300 nm.
  • the colloidal crystal shows the reflection wavelength of ultraviolet light (200 to 400 nm), and the average particle diameter of the core is about 300
  • the colloidal crystal shows a reflection wavelength of near infrared light (800 to 2500 nm).
  • the reflection wavelength can also be controlled by changing the content of core-shell particles in the composition.
  • the reflection wavelength can be adjusted in a range of about 100 nm by changing the content of core-shell particles in the composition for colloidal crystal.
  • the core-shell particles (A) are appropriately selected according to the mixture of the monomer (B1) and the monomers (C1 to C3) contained in the colloidal crystal composition.
  • the core-shell particles (A) in which the refractive index (n (core)) of the core part satisfies the following formulas (2) and (3) Is selected.
  • the core-shell particles (A) in which the refractive index of the core part satisfies the following formulas (2) and (5) are selected.
  • the core-shell particles (A) in which the refractive index of the core part satisfies the following formulas (2) and (7) are selected.
  • the core-shell particles (A) in which the refractive index of the core part satisfies the following formulas (2) and (9) are selected.
  • the core-shell particles (A) in which the refractive index of the core part satisfies the following formulas (2) and (10) are selected. .
  • n (shell) ⁇ n (core) ⁇ 0.07
  • n (shell) represents the refractive index of the shell portion of the core-shell particle (A)] n (B) ⁇ n (core) ⁇ 0.07 (3)
  • n (B) represents the refractive index after curing of the monomer (B1) contained in the composition for colloidal crystals] n (B + C) ⁇ n (core) ⁇ 0.07 (5)
  • n (B + C) represents the refractive index after curing of the mixture of monomer (B1) and monomer (C1) contained in the composition for colloidal crystals] n (B + C) ⁇ n (core) ⁇ 0.07 (7)
  • n (B + C) represents the refractive index after curing of the mixture of monomer (B1) and monomer (C2) contained in the composition for colloidal crystals] n (B + C) ⁇ n (core) ⁇ 0.07 (9)
  • Monomer (C) comprises at least two of monomer (C1), monomer (C2) and monomer (C3)]
  • the refractive index difference is smaller than 0.07 in Formula (2), Formula (3), Formula (5), Formula (7), Formula (9), and Formula (10)
  • the resulting colloidal crystal cured film The peak reflectance becomes small and sufficient optical properties cannot be obtained.
  • the upper limit of the refractive index difference is not particularly limited, n (shell), n (B) and n (B + C) are about 1.6, and the refractive index of air is 1.00.
  • the upper limit of the refractive index difference is substantially about 0.6.
  • the refractive index of each component is a value measured at 25 ° C.
  • the cured film is formed by, for example, applying a coating liquid composed of a monomer and a photopolymerization initiator on a glass substrate so as to have a thickness of 100 ⁇ m, and curing the film by irradiation with ultraviolet rays of 1000 mJ / cm 2. It is produced by peeling off from.
  • Method 1 is preferable in that various monomers can be used for the linear polymer.
  • the core portion can be synthesized by reacting a compound containing a reactive functional group such as a silane coupling group and a living radical polymerization initiating group with a reactive functional group on the particle surface synthesized in advance.
  • the core portion can be synthesized by copolymerizing a monomer containing a living radical polymerization initiating group.
  • Methods for synthesizing the core part by copolymerizing a monomer containing a living radical polymerization initiating group include soap-free emulsion polymerization, emulsion polymerization, feed emulsion polymerization, seed emulsion polymerization, dispersion polymerization, suspension polymerization, Known polymerization methods such as a turbid polymerization method and a precipitation polymerization method can be applied and are not particularly limited. Among these, it is preferable to use a soap-free emulsion polymerization method or a seed emulsion polymerization method from the viewpoint that particles exhibiting monodispersity with a narrow particle size distribution can be easily produced.
  • the polymerization conditions can be appropriately selected depending on the kind of the monomer and the like. In general, the polymerization is preferably carried out at a polymerization temperature of 30 to 90 ° C. for 2 to 48 hours with stirring.
  • a polymerization temperature of 30 to 90 ° C. for 2 to 48 hours with stirring.
  • an emulsifier, a reactive emulsifier, a dispersant, a polymerization initiator, a chain transfer agent and the like can be used.
  • the monomer containing a living radical polymerization initiating group is not particularly limited as long as it contains a living radical polymerization initiating group and a polymerizable double bond in the same molecule.
  • Living radical polymerization includes living radicals such as polymerization using a nitrosulfide compound (NMP), atom transfer radical polymerization (ATRP), reversible addition / desorption chain transfer polymerization (RAFT), polymerization using an organic tellurium compound (TERP), etc.
  • a polymerization initiating group can be used and is not particularly limited.
  • NMP is preferably used from the viewpoint of ease of control of polymerization, low odor, and no use of heavy metal substances.
  • Examples of the monomer containing a living radical polymerization initiating group include 2- (4′-hydroxy-2 ′, 2 ′, 6 ′, 6′-tetramethyl-1′-piperidinyloxy) -2- (4 ′ -Vinylphenyl) ethanol, 2- (4'-hydroxy-2 ', 2', 6 ', 6'-tetramethyl-1'-piperidinyloxy) -2- (3'-vinylphenyl) ethanol, 2 -(2 ', 2', 6 ', 6'-tetramethyl-1'-piperidinyloxy) -2- (4'-vinylphenyl) ethanol, 2-isopropyloxycarbonyloxy-1- (4'- Acetoxy-2 ′, 2 ′, 6 ′, 6′-tetramethyl-1′-piperidinyloxy) -1- (4′-vinylphenyl) ethane, 2- (Nt-butyl-N- (2 '-Methyl-1
  • a monomer constituting the shell part is polymerized based on the living radical polymerization initiating group of the core part to form a linear polymer, and the core-shell particles (A ) Can be synthesized.
  • a known polymerization method such as a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method, or a solution polymerization method can be applied, and is not particularly limited.
  • the polymerization conditions can be appropriately selected depending on the decomposition characteristics of the living radical polymerization initiating group, the type of monomer constituting the shell portion, the desired molecular weight, and the like. In general, the polymerization temperature is 50 to 180 ° C.
  • a living radical polymerization initiator that is not bonded to the core particle is used in combination as necessary. Can do.
  • 2- (4′-hydroxy-2 ′, 2 ′, 6 ′, 6′-tetramethyl-1′-piperidinyl is used.
  • composition for colloidal crystals is characterized by containing 25 to 65% by weight of the core-shell particles (A) and 35 to 75% by weight of the monomer (B1). To do. However, the total of the core-shell particles (A) and the monomer (B1) is 100% by weight.
  • the composition for colloidal crystals containing one kind of monomer (C1 to C3) is composed of 25 to 65% by weight of core-shell particles (A), and a mixture of monomer (B1) and monomer (C1 to C3). It contains 35 to 75% by weight of the mixture.
  • the content of the monomer (B1) is 5% by weight or more, and the content of the monomers (C1 to C3) is 70% by weight or less.
  • the total of the core-shell particles (A), the monomer (B1), and the monomer (C1 to C3) components is 100% by weight.
  • the composition for colloidal crystals containing two or more monomers (C1 to C3) comprises 25 to 65% by weight of core-shell particles (A), monomer (B1) and monomers (C1 to C3), It is characterized by containing 35 to 75% by weight of a mixture of However, the content of the monomer (B1) is 5% by weight or more, and the content of the monomers (C1 to C3) is 70% by weight or less.
  • the total of the core-shell particles (A), the monomer (B1), and the monomer (C1 to C3) components is 100% by weight.
  • the monomers (C1 to C3) at least two kinds are appropriately selected from the monomer (C1), the monomer (C2), and the monomer (C3).
  • the content of the core-shell particles (A) in the composition for colloidal crystals is 25 to 65% by weight, preferably 30 to 60% by weight.
  • the content of the core-shell particles (A) is less than 25% by weight, colloidal crystallization does not occur because the core-shell particles (A) do not reach concentrations adjacent to each other. Or even if colloidal crystallization occurs, the ratio of the core-shell particles (A) is small, so that sufficient optical properties cannot be exhibited.
  • the content of the core-shell particles (A) is more than 65% by weight, the ratio of the core-shell particles (A) is too large, so that the colloidal crystals are cracked or distorted, resulting in a haze value. It becomes high and is not preferable.
  • the total content of the monomer (B1) and the monomer (C1 to C3) is 35 to 75% by weight.
  • the content of the monomer (B1) is 5% by weight or more, and when the monomer (B1) is less than 5% by weight, the haze value tends to increase, which is not preferable.
  • the content of the monomers (C1 to C3) is 70% by weight or less, preferably 0.1% by weight or more.
  • the composition for colloidal crystals preferably contains a polymerization initiator in order to accelerate curing.
  • a polymerization initiator known polymerization initiators such as an azo polymerization initiator, an organic peroxide polymerization initiator, and a photopolymerization initiator can be used.
  • azo-based radical polymerization initiators include azobisisobutyronitrile, azobiscyclohexanecarbonitrile, and organic peroxide-based polymerization initiators include benzoyl peroxide, t-butyl hydroperoxide, dicumyl. Peroxide and the like can be used.
  • photopolymerization initiators examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2,4,6-trimethylbenzoyldiphenylphosphine oxaside, bis (2,4,6-trimethylbenzoyl) ) Phenyl-phosphine oxide, benzophenone, isopropylthioxanthone and the like can be used.
  • the content of the polymerization initiator is 0.1 to 100 parts by weight with respect to 100 parts by weight of the composition for colloidal crystals comprising the core-shell particles (A), the monomer (B1), and the monomer (C1 to C3) components.
  • the amount is preferably 10 parts by weight, more preferably 0.5 to 5 parts by weight.
  • the content of the polymerization initiator is more than 10 parts by weight, the polymerization initiator that has not been used for the initiation of polymerization remains in the cured film, so that the long-term characteristics of the cured film are deteriorated and the visible light transmittance is increased. There is a risk of adverse effects such as reduction.
  • the content of the polymerization initiator is less than 0.1 parts by weight, the polymerization initiating ability is not sufficiently expressed, and since the curing reaction is slow, the regular arrangement of particles tends to collapse during curing, Has a tendency that the curing reaction becomes insufficient and the mechanical strength required by the cured film cannot be obtained.
  • the colloidal crystal composition contains an organic solvent to improve the dispersibility of the core-shell particles (A), adjust the viscosity of the colloidal crystal composition, improve the coating properties, and promote crystallization of the colloidal crystal composition. It is preferable to do.
  • the organic solvent in order to sufficiently disperse the core-shell particles (A), the organic solvent is preferably a good solvent for the linear polymer in the shell portion. Further, there is no particular limitation as long as it is an organic solvent that volatilizes at the drying temperature.
  • organic solvents examples include (poly) alkylene glycol monoalkyl ethers, (poly) alkylene glycol monoalkyl ether acetates, ethers, ketones, esters, aromatic hydrocarbons, alcohols, amides, and the like. Can be mentioned. Specific examples include (poly) alkylene glycol monoalkyl ethers such as ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and (poly) alkylene glycol monoalkyl ether acetates.
  • an organic solvent can be used individually or in combination of 2 or more types.
  • the content of the organic solvent is 5 to 500 parts by weight with respect to 100 parts by weight of the composition for colloidal crystals comprising the core-shell particles (A), the monomer (B1), and the monomer (C1 to C3) components.
  • the amount is preferably 7 to 300 parts by weight, more preferably 10 to 200 parts by weight.
  • the content of the organic solvent is less than 5 parts by weight, effects such as viscosity adjustment and paintability improvement are small, and colloidal crystallization hardly occurs.
  • the content of the organic solvent is more than 500 parts by weight, the film thickness after drying becomes thin and sufficient optical characteristics cannot be obtained. Moreover, an excessive increase in the amount used is economically disadvantageous and the drying time becomes longer, which is not industrially preferable.
  • the colloidal crystal composition can be appropriately added with a monomer having a functional group generally used for improving the adhesion between the cured film and the substrate.
  • the functional group include an alkoxysilyl group, a carboxylic acid group, a hydroxyl group, a phosphoric acid group, an epoxy group, an isocyanate group, and a heterocyclic group.
  • monomers having an alkoxysilyl group such as 3- (meth) acryloxypropyltrimethoxysilane
  • monomers having a carboxylic acid group such as 2- (meth) acryloyloxyethyl succinic acid
  • a monomer having a hydroxyl group such as 2- (meth) acryloyloxyethylphthalic acid
  • a monomer having a phosphate group such as 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- ( (Meth) acryloyloxy) ethyl and the like as monomers having an epoxy group, such as 4-hydroxybutyl (meth) acrylate glycidyl ether
  • monomers having an isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate
  • Monomers having a heterocyclic group include tetrahydrofurfuryl (meth) actyl.
  • the monomer having these functional groups can improve performance by blending in a proportion of 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the colloidal crystal composition. it can.
  • the content of the monomer having a functional group is more than 10 parts by weight, the optical properties of the colloidal crystal cured film are deteriorated, which is not preferable.
  • a polyfunctional monomer having a trifunctional or higher functional group that is generally used can be added as appropriate in order to improve the curing rate and mechanical strength.
  • Specific examples include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and the like.
  • the performance can be improved by blending these polyfunctional monomers in a proportion of usually 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the composition for colloidal crystals. When the content of the polyfunctional monomer is more than 10 parts by weight, the optical properties of the cured colloidal crystal are deteriorated, which is not preferable.
  • colloidal crystal compositions are commonly used in the paint industry. UV absorbers, infrared absorbers, light stabilizers, antioxidants, leveling agents, surface conditioners, thickeners. Agents, antifoaming agents, dyes, pigments, metal oxides and the like can be added as appropriate. These additives are usually preferably blended at a ratio of 5 parts by weight or less with respect to 100 parts by weight of the colloidal crystal composition.
  • the colloidal crystal cured film is produced by crystallizing the colloidal crystal composition and then curing the monomer (B1) and the monomers (C1 to C3) of the colloidal crystal composition with heat or light, The ordered arrangement of the core-shell particles (A) is maintained after curing, and the mechanical strength is increased.
  • a cured colloidal crystal whether or not the regular arrangement of the three-dimensional core-shell particles (A) is maintained after curing can be confirmed by measuring the reflection and transmission spectra, checking the reflection peak, If the peak is in the visible light range, a method of visually confirming the structural coloration can be used.
  • the required optical properties differ depending on the use of the cured colloidal crystal film, but when considering the use of color materials as an example, in order to visually recognize vivid structural colors, the reflectivity of the reflection peak in the reflectance measurement is It is preferable that it is 50% or more. Furthermore, the haze value indicating the turbidity of the cured film is preferably 10% or less. When the haze value is higher than 10%, the cured film is visually recognized as being cloudy in white, the transparency is low, and the visual effect of vivid structural colors is reduced.
  • One way to increase the reflectance of the reflection peak is to increase the film thickness and increase the number of colloidal crystal particles. In this case, it is obvious that the haze value also increases.
  • a cured film is defined by polymerizing monomers in the composition in a state where the composition is formed into a film. Therefore, the curing in the present disclosure includes not only curing by the formation of a crosslinked structure of a composition including a monomer having two double bonds but also curing by polymerization of a monomer having one double bond. .
  • the thickness of the colloidal crystal cured film is preferably 1 to 100 ⁇ m, and more preferably 3 to 50 ⁇ m.
  • the film thickness is thinner than 1 ⁇ m, the peak reflectivity of the obtained colloidal crystal cured film becomes small, and sufficient optical characteristics cannot be obtained.
  • the film thickness is thicker than 100 ⁇ m, the haze value tends to increase because cracks and strains are likely to occur.
  • the colloidal crystal cured film can be produced through the following two steps a) and b): a) A composition for colloidal crystals containing a core-shell particle (A), a monomer (B1), a monomer (C1 to C3), and an organic solvent and optionally containing a polymerization initiator was applied to a substrate. A crystallization step of forming a colloidal crystal by volatilizing an organic solvent later; b) A curing step in which the crystallized composition obtained in step a) is cured by active energy rays or heat.
  • the composition for colloidal crystals can be selected from various methods such as spin coating, bar coating, spray coating, dip coating, flow coating, slit coating, gravure coating, and screen printing. It can apply
  • the substrate to which the composition for colloidal crystals is applied can be applied to a substrate such as glass or a plastic film, or a three-dimensional molded product, and the shape of the substrate to be applied is not limited.
  • the drying temperature for volatilizing the organic solvent is preferably 10 ° C. to 250 ° C., more preferably 20 ° C. to 200 ° C., and further preferably 25 to 150 ° C.
  • the drying temperature is lower than 10 ° C., the viscosity of the monomers (B1) and (C1 to C3) increases, and colloidal crystallization tends not to occur.
  • the drying temperature is higher than 250 ° C., the monomer (B1) and the monomers (C1 to C3) are volatilized.
  • the drying time is preferably 1 to 800 minutes, more preferably 3 to 300 minutes, and further preferably 5 to 200 minutes.
  • the drying time is shorter than 1 minute, colloidal crystallization hardly occurs.
  • the drying time is longer than 800 minutes, the drying time becomes extremely long, and the productivity is deteriorated.
  • the volatilization of the organic solvent promotes the crystallization of the colloidal crystals, but a slight amount of the organic solvent may remain after drying.
  • Confirmation of whether or not a colloidal crystal has been formed includes a method of confirming a reflection peak from measurement of reflection and transmission spectra, and a method of visually confirming as a structural color if the reflection peak is in the visible light range. .
  • the monomer (B1) and the monomers (C1 to C3) are polymerized by heating or irradiation with active energy rays such as ultraviolet rays, electron beams, and radiations to obtain a crystallized composition. Cured to obtain a cured colloidal crystal film.
  • active energy rays such as ultraviolet rays, electron beams, and radiations
  • curing can be performed rapidly and at the same time, the regular arrangement of the core-shell particles (A) can be maintained.
  • a light source for ultraviolet irradiation a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like can be used.
  • heating can be performed to accelerate curing in addition to ultraviolet irradiation.
  • the heating temperature is usually set to 10 to 150 ° C, preferably 20 to 120 ° C.
  • the average particle diameter, CV value, reflectance, haze value, and refractive index in each example were measured by the methods shown below.
  • 1) Average particle diameter (nm) and CV value (%) Using a light scattering photometer ELS-8000 (manufactured by Otsuka Electronics Co., Ltd.), the core part and core-shell particles were measured by the dynamic light scattering method, and the average particle diameter and CV value were calculated.
  • Ion exchange water was used as a dispersion medium for the measurement of the core part.
  • Tetrahydrofuran (THF) was used as a dispersion medium for the measurement of the core-shell particles.
  • Refractive index A film of each component was prepared separately, and the refractive index was measured at 25 ° C using an Abbe refractometer (manufactured by Atago Co., Ltd.).
  • the refractive index of the core part and the shell part is determined by the thickness of a coating liquid composed of a monomer for the core part or the shell part and 2,2′-azobis (2,4-dimethylvaleronitrile) which is a polymerization initiator.
  • the film was coated on a glass substrate so as to be 100 ⁇ m, and the film obtained by heating at 65 ° C. for 5 hours and further at 85 ° C. for 2 hours was peeled off from the glass and measured.
  • the refractive index after curing of the monomer (B1) and the mixture of the monomer (B1) and the monomer (C1 to C3) is as follows. , 4,6-trimethylbenzoyl) phenyl-phosphine oxide (Irgacure 819 [manufactured by Ciba Specialty Chemicals Co., Ltd.]) was applied on a glass substrate to a thickness of 100 ⁇ m, and 1000 mJ / cm The film cured by UV irradiation of No. 2 was peeled off from the glass and measured. 5) Film thickness The film thickness of the cured colloidal crystal was measured using an optical thin film measuring apparatus F20-EXR (manufactured by Filmetrics Co., Ltd.).
  • Example 1-1 ⁇ Synthesis of core part> (Core part D)
  • the core portion was synthesized by two-stage seed emulsion polymerization.
  • As a first step 0.146 g of sodium styrenesulfonate (NaSS) and 350 g of ion-exchanged water were charged as reactive emulsifiers in a 500 mL four-necked flask equipped with a cooling tube, a thermometer, a stirrer, and a nitrogen introducing tube. .
  • NaSS sodium styrenesulfonate
  • ion-exchanged water ion-exchanged water
  • MMA methyl methacrylate
  • EGDM ethylene glycol dimethacrylate
  • KPS potassium persulfate
  • 0.219 g of sodium dodecylbenzenesulfonate (DBS) as an emulsifier was added to the reaction solution, and the mixture was stirred and mixed at room temperature under a nitrogen stream.
  • DBS sodium dodecylbenzenesulfonate
  • 8.03 g of MMA as a monomer 5.84 g of EGDM as a crosslinkable monomer, and 2- (4′-hydroxy-2 ′, 2 ′, 6 ′, 6 as a monomer containing a living radical polymerization initiating group.
  • the reaction solution was heated to 65 ° C., subjected to a polymerization reaction at 65 ° C. for 5 hours and further at 85 ° C. for 2 hours, and then cooled to room temperature. Subsequently, the agglomerate was filtered off with a nylon mesh to obtain a particle dispersion.
  • grains were isolate
  • BPEA 2-phenylphenoxyethyl acrylate
  • the obtained composition was applied to a glass substrate with a bar coater (# 26), and then the organic solvent was volatilized at 90 ° C. for 120 minutes to crystallize the core-shell particles.
  • the colloidal crystal is cured by irradiating ultraviolet rays with a high-pressure mercury lamp (ultraviolet irradiation device Toscure 401 [manufactured by Harrison Toshiba Lighting Co., Ltd.]) to cure the monomer (B1). Obtained (film thickness: 25 ⁇ m).
  • This cured colloidal crystal film had a reflection peak at 599 nm, and the reflectance of the reflection peak was 57%.
  • the haze value was 3.9%.
  • EMA ethyl methacrylate tBA: tert-butyl acrylate tBMA: tert-butyl methacrylate
  • BDMA 1,4-butanediol dimethacrylate
  • TFEMA 2,2,2-trifluoroethyl methacrylate
  • St styrene
  • BzMA benzyl methacrylate
  • DVB divinylbenzene ( (55% purity, 45% ethyl vinyl benzene)
  • HS-10 Aqualon HS-10 [Daiichi Kogyo Seiyaku Co., Ltd.]
  • BPEA 2-phenylphenoxyethyl acrylate (NK ester A-LEN-10 [manufactured by Shin-Nakamura Chemical Co., Ltd.]) (see the following chemical formula)
  • BPA 2-phenylphenyl acrylate (ARONIX TO-2344 [manufactured by Toagosei Co
  • the value of n (shell) -n (core) is 0.07 or more, and n (B) -n (core) or n (B + C) -n (core)
  • the cured colloidal crystal obtained from the composition for colloidal crystals having a value of 0.07 or more and the content of components (A) to (C) within the predetermined range has a reflectance of 50% of the reflection peak.
  • the haze value was 10% or less.
  • the value of n (shell) ⁇ n (core) is 0.07 or more, and further n (B) ⁇ n (core) or n (B + C) ⁇ n (core)
  • the colloidal crystal cured film obtained from the composition for colloidal crystals that does not satisfy the condition of 0.07 or more has a reflectivity of less than 50%, or has a high haze value, resulting in white turbidity. , Vivid structural colors are not visible.
  • the cured colloidal crystal obtained from the composition for colloidal crystals having a monomer (B1) content of less than 5% by weight has a high haze value and a cloudiness.
  • the cured colloidal crystal obtained from the composition for colloidal crystals having a core-shell particle (A) content of less than 25% by weight does not form a reflection peak. Further, from the result of Comparative Example 8, the cured colloidal crystal obtained from the composition for colloidal crystals in which the content of the core-shell particles (A) exceeds 65% by weight has a reflectance smaller than 50%. .
  • the composition for colloidal crystals of the present disclosure can produce a cured colloidal crystal not only on a flat substrate but also on a molded product due to the feature that a colloidal crystal cured film can be produced by a simple operation of coating, drying, and ultraviolet irradiation. be able to. Furthermore, since the obtained colloidal crystal cured film has a high reflectance and a low haze value, it is excellent in optical characteristics and can visually recognize vivid structural color development. Therefore, it is useful for optical functional materials including coloring materials. Furthermore, a cured film having a reflection peak from ultraviolet light to visible light and infrared light mainly depending on the particle diameter can be produced, which is useful for various optical elements.

Abstract

 コア部及びシェル部を有するコア-シェル粒子(A)と、特定構造の単量体(B1)と、を含むコロイド結晶用組成物であって、前記コア-シェル粒子(A)を25~65重量%、及び前記単量体(B1)を35~75重量%含有し、前記コア部の平均粒子径は50~900nmであり、前記シェル部はスチレン及び特定構造の単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、前記直鎖状ポリマーはその一端がコア部に共有結合されており、前記コア部の屈折率(n(core))は下記式(2)及び式(3)を満たすことを特徴とする。 〔式中、R1は水素原子又はメチル基であり、yは0又は1である〕 n(shell)-n(core)≧0.07・・・(2) 〔式中、n(shell)は前記シェル部の屈折率を示す〕 n(B)-n(core)≧0.07・・・(3) 〔式中、n(B)は前記単量体(B1)の硬化後の屈折率を示す〕

Description

コロイド結晶用組成物
 本開示は、構造性発色を呈する色材や光学素子として使用しうるコロイド結晶を製造するための組成物、これより得られるコロイド結晶硬化膜、及びコロイド結晶硬化膜の製造方法に関する。本開示のコロイド結晶用組成物及びコロイド結晶硬化膜は、光学素子や光機能材料などの光学技術分野における用途に有用である。
 単分散な粒子を三次元的に規則配列した集積体はコロイド結晶と呼ばれる。このコロイド結晶に光が入射すると回折や干渉が起こり、主にその周期構造に依存して、ある特定の波長の光が反射される(ブラッグ反射)。例えば、サブミクロンサイズの粒子のコロイド結晶は、その粒子サイズに応じて、紫外光~可視光、さらに赤外光の範囲の光を反射する。また、その反射光の波長が可視光領域に生じる場合、構造性発色としてコロイド結晶の色を視認することができる。このコロイド結晶の研究は数多く行われており、フォトニック結晶をはじめとする様々な光学素子、光機能材料などへの展開が期待されている。コロイド結晶は、例えば、塗料やインキ、化粧品をはじめとする各種色材、光学フィルター、光メモリ材料、表示デバイス、光スイッチ、センサーやレーザー等に適用することができる。
 コロイド結晶の製造方法については、すでに数多くの研究例が報告されている。コロイド結晶は大きく分けて、「最密充填型〔ハード系〕」及び「非最密充填型」コロイド結晶に分類され、「非最密充填型」コロイド結晶は更に「非最密充填型〔ソフト系〕」コロイド結晶及び「非最密充填型〔準ソフト系〕」コロイド結晶に分類される。
 「最密充填型〔ハード系〕」コロイド結晶は、シリカやポリスチレンなどの粒子が密に詰まった集積体であり、コロイド結晶中の粒子は相互に接触している。水溶性溶媒の蒸発に伴う粒子の集積化を利用して結晶を成長させることにより、乾燥状態のコロイド結晶が得られる。このため、粒子間には無数の空隙が存在する。このハード系コロイド結晶は、粒子が接触だけで集積しているため機械的強度が非常に弱く、わずかな外力でコロイド結晶は崩れてしまう。そこで、粒子間の空隙に粒子同士を固定するバインダーを充填するため、得られたコロイド結晶に単量体やポリマーなどのバインダーを塗布する製造方法が開示されている(例えば、特許文献1を参照)。また、2段階の乳化重合により作製されたコア部(粒子)の表面をシェル部の樹脂で被覆したコア-シェル粒子を用いることにより、シェル部が粒子間の空隙を埋める製造方法が開示されている(例えば、特許文献2参照)。
 一方、「非最密充填型〔ソフト系〕」コロイド結晶は、水溶性溶媒を分散媒とする粒子分散液から、イオン物質を取り除くことにより得られることが開示されている(例えば、特許文献3を参照)。当該製造方法においては、脱イオンにより粒子表面の電気二重層が膨張し、粒子間に相互静電反発が作用する結果、粒子のブラウン運動が抑制され、分散媒全体において粒子が規則配列をとるようになる。ただし、この〔ソフト系〕コロイド結晶は、分散媒が液状であるため、振動などのわずかな外力や温度変化などの影響により容易に粒子の規則配列が崩れてしまう。このため、材料として実用化するためには、粒子の規則配列を維持したコロイド結晶の固定化が必要になる。そこで、水溶性溶媒中に少量の水溶性単量体を添加し、この単量体を重合することにより、コロイド結晶をポリマーゲルで固定化する製造方法が開示されている(例えば、特許文献4を参照)。また、溶媒を用いない固定化方法も開示されている(特許文献5を参照)。
 さらに、「非最密充填型〔準ソフト系〕」コロイド結晶は、シェル部を形成する直鎖状ポリマーが粒子(コア部)の表面に結合したコア-シェル粒子を含有する。上記特許文献2に記載の2段階の乳化重合により得られるコア-シェル粒子は、コア部の表面をシェル部の樹脂で被覆した粒子であるため、〔準ソフト系〕コロイド結晶に用いられるコア-シェル粒子とは異なる。この〔準ソフト系〕コロイド結晶で用いられるコア-シェル粒子の直鎖状ポリマーは有機溶剤に溶解する。しかし、直鎖状ポリマーはコア部の表面に結合しているため、コア部から離れてしまうことはなく、コア部の分散安定化に寄与する。そしてコア-シェル粒子の有機溶剤への分散状態において、直鎖状ポリマーの立体反発や浸透圧効果により粒子間の凝集が抑制され、コロイド結晶を形成することが開示されている(例えば、特許文献6を参照)。〔準ソフト系〕コロイド結晶は、〔ソフト系〕コロイド結晶と比較して分散媒として使用可能な溶剤の制限が少なく、疎水性有機溶剤や疎水性単量体中でもコロイド結晶を形成できる特徴を有する。〔準ソフト系〕コロイド結晶は、結晶状態の粒子間隔を直鎖状ポリマーの分子量などで制御できる点においても〔ソフト系〕コロイド結晶に対して優位性を有する。しかし、〔準ソフト系〕コロイド結晶は、〔ソフト系〕コロイド結晶と同様に粒子の分散媒が液状であるため、実用化には粒子の規則配列性を維持したコロイド結晶の固定化が必要である。〔準ソフト系〕コロイド結晶の有機溶剤に少量の単量体を含有させ、単量体を重合させることによりコロイド結晶をポリマーゲルで固定化する手法が開示されている(例えば、特許文献7を参照)。
 上記特許文献1に記載されている〔ハード系〕コロイド結晶では、粒子分散液の乾燥過程に疎水性のバインダーを添加すると粒子の凝集が起こり、粒子は規則的に配列しない(特許文献2(第14頁参照))。そこで、コロイド結晶を作製した後にバインダーを塗布することが行なわれているが、その際にコロイド結晶が崩れてしまうことがある。そのため、予め基板に粘着層を形成しておく製造方法も開示されているが、多工程の複雑な作業を必要とする。また、粒子間の空隙を完全にバインダーで埋めることは困難であり、空隙が無秩序に残存してしまうことが多い。この無秩序に残存する空隙は光の散乱を引き起こし、得られるコロイド結晶に白濁感が生じる。またハード系コロイド結晶は、乾燥過程において塗膜にクラックが無数に発生する傾向にある。これは、乾燥過程において粒子間距離がだんだん短くなるが、収縮が一様に起こらないと、結晶の一部が破断してクラックを生じるためである。このクラックは目視で十分に観察できる大きさのクラックから、目視では確認しにくい数μm程度のマイクロクラックまでサイズは様々である。この無数のクラックも光を散乱するため、得られるコロイド結晶に白濁感を生じてしまう。クラックの発生を防止するために、深堀区分けを有する基板にコロイド結晶を形成させる方法が開示されているが、特殊形状の基板を必要とする(例えば、特許文献1を参照)。上記特許文献2に記載されている2段階乳化重合により合成されるコア-シェル粒子を用いる方法では、空隙を埋める部材が、低分子のバインダーと比較して流動性が乏しいポリマーであるため、空隙を完全に埋めることは難しい。また、シェル部のポリマーだけでは、全てのクラックを防止することは難しい。上記に示すように、コロイド結晶の固定化には複雑な手順や基板を必要としたり、残存する空隙やクラックにより白濁感が生じる問題があった。
 特許文献4~5に記載の〔ソフト系〕コロイド結晶は、粒子の表面電荷による静電反発を利用して形成されるため、分散媒には高誘電率の水溶性溶媒を使用する必要がある。このため、水溶性溶媒を含有するゲル状態でしか固定化することができない。また、特許文献6~7に記載のコア-シェル粒子を用いる〔準ソフト系〕コロイド結晶では、疎水性単量体を分散媒としてコロイド結晶を形成し、この単量体を硬化(重合)すれば、硬化膜としてコロイド結晶を固定化することができると期待される。しかしながら、単量体の重合時に粒子の規則配列が崩れやすく、硬化後に光学特性が十分に維持できていない問題点があった。これは重合時の単量体の物質移動や硬化収縮によると思われ、コロイド結晶の固定化において粒子の規則配列を維持することは困難であった。特許文献7に記載の方法により固定化されたコロイド結晶は、有機溶剤を約50%含むゲルとして固定化がなされている。このように、水溶性溶媒や有機溶剤を含有するゲルとして固定化されたコロイド結晶は、機械的強度が低いため光機能材料への実用化は困難であった。さらに溶剤の揮発により粒子の規則配列が崩れたり、粒子間距離が変わってしまうことより反射波長が変化してしまうため、安定性に乏しいという問題があった。特許文献5に記載の方法では、溶媒の含有率が30重量%以下とされているが、バインダーとなる単量体は水溶性のポリアルキレングリコール系の単量体に制限される。
 このような問題を解決するために、発明者らは〔準ソフト系〕コロイド結晶におけるコア-シェル粒子(A)のシェル部とバインダーとなる単量体(B)との溶解性パラメーターを限定し、さらに単量体(B)のアクリル当量を限定することによって、鮮やかな構造色を呈する硬化膜が得られる方法を以前に見出している(特許文献8)。この製造方法により得られる硬化膜は、機械的強度に優れるとともに、溶剤の揮発が無いことから安定性に優れ、さらに簡便な手法により構造性発色を呈する硬化膜を形成することができるという優れた利点がある。
特開2005-60654号公報 特開2009-249527号公報 特開平6-100432号公報 特開2007-29775公報 特開2008-303261号公報 WO2005-108451号公報 WO2003-100139号公報 特開2010-18760号公報
 しかしながら、特許文献8に開示されるコロイド結晶硬化膜においては、硬化が未だ十分ではないと共に、白濁感が若干残るため濁度を示すヘイズ値が高くなる。
 構造性発色を呈するコロイド結晶硬化膜を塗料などの色材として利用する場合、色を示す反射ピークの反射率が十分に高いとともに、濁度を示すヘイズ値が小さく透明性が高い光学特性が求められる。反射ピークの反射率を上げる一つの方法としては、膜厚を厚くし、コロイド結晶の層数を増やすことが挙げられるが、この場合、ヘイズ値も大きくなってしまう。一般に、コロイド結晶硬化膜を色材として利用するためには、反射ピークの反射率が50%以上であり、かつヘイズ値が10%以下であることが必要である。
 そこで、本開示の目的とするところは、粒子の規則配列を維持したコロイド結晶の固定化が簡単なプロセスにより行うことができ、さらに反射ピークの反射率が50%以上かつヘイズ値が10%以下のコロイド結晶を作製することができるコロイド結晶用組成物、これより得られるコロイド結晶硬化膜、及びその製造方法を提供することにある。
 発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、コア部に対して高屈折率の直鎖状ポリマーをシェル部に有するコア-シェル粒子と、バインダーとなる高屈折率の単量体とからなるコロイド結晶用組成物が、コロイド結晶硬化膜の光学特性を向上できることを見出した。
 本開示における第1の側面は、コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される前記単量体(B1)と、を含むコロイド結晶用組成物であって、
 前記コア-シェル粒子(A)を25~65重量%、及び前記単量体(B1)を35~75重量%含有し、
 前記コア部の平均粒子径は50~900nmであり、
 前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
 前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
 前記コア部の屈折率(n(core))は下記式(2)及び式(3)を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-C000012

〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
n(shell)-n(core)≧0.07・・・(2)
〔式中、n(shell)は前記シェル部の屈折率を示す〕
n(B)-n(core)≧0.07・・・(3)
〔式中、n(B)は前記単量体(B1)の硬化後の屈折率を示す〕
 本開示における第2の側面は、コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(4)で表される単量体(C1)の混合物と、を含むコロイド結晶用組成物であって、
 前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C1)は70重量%以下であり、
 前記コア部の平均粒子径は50~900nmであり、
 前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
 前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
 前記コア部の屈折率(n(core))は下記式(3)及び式(5)を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-C000013

〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
Figure JPOXMLDOC01-appb-C000014

〔式中、Rは水素原子又はメチル基であり、Xは酸素原子又は硫黄原子であり、zは0又は1である〕
n(shell)-n(core)≧0.07・・・(3)
〔式中、n(shell)は前記シェル部の屈折率を示す〕
n(B+C)-n(core)≧0.07・・・(5)
〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
 本開示における第3の側面は、コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(6)で表される単量体(C2)の混合物と、を含むコロイド結晶用組成物であって、
 前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C2)は70重量%以下であり、
 前記コア部の平均粒子径は50~900nmであり、
 前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
 前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
 前記コア部の屈折率(n(core))は下記式(3)及び式(7)を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-C000015

〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
Figure JPOXMLDOC01-appb-C000016

〔式中、R3は水素原子又はメチル基であり、pは1又は2である〕
n(shell)-n(core)≧0.07・・・(3)
〔式中、n(shell)は前記シェル部の屈折率を示す〕
n(B+C)-n(core)≧0.07・・・(7)
〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
 本開示における第4の側面は、コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(8)で表される単量体(C3)の混合物と、を含むコロイド結晶用組成物であって、
 前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C3)は70重量%以下であり、
 前記コア部の平均粒子径は50~900nmであり、
 前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
 前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
 前記コア部の屈折率(n(core))は下記式(3)及び式(9)を満たすことを特徴とするコロイド結晶用組成物。
Figure JPOXMLDOC01-appb-C000017

〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
Figure JPOXMLDOC01-appb-C000018

〔式中、R4は水素原子又はメチル基であり、qは1又は2である〕
n(shell)-n(core)≧0.07・・・(3)
〔式中、n(shell)は前記シェル部の屈折率を示す〕
n(B+C)-n(core)≧0.07・・・(9)
〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
 本開示における第5の側面は、コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び単量体(C)の混合物と、を含むコロイド結晶用組成物であって、
 前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C)は70重量%以下であり、
 前記単量体(C)は、下記式(4)で表される単量体(C1)、下記式(6)で表される単量体(C2)及び下記式(8)で表される単量体(C3)の少なくとも二つからなり、
 前記コア部の平均粒子径は50~900nmであり、
 前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
 前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
 前記コア部の屈折率(n(core))は下記式(3)及び式(10)を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-C000019

〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
Figure JPOXMLDOC01-appb-C000020

〔式中、Rは水素原子又はメチル基であり、Xは酸素原子又は硫黄原子であり、zは0又は1である〕
Figure JPOXMLDOC01-appb-C000021

〔式中、R3は水素原子又はメチル基であり、pは1又は2である〕
Figure JPOXMLDOC01-appb-C000022

〔式中、R4は水素原子又はメチル基であり、qは1又は2である〕
n(shell)-n(core)≧0.07・・・(3)
〔式中、n(shell)は前記シェル部の屈折率を示す〕
n(B+C)-n(core)≧0.07・・・(10)
〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
 本開示における第6の側面はコロイド結晶用組成物であって、第1から第5の側面のいずれかのコロイド結晶用組成物100重量部に対し、さらに重合開始剤を0.1~10重量部含むことを特徴とする。
 本開示における第7の側面はコロイド結晶用組成物であって、第1から第6の側面のいずれかのコロイド結晶用組成物100重量部に対し、さらに有機溶剤を5~500重量部含むことを特徴とする。
 本開示における第8の側面はコロイド結晶硬化膜であって、第1から第7の側面のコロイド結晶用組成物のいずれかを熱又は活性エネルギー線により硬化して得られる硬化膜であり、膜厚が1~100μmであることを特徴とする。
 本開示における第9の側面は、膜厚が1~100μmのコロイド結晶硬化膜を製造する方法であって、第7の側面のコロイド結晶用組成物を基板に塗工した後に、有機溶剤を揮発させることによりコロイド結晶を形成する工程、及び結晶化した組成物を熱又は活性エネルギー線により硬化させる工程、を有することを特徴とする。
 なお、本開示のコロイド結晶用組成物によって、上記目的が達成される理由は必ずしも定かではないが、発明者らは以下のように推察する。バインダーとなる単量体(B1)及び単量体(C1~C3)の硬化において、コア-シェル粒子(A)のシェル部を構成する直鎖状ポリマーと単量体(B1)及び単量体(C1~C3)の硬化物が相溶することが、硬化時における粒子の規則配列の維持に重要であると考えられる。それらが非相溶の場合、硬化前はシェル部が単量体(B1)及び単量体(C1~C3)に溶解することにより粒子の分散安定性に寄与しているが、硬化時にシェル部の相分離が起こると粒子同士が凝集し、粒子の規則配列が崩れてしまう。特許文献8ではそれぞれの溶解性パラメーターで制御を行っているが、その制御は十分ではなかった。コロイド結晶用組成物において、シェル部を構成する直鎖状ポリマーを上記芳香族系の単量体で形成し、そして単量体(B1)及び単量体(C1~C3)に上記芳香族系の単量体を用いることにより、それぞれのπ-π相互作用が相溶化などに有効に作用し、硬化時における粒子の規則配列を維持していると思われる。
 さらには、コロイド結晶硬化膜の反射ピークの反射率を上げるためには、粒子と粒子周りのマトリックスとの屈折率差を大きくすることが重要である。しかし、非最密充填型(ソフト系、準ソフト系)コロイド結晶に関して、これまで粒子が高屈折率であり、マトリックスが低屈折率であるコロイド結晶は開示されているが、粒子が低屈折率であり、マトリックスが高屈折率であると共に、これらの屈折率差が0.07以上であるコロイド結晶の製造例はない。この屈折率差が光学特性に及ぼす影響については検討中であるが、光学特性の向上に有効であったものと推察する。
 第1の側面のコロイド結晶用組成物では、コア-シェル粒子(A)のシェル部と単量体(B1)との溶解性が良いために、粒子の分散安定性に優れるコロイド結晶を形成することができる。さらに単量体(B1)の重合・硬化により、粒子の規則配列を維持したコロイド結晶の固定化を行うことができ、コア部とシェル部との屈折率差、ならびにコア部と単量体(B1)との屈折率差が、上記式(2)及び式(3)で表される条件を満たすため、良好な光学特性を示すコロイド結晶硬化膜を作製することができる。さらにコア部の平均粒子径が50~900nmであることから、当該コロイド結晶硬化膜のブラッグ反射の反射波長は紫外光から赤外光の領域であり、当該コロイド結晶硬化膜を各種光学素子などに実用することができる。
 第2から第5の側面のコロイド結晶用組成物では、第1の側面と実質的に同様の効果を奏するコロイド結晶硬化膜を作製することができる。さらに、単量体(B1)と単量体(C1~C3)とが架橋構造を形成するため、得られるコロイド結晶硬化膜の耐熱性などの熱的特性や、硬度などの機械的特性、耐薬品性を向上することができる。
 第6の側面のコロイド結晶用組成物では、第1から第5の側面のいずれかのコロイド結晶用組成物の単量体(B1)及び単量体(C1~C3)の重合・硬化を速やかに行うことができ、粒子の規則配列を維持したコロイド結晶硬化膜を容易に製造することができる。
 第7の側面のコロイド結晶用組成物では、第1から第6のいずれかの側面のコロイド結晶用組成物に有機溶剤を含むことにより、コア-シェル粒子の分散性を向上させることができ、また組成物の粘度調整や塗装性改良をすることができる。さらに有機溶剤を塗装後に乾燥させることにより、組成物のコロイド結晶化を促進することができる。
 第8の側面のコロイド結晶硬化膜は、第1から第7のいずれかの側面のコロイド結晶用組成物中の単量体(B1)及び単量体(C1~C3)を硬化することにより作製され、ブラッグ反射を示すものである。このため、当該コロイド結晶硬化膜は粒子の規則配列が維持されており、優れた光学特性を示すことができる。さらに当該コロイド結晶硬化膜は、光機能材料としての実用化に必要な熱的特性や機械的特性、耐薬品性を有する。
 第9の側面のコロイド結晶硬化膜の製造方法は、第7の側面と実質的に同様の効果を奏するコロイド結晶硬化膜を簡単なプロセスで効率よく作製することができる。さらに、当該方法は特殊形状の基板や平面板を必要としないため、立体形状の成形品上にもコロイド結晶硬化膜を作製することができる。
 本開示のコロイド結晶用組成物は、コア部及びシェル部を有するコア-シェル粒子(A)と単量体(B1)とを含有する、またはコア-シェル粒子(A)と単量体(B1)及び単量体(C1~C3)の混合物とを含有する。以下、各成分、コロイド結晶用組成物及び当該組成物により得られる硬化膜、ならびに製造方法等について詳細に説明する。
<単量体(B)>
 単量体(B)(単量体(B1)及び単量体(B2))は下記式(1)で表されるビフェニル骨格を有する(メタ)アクリレート化合物である。
Figure JPOXMLDOC01-appb-C000023

〔式(1)において、Rは水素原子又はメチル基であり、yは0又は1である〕
 コロイド結晶用組成物中に含まれる単量体(B1)と単量体(B2)とは相互に同一の化合物であっても良いし、異なる化合物であっても良い。また、単量体(B1)及び単量体(B2)の一方又は両方は、複数の化合物を含んでいても良い。単量体(B)としては、例えば、2-フェニルフェニル(メタ)アクリレート、及び2-フェニルフェノキシエチル(メタ)アクリレートが挙げられる。なお、本明細書において「(メタ)アクリレート」の用語は「アクリレート」及び「メタクリレート」の両方を意味する。「(メタ)アクリル」の用語等も同様である。
<単量体(C1)>
 単量体(C1)は下記式(4)で表されるビフェニル骨格を有するジ(メタ)アクリレート化合物である。
Figure JPOXMLDOC01-appb-C000024

〔式(4)において、Rは水素原子又はメチル基であり、Xは酸素原子又は硫黄原子であり、zは0又は1である〕
単量体(C1)としては、例えば、ビス(4-(メタ)アクリロキシフェニル)スルフィド、ビス(4-(メタ)アクリロキシエトキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルチオフェニル)スルフィド、及びビス(4-(メタ)アクリロキシエチルチオフェニル)スルフィド)などが挙げられる。
<単量体(C2)>
 単量体(C2)は下記式(6)で表されるフルオレン骨格を有するジ(メタ)アクリレート化合物である。
Figure JPOXMLDOC01-appb-C000025

〔式(6)において、R3は水素原子又はメチル基であり、pは1又は2である〕
単量体(C2)としては、例えば、9,9-ビス〔4-(2-(メタ)アクリロイルオキシエトキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ)フェニル〕フルオレンが挙げられる。
<単量体(C3)>
 単量体(C3)は下記式(8)で表されるビスフェノールA骨格を有するジ(メタ)アクリレートである。
Figure JPOXMLDOC01-appb-C000026

〔式(8)において、R4は水素原子又はメチル基であり、qは1又は2である〕
単量体(C3)としては、2,2-ビス〔4-(2-(メタ)アクリロイルオキシエトキシ)フェニル〕プロパン、2,2-ビス〔4-(2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ)フェニル〕プロパンが挙げられる。
<コア-シェル粒子(A)>
 コア-シェル粒子(A)は、粒子からなるコア部と、コア部の表面に結合された直鎖状ポリマーで形成されるシェル部とを有している。コア部としては、無機系粒子や有機重合体粒子、もしくはこれらの粒子の中に空孔(空気)を含む中空粒子を使用することができる。無機系粒子は低屈折率であることが望ましく、フッ化マグネシウムやシリカなどを用いることができる。特に、屈折率、分散安定性、コストの点で、無機系粒子はシリカで形成されていることが好ましい。有機重合体粒子としてはアクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ウレタン樹脂、フッ素樹脂、ポリオレフィン樹脂、メラミン樹脂、及びこれらの共重合体などを用いることができる。低屈折率であり、かつ粒子径の制御が容易であることから、有機重合体粒子はアクリル樹脂で形成されていることが好ましい。
 コア部がアクリル樹脂で形成されている場合、コア部を製造するために用いることができる単量体としては、(メタ)アクリル酸エステル系単量体、(メタ)アクリルアミド系単量体を用いることができる。また、必要に応じてスチレン系単量体、酢酸ビニル、アクリロニトリルや水溶性単量体、イオン性単量体、その他の官能基を有する単量体などの重合性単量体を併用しても良い。さらに、コア部の加熱や有機溶剤による変形を防止するために、1分子中に2個以上の重合性基を有する架橋性単量体を併用しても良い。(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルイソシアネート、N,N-ジメチルアミノエチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレートなどが挙げられる。(メタ)アクリルアミド系単量体としては、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミドなどが挙げられる。これらの中でも、低屈折率であり、かつ粒子径の制御が容易であることから、(メタ)アクリル酸エステル系単量体を使用することが好ましい。また、目的に応じて上記単量体を単独又は2種以上の組み合わせで使用することができる。架橋性単量体としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリアリルイソシアヌレート、ジアリルフタレート、ジビニルベンゼンなどが挙げられる。
 コア-シェル粒子(A)のコア部は、動的光散乱により測定される算術平均粒子径が50~900nmである。コア部の平均粒子径は、好ましくは80~600nm、さらに好ましくは100~300nmである。コア部の平均粒子径が50nmより小さい場合にはコア-シェル粒子間の凝集を抑制することが困難であり、一方、コア部の平均粒子径が900nmより大きい場合にはコア-シェル粒子の沈降などを抑制することが困難であるため、コロイド結晶を形成しにくくなる。また、コア部の粒度分布はCV値〔(粒子径標準偏差/平均粒子径)×100(%)〕で表され、そのCV値は25%以下であることが好ましく、さらに好ましくは20%以下である。なお、CV値は、全ての粒子径が同一である単分散な場合には0%となる。コア部のCV値が25%より大きい場合には、粒子径が不揃いであることから、コロイド結晶を形成することが難しくなる。
 コア-シェル粒子(A)のシェル部は、スチレン及び/又は前記式(1)で表される単量体(B2)を重合して得られる直鎖状ポリマーで形成されている。前記式(2)を満たす範囲の条件において、スチレンと単量体(B2)は単独で、または適宜併用して用いることができる。シェル部にスチレン及び/又は単量体(B2)の重合体を用いることにより、得られるコロイド結晶硬化膜のピーク反射率は高い値を示し、さらにヘイズ値が小さく透明性の高い硬化膜を得ることができる。
 シェル部を構成する直鎖状ポリマーは分岐構造を有しておらず、また、その一端が共有結合によりコア部に結合されている。直鎖状ポリマーはコア部に結合されているため、モノマーや溶剤に溶解しても、コア部から脱離することが無い。これにより、コア-シェル粒子の分散安定性を高めることができる。従来のコア-シェル粒子においては、シェル部は物理吸着によりコア部に結合されており、又はコア部を取り囲むように三次元的な網目構造を形成することでコア部の周囲に配置されている。しかし、物理吸着の場合は容易にシェル部がコア部より脱離してしまうため、シェル部はコア-シェル粒子の分散安定性に寄与しない。また、シェル部が三次元的な網目構造によりコア部の周囲に配置されている場合は、コア-シェル粒子の分散安定性を確保できない。
 シェル部のグラフト率(%)は〔(シェル部質量/コア部質量)×100〕で表され、3~500%であることが好ましく、5~200%であることがさらに好ましい。シェル部のグラフト率が3%よりも低い場合には、直鎖状ポリマーによる立体反発の効果が少なくなり、コア-シェル粒子の凝集を抑制することが困難になるため、コロイド結晶を形成しにくくなる。その一方、シェル部のグラフト率が500%よりも高い場合には、コア部の比率が小さくなり、コロイド結晶が十分な光学特性を有しなくなる。また、シェル部のグラフト率はシェル部の厚みとある程度相関する。コア-シェル粒子(A)の平均粒子径は、シェル部の厚みの2倍とコア粒子の平均粒子径との和として動的光散乱などにより測定される。コア-シェル粒子の平均粒子径は60~1,000nmであり、好ましくは90~700nmであり、さらに好ましくは、110~400nmである。コア-シェル粒子の平均粒子径が60nmより小さい場合にはコア-シェル粒子の凝集を抑制することが困難になり、コア-シェル粒子の平均粒子径が1,000nmより大きい場合にはコア-シェル粒子の沈降などを抑制することが困難になり、コロイド結晶を形成しにくくなる。
 また、得られるコロイド結晶の反射波長は、コア-シェル粒子の平均粒子径と、コロイド結晶用組成物中のコア-シェル粒子の含有率とにより制御することができる。コア-シェル粒子の粒子径は、コア部の粒子径とシェル部の厚みにより決まる。シェル部の厚みは、グラフト率とある程度相関するが、グラフト率が200%以下の場合、シェル部の厚みによる影響はコア部の粒子径による影響よりも小さい。このため、コア部の粒子径を制御することがより重要である。例えば、コロイド結晶用組成物中のコア-シェル粒子の含有率が40重量%であり、グラフト率が200%以下の場合、コア部の平均粒子径をおよそ100~300nmとするとコロイド結晶は可視光領域(400~800nm)の反射波長を示し、コア部の平均粒子径をおよそ50~100nmとするとコロイド結晶は紫外光(200~400nm)の反射波長を示し、コア部の平均粒子径をおよそ300~900nmとするとコロイド結晶は近赤外光(800~2500nm)の反射波長を示す。さらに、反射波長は、組成物中のコア-シェル粒子の含有率を変更することによっても制御可能である。組成物中のコア-シェル粒子の含有率が高いほど、得られるコロイド結晶の格子面間隔が小さくなり、反射波長は短くなる。例えば、コロイド結晶が可視光領域に反射波長を示す場合、コロイド結晶用組成物中のコア-シェル粒子の含有率を変更することにより約100nmの範囲で反射波長を調整することができる。
 コア-シェル粒子(A)は、コロイド結晶用組成物に含まれる単量体(B1)及び単量体(C1~C3)の混合物に応じて、適宜選択される。コロイド結晶用組成物が単量体(C1~C3)を含まない場合、コア部の屈折率(n(core))が下記式(2)及び式(3)を満たすコア-シェル粒子(A)が選択される。コロイド結晶用組成物が単量体(C1)を含む場合、コア部の屈折率が下記式(2)及び式(5)を満たすコア-シェル粒子(A)が選択される。コロイド結晶用組成物が単量体(C2)を含む場合、コア部の屈折率が下記式(2)及び式(7)を満たすコア-シェル粒子(A)が選択される。コロイド結晶用組成物が単量体(C3)を含む場合、コア部の屈折率が下記式(2)及び式(9)を満たすコア-シェル粒子(A)が選択される。コロイド結晶用組成物が単量体(C1~C3)を2種以上含む場合、コア部の屈折率が下記式(2)及び式(10)を満たすコア-シェル粒子(A)が選択される。
 
n(shell)-n(core)≧0.07・・・(2)
〔式(2)において、n(shell)はコア-シェル粒子(A)のシェル部の屈折率を示す〕
 
n(B)-n(core)≧0.07・・・(3)
〔式(3)において、n(B)はコロイド結晶用組成物に含まれる単量体(B1)の硬化後の屈折率を示す〕
 
n(B+C)-n(core)≧0.07・・・(5)
〔式(5)において、n(B+C)はコロイド結晶用組成物に含まれる単量体(B1)及び単量体(C1)の混合物の硬化後の屈折率を示す〕
 
n(B+C)-n(core)≧0.07・・・(7)
〔式(7)において、n(B+C)はコロイド結晶用組成物に含まれる単量体(B1)及び単量体(C2)の混合物の硬化後の屈折率を示す〕
 
n(B+C)-n(core)≧0.07・・・(9)
〔式(9)において、n(B+C)はコロイド結晶用組成物に含まれる単量体(B1)及び単量体(C3)の混合物の硬化後の屈折率を示す〕
 
n(B+C)-n(core)≧0.07・・・(10)
〔式(10)において、n(B+C)はコロイド結晶用組成物に含まれる単量体(B1)及び単量体(C)を硬化させた後の屈折率を示す。単量体(C)は、単量体(C1)、単量体(C2)及び単量体(C3)の少なくとも二つからなる〕
 
 式(2)、式(3)、式(5)、式(7)、式(9)、及び式(10)において屈折率差が0.07よりも小さい場合、得られるコロイド結晶硬化膜のピーク反射率が小さくなり、十分な光学特性を得ることができない。屈折率差の上限値は特に限定されるものではないが、n(shell)、n(B)及びn(B+C)は約1.6であり、空気の屈折率が1.00であることから、屈折率差の上限値は実質的には約0.6となる。各成分の屈折率は、各成分を同様の重合・硬化条件で硬化膜を作製し、アッベ屈折計を用いて25℃で測定した値である。硬化膜は、例えば、単量体と光重合開始剤からなる塗液を厚さが100μmになるようにガラス基材上に塗布し、1000mJ/cmの紫外線照射により硬化した後に、ガラス基材から剥離することで作製される。
 コア-シェル粒子を製造する際には、様々な公知の方法が採用可能である。例えば、重合開始基を含有するコア部から、単量体をグラフト重合する方法(手法1、例えば前記特許文献6及び8を参照)、コア部表面の官能基に、ポリマー末端の官能基を反応させる方法(手法2、例えば前記特許文献7を参照)、マクロモノマーをコモノマーとする粒子合成(手法3)などにより製造することができる。直鎖状ポリマーに様々な単量体を使用することができる点において手法1が好ましい。さらに、高密度な直鎖状ポリマーを形成でき、直鎖状ポリマーの分子量を自由に設計できる点において、リビングラジカル重合開始基を含有するコア部からグラフト重合することが好ましい。
 リビングラジカル重合開始基を含有するコア部を製造する場合には、公知の方法が採用可能であり、特に制限されるものではない。例えば、シランカップリング基などの反応性官能基とリビングラジカル重合開始基とを含む化合物を、予め合成した粒子表面の反応性官能基と反応させることによりコア部を合成することもできる。また、有機重合体粒子を合成する際に、リビングラジカル重合開始基を含む単量体を共重合することにより、コア部を合成することができる。
 リビングラジカル重合開始基を含む単量体を共重合することによりコア部を合成する方法としては、ソープフリー乳化重合法、乳化重合法、フィード乳化重合法、シード乳化重合法、分散重合法、懸濁重合法、沈殿重合法等の公知の重合方法が適用可能であり、特に制限されるものではない。この中でも粒度分布が狭い単分散性を示す粒子を容易に製造することができる点から、ソープフリー乳化重合法やシード乳化重合法を用いることが好ましい。重合条件は、単量体の種類等に応じて適宜選択できるが、一般的には攪拌しながら、重合温度30~90℃で、2~48時間の条件で行うことが好ましい。重合には、乳化剤、反応性乳化剤、分散剤、重合開始剤、連鎖移動剤などを使用することができる。
 リビングラジカル重合開始基を含む単量体としては、リビングラジカル重合の重合開始基と重合性二重結合とを同一分子内に含有するものであれば特に制限されるものではない。リビングラジカル重合としては、ニトロシキド化合物を用いる重合(NMP)、原子移動ラジカル重合(ATRP)、可逆的付加脱離連鎖移動重合法(RAFT)、有機テルル化合物を用いる重合法(TERP)などのリビングラジカル重合開始基を利用することができ、特に制限されることはない。重合の制御の容易さ、臭気の低さ、重金属物質の不使用の点からNMPを用いることが好ましい。リビングラジカル重合開始基を含む単量体としては、2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-(4’-ビニルフェニル)エタノール、2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-(3’-ビニルフェニル)エタノール、2-(2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-(4’-ビニルフェニル)エタノール、2-イソプロピルオキシカルボニルオキシ-1-(4’-アセトキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-1-(4’-ビニルフェニル)エタン、2-(N-t-ブチル-N-(2’-メチル-1-フェニルプロピル)アミノオキシ)-2-(4’-ビニルフェニル)エタノール、2-イソプロピルオキシカルボニルオキシ-1-(N-t-ブチル-N-(1’-ジエチルホスホノ-2’,2’-ジメチルプロピル)アミノオキシ)-1-(4’-ビニルフェニル)エタンなどが挙げられる。これらのリビングラジカル重合開始基を含む単量体は単独で、又は2種以上を適宜選択して使用することもできる。
 次に、シェル部を製造する場合には、前記コア部のリビングラジカル重合開始基に基づき、シェル部を構成する単量体を重合して直鎖状ポリマーを形成し、コア-シェル粒子(A)を合成することができる。直鎖状ポリマーの形成には、塊状重合法、乳化重合法、懸濁重合法、溶液重合法等の公知の重合方法が適用可能であり、特に制限されるものではない。重合条件は、リビングラジカル重合開始基の分解特性や、シェル部を構成する単量体の種類や所望される分子量等によって適宜選択できるが、一般的には、重合温度50~180℃で、2~48時間の条件で行うことが好ましい。コア粒子表面から均一に直鎖状ポリマーが延びるように重合を行うため、またコア粒子の凝集を抑制するために、コア粒子に結合されていないリビングラジカル重合開始剤を必要に応じて併用することができる。そのような重合開始剤として例えば、NMPを用いた重合を利用する場合には、2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-フェニルエタノール、2-(N-t-ブチル-N-(2’-メチル-1-フェニルプロピル)アミノオキシ)-2-フェニルエタノール、2-イソプロピルオキシカルボニルオキシ-1-(N-t-ブチル-N-(1’-ジエチルホスホノ-2’,2’-ジメチルプロピル)アミノオキシ)-1-フェニルエタン等が挙げられる。
<コロイド結晶用組成物>
 単量体(C1~C3)を含まないコロイド結晶用組成物は、コア-シェル粒子(A)を25~65重量%、単量体(B1)を35~75重量%含有することを特徴とする。ただし、コア-シェル粒子(A)及び単量体(B1)の合計は100重量%である。単量体(C1~C3)を一種類含むコロイド結晶用組成物は、コア-シェル粒子(A)を25~65重量%、単量体(B1)と単量体(C1~C3)との混合物を35~75重量%含有することを特徴とする。ただし、単量体(B1)の含有率は5重量%以上であり、単量体(C1~C3)の含有率は70重量%以下である。また、コア-シェル粒子(A)、単量体(B1)、単量体(C1~C3)成分の合計は100重量%である。単量体(C1~C3)を二種以上含むコロイド結晶用組成物は、コア-シェル粒子(A)を25~65重量%、単量体(B1)と単量体(C1~C3)との混合物を35~75重量%含有することを特徴とする。ただし、単量体(B1)の含有率は5重量%以上であり、単量体(C1~C3)の含有率は70重量%以下である。また、コア-シェル粒子(A)、単量体(B1)、単量体(C1~C3)成分の合計は100重量%である。単量体(C1~C3)は、単量体(C1)、単量体(C2)及び単量体(C3)から少なくとも二種が適宜選択される。
 コロイド結晶用組成物中のコア-シェル粒子(A)の含有率は25~65重量%であり、好ましくは30~60重量%である。コア-シェル粒子(A)の含有率が25重量%よりも少ない場合は、コア-シェル粒子(A)が相互に隣接する濃度に達しないためコロイド結晶化が起こらない。もしくはコロイド結晶化が起こってもコア-シェル粒子(A)の割合が少ないため、十分な光学特性を発揮することができない。一方、コア-シェル粒子(A)の含有率が65重量%よりも多い場合には、コア-シェル粒子(A)の割合が多すぎるため、コロイド結晶にクラックや歪が生じることによりヘイズ値が高くなり好ましくない。
 単量体(B1)及び単量体(C1~C3)の含有率は、合計で35~75重量%である。ただし、単量体(B1)の含有率は5重量%以上であり、単量体(B1)が5重量%よりも少ない場合、ヘイズ値が高くなる傾向があるため好ましくない。一方、単量体(C1~C3)の含有率は70重量%以下であり、好ましくは0.1重量%以上である。所定量の単量体(B1)及び単量体(C1~C3)を用いることにより、得られるコロイド結晶硬化膜のピーク反射率は高い値を示し、さらにヘイズ値を小さくすることができ、透明性の高い硬化膜を得ることができる。
 コロイド結晶用組成物は、硬化を促進するために重合開始剤を含んでいることが好ましい。重合開始剤としては、アゾ系の重合開始剤、有機過酸化物系の重合開始剤、光重合開始剤などの公知の重合開始剤を使用することができる。例えば、アゾ系のラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、有機過酸化物系の重合開始剤としては、過酸化ベンゾイル、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイドなどを使用することができる。光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサシド、ビス(2,4,6-トリメチルベンゾイル)フェニル-ホスフィンオキシド、ベンゾフェノン、イソプロピルチオキサントンなどを使用することができる。
 重合開始剤の含有率は、コア-シェル粒子(A)、単量体(B1)、単量体(C1~C3)成分からなるコロイド結晶用組成物100重量部に対して、0.1~10重量部が好ましく、更に好ましくは、0.5~5重量部である。重合開始剤の含有率が10重量部よりも多い場合、重合開始に使用されなかった重合開始剤が硬化膜中に残存することにより、硬化膜の長期特性が悪化すると共に、可視光線透過率が低下するなどの弊害が生じる恐れがある。一方、重合開始剤の含有率が0.1重量部よりも少ない場合には、重合開始能が十分に発現されず、硬化反応が遅いため硬化中に粒子の規則配列が崩れる傾向にあり、さらには硬化反応が不十分になり硬化膜が必要とする機械的強度が得られない傾向がある。
 コア-シェル粒子(A)の分散性向上、コロイド結晶用組成物の粘度調整や塗装性改良、さらにコロイド結晶用組成物の結晶化の促進のために、コロイド結晶用組成物は有機溶剤を含有することが好ましい。有機溶剤としては、コア-シェル粒子(A)を十分に分散させるため、シェル部の直鎖状ポリマーに対して良溶媒であることが好ましい。また、乾燥温度において揮発する有機溶剤であれば、特に制限されるものではない。このような有機溶剤としては、(ポリ)アルキレングリコールモノアルキルエーテル類、(ポリ)アルキレングリコールモノアルキルエーテルアセテート類、エーテル類、ケトン類、エステル類、芳香族炭化水素類、アルコール類、アミド類などを挙げることができる。具体例としては、(ポリ)アルキレングリコールモノアルキルエーテル類として、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテルなど、(ポリ)アルキレングリコールモノアルキルエーテルアセテート類として、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、ジプロピレングリコールモノエチルエーテルアセテートなど、エーテル類として、1,2-ジメトキシエタン、ジオキサン、ジエチレングリコールジメチルエーテルなど、ケトン類として、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなど、ジアセトンアルコール、エステル類として、酢酸n-プロピル、酢酸n-ブチル、酢酸2―エチルヘキシル、メトキシブチルアセテート、エチル-3-エトキシプロピオネート、γ―ブチロラクトン、炭酸プロピレンなど、芳香族炭化水素類として、トルエン、キシレンなど、アルコール類として、2-プロパノール、シクロヘキサノールなど、アミド類として、N,N-ジメチルホルムアミド、N-メチルピロリドンなどを挙げることができる。また、有機溶剤は、単独でまたは2種以上を組合せて用いることができる。
 有機溶剤の含有率は、コア-シェル粒子(A)、単量体(B1)、単量体(C1~C3)成分からなるコロイド結晶用組成物100重量部に対して、5~500重量部、好ましくは7~300重量部、さらに好ましくは10~200重量部である。有機溶剤の含有率が5重量部よりも少ない場合、粘度調整や塗装性改良などの効果が小さく、さらにコロイド結晶化が起こりにくい。有機溶剤の含有率が500重量部よりも多い場合、乾燥後の膜厚が薄くなり、十分な光学特性が得られない。また、使用量の過度の増大は経済的に不利であり、乾燥時間も長くなることから工業的に好ましくない。
 コロイド結晶用組成物は上記成分の他に、硬化膜と基材との密着性の改良のために一般的に使用されている官能基を有する単量体を適宜添加することができる。官能基としては、アルコキシシリル基、カルボン酸基、水酸基、リン酸基、エポキシ基、イソシアネート基、複素環基などが挙げられる。具体例としては、アルコキシシリル基を有する単量体として、3-(メタ)アクリロキシプロピルトリメトキシシランなど、カルボン酸基を有する単量体として、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸など、水酸基を有する単量体として、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなど、リン酸基を有する単量体として、リン酸2-((メタ)アクリロイルオキシ)エチルなど、エポキシ基を有する単量体として、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテルなど、イソシアネート基を有する単量体として、2-(メタ)アクリロイルオキシエチルイソシアネートなど、複素環基を有する単量体としては、テトラヒドロフルフリル(メタ)アクリレート、(メタ)アクリロイルモルホリンなどを挙げることができる。これらの官能基を有する単量体は、通常、コロイド結晶用組成物100重量部に対して、10重量部以下、好ましくは5重量部以下の割合で配合することにより、性能を改善することができる。官能基を有する単量体の含有率が10重量部よりも多い場合、コロイド結晶硬化膜の光学特性が低下するため好ましくない。
 また、上記成分の他に、硬化速度や機械的強度の改良のために、一般的に使用されている重合性基が3官能以上の多官能単量体を適宜添加することができる。具体例としては、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスルトールヘキサアクリレートなどを挙げることができる。これら多官能単量体は、通常、コロイド結晶用組成物100重量部に対して、10重量部以下、好ましくは5重量部以下の割合で配合することにより、性能を改善することができる。多官能単量体の含有率が10重量部よりも多い場合、コロイド結晶硬化膜の光学特性が低下するため好ましくない。
 さらに、コロイド結晶用組成物は上記成分の他に、塗料業界で一般的に使用されている、紫外線吸収剤、赤外線吸収剤、光安定剤、酸化防止剤、レベリング剤、表面調整剤、増粘剤、消泡剤、染料、顔料、金属酸化物などを適宜添加することができる。これらの添加剤は、通常、コロイド結晶用組成物100重量部に対して、5重量部以下の割合で配合することが好ましい。
<コロイド結晶硬化膜>
 コロイド結晶硬化膜は、コロイド結晶用組成物を結晶化した後に、コロイド結晶用組成物の単量体(B1)及び単量体(C1~C3)を熱もしくは光により硬化することにより作製され、コア-シェル粒子(A)の規則配列が硬化後も維持されているとともに、機械的強度が高められる。コロイド結晶硬化膜において、三次元的なコア-シェル粒子(A)の規則配列が硬化後も維持されているか否かの確認は、反射及び透過スペクトルの測定から反射ピークを確認する方法や、反射ピークが可視光線の範囲であれば、構造性発色として視覚的に確認する方法が挙げられる。コロイド結晶硬化膜の用途により必要な光学特性は異なるが、一例として色材用途を考慮した場合、鮮やかな構造色を視覚的に認識するためには、反射率測定において、反射ピークの反射率が50%以上であることが好ましい。さらに、硬化膜の濁度を示すヘイズ値は10%以下であることが好ましい。ヘイズ値が10%よりも高い場合、硬化膜は白く濁ったように視認され、透明性は低く、さらに鮮やかな構造色の視覚的な効果を低減させてしまう。反射ピークの反射率を上げる一つの方法としては、膜厚を厚くし、コロイド結晶の粒子の層数を増やすことが挙げられるが、この場合、ヘイズ値も大きくなってしまうことは自明である。なお、本開示では、組成物を膜状に成形した状態で、組成物中の単量体を重合したものを硬化膜と定義する。したがって、本開示における硬化は、二重結合を二つ有する単量体を含む組成物の架橋構造の形成による硬化のみではなく、二重結合を一つ有する単量体の重合による硬化なども含む。
 コロイド結晶硬化膜の膜厚は、1~100μmであることが好ましく、3~50μmであることがさらに好ましい。膜厚が1μmよりも薄い場合、得られるコロイド結晶硬化膜のピーク反射率が小さくなり、十分な光学特性が得られない。一方、膜厚が100μmよりも厚い場合、クラックや歪が生じやすいためにヘイズ値が高くなる傾向にある。
<コロイド結晶硬化膜の製造方法>
 コロイド結晶硬化膜は、次のa)及びb)の2工程を経て製造することができる:
 a)コア-シェル粒子(A)、単量体(B1)、単量体(C1~C3)、及び有機溶剤を含み、任意で重合開始剤を含むコロイド結晶用組成物を基板に塗工した後に、有機溶剤を揮発させることによりコロイド結晶を形成させる結晶化工程;
 b)工程a)で得られた結晶化組成物を活性エネルギー線もしくは熱により硬化させる硬化工程。
 結晶化工程a)において、コロイド結晶用組成物は、例えばスピンコート法、バーコート法、スプレーコート法、ディップコート法、フローコート法、スリットコート法、グラビアコート法、スクリーン印刷法などの種々の方法により塗布することができる。コロイド結晶用組成物を塗布する基板は、ガラスやプラスチックフィルムなどの基板、または立体形状の成形品などに塗布することができ、塗布する基板の形状が制限されることは無い。
 有機溶剤を揮発させる乾燥温度は、好ましくは10℃から250℃、より好ましくは20℃~200℃であり、さらに好ましくは25~150℃である。この乾燥温度が10℃よりも低い場合、単量体(B1)及び(C1~C3)の粘度が高くなり、コロイド結晶化が起こりにくい傾向を示す。一方、乾燥温度が250℃よりも高い場合、単量体(B1)及び単量体(C1~C3)が揮発してしまう。
 乾燥時間は好ましくは1~800分、より好ましくは3~300分、さらに好ましくは5~200分である。乾燥時間が1分よりも短い場合、コロイド結晶化が起こりにくくなる。一方、乾燥時間が800分よりも長い場合、乾燥時間が極めて長くなり、生産性が悪化して好ましくない。このような有機溶剤の揮発によりコロイド結晶の結晶化が促進されるが、乾燥後に有機溶剤が若干残存しても差し支えない。
 コロイド結晶が形成されたか否かの確認は、反射及び透過スペクトルの測定から反射ピークを確認する方法や、反射ピークが可視光線の範囲であれば、構造色として視覚的に確認する方法が挙げられる。
 硬化工程b)において、加熱、又は紫外線、電子線、放射線などの活性エネルギー線の照射により単量体(B1)及び単量体(C1~C3)を重合させることで、結晶化した組成物が硬化し、コロイド結晶硬化膜を得ることができる。これらのうち、紫外線照射を行うことにより、硬化を迅速に行うことができると同時に、コア-シェル粒子(A)の規則配列性の維持を図ることができる。紫外線照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアークランプ、キセノンランプ、メタルハライドランプなどを使用することができる。この場合、紫外線照射に加えて硬化を促進させるために加熱を行うこともできる。加熱温度は通常10~150℃、好ましくは20~120℃に設定される。
 以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。各例における平均粒子径、CV値、反射率、ヘイズ値、屈折率については、下記に示す方法によって測定した。
 1)平均粒子径(nm)及びCV値(%)
 光散乱光度計ELS-8000〔大塚電子(株)製〕を用いて、コア部及びコア-シェル粒子を動的光散乱法により測定し、平均粒子径及びCV値を算出した。コア部の測定にはイオン交換水を分散媒として用いた。コア-シェル粒子の測定にはテトラヒドロフラン(THF)を分散媒として用いた。
 2)反射波長(nm)及び反射率(%)
 積分球装置を取り付けた紫外可視分光光度計V-560〔日本分光(株)製〕を用いて測定を行った。硫酸バリウムを標準反射板として使用した。350~850nmの範囲でコロイド結晶硬化膜の分光反射スペクトルを測定し、反射ピークの波長(nm)及び反射率(%)を読み取った。
 3)ヘイズ値(%)
 ヘイズメーターNDH5000〔日本電色工業(株)製〕を使用し、コロイド結晶硬化膜のヘイズ値(%)を測定した。
 4)屈折率
 各成分の膜を別途作製し、25℃においてアッベ屈折計〔(株)アタゴ製〕を用いて屈折率を測定した。コア部及びシェル部の屈折率は、コア部又はシェル部用の単量体と重合開始剤である2,2’-アゾビス(2,4-ジメチルバレロニトリル)とからなる塗液を厚さが100μmになるようにガラス基材上に塗布し、65℃で5時間さらに85℃で2時間の加熱で得られた膜をガラス上から剥離して測定した。また、単量体(B1)及び単量体(B1)と単量体(C1~C3)とからなる混合物の硬化後の屈折率は、各単量体と光重合開始剤であるビス(2,4,6-トリメチルベンゾイル)フェニル-ホスフィンオキシド(イルガキュア819〔チバ・スペシャリティケミカルズ(株)製〕)からなる塗液を厚さが100μmになるようにガラス基材上に塗布し、1000mJ/cmの紫外線照射により硬化した膜を、ガラス上から剥離して測定した。
 5)膜厚
 光学式薄膜測定装置F20-EXR〔フィルメトリクス(株)製〕を用いて、コロイド結晶硬化膜の膜厚を測定した。
[実施例1-1]
<コア部の合成>
 (コア部D)
 2段階のシード乳化重合により、コア部の合成を行った。1段階目として、冷却管、温度計、攪拌機及び窒素導入管を装着した容量500mLの四つ口フラスコに、反応性乳化剤としてスチレンスルホン酸ナトリウム(NaSS)0.146g及びイオン交換水350gを仕込んだ。これに単量体としてメチルメタクリレート(MMA)13.72g、架橋性単量体としてエチレングリコールジメタクリレート(EGDM)0.730gを加え、窒素気流下で攪拌混合し、65℃まで加温した。次いで、重合開始剤として過硫酸カリウム(KPS)0.0292gを上記反応液に添加し、65℃で5時間重合反応を行った後、室温まで冷却した。
 次いで2段階目として、乳化剤としてドデシルベンゼンスルホン酸ナトリウム(DBS)0.219gを反応液に加え、室温、窒素気流下で攪拌混合した。そして、単量体としてMMA8.03g及び架橋性単量体としてEGDM5.84gに、リビングラジカル重合開始基を含む単量体として2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-(3’-ビニルフェニル)エタノールと2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-(4’-ビニルフェニル)エタノールのm/p体混合物(下記化合物1、m/p比=57/43)0.730g及び重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.146gを加え溶解させた。この混合溶液を反応液に徐々に加え、室温で3時間攪拌混合した。その後、反応液を65℃まで加温し、65℃で5時間さらに85℃で2時間重合反応を行った後、室温まで冷却した。続いて、ナイロンメッシュで凝集物を濾別することにより、粒子分散液を得た。遠心分離機で粒子を分離し、水及びメタノールで洗浄した後に減圧乾燥することによりコア部Dを得た。平均粒子径は204nm及びCV値は9%、コア部の屈折率(n(core)))は1.50であった。
Figure JPOXMLDOC01-appb-C000027
<コア-シェル粒子の合成>
 (コア-シェル粒子Dc)
 N,N-ジメチルホルムアミド(DMF)4.08gに、スチレン(St)5.54g、2-(4’-ヒドロキシ-2’,2’,6’,6’-テトラメチル-1’-ピペリジニルオキシ)-2-フェニルエタノール(下記化合物2)0.0781gを加えて溶解させた。これにコア部D1.70gを加え、ホモジナイザーで30分間混合してコア部Dを分散させた。得られた分散液を内容量20mLのガラスアンプルに注入し、窒素置換したうえで封管し、115℃で15時間重合を行った。内容物にTHFを加え、遠心分離器により粒子を分離した。得られた粒子をTHFにより2回洗浄し、減圧乾燥することによりコア-シェル粒子Dcを得た。グラフト率は39%、平均粒子径は236nm及びCV値は15%、シェル部の屈折率(n(shell))は1.59であった。
Figure JPOXMLDOC01-appb-C000028
<コロイド結晶用組成物及びコロイド結晶硬化膜の製造>
 コア-シェル粒子Dc1.00g、単量体(B1)として2-フェニルフェノキシエチルアクリレート(BPEA、下記化学式参照)(NKエステルA-LEN-10〔新中村化学(株)製〕)1.50g、有機溶剤としてジエチレングリコールモノブチルエーテルアセテート(DGBA)0.75g及びエチレングリコールモノメチルエーテルアセテート(EGMA)0.75g、光重合開始剤としてビス(2,4,6-トリメチルベンゾイル)フェニル-ホスフィンオキシド(イルガキュア819〔チバ・スペシャリティケミカルズ(株)製〕)0.045gを加え、ホモジナイザーで60分間混合してコア-シェル粒子を分散させ、コロイド結晶用組成物を得た。
 得られた組成物をバーコーター(#26)によりガラス基板に塗布した後に、90℃で120分間かけて有機溶剤を揮発させることにより、コア-シェル粒子を結晶化させた。
 次いで、このコロイド結晶に、高圧水銀ランプ(紫外線照射装置トスキュア401〔ハリソン東芝ライティング(株)製〕)を用い、紫外線を照射することにより単量体(B1)を硬化させ、コロイド結晶硬化膜を得た(膜厚:25μm)。このコロイド結晶硬化膜は、599nmに反射ピークを有し、その反射ピークの反射率は57%であった。また、ヘイズ値は3.9%であった。
Figure JPOXMLDOC01-appb-C000029
 [実施例1-2~5-3、比較例1~5]
 (コア部E~O)
 コア部Dと同様にして、表1に示す使用量でコア部E~Oの合成を行った。この結果を表1に示す。
 なお、以下の表1~9に示す記号は下記の通りである。
EMA:エチルメタクリレート
tBA:tert-ブチルアクリレート
tBMA:tert-ブチルメタクリレート
BDMA:1,4-ブタンジオールジメタクリレート
TFEMA:2,2,2-トリフルオロエチルメタクリレート
St:スチレン
BzMA:ベンジルメタクリレート
DVB:ジビニルベンゼン(純度55%、エチルビニルベンゼン45%含有)
HS-10:アクアロンHS-10〔第一工業製薬(株)製〕
BPEA:2-フェニルフェノキシエチルアクリレート(NKエステルA-LEN-10〔新中村化学(株)製〕)(下記化学式参照)
Figure JPOXMLDOC01-appb-C000030

BPA:2-フェニルフェニルアクリレート(ARONIX TO-2344〔東亞合成(株)製〕)(下記化学式参照)
Figure JPOXMLDOC01-appb-C000031

BPM:2-フェニルフェニルメタクリレート(下記化学式参照)
Figure JPOXMLDOC01-appb-C000032

LA:ラウリルアクリレート
PSDA:ビス(4-アクリロキシエトキシフェニル)スルフィド(ARONIX TO-2066〔東亞合成(株)製〕)(下記化学式参照)
Figure JPOXMLDOC01-appb-C000033

MPSM:ビス(4-メタクリロイルチオフェニル)スルフィド(下記化学式参照)
Figure JPOXMLDOC01-appb-C000034

PGMA:プロピレングリコールメチルエーテルアセテート
FL1A:9,9-ビス〔4-(2-アクリロイルオキシエトキシ)フェニル〕フルオレン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000035

FL2A:9,9-ビス〔4-(2-(2-アクリロイルオキシエトキシ)エトキシ)フェニル〕フルオレン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000036

FL1M:9,9-ビス〔4-(2-メタクリロイルオキシエトキシ)フェニル〕フルオレン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000037

NPAC:酢酸n-プロピル
BA2A:2,2-ビス〔4-(2-(2-アクリロイルオキシエトキシ)エトキシ)フェニル〕プロパン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000038

BA1A:2,2-ビス〔4-(2-アクリロイルオキシエトキシ)フェニル〕プロパン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000039

BA1M:2,2-ビス〔4-(2-メタクリロイルオキシエトキシ)フェニル〕プロパン(下記化学式参照)
Figure JPOXMLDOC01-appb-C000040

MyA:ミリスチルアクリレート
NDA:1,9-ノナンジオールジアクリレート
DGDM:ジエチレングリコールジメタクリレート
PETA:ペンタエリスリトールトリアクリレート
Figure JPOXMLDOC01-appb-T000041
 (コア-シェル粒子Ec~Oe)
 コア-シェル粒子Dcと同様にして、表2に示す使用量でコア-シェル粒子Ec~Oeの合成を行った。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000042
 実施例1-1と同様にして、表3~8に示す使用量及び乾燥条件でコロイド結晶用組成物及びコロイド結晶硬化膜の製造を行った。この結果を表3~8に示す。
Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044

Figure JPOXMLDOC01-appb-T000045

Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047

Figure JPOXMLDOC01-appb-T000048

Figure JPOXMLDOC01-appb-T000049
 実施例1-1~5-3の結果において、n(shell)-n(core)の値が0.07以上、さらにn(B)-n(core)又はn(B+C)-n(core)の値が0.07以上であり、成分(A)~(C)の含有率が所定範囲内であるコロイド結晶用組成物から得られたコロイド結晶硬化膜は、反射ピークの反射率が50%以上であり、かつヘイズ値が10%以下であった。
 一方、比較例1~5の結果より、n(shell)-n(core)の値が0.07以上、さらにさらにn(B)-n(core)又はn(B+C)-n(core)の値が0.07以上の条件を満たさないコロイド結晶用組成物から得られたコロイド結晶硬化膜は、反射率が50%より小さい値になる、もしくは、ヘイズ値が高くなり、白濁感が生じるため、鮮やかな構造色を視認することができない。比較例6の結果より、単量体(B1)の含有率が5重量%未満であるコロイド結晶用組成物から得られたコロイド結晶硬化膜は、ヘイズ値が高くなり、白濁感が生じる。比較例7の結果より、コア-シェル粒子(A)の含有率が25重量%未満であるコロイド結晶用組成物から得られたコロイド結晶硬化膜は、反射ピークが形成されない。また、比較例8の結果より、コア-シェル粒子(A)の含有率が65重量%を超えるコロイド結晶用組成物から得られたコロイド結晶硬化膜は、反射率が50%より小さい値になる。
 本開示のコロイド結晶用組成物は、塗布した後に乾燥、そして紫外線照射という簡便な操作によりコロイド結晶硬化膜を製造できるという特長により、平面基板だけではなく成形品にもコロイド結晶硬化膜を作製することができる。さらに、得られるコロイド結晶硬化膜は、高い反射率と低いヘイズ値を有することから光学特性に優れ、鮮やかな構造性発色を視認することができる。このため、色材をはじめとする光機能性材料に有用である。さらに、主に粒径に応じて紫外光から可視光、赤外光に対して反射ピークを有する硬化膜を作製することができ、各種光学素子に有用である。

Claims (9)

  1.  コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)と、を含むコロイド結晶用組成物であって、
     前記コア-シェル粒子(A)を25~65重量%、及び前記単量体(B1)を35~75重量%含有し、
     前記コア部の平均粒子径は50~900nmであり、
     前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
     前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
     前記コア部の屈折率(n(core))は下記式(2)及び式(3)を満たすことを特徴とするコロイド結晶用組成物。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
    n(shell)-n(core)≧0.07・・・(2)
    〔式中、n(shell)は前記シェル部の屈折率を示す〕
    n(B)-n(core)≧0.07・・・(3)
    〔式中、n(B)は前記単量体(B1)の硬化後の屈折率を示す〕
  2.  コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(4)で表される単量体(C1)の混合物と、を含むコロイド結晶用組成物であって、
     前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C1)は70重量%以下であり、
     前記コア部の平均粒子径は50~900nmであり、
     前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
    前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
     前記コア部の屈折率(n(core))は下記式(2)及び式(5)を満たすことを特徴とするコロイド結晶用組成物。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
    Figure JPOXMLDOC01-appb-C000003

    〔式中、Rは水素原子又はメチル基であり、Xは酸素原子又は硫黄原子であり、zは0又は1である〕
    n(shell)-n(core)≧0.07・・・(2)
    〔式中、n(shell)は前記シェル部の屈折率を示す〕
    n(B+C)-n(core)≧0.07・・・(5)
    〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
  3.  コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(6)で表される単量体(C2)の混合物と、を含むコロイド結晶用組成物であって、
     前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C2)は70重量%以下であり、
     前記コア部の平均粒子径は50~900nmであり、
     前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
    前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
     前記コア部の屈折率(n(core))は下記式(2)及び式(7)を満たすことを特徴とするコロイド結晶用組成物。
    Figure JPOXMLDOC01-appb-C000004

    〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
    Figure JPOXMLDOC01-appb-C000005

    〔式中、R3は水素原子又はメチル基であり、pは1又は2である〕
    n(shell)-n(core)≧0.07・・・(2)
    〔式中、n(shell)は前記シェル部の屈折率を示す〕
    n(B+C)-n(core)≧0.07・・・(7)
    〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
  4.  コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び下記式(8)で表される単量体(C3)の混合物と、を含むコロイド結晶用組成物であって、
     前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C3)は70重量%以下であり、
     前記コア部の平均粒子径は50~900nmであり、
     前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
     前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
     前記コア部の屈折率(n(core))は下記式(2)及び式(9)を満たすことを特徴とするコロイド結晶用組成物。
    Figure JPOXMLDOC01-appb-C000006

    〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
    Figure JPOXMLDOC01-appb-C000007

    〔式中、R4は水素原子又はメチル基であり、qは1又は2である〕
    n(shell)-n(core)≧0.07・・・(2)
    〔式中、n(shell)は前記シェル部の屈折率を示す〕
    n(B+C)-n(core)≧0.07・・・(9)
    〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
  5.  コア部及びシェル部を有するコア-シェル粒子(A)と、下記式(1)で表される単量体(B1)及び単量体(C)の混合物と、を含むコロイド結晶用組成物であって、
     前記コア-シェル粒子(A)を25~65重量%、及び前記混合物を35~75重量%含有し、但し、前記単量体(B1)は5重量%以上、及び前記単量体(C)は70重量%以下であり、
     前記単量体(C)は、下記式(4)で表される単量体(C1)、下記式(6)で表される単量体(C2)及び下記式(8)で表される単量体(C3)の少なくとも2つからなり、
     前記コア部の平均粒子径は50~900nmであり、
     前記シェル部はスチレン及び下記式(1)で表される単量体(B2)の少なくとも一方からなる直鎖状ポリマーで形成されており、
     前記直鎖状ポリマーの一端は前記コア部に共有結合されており、
     前記コア部の屈折率(n(core))は下記式(2)及び式(10)を満たすことを特徴とするコロイド結晶用組成物。
    Figure JPOXMLDOC01-appb-C000008

    〔式中、Rは水素原子又はメチル基であり、yは0又は1である〕
    Figure JPOXMLDOC01-appb-C000009

    〔式中、Rは水素原子又はメチル基であり、Xは酸素原子又は硫黄原子であり、zは0又は1である〕
    Figure JPOXMLDOC01-appb-C000010

    〔式中、R3は水素原子又はメチル基であり、pは1又は2である〕
    Figure JPOXMLDOC01-appb-C000011

    〔式中、R4は水素原子又はメチル基であり、qは1又は2である〕
    n(shell)-n(core)≧0.07・・・(2)
    〔式中、n(shell)は前記シェル部の屈折率を示す〕
    n(B+C)-n(core)≧0.07・・・(10)
    〔式中、n(B+C)は前記混合物の硬化後の屈折率を示す〕
  6.  請求項1~5のいずれかに記載のコロイド結晶用組成物100重量部に対し、さらに重合開始剤を0.1~10重量部含むことを特徴とするコロイド結晶用組成物。
  7.  請求項1~6のいずれかに記載のコロイド結晶用組成物100重量部に対し、さらに有機溶剤を5~500重量部含むことを特徴とするコロイド結晶用組成物。
  8.  請求項1~7のいずれかに記載のコロイド結晶用組成物を熱又は活性エネルギー線により硬化して得られるコロイド結晶硬化膜であって、
     膜厚が1~100μmであることを特徴とするコロイド結晶硬化膜。
  9.  膜厚が1~100μmのコロイド結晶硬化膜を製造する方法であって、
     a)請求項7に記載の組成物を基板に塗工した後に、前記有機溶剤を揮発させることによりコロイド結晶を形成する工程、及び
     b)結晶化した組成物を熱又は活性エネルギー線により硬化させる工程、
    を有することを特徴とするコロイド結晶硬化膜の製造方法。
PCT/JP2011/062594 2010-06-25 2011-06-01 コロイド結晶用組成物 WO2011162078A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180029028.2A CN102958944B (zh) 2010-06-25 2011-06-01 胶质晶体用组合物
US13/806,593 US8906505B2 (en) 2010-06-25 2011-06-01 Composition for colloidal crystal comprising core-shell particles and styrene polymer
JP2012521390A JP5708647B2 (ja) 2010-06-25 2011-06-01 コロイド結晶用組成物
EP11797964.1A EP2586799B1 (en) 2010-06-25 2011-06-01 Composition for colloidal crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-144494 2010-06-25
JP2010144494 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162078A1 true WO2011162078A1 (ja) 2011-12-29

Family

ID=45371274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062594 WO2011162078A1 (ja) 2010-06-25 2011-06-01 コロイド結晶用組成物

Country Status (5)

Country Link
US (1) US8906505B2 (ja)
EP (1) EP2586799B1 (ja)
JP (1) JP5708647B2 (ja)
CN (1) CN102958944B (ja)
WO (1) WO2011162078A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071959A (ja) * 2011-09-27 2013-04-22 Daicel Corp 樹脂組成物及びその硬化物
JP2013245272A (ja) * 2012-05-25 2013-12-09 Nof Corp コロイド結晶用組成物、及び、これより得られるコロイド結晶硬化膜とその製造方法
JP2014047231A (ja) * 2012-08-29 2014-03-17 Asahi Kasei Chemicals Corp 構造色発現用組成物及び構造色発現膜
JP2014189719A (ja) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd 構造色フィルム形成用組成物および製造方法
US20150361284A1 (en) * 2013-02-06 2015-12-17 Sun Chemical Corporation Digital printing inks
JP2016222755A (ja) * 2015-05-27 2016-12-28 日油株式会社 コア粒子、及びそれを用いたコア−シェル粒子
JP7107424B1 (ja) 2021-12-27 2022-07-27 東洋インキScホールディングス株式会社 コロイド結晶用組成物、及び積層体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3021248B1 (fr) 2014-05-21 2016-06-03 Essilor Int Procede de fabrication d'une lentille ophtalmique
FR3021247B1 (fr) 2014-05-21 2017-01-27 Essilor Int Procede de fabrication d'une lentille ophtalmique et cette lentille
TW201546153A (zh) * 2014-05-22 2015-12-16 Jx Nippon Oil & Energy Corp 聚合物微粒組成物及其作為光擴散劑之使用
EP3163334B1 (en) * 2014-06-30 2020-04-01 Kaneka Corporation Optical resin composition and film
US9220951B1 (en) * 2014-08-20 2015-12-29 Acushnet Company Golf ball constructions incorporating structurally colored compositions
KR101871549B1 (ko) * 2014-10-29 2018-07-03 삼성에스디아이 주식회사 디스플레이 밀봉재용 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 디스플레이 장치
FR3039659B1 (fr) * 2015-07-28 2018-08-17 Essilor International Lentille ophtalmique et procede de fabrication associe
WO2017135066A1 (ja) * 2016-02-05 2017-08-10 三菱瓦斯化学株式会社 光拡散剤、光拡散性樹脂組成物および成形体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100432A (ja) 1992-08-05 1994-04-12 Catalysts & Chem Ind Co Ltd 微粒子分散液および化粧料
WO2003100139A1 (fr) 2002-05-29 2003-12-04 Bando Chemical Industries, Ltd. Cristal colloidal immobilise et processus de production de ce cristal
JP2005060654A (ja) 2003-07-31 2005-03-10 Soken Chem & Eng Co Ltd 球状微細粒子の3次元粒子整合体の製造方法、その3次元粒子整合体及びその3次元粒子整合体塗工膜の製造方法。
WO2005108451A1 (ja) 2004-05-07 2005-11-17 Kyoto University 高分子グラフト微粒子によるコロイド結晶の製造方法
JP2007029775A (ja) 2005-07-22 2007-02-08 National Institute For Materials Science コロイド結晶ゲルを製造する方法、コロイド結晶ゲル、および、光学素子
JP2008303261A (ja) 2007-06-06 2008-12-18 Toyota Central R&D Labs Inc ポリマーで固定化されたコロイド結晶の製造方法及びポリマーで固定化されたコロイド結晶
JP2009249527A (ja) 2008-04-08 2009-10-29 Nippon Paint Co Ltd 構造色塗膜形成塗料組成物および複層塗膜の形成方法
JP2010018760A (ja) 2008-07-14 2010-01-28 Nof Corp コロイド結晶、その製造方法及び固定化コロイド結晶

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932309A (en) * 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
DE19820302A1 (de) * 1998-05-04 2000-02-24 Basf Ag Kern/Schale-Partikel, ihre Herstellung und Verwendung
AU2001241807A1 (en) * 2000-04-07 2001-10-23 Eric Baer Polymer 1d photonic crystals
JP2005169248A (ja) * 2003-12-11 2005-06-30 Daicel Chem Ind Ltd マイクロカプセル及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100432A (ja) 1992-08-05 1994-04-12 Catalysts & Chem Ind Co Ltd 微粒子分散液および化粧料
WO2003100139A1 (fr) 2002-05-29 2003-12-04 Bando Chemical Industries, Ltd. Cristal colloidal immobilise et processus de production de ce cristal
JP2005060654A (ja) 2003-07-31 2005-03-10 Soken Chem & Eng Co Ltd 球状微細粒子の3次元粒子整合体の製造方法、その3次元粒子整合体及びその3次元粒子整合体塗工膜の製造方法。
WO2005108451A1 (ja) 2004-05-07 2005-11-17 Kyoto University 高分子グラフト微粒子によるコロイド結晶の製造方法
JP2007029775A (ja) 2005-07-22 2007-02-08 National Institute For Materials Science コロイド結晶ゲルを製造する方法、コロイド結晶ゲル、および、光学素子
JP2008303261A (ja) 2007-06-06 2008-12-18 Toyota Central R&D Labs Inc ポリマーで固定化されたコロイド結晶の製造方法及びポリマーで固定化されたコロイド結晶
JP2009249527A (ja) 2008-04-08 2009-10-29 Nippon Paint Co Ltd 構造色塗膜形成塗料組成物および複層塗膜の形成方法
JP2010018760A (ja) 2008-07-14 2010-01-28 Nof Corp コロイド結晶、その製造方法及び固定化コロイド結晶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2586799A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071959A (ja) * 2011-09-27 2013-04-22 Daicel Corp 樹脂組成物及びその硬化物
JP2013245272A (ja) * 2012-05-25 2013-12-09 Nof Corp コロイド結晶用組成物、及び、これより得られるコロイド結晶硬化膜とその製造方法
JP2014047231A (ja) * 2012-08-29 2014-03-17 Asahi Kasei Chemicals Corp 構造色発現用組成物及び構造色発現膜
US20150361284A1 (en) * 2013-02-06 2015-12-17 Sun Chemical Corporation Digital printing inks
US9587127B2 (en) * 2013-02-06 2017-03-07 Sun Chemical Corporation Digital printing inks
JP2014189719A (ja) * 2013-03-28 2014-10-06 Toppan Printing Co Ltd 構造色フィルム形成用組成物および製造方法
JP2016222755A (ja) * 2015-05-27 2016-12-28 日油株式会社 コア粒子、及びそれを用いたコア−シェル粒子
JP7107424B1 (ja) 2021-12-27 2022-07-27 東洋インキScホールディングス株式会社 コロイド結晶用組成物、及び積層体
JP2023096927A (ja) * 2021-12-27 2023-07-07 東洋インキScホールディングス株式会社 コロイド結晶用組成物、及び積層体

Also Published As

Publication number Publication date
JP5708647B2 (ja) 2015-04-30
EP2586799A1 (en) 2013-05-01
EP2586799B1 (en) 2015-01-07
CN102958944A (zh) 2013-03-06
JPWO2011162078A1 (ja) 2013-08-19
US8906505B2 (en) 2014-12-09
CN102958944B (zh) 2014-09-03
EP2586799A4 (en) 2013-12-04
US20130171438A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5708647B2 (ja) コロイド結晶用組成物
JP5996086B2 (ja) 金属微粒子分散剤、金属微粒子分散液および硬化膜
JP2015093419A (ja) 光学積層体
US9139745B2 (en) Aggregate of spherical core-shell cerium oxide/polymer hybrid nanoparticles and method for producing the same
JP2010018760A (ja) コロイド結晶、その製造方法及び固定化コロイド結晶
JP2021031669A (ja) 硬化性インク組成物、硬化物、及びナノコンポジット
JP5966615B2 (ja) コロイド結晶用組成物、及び、これより得られるコロイド結晶硬化膜とその製造方法
JP5003268B2 (ja) コア−シェル微粒子、その製造方法及び固定化コロイド結晶の製造方法
JP6255859B2 (ja) 硬化性組成物
JP2014211513A (ja) 光学積層体
JPWO2016199717A1 (ja) 架橋性粒子を含有する硬化性樹脂組成物
JP2008310119A (ja) 反射防止フィルム
JP2005239837A (ja) 光拡散塗膜形成用塗料及び光拡散シート
JP5747746B2 (ja) ナノ微粒子複合体の製造方法
JP6520396B2 (ja) コア粒子、及びそれを用いたコア−シェル粒子
JP6015809B2 (ja) 重合性分散安定化剤、重合性分散安定化剤溶液、及びナノ微粒子複合体
JP6340229B2 (ja) 構造体及びその製造方法
JP6428115B2 (ja) 硬化性組成物
WO2023100934A1 (ja) インク組成物
KR101367527B1 (ko) 표면 형상이 제어된 가교 고분자 입자의 제조 방법
JP2023081339A (ja) インク組成物
WO2024019139A1 (ja) 組成物
JP2022189367A (ja) ラジカル重合性重合体およびその感光性組成物
WO2017110083A1 (ja) 可溶性架橋型ポリマーの製造方法
JP2018072470A (ja) 構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029028.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011797964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806593

Country of ref document: US