WO2011162036A1 - スパッタリング装置、成膜方法、および制御装置 - Google Patents

スパッタリング装置、成膜方法、および制御装置 Download PDF

Info

Publication number
WO2011162036A1
WO2011162036A1 PCT/JP2011/060924 JP2011060924W WO2011162036A1 WO 2011162036 A1 WO2011162036 A1 WO 2011162036A1 JP 2011060924 W JP2011060924 W JP 2011060924W WO 2011162036 A1 WO2011162036 A1 WO 2011162036A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
rotation
target
holder
sputtering
Prior art date
Application number
PCT/JP2011/060924
Other languages
English (en)
French (fr)
Inventor
孝二 恒川
真寛 末永
武郎 金野
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to EP11797923.7A priority Critical patent/EP2586889A4/en
Priority to CN201180041189.3A priority patent/CN103080367B/zh
Priority to JP2012521372A priority patent/JP5792723B2/ja
Priority to KR1020157009912A priority patent/KR20150048901A/ko
Priority to KR1020177015053A priority patent/KR102083955B1/ko
Priority to KR1020137001793A priority patent/KR20130059384A/ko
Publication of WO2011162036A1 publication Critical patent/WO2011162036A1/ja
Priority to US13/710,696 priority patent/US20130105298A1/en
Priority to US14/948,481 priority patent/US9991102B2/en
Priority to US15/971,479 priority patent/US10636634B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3476Testing and control
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3473Composition uniformity or desired gradient
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to a sputtering apparatus, a film forming method, and a control apparatus for forming a thin film on a substrate having a concavo-convex structure in a manufacturing process of a semiconductor device, an electronic device, a magnetic device, a display device and the like.
  • a chemical reaction on the substrate such as a chemical vapor deposition method (see Patent Document 1) or an atomic layer deposition method (see Patent Document 2) is used.
  • the method used is well known. These methods are used for covering deep bottom trenches, bottom surfaces of holes, and inner wall surfaces.
  • methods using these chemical reactions are not suitable for applications that require high-purity metal films because reactive gases in the process are mixed in the films.
  • it takes a development time to search for a source gas that is a source of a chemical reaction at present, only a limited number of materials can be realized for a metal film. Therefore, it is not used for the purpose of forming a laminated film of various metal films and alloy films.
  • an oblique incident rotation film forming method disclosed in Patent Document 7 is known as a method for uniformly forming a thin film on a flat surface.
  • a cathode unit that supports a target is disposed obliquely above a substrate, and a target material is sputtered by magnetron sputtering while the substrate is rotated along its processing surface.
  • a method of controlling the rotation speed of the substrate is disclosed in order to improve the deviation of the film thickness distribution that occurs when the magnetic film is formed in a magnetic field (see Patent Document 8). .
  • the film thickness of the thin film deposited on the concavo-convex wall surface or the inclined surface (hereinafter referred to as a side surface) varies within the substrate surface. More specifically, the film thickness attached to the side surface facing the outside of the substrate (hereinafter also referred to as the first surface) and the center side direction of the substrate depending on the positional relationship with the target disposed obliquely above the substrate. There is a problem that a difference occurs in the film thickness of the film adhering to the side surface facing the surface (hereinafter also referred to as the second surface).
  • the oblique incident rotation film formation method is an effective technique for a flat substrate having no uneven structure on the surface.
  • a substrate having a concavo-convex structure such as a mesa structure, a V-groove, or a trench
  • two surfaces having a concavo-convex structure particularly, a surface to be processed by sputtering (for example, concavo-convex
  • the thickness of the film formed by sputtering on the two surfaces facing the longitudinal direction of the structure is different.
  • FIG. 2 shows a state in which a so-called mesa structure 211 having a rectangular bottom and top surface is formed on the processing surface of the substrate 21 as an uneven structure.
  • a first surface facing the outside of the substrate is denoted by reference numeral 211a
  • a second surface facing the center side of the substrate is denoted by reference numeral 211b.
  • 18 and 19 are diagrams showing the positional relationship between the concavo-convex structure and the target when attention is paid to a certain concavo-convex structure on the substrate.
  • FIG. 19 shows a state in which the substrate is rotated 180 ° from the state of FIG. In the state of FIG.
  • the surface 211a and the target 400 face each other, and a film formed by sputtering is mainly formed on the surface 211a.
  • the surface 211b faces the target 400, and the film formed by sputtering is mainly formed on the surface 211b.
  • the distance between the target 400 and the surface 211a in FIG. 18 is different from the distance between the target 400 and the surface 211b in FIG. The longer the distance between the target and the surface to be processed, the smaller the amount of film formation. Accordingly, in the case of FIGS. 18 and 19, the film thickness of the surface 211a is larger than that of the surface 211b.
  • the film thickness varies depending on the direction of the side surface. This is true for all the concavo-convex structures other than the concavo-convex structure located in the approximate center on the substrate.
  • This tendency can be said regardless of where the target is placed as long as the target is placed obliquely above the substrate (offset placement). Furthermore, it can be said that a plurality of targets are arranged obliquely above the substrate. This is because even if the target is additionally arranged at a symmetrical position with respect to the central axis of the substrate, the positional relationship between the target, the surface 211a, and the surface 211b does not change. That is, the distance when the surface 211a and the target face each other is short, and the distance when the surface 211b and the target face each other is long.
  • the present invention provides a sputtering apparatus and a film forming method capable of making the film thickness attached to the side surface of the concavo-convex structure uniform even in the concavo-convex structure even on the substrate on which the concavo-convex structure is formed. And it aims at providing a control device.
  • the present invention provides a substrate holder for rotatably holding a substrate, and at least one sputtering target disposed obliquely opposite the substrate holder.
  • a target holder for detecting the rotational position of the substrate held on the substrate holder; and rotation control means for adjusting the rotational speed of the substrate in accordance with the rotational position detected by the position detecting means.
  • the rotation control means is parallel to a side surface that is a surface to be processed of the uneven structure.
  • the rotational speed of the substrate when the sputtering target to be deposited is positioned on the first direction side parallel to the in-plane direction of the substrate is the first rotation rate.
  • the rotation speed of the substrate is set to be slower than the rotation speed of the substrate when the sputtering target to be deposited is positioned on a second direction side that is perpendicular to the direction and parallel to the substrate surface. It is characterized by controlling.
  • the present invention also provides a substrate holder for holding the substrate in a non-continuously rotatable manner, and a target holder for supporting at least one sputtering target disposed at a position diagonally opposite the substrate holder; Position detection means for detecting the rotation position of the substrate held on the substrate holder, and rotation control means for adjusting the rotation stop time of the substrate according to the rotation position detected by the position detection means.
  • the rotation control means is parallel to a side surface serving as a surface to be processed of the uneven structure and the substrate
  • the rotation stop time of the substrate when the sputtering target to be deposited is located on the first direction side parallel to the in-plane direction of the first direction and the first direction.
  • the rotation stop time of the substrate is set to be longer than the rotation stop time of the substrate when the sputtering target to be deposited is positioned on the second direction side that is straight and parallel to the substrate surface. It is characterized by controlling.
  • the present invention provides a substrate holder for rotatably holding a substrate, a cathode unit for sputtering at least one sputtering target disposed diagonally opposite the substrate holder, and on the substrate holder
  • a sputtering apparatus comprising: position detection means for detecting the rotation position of the held substrate; and power control means for adjusting power supplied to the cathode unit according to the rotation position detected by the position detection means.
  • the power control means is parallel to the side surface to be processed of the uneven structure and in-plane direction of the substrate
  • the power supplied to the cathode unit when the sputtering target to be deposited is located on the first direction side parallel to the
  • the power supplied to the cathode unit when the sputtering target to be deposited is positioned on the second direction side that is perpendicular to the first direction and parallel to the substrate surface is larger than the power supplied to the cathode unit.
  • the power supplied to the cathode unit is adjusted.
  • the present invention is a film forming method by sputtering, the step of placing a substrate on which at least one concavo-convex structure is formed on a rotatable substrate holder, and the tilting of the substrate while rotating the substrate.
  • the forming step includes a surface to be processed of the concavo-convex structure on the substrate
  • the film deposition amount on the side surface to be processed is relative
  • the side surface that becomes the surface to be processed when the sputtering target to be deposited is positioned on the second direction side that is perpendicular to the first direction and parallel to the substrate surface.
  • the present invention is a film forming method by sputtering, the step of placing a substrate on which at least one concavo-convex structure is formed on a rotatable substrate holder, and the tilting of the substrate while rotating the substrate.
  • the forming step detecting the rotational position of the substrate; Adjusting the rotational speed of the substrate in accordance with the detected rotational position, the adjusting step being parallel to a side surface of the concavo-convex structure on the substrate that is to be processed and the substrate
  • the rotation speed of the substrate when the sputtering target to be deposited is positioned on the first direction side parallel to the in-plane direction of the substrate is perpendicular to the first direction and parallel to the substrate surface.
  • the present invention is a film forming method by sputtering, the step of disposing a substrate having at least one uneven structure formed on a rotatable substrate holder, while rotating the substrate discontinuously, Sputtering a sputtering target disposed at a position opposite to the substrate to form a film on the surface to be processed of the concavo-convex structure, and the forming step detects a rotational position of the substrate. And adjusting the rotation stop time of the substrate according to the detected rotational position, and the adjusting step is parallel to a side surface of the concavo-convex structure on the substrate that is a surface to be processed.
  • the rotation stop time of the substrate when the sputtering target to be deposited is located on the first direction side parallel to the in-plane direction of the substrate is perpendicular to the first direction and the The rotation stop time of the substrate is controlled to be longer than the rotation stop time of the substrate when the sputtering target to be deposited is positioned on the second direction side parallel to the plate surface.
  • the present invention is also a film forming method by sputtering, in which a substrate on which at least one concavo-convex structure is formed is disposed on a rotatable substrate holder, and the cathode unit is powered while rotating the substrate.
  • Forming a film on the surface to be processed of the concavo-convex structure by generating a plasma by sputtering and sputtering a sputtering target disposed at a position diagonally opposite to the substrate.
  • the step includes a step of detecting a rotational position of the substrate, and a step of adjusting the electric power according to the detected rotational position, and the adjusting step includes processing the uneven structure on the substrate.
  • the cathode unit when the sputtering target to be deposited is positioned on the first direction side parallel to the side surface to be a surface and parallel to the in-plane direction of the substrate. From the power supplied to the cathode unit when the sputtering target to be deposited is positioned on the second direction side which is perpendicular to the first direction and parallel to the substrate surface. The power supplied to the cathode unit is adjusted so as to be larger.
  • the present invention also provides a substrate holder for rotatably holding a substrate, a target holder for supporting at least one sputtering target disposed diagonally opposite the substrate holder, and on the substrate holder.
  • a control device for controlling a sputtering apparatus comprising position detection means for detecting the rotational position of the substrate held on the substrate and rotation drive means for controlling the rotation of the substrate holder, wherein the position detection means When the substrate on which at least one concavo-convex structure is formed is arranged on the substrate holder, the processing unit of the concavo-convex structure is processed according to the acquired information on the rotational position.
  • the rotation speed of the substrate during placement is perpendicular to the first direction and parallel to the substrate surface, and the sputtering target to be deposited is positioned on the second direction side of the substrate. It is characterized by comprising means for generating a control signal for controlling the rotation drive means so as to be slower than the rotation speed, and means for transmitting the generated control signal to the rotation drive means.
  • the present invention also provides a substrate holder for holding the substrate in a non-continuously rotatable manner, and a target holder for supporting at least one sputtering target disposed at a position diagonally opposite the substrate holder; Position detection means for detecting the rotation position of the substrate held on the substrate holder, and rotation drive means for adjusting the rotation stop time of the substrate according to the rotation position detected by the position detection means.
  • a control apparatus for controlling the sputtering apparatus wherein a means for obtaining information on the rotational position from the position detection means and a substrate on which at least one concavo-convex structure is formed on the substrate holder are arranged, Depending on the acquired information on the rotational position, the surface is parallel to the side surface of the concavo-convex structure to be processed and parallel to the in-plane direction of the substrate.
  • the rotation stop time of the substrate when the sputtering target to be deposited is located on a first direction side is on a second direction side that is perpendicular to the first direction and parallel to the substrate surface.
  • Means for generating a control signal for controlling the rotation stop time of the substrate so as to be longer than the rotation stop time of the substrate when the sputtering target to be deposited is located; and the generated control signal Means for transmitting to the rotation drive means.
  • the present invention provides a substrate holder for rotatably holding a substrate, a target holder for supporting at least one sputtering target disposed diagonally opposite the substrate holder, and on the substrate holder.
  • a control device for controlling a sputtering apparatus comprising: a position detection means for detecting the rotational position of the substrate held on the substrate; and a power supply source for supplying power to the cathode unit, the sputtering apparatus
  • the processing unit of the concavo-convex structure is processed according to the acquired information on the rotational position.
  • the power to be supplied to the cathode unit when the ring target is positioned is positioned on the second direction side that is perpendicular to the first direction and parallel to the substrate surface, and the sputtering target to be deposited is positioned on the second direction side.
  • the two concavo-convex structures facing each other in the concavo-convex structure for example, The variation in film thickness between two opposing side surfaces (slopes and wall surfaces) formed along the longitudinal direction can be reduced.
  • FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. 7A. It is a figure which shows the relationship between the rotation angle (theta) of the board
  • FIG. 7B is a cross-sectional view taken along the line A-A ′ of FIG. 7A. It is a figure which shows the relationship between the rotation angle (theta) of the board
  • FIG. 9B is a sectional view taken along line B-B ′ of FIG. 9A. It is explanatory drawing of the board
  • FIG. 10B is a sectional view taken along line C-C ′ of FIG. 10A. It is a figure which shows the example of the cross-sectional waveform of the waveform uneven structure which concerns on one Embodiment of this invention. It is a figure which shows the example of the cross-sectional waveform of the waveform uneven structure which concerns on one Embodiment of this invention. It is a figure which shows the example of the cross-sectional waveform of the waveform uneven structure which concerns on one Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view schematically showing the sputtering apparatus of this embodiment.
  • FIG. 2 is a plan view schematically showing an example of a substrate in which a concavo-convex structure is integrated on a processing surface according to this embodiment, and an enlarged view of the concavo-convex structure.
  • FIG. 3 is a plan view schematically showing the positional relationship between the substrate holder and the cathode unit. 1 corresponds to the AOB cross section of FIG.
  • the sputtering apparatus 1 of the present embodiment includes a vacuum chamber (hereinafter simply referred to as “chamber”) 10, and the vacuum chamber 10 is provided with an upper lid via an O-ring 15 for vacuum sealing. 14 is provided.
  • the vacuum chamber 10 is provided with a vacuum pump 11 for evacuating the inside.
  • the vacuum chamber 10 is connected to an adjacent vacuum transfer chamber (not shown) via a gate valve (not shown) for carrying a substrate 21 to be processed.
  • a gas injection port 12 is opened in the chamber 10, and a gas introduction system 13 for introducing a reactive sputtering gas into the chamber 10 is connected to the gas injection port 12.
  • a gas cylinder (not shown) is connected to the gas introduction system 13 via an automatic flow controller (not shown) such as a mass flow controller, and a reactive gas is introduced from the gas inlet 12 at a predetermined flow rate.
  • the gas introduction system 13 supplies a reactive gas into the chamber 10 when performing reactive sputtering in the chamber 10.
  • a substrate holder 22 capable of supporting the substrate 21 is provided on the upper surface of the lower part of the processing space in the chamber 10.
  • the substrate 21 to be processed is usually carried onto the substrate holder 22 through a gate valve (not shown) by a handling robot provided in an adjacent vacuum transfer chamber (not shown).
  • the substrate holder 22 is a disk-shaped mounting table (stage), and is configured to adsorb and support the substrate 21 on the upper surface thereof by electrostatic adsorption, for example.
  • the substrate holder 22 is connected to a rotation driving mechanism 60 via a vacuum rotation introducing device 16 and is configured to be rotatable around its central axis while maintaining a vacuum. Therefore, the substrate holder 22 can rotate the substrate 21 adsorbed and supported on the mounting surface along the processing surface.
  • a magnetic fluid is used as the vacuum rotation introducing machine 16, but is not limited thereto.
  • the substrate holder 22 is provided with a position sensor 23 as position detecting means, and the rotation position of the substrate 21 can be detected.
  • a rotary encoder is used as the position sensor 23.
  • any configuration may be used as the position sensor 23 as long as the rotational position of the rotating substrate 21 can be detected, such as the above-described rotary encoder.
  • the rotational position of the substrate 21 held by the substrate holder 22 is detected by directly detecting the rotational position of the substrate 21 or the substrate holder 22 by a sensor such as the position sensor 23. Any configuration may be used as long as the rotation position can be detected.
  • the rotation position of the substrate 21 may be obtained indirectly, for example, by calculation from the rotation speed or rotation time of the substrate holder 22.
  • the substrate 21 is held on the mounting surface of the substrate holder 22 in a horizontal state.
  • a material of the substrate 21 for example, a disk-shaped silicon wafer is used, but is not limited thereto.
  • FIG. 2 shows a processing substrate on which a large number of mesa structures 211 are formed as described above.
  • Each mesa structure 211 has a longitudinal direction aligned in parallel and regularly arranged.
  • the side surfaces 211a and 211b along the longitudinal direction are the surfaces to be processed for sputtering of the mesa structure 211 (desired surfaces for film formation with high uniformity). That is, the side surfaces 211a and 211b, which are two side surfaces facing each other among the plurality of side surfaces of the mesa structure 211, are processing surfaces. As can be seen from FIG.
  • the side surface 211 a is the outer surface of the substrate 21 of the mesa structure 211
  • the side surface 211 b is the surface of the mesa structure 211 on the center side of the substrate 21.
  • the mesa structure is provided so that the notch or orientation flat 212 and the longitudinal surface of the mesa structure 211 face each other.
  • a plurality of cathode units 40 are disposed obliquely above the substrate holder 22 in the processing space in the chamber 10 (at a position opposite to the substrate holder 22 diagonally).
  • the cathode unit 40 is configured to be able to support a sputtering target 400 (hereinafter referred to as a target). That is, a plurality of cathode units 40 are provided for one substrate holder 22, and each cathode unit 40 is attached to the upper lid 14 in an inclined state.
  • the upper lid 14 is provided with five cathode units 40 (40a to 40e), but the number of cathode units 40 is not limited to this.
  • One cathode unit 40 may be provided. That is, at least one cathode unit for supporting the target may be provided in the vacuum chamber 10.
  • Each cathode unit 40 is inclined with respect to the processing surface of the substrate 21 on the substrate holder 22 and is offset from the central axis of the substrate 21 at equal intervals in the surface direction.
  • each cathode central axis of each cathode unit 40 is located away from the rotation axis of the substrate holder 22 and is arranged at equal intervals on a concentric circle spaced a predetermined distance from the rotation axis.
  • the substrate diameter and the target diameter are not particularly limited. However, when the substrate center and the cathode center are offset and the substrate 21 is rotated as in this embodiment, even if the target diameter is smaller than the substrate diameter, the substrate diameter is uniform. Excellent film formation is possible.
  • a magnetron having a plurality of permanent magnets (cathode side magnets) arranged on the back side of the cathode in each cathode unit 40 is configured to form a magnetic field on the surface side of the target.
  • a plate-like target is attached to each cathode unit 40 on the cathode surface side. That is, each target is provided on the processing space side with respect to the cathode, and each target is disposed facing obliquely downward.
  • the target material varies depending on the type of film formed on the substrate. In the present embodiment, since five cathode units 40 are arranged, for example, five types of targets having different material components are attached, but the present invention is not limited to this.
  • Each cathode unit 40 is electrically connected to a discharge power source 70 that applies a voltage to the cathode.
  • the discharge power may be any of high frequency power, DC power, and superposition of high frequency power and DC power.
  • a voltage is selectively applied to the plurality of cathode units 40
  • an individual discharge power source may be connected to each cathode unit 40.
  • the discharge power source 70 may be configured to include a switching mechanism such as a switch that selectively supplies power as a common power source. That is, a laminated film can be formed on the substrate 21 by applying a voltage to each cathode unit 40 sequentially or alternately.
  • a discharge gas introduction system 41 for supplying a discharge processing gas is connected to the vicinity of the cathode in the casing of each cathode unit 40.
  • a discharge gas for example, an inert gas such as Ar or Kr is used.
  • Each cathode generates a plasma discharge with the substrate holder 21 and can sputter a target attached to each cathode unit 40.
  • a shutter 45 that selectively cuts off between a part of the cathodes and the substrate holder 22 is provided in front of each cathode unit 40. By selectively opening the shutter 45, a target can be selected from the plurality of cathode units 40 to perform sputtering, and contamination from other sputtered targets can be prevented. it can.
  • FIG. 4 is a block diagram showing a control device in the present embodiment.
  • the control device 50 of the present embodiment includes, for example, a general computer and various drivers. That is, the control device 50 includes a CPU (not shown) that executes processing operations such as various calculations, control, and determination, and a ROM that stores various control programs executed by the CPU. In addition, the control device 50 includes a RAM that temporarily stores data during the processing operation of the CPU, input data, and the like, and a nonvolatile memory such as a flash memory and an SRAM. In such a configuration, the control device 50 executes a film forming process operation in accordance with a predetermined program stored in the ROM or a command from the host device.
  • the control device 50 includes a discharge power source 70, a driving unit for the shutter 45, a discharge gas introduction system 41, an inert gas introduction system 13, an exhaust pump 11, and a rotation drive mechanism 60 for the substrate holder 22. Outputs a command. Various process conditions such as discharge time, discharge power, target selection, process pressure, and rotation of the substrate holder 22 are controlled according to the command. In addition, output values of sensors such as a pressure gauge for measuring the pressure in the chamber 10 and a position sensor 23 as a position detecting means for detecting the rotational position of the substrate can be acquired, and control according to the state of the apparatus is also possible. It is.
  • control device 50 includes a holder rotation control unit 51 as rotation control means for adjusting the rotation speed of the substrate 21 according to the rotation position detected by the position sensor 23.
  • the holder rotation control unit 51 includes a target speed calculation unit 51a and a drive signal generation unit 51b, and depends on the rotation position of the substrate based on the positional relationship between the rotation position of the substrate 21 and the cathode unit 40 during discharge. The function of controlling the rotation speed of the substrate 21 by controlling the rotation of the rotating portion of the substrate holder 22.
  • the control device 50 is configured to receive information regarding the rotational position of the substrate 21 from the position sensor 23.
  • the target speed calculation unit 51a determines the position based on the current rotational position value of the substrate 21 output from the position sensor 23 that detects the rotational position of the substrate 21.
  • the target rotational speed at is calculated.
  • the value of the target rotation speed can be calculated, for example, by holding a correspondence relationship between the rotation position of the substrate 21 and the target rotation speed as a map in advance.
  • the drive signal generation unit 51 b generates a drive signal for setting the target rotation speed based on the target rotation speed calculated by the target speed calculation unit 51 a and outputs the drive signal to the rotation drive mechanism 60.
  • the control device 50 is configured to transmit the drive signal generated by the drive signal generation unit 51b to the rotation drive mechanism 60.
  • the rotation driving mechanism 60 includes a holder rotation driving unit 61 such as a motor that drives the substrate holder 22, a target value, and an actual value (rotation position or rotation speed) output from the position sensor 23. And a feedback control unit 62 that determines an operation value of the holder rotation driving unit 61 based on the deviation of, and drives the substrate holder 22 by a servo mechanism.
  • a feedback control is not an essential component of the present invention, and the motor may be either a DC motor or an AC motor.
  • the rotation drive mechanism 60 drives the holder rotation drive unit 61 based on the drive signal received from the control device 50 to rotate the substrate holder 22.
  • a substrate (wafer) 21 to be processed is first installed on a substrate holder 22.
  • the substrate 21 is carried onto the substrate holder 22 while maintaining the degree of vacuum in the chamber 10 through a gate valve (not shown), for example, by a handling robot provided in an adjacent vacuum transfer chamber (not shown).
  • a discharge gas such as Ar is introduced into the chamber 10 from the discharge gas introduction system 41.
  • a reactive gas is introduced into the chamber 10 from the reactive gas introduction system 13.
  • each target has, for example, a disk shape and is formed in the same size.
  • the inclination angle of the cathode is not particularly limited in the application of the present embodiment, but the angle ⁇ of the cathode central axis with respect to the normal line of the processing surface of the substrate 21 is more than 0 ° and not more than 45 °. It is preferable to arrange the cathode unit 40 as described above. More preferably, when the angle ⁇ is set to 5 ° or more and 35 ° or less, excellent in-plane uniformity can be obtained.
  • discharge power is supplied from a power source (not shown) to the target surface of the first cathode unit 40a to generate plasma discharge between the substrate holder 22 and the first target is sputtered. Then, a first layer is formed on the substrate 21.
  • the position sensor 23 detects the rotational position of the substrate 21 during the discharge of the first cathode unit 40a, and the position is controlled by the holder rotation control unit 51 according to the detected rotational position.
  • the rotational speed of the substrate 21 is adjusted according to the rotational position detected by the sensor 23.
  • the power source is sequentially switched, and the film forming operation is similarly performed for the second cathode unit 40b to the fifth cathode unit 40e.
  • FIG. 5 is a diagram for explaining the positional relationship between the target and the substrate and the phase of the substrate according to this embodiment.
  • FIG. 6 is explanatory drawing which shows the control map of the rotational speed of the board
  • the positional relationship between the target and the substrate in this embodiment will be described with reference to FIG.
  • the substrate 21 is placed on a rotatable substrate holder 22, and the target 400 is disposed obliquely above the substrate 21 so that its normal line is inclined by 30 ° with respect to the normal line of the substrate. Further, the normal of the target 400 does not need to intersect the center of the substrate and does not need to intersect the substrate surface.
  • a distance from the center of the disk-shaped target 400 to a plane including the substrate surface is defined as a T / S distance. In the present embodiment, the distance T / S is 240 mm.
  • the rotation phase (rotation angle) ⁇ of the substrate is defined as 90 ° closest to the target and 270 ° farthest from the target, and 90 ° clockwise from the position where the rotation angle ⁇ is 90 °.
  • a point rotated by 0 ° is defined as 0 °
  • a point rotated 90 ° counterclockwise from the 90 ° position is defined as 180 °.
  • the starting point of the substrate rotation is set when the notch or orientation flat 212 of the substrate 21 is at a position of 180 °, but is not limited to this. As shown in FIG.
  • the substrate 21 in this embodiment is provided with a notch or orientation flat 212 so that the longitudinal surfaces of the mesa structure 211 face each other. Therefore, when the notch or orientation flat 212 is at the positions of 90 ° and 270 °, the surface in the longitudinal direction faces the target.
  • the rotational speed y of the substrate is a sine wave with respect to the rotational phase ⁇ of the substrate, as shown in FIGS. So as to control the rotation speed.
  • the holder rotation control unit 51 as the rotation control means of the present invention calculates the rotation speed as a sine wave function having a double period of the rotation angle ⁇ of the substrate 21 based on the above formula (1).
  • A is the amplitude of the rotational speed, and is obtained by multiplying the reference speed B by the variation rate a as shown in the equation (2).
  • is a phase difference, and the film thickness distribution on the side surface of the mesa structure can be optimized by changing the variation rate a and the phase difference ⁇ .
  • the range of the rotation phase ⁇ of the substrate is 0 ° ⁇ ⁇ 360 °.
  • the phase difference ⁇ may be set to ⁇ 45 ° or 45 °.
  • the side surfaces 211a and 211b of the mesa structure 211 are the processed surfaces of the mesa structure 211. Therefore, the holder rotation control unit 51 includes a line segment that connects the center of the film formation target 400 and the rotation center of the substrate holder 22 when the rotation angle ⁇ is 0 ° and 180 °, and the substrate holder When the longitudinal direction of the mesa structure 211 is parallel to the plane A perpendicular to the substrate support surface 22 (substrate processing surface of the substrate 21) (hereinafter also referred to as “first rotation state”), The drive signal is generated so that the rotation speed becomes the slowest.
  • mesa structures other than the mesa structure that passes through the center of the substrate holder 22 and is arranged on a line of 90 ° ⁇ 270 ° of the rotation angle ⁇ when the rotation angle ⁇ 0 °.
  • the present embodiment by controlling the rotation of the substrate holder 22 so as to make the rotation speed of the substrate 21 in the second rotation state as high as possible, it is possible to cause a large variation in film thickness between the side surface 211a and the side surface 211b.
  • the film formation in the second rotation state is reduced as much as possible.
  • the longitudinal direction of the mesa structure 211 is parallel to the plane A.
  • the target 400 is positioned on the direction side parallel to the side surface 211a and the side surface 211b and parallel to the in-plane direction of the substrate 21. Therefore, the side surface 211a and the side surface 211b face the target 400 in the same manner. Therefore, the distance between the side surface 211a and the target 400 and the distance between the side surface 211b and the target 400 can be made substantially the same, and the variation in film thickness between the side surface 211a and the side surface 211b can be reduced.
  • a membrane can be performed.
  • the rotation of the substrate holder 22 is controlled so that the rotation speed of the substrate 21 in the first rotation state is as slow as possible.
  • the holder rotation control unit 51 is a sine wave function (a sine wave function in which the sine wave of the rotation speed travels two cycles) in which the maximum value and the minimum value are generated twice while the substrate holder 22 rotates once, that is, It is preferable to control the rotation of the substrate holder 22 according to the relational expression between the rotation angle ⁇ and the rotation speed of the substrate (rotation speed of the substrate holder 22) y as shown in the equation (1) and FIG.
  • the control map shown in FIG. 6 may be stored in advance in a memory such as a ROM included in the control device 50.
  • the control map is stored in advance in the memory. Therefore, when the target speed calculation unit 51a receives information on the rotation position of the substrate 21 from the position sensor 23, the target speed calculation unit 51a refers to the control map shown in FIG. 6 stored in the memory and corresponds to the current rotation angle ⁇ of the substrate 21. The target rotation speed is extracted, the target rotation speed is acquired, and the acquired target rotation speed is output to the drive signal generation unit 51b.
  • the rotation speed of the substrate 21 can be controlled most slowly, and when the rotation angle ⁇ is 90 ° or 270 °, the substrate 21 is in the second rotation state. Can be controlled at the highest speed.
  • the first surface (side surface 211a) and the second surface are formed in a certain mesa structure by controlling the film formation in the first rotation state rather than the second rotation state in this way.
  • the first rotation state is more than the film formation in the second rotation state, which causes the film thickness variation between the first surface and the second surface. It is to make the film formation in the dominant. Therefore, as long as the holder rotation control unit 51 controls the rotation of the substrate holder 22 so that the rotation speed of the substrate 21 in the first rotation state is smaller than the rotation speed of the substrate 21 in the second rotation state.
  • the film formation in the first rotation state can be made more dominant than the film formation in the second rotation state, and the effects of the present invention can be obtained.
  • the mesa structure 211 has been described as the concavo-convex structure formed on the substrate 21.
  • the concavo-convex structure may be a trench structure or a V-groove formed on the processing surface of the substrate 21.
  • Examples of such a trench structure and V-groove include a trench structure in which an opening is formed in a rectangular shape and the longitudinal directions thereof are parallel, and a V-groove.
  • an inverted trapezoidal structure in which the frontage is narrowed from the opening toward the bottom may be used.
  • the holder rotation control unit 51 has two inner wall surfaces facing each other to be processed (for example, parallel to the longitudinal direction of the trench structure or the V-groove).
  • the substrate holder 22 is rotated relatively slowly (preferably so that the rotation speed becomes the minimum value). 22 is controlled.
  • the holder rotation control unit 51 is configured such that when the two mutually facing inner wall surfaces that are to be processed among the four inner wall surfaces of the trench structure and the V-groove are perpendicular to the plane A, the substrate holder The rotation of the substrate holder 22 is controlled so that the rotation of the substrate 22 becomes relatively fast (preferably, the rotation speed becomes a maximum value).
  • the uneven structure has a mesa structure, a trench structure, a V-groove, or a concave or convex structure regardless of the corrugated uneven structure described later
  • the target 400 to be deposited is positioned in a direction (hereinafter also referred to as a first direction) parallel to the side surface of the structure and parallel to the in-plane direction of the substrate processing surface (in the above-described first rotation state).
  • the rotation drive mechanism 60 is controlled so that the rotation speed of the substrate 21 is relatively slow.
  • the rotation drive mechanism 60 is controlled so that the rotation speed of the substrate 21 becomes relatively high.
  • the formation in a situation that greatly contributes to the variation in film thickness between the first surface and the second surface of the concavo-convex structure. It is possible to increase the rate of film formation in a situation where the ratio of the film is small and the film does not contribute much to the variation in film thickness between the first surface and the second surface. Therefore, the uniformity of the film thickness formed on the first surface and the film thickness formed on the second surface can be improved.
  • Example 1 Using the sputtering apparatus 1 according to the present embodiment, the film thickness distribution in the case where there is an uneven structure on the substrate was examined.
  • the film thickness distribution was obtained from the maximum value and the minimum value of the film thickness within the substrate surface by the following equation. (Maximum value ⁇ minimum value) / (maximum value + minimum value) ⁇ 100 (%) (3)
  • FIG. 7A shows a schematic diagram of a substrate with a mesa structure used to verify the effect of this embodiment.
  • 7B is a cross-sectional view taken along line AA ′ of the mesa structure 211 shown in FIG. 7A.
  • a mesa structure 211 having a rectangular shape with a bottom surface dimension of 4 ⁇ 2 ⁇ m is formed at the center of the substrate 21 which is a silicon (Si) substrate having a diameter of 200 mm and at a point 75 mm away from the center in four directions including the direction of the notch 212a. ing.
  • Each mesa structure 211 is arranged so that the longitudinal direction of the rectangle is perpendicular to the straight line including the center of the substrate and the notch 212a.
  • an object is to form a thin film uniformly on the notch side surface (side surface 212a) and the opposite side surface (side surface 212b) among the two side surfaces along the longitudinal direction.
  • the inclination angles of the notch side surface and the opposite side surface of the substrate with respect to the processing surface 21a are both 35 °.
  • was an optimum value of 45 °.
  • a Cu target having a diameter of 164 mm was used as the sputtering target, the inclination angle of the target normal to the substrate normal was 30 °, the T / S distance was 240 mm, and the power supplied to the target was 200 W DC, The Ar gas flow rate to be introduced was 30 sccm. Under such conditions, a Cu thin film was deposited to a thickness of 25 nm on a substrate having a diameter of 200 mm.
  • FIG. 8 shows a graph of the substrate rotation speed y with respect to the rotation phase ⁇ of the substrate 21 with respect to the above conditions A, B, and C.
  • reference numeral 81 is a plot for the condition A
  • reference numeral 82 is a plot for the condition B
  • reference numeral 83 is a plot for the condition C.
  • is 45 ° because the phase difference with respect to the rotational phase of the substrate is 2 ⁇ according to the equation (1), which is substantially a phase difference of 90 °.
  • the substrate rotation speed takes a maximum value of 33 rpm when the substrate rotation phase ⁇ is at the positions of 90 ° and 270 °, and takes a minimum value of 27 rpm when the substrate rotation phase ⁇ is at the positions of 0 ° and 180 °.
  • the longitudinal direction of the mesa structure 211 which is the direction in which the target side surfaces 211a and 211b of the mesa structure 211 extend, includes a line segment connecting the center of the target and the rotation center of the substrate holder 22, and is on the substrate processing surface.
  • the rotation speed is maximum when it is perpendicular to a plane perpendicular to the plane. Further, when the direction parallel to both the side surfaces 211a and 211b is parallel to the plane, the rotational speed is minimized.
  • Table 1 shows the maximum and minimum film thicknesses on the notch side surface (side surface 211b) and the opposite side surface (side surface 211a) of the five mesa structures 211 on the substrate 21 when the film is formed under the above conditions A to C.
  • required from a value and Formula (3) is listed.
  • the distribution was ⁇ 3.3%.
  • the condition B in which the substrate rotation control is performed such that the period of the sine wave advances by one period while the substrate rotates once, the optimum value is obtained when the phase difference ⁇ is 90 °.
  • the film thickness distribution was exactly the same as in condition A.
  • condition C the optimum value of the phase difference ⁇ can be obtained when the optimum value is 45 °, and the film thickness distribution at that time is ⁇ 2.7%.
  • condition B where a conventional rotation control method was used, the best value of the film thickness distribution was obtained.
  • Example 3 In Examples 1 and 2, even if the concavo-convex structure on the processing surface side of the substrate is a trench structure 111 as shown in FIGS. 9A and 9B, the substrate rotation speed is controlled using the double-period sine wave function of this embodiment. Accordingly, an effect of improving the film thickness distribution in the trench structure 111 can be expected.
  • the inner wall surface 111a is the first surface outside the substrate 21, the inner wall surface 111b is the second surface on the center side of the substrate 21, and these two surfaces are treated surfaces.
  • the holder rotation control unit 51 has a relatively low rotation speed (preferably, a minimum value) of the rotation holder 22.
  • the rotation drive mechanism 60 is controlled to control the rotation of the substrate holder 22.
  • the holder rotation control unit 51 makes the rotation speed of the rotation holder 22 relatively large (preferably the maximum value) when the longitudinal direction b of the trench structure 111 is perpendicular to the plane A.
  • the rotation drive mechanism 60 is controlled to control the rotation of the substrate holder 22.
  • the concavo-convex structure on the processing surface side of the substrate 21 is an concavo-convex structure in which the entire or part of the substrate processing surface 123 of the substrate 21 has a periodically corrugated cross section as shown in FIGS. , Also called “corrugated uneven structure”).
  • FIGS. 10A and 10B when the ridge lines 121 and the valley lines 122 of the corrugated concavo-convex structures are aligned substantially in parallel, the substrate rotation speed is obtained using the double-period sine wave function of this embodiment. By controlling the (rotational speed), an effect of improving the film thickness distribution in the substrate surface can be expected.
  • reference numeral 124 denotes the back surface of the substrate 21.
  • Example 5 In Example 4, even if the cross-sectional waveform of the corrugated concavo-convex structure is one or two or more waveforms selected from the group of sine, rectangular, triangular or trapezoidal waveforms as shown in FIGS.
  • the effect of improving the film thickness distribution in the substrate surface can be expected by controlling the substrate rotation speed using the double-period sine wave function of the embodiment.
  • the holder rotation control unit 51 when the ridge line and the valley line of the corrugated concavo-convex structure are parallel to the plane A, the holder rotation control unit 51 has a relatively low rotation speed of the rotary holder 22 (preferably , The minimum value), the rotation drive mechanism 60 is controlled to control the rotation of the substrate holder 22. Furthermore, the holder rotation control unit 51 rotates so that when the ridge line and the valley line are perpendicular to the plane A, the rotation speed of the rotation holder 22 is relatively large (preferably maximum value). The drive mechanism 60 is controlled to control the rotation of the substrate holder 22.
  • FIG. 12 is an explanatory diagram showing a TMR element 131 used in a magnetic head for a hard disk drive (HDD) as an example of a mesa structure on the substrate 21 according to this embodiment.
  • the TMR element is a magnetic effect element (TMR (Tunneling Magnetoresistance) element).
  • the basic layer configuration of the TMR element 131 includes a magnetic tunnel junction portion (MTJ portion) having a magnetization fixed layer, a tunnel barrier layer, and a magnetization free layer.
  • the magnetization fixed layer is made of a ferromagnetic material
  • the tunnel barrier layer is made of a metal oxide (magnesium oxide, alumina, etc.) insulating material
  • the magnetization free layer is made of a ferromagnetic material.
  • the TMR element 131 is formed on the lower electrode 132 formed on the substrate 21.
  • the TMR element 131 applies an external magnetic field and applies the same voltage between the ferromagnetic layers on both sides of the tunnel barrier layer and applies a constant current, and the magnetization directions of the ferromagnetic layers on both sides are the same in parallel. (Referred to as “parallel state”), the electrical resistance of the TMR element is minimized. Further, when the magnetization directions of the ferromagnetic layers on both sides are parallel and opposite (referred to as “anti-parallel state”), the electrical resistance of the TMR element 131 has a maximum characteristic.
  • the magnetization fixed layer fixes the magnetization, and the magnetization free layer is formed in a state in which the magnetization direction can be reversed by applying an external magnetic field for writing.
  • the magnetization fixed layer for example, a material containing a ferromagnetic material such as Co, Fe, or Ni as a main component and appropriately adding a material such as B can be used.
  • the above-described TMR element 131 is formed on a flat substrate surface by a film forming method such as sputtering, and is processed into a mesa shape by an ion milling method or a reactive etching method. Thereafter, an insulating film 133, a metal film 134, a magnetic film 135, and a metal film 136 are formed on the side wall surfaces (the side surface 211a and the side surface 211b of the mesa structure 211 in FIG. 2) by a film formation method such as sputtering. At this time, it is desirable that the film thickness of each film to be formed on the side wall surface is uniform on both side walls of the mesa shape.
  • the film thickness be uniform between the TMR elements as mesa structures regularly arranged on the entire surface of the substrate. Therefore, the above-described film thickness uniformity can be improved by using the sputtering apparatus and the film forming method of the present embodiment.
  • the rotation speed of the substrate (substrate holder) is changed between the first rotation state and the second rotation state while keeping the emission amount of the sputtered particles emitted from the target constant.
  • the rotation method of the substrate (substrate holder) may be continuous rotation or non-continuous pulse rotation. In the present embodiment, the form of the non-continuous pulse rotation will be described.
  • FIG. 13A is an explanatory diagram of a case where the substrate (substrate holder) is continuously rotated when the rotation speed of the substrate rotation is controlled according to the first embodiment.
  • FIG. 13B is an explanatory diagram of a case where the substrate (substrate holder) is rotated discontinuously when the rotational speed of the substrate rotation is controlled according to the present embodiment.
  • the holder rotation control unit 51 When the substrate 21 (substrate holder 22) is continuously rotated, as shown in FIG. 13A, the holder rotation control unit 51 performs the substrate 21 rotation (one cycle) according to the equation (1). A drive signal is generated so that the rotation speed (angular speed ⁇ ) of the substrate 21 is continuously changed so that the rotation speed of the substrate 21 is modulated in two cycles. That is, the holder rotation control unit 51 controls the rotation of the substrate holder 22 so that the substrate 21 rotates continuously.
  • f 0 is a reference discharge amount of sputtered particles from the target
  • ⁇ 0 is a reference angular velocity.
  • the holder rotation control unit 51 controls the rotation stop time s as shown in FIG. 13B. That is, for example, the holder rotation control unit 51 stops the rotation of the substrate 21 at a predetermined plurality of rotation angles, and the rotation unit of the substrate holder 22 rotates at a constant angular velocity (rotation speed) at other rotation angles. Thus, the rotation of the substrate holder 22 is controlled. By such control, the rotation speed of the substrate 21 is controlled so that the substrate 21 rotates discontinuously.
  • the holder rotation control unit 51 may keep the rotation speed of the rotation unit of the substrate holder 22 constant as described above, or may change it.
  • the rotation stop time s indicates a time during which the rotation of the substrate holder 22 is stopped when the substrate holder 22 is rotated discontinuously.
  • s 0 is the reference rotation stop time.
  • the first rotation state and the second rotation state appear twice each time the substrate 21 (substrate holder 22) is rotated once. Therefore, in this embodiment, the stop time of the substrate 21 (substrate holder 22) is sinusoidally modulated in two cycles while the substrate 21 (substrate holder 22) is rotated once (one cycle).
  • the rotation stop time is relatively long (preferably the longest), In the case where the target is positioned on the direction side that is vertical and parallel to the in-plane direction of the substrate processing surface, the rotation stop time can be relatively short (preferably shortest).
  • the drive signal may be generated so that the rotation stop time s becomes relatively short.
  • the target when the substrate holder 22 rotates, the target is positioned on the direction side parallel to the side surface of the concavo-convex structure and parallel to the in-plane direction of the substrate processing surface.
  • the main feature is to relatively increase the rate of film formation when the target is positioned, and to relatively decrease the rate of film formation when the target is positioned on the vertical side along the rotation of the direction and the substrate. .
  • FIG. 14 is a block diagram of the control device 50 according to the present embodiment.
  • the control device 50 includes a cathode power control unit 141 as a power control unit that adjusts the power (power) to the cathode unit 40 according to the rotational position detected by the position sensor 23.
  • the cathode power control unit 141 includes a target power calculation unit 141a and an output signal generation unit 141b, and depends on the rotation position of the substrate based on the positional relationship between the rotation position of the substrate 21 and the cathode unit 40 during discharge. And has a function of controlling power to the cathode unit 40.
  • the control device 50 is configured to receive information regarding the rotational position of the substrate holder 22 from the position sensor 23.
  • the target power calculation unit 141a performs the processing based on the value of the current rotational position of the substrate holder 22 input from the position sensor 23 that detects the rotational position of the substrate holder 22.
  • the target power (target power) at the position is calculated.
  • the value of the target power can be calculated, for example, by storing the correspondence relationship between the rotation position of the substrate holder 22 and the target power in advance in a memory or the like provided in the control device 50 as a map.
  • the output signal generator 141 b Based on the target power calculated by the target power calculator 141 a, the output signal generator 141 b generates an output signal for setting the target power and outputs the output signal to the discharge power supply 70.
  • the control device 50 is configured to transmit the output signal generated by the output signal generation unit 141b to the discharge power supply 70.
  • the discharge power supply 70 includes a power output unit 71 that supplies discharge power (discharge power) to the cathode unit 40, a target value, and an actual value (rotation position) output from the position sensor 23. And a feedback control unit 72 that determines an operation value of the power output unit 71 based on a deviation from the rotation speed).
  • feedback control is not an essential configuration of the present invention.
  • the process of this embodiment will be described by taking as an example the case where the mesa structure 211 shown in FIG. 2 is used as the concavo-convex structure and the side surfaces 211a and 211b are the surfaces to be processed of the mesa structure 211.
  • the rotation speed of the substrate holder 22 is constant.
  • the amount of sputtered particles flying onto the substrate 21 (substrate holder 22) in the first rotation state is determined as the second rotation.
  • the discharge power supplied to the cathode unit 40 is controlled so as to increase the amount of sputtered particles flying onto the substrate 21 in the state. Accordingly, when the side surfaces 211a and 211b, which are to-be-processed surfaces of the mesa structure 212, face the cathode, the amount of sputtered particles reaching the side surfaces 211a and 211b is reduced, so that they are formed on the side surfaces 211a and 211b. Variation in film thickness can be suppressed.
  • the side surfaces 211a and 211b rotate 90 ° from the position facing the cathode, the amount of sputtered particles that reach the side surfaces 211a and 211b increases, so that the side surface 211a and the side surface 211b are the same as the target.
  • the rate of film formation can be increased in the case of facing. Therefore, the film formation that causes the film thickness of the side surface 211a and the film thickness of the side surface 211b to be non-uniform is reduced, and the film formation that greatly contributes to the uniform film thickness of the side surface 211a and the side surface 211b is dominant. And variation in film thickness between the side surface 211a and the side surface 211b can be reduced.
  • the rotation method of the substrate holder may be continuous rotation or non-continuous pulse rotation.
  • FIG. 15A is an explanatory diagram of a case where the substrate (substrate holder) is continuously rotated when the input power to the cathode is controlled according to the present embodiment.
  • FIG. 15B is an explanatory diagram of a case where the substrate (substrate holder) is rotated discontinuously when the input power to the cathode is controlled according to the present embodiment.
  • the cathode power control unit 141 can calculate the discharge power corresponding to the rotation angle ⁇ of the substrate 21 by using a double period sine wave function similar to the equation (1).
  • the cathode power control unit 141 applies to the cathode unit 40 so as to modulate the input power (input power) to the cathode unit 40 for two periods while the substrate 21 (substrate holder 22) rotates once (one period).
  • An output signal is generated so as to continuously change the input power.
  • the discharge power source 70 may be controlled so that the discharge amount f is minimized.
  • the cathode power control unit 141 uses the power supplied to the film formation target cathode unit in the first rotation state based on the power supply to the film formation target cathode unit in the second rotation state. Also, the electric power supplied to the cathode unit to be deposited is controlled by controlling the discharge power source 70 so that the power is also increased.
  • the plurality of cathode units 40 in the sputtering apparatus 1 shown in FIG. 1 are replaced with one cathode unit 101 having a hexagonal column shape.
  • the cathode unit 101 is configured to be rotatable around the column axis 101 a, and one target 102 can be disposed on each side surface of the cathode unit 101.
  • the cathode unit 101 is configured such that a voltage can be individually applied to each target 102 disposed on each side surface. In such a configuration, the sputtering apparatus 100 can select a desired target by rotating around the column axis 101a.
  • the discharge gas introduction system 41 is moved to the vicinity of the cathode unit 101 on the side surface of the vacuum chamber 10.
  • the sputtering apparatus 100 can form a laminated film on the substrate 21 by rotating the cathode units 101 sequentially or alternately.
  • the sputtering apparatus shown in FIG. 17 includes a target holder 201 having a simple polygonal column structure in which a cathode function is removed from the cathode unit 101 having a hexagonal column shape in the sputtering apparatus 100 shown in FIG. Further, in the sputtering apparatus shown in FIG. 17, the cathode unit is eliminated by providing the target holder 201, and the ion beam source 202 is disposed on the bottom surface of the vacuum chamber 10 instead. The ion beam accelerated from the ion beam source 202 is incident on the target 102 disposed on the side surface of the target holder 201 having a hexagonal column shape and sputters the target surface.
  • a desired target can be selected by rotating a target holder having a hexagonal column shape around a column axis.
  • the discharge gas introduction system 41 is disposed in the ion beam source, and it is considered that the discharge gas is introduced into the ion beam source 202.
  • the sputtering apparatus 200 can form a laminated film on the substrate 21 by rotating the target holder 201 sequentially or alternately.
  • the arrangement position of the ion beam source 202 is not limited to the bottom surface of the vacuum chamber 10, but may be a position diagonally opposite to the sputtering target (that is, the sputtering target support surface of the target holder 201) and separately from the substrate holder 22. You may arrange in any place.
  • One embodiment of the present invention can be used not only for the exemplified magnetic head for HDD but also for various fields such as HDD magnetic recording medium, magnetic sensor, thin film solar cell, issuing element, piezoelectric element, and semiconductor wiring formation. .
  • both the form of controlling the rotation speed of the substrate of the first embodiment and the form of controlling the input power to the cathode unit of the second embodiment may be performed.
  • the control device 50 may be configured so that the control device 50 includes both the holder rotation control unit 51 and the cathode power control unit 141.
  • control device 50 may be built in the sputtering device or a local device such as a LAN as long as it can control the rotation drive mechanism and discharge power source of the substrate holder included in the sputtering device.
  • a local device such as a LAN
  • it may be provided separately from the sputtering apparatus through a WAN connection such as the Internet.
  • a processing method in which a program for operating the configuration of the above-described embodiment so as to realize the function of the above-described embodiment is stored in a storage medium, the program stored in the storage medium is read as a code, and executed on a computer. It is included in the category of the above-mentioned embodiment. That is, a computer-readable storage medium is also included in the scope of the embodiments. In addition to the storage medium storing the computer program, the computer program itself is included in the above-described embodiment.
  • a storage medium for example, a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, and a ROM can be used.
  • processing is not limited to the single program stored in the above-described storage medium, but operates on the OS in cooperation with other software and expansion board functions to execute the operations of the above-described embodiments. This is also included in the category of the embodiment described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)

Abstract

本発明は、平坦な基板面上に均一な膜厚の積層膜を形成する機能を備えつつ、凹凸構造が形成された基板に対しても、該凹凸構造の壁面または側面部に付着する膜の膜厚を、該凹凸構造において均一にできるスパッタリング装置を提供する。本発明の一実施形態に係るスパッタリング装置は、基板(21)を回転可能に保持する基板ホルダ(22)と、基板ホルダ(22)の斜向かいの位置に配置されたカソードユニット(40)と、基板ホルダ上に保持された基板の回転位置を検出する位置センサ(23)と、検出した回転位置に応じて、基板の回転速度を調整するためのホルダ回転制御部(51)を備える。ホルダ回転制御部(51)は、凹凸構造の被処理面の延在方向である第1の方向側にカソードユニット(40)が位置する際の基板の回転速度が、第1の方向側と基板の回転に沿って垂直な第2の方向側にカソードユニット(40)が位置する際の基板の回転速度よりも遅くなるように、回転速度を制御する。

Description

スパッタリング装置、成膜方法、および制御装置
 本発明は、半導体デバイス、電子デバイス、磁気デバイス、表示デバイス等の製造工程において凹凸構造を有する基板上に薄膜を成膜するスパッタリング装置、成膜方法、および制御装置に関する。
 凹凸構造を有する基板上に均一に薄膜を成膜する方法としては化学的気相成長法(特許文献1参照)や原子層堆積法(特許文献2参照)のような基板上での化学反応を用いた方法が良く知られている。これらの方法は、底の深いトレンチやホールの底面および内壁面の被覆に用いられている。しかしながら、これら化学反応を用いた方法ではプロセス中の反応性ガスが膜中に混入することから純度の高い金属膜を必要とするアプリケーションには向いていない。さらに化学反応の元となる原料ガスの探索に開発時間を要するため、今のところ金属膜に対してはごく限られた材料しか実現できていない。そのため、多種多様な金属膜や合金膜の積層膜を成膜する用途には使用されていない。
 物理的気相成長法によってトレンチやホールの底面および内壁面の被覆を行う従来技術としては、遠隔低圧スパッタリング(特許文献3参照)やバイアススパッタリング(特許文献4参照)などが知られている。しかしながら、遠隔低圧スパッタリングやバイアススパッタリングでは基板面に対してターゲット面が略平行に対向して配置されているため、そもそも基板面内における膜厚の均一性が悪いという問題があった。
 スパッタリング法において、回転する基板の角度を適宜変更しながら成膜することによってホールの底面や内壁面への被覆性を改善するという例も知られているが(特許文献5参照)、基板面内における膜厚分布の改善という点では不十分である。回転する基板の角度を適宜変更しながら被覆性を改善し、さらに膜厚分布も改善する方法としては、特許文献6のイオンビームスパッタ堆積法の開示例にあるように、基板の直上にシェーパーと呼ばれるマスクを設けてスパッタ粒子の入射量を制御することが必要である。しかしながらマスクを用いた場合、経時的にマスクへ膜が堆積するためマスクからの膜剥がれに起因するパーティクル発生が問題となっていた。
 一方、平坦な面へ均一に薄膜を成膜する方法としては、特許文献7に開示された斜め入射回転成膜法が知られている。この方法では、基板の斜め上方にターゲットを支持するカソードユニットをオフセット配置し、基板をその処理面に沿って回転させながら、マグネトロンスパッタリングによりターゲット材料をスパッタリングする。
 さらに斜め入射回転成膜法では、磁性膜を磁場中で成膜した時に生じる膜厚分布の偏りを改善するために、基板の回転速度を制御する方法が開示されている(特許文献8参照)。
米国特許第5,877,087号明細書 米国特許第6,699,783号明細書 特開平7-292475号公報 特開2004-107688号公報 特開2009-41040号公報 米国特許第6,716,322号明細書 特開2000-265263号公報 国際公開第WO2010/038421号
 従来の斜め入射回転成膜法で基板上の凹凸構造に成膜すると、凹凸の壁面または斜面部(以下、側面という)に堆積する薄膜の膜厚が基板面内でばらつくという問題があった。より具体的には、基板の斜め上方に配置されたターゲットとの位置関係により、基板の外側を向いた側面(以下第1の面とも言う)に付着した膜の膜厚と基板の中心側方向を向いた側面(以下第2の面とも言う)に付着した膜の膜厚とに差が生じるという問題があった。
 すなわち、上記斜め入射回転成膜法では、表面に凹凸構造を有さない平坦な基板に対しては有効な技術である。しかしながら、上記斜め入射回転成膜法を、メサ構造、V溝、トレンチ等の凹凸構造を有する基板に対するスパッタリングに適用すると、凹凸構造が有するある2面(特に、スパッタリングによる被処理面(例えば、凹凸構造の長手方向に沿って対向する2面))における、スパッタリングによる成膜の厚さが異なってしまう。
 具体的に図2、図18及び図19を用いて説明する。図2は基板21の処理面上に凹凸構造として、底面及び上面が長方形を成した、いわゆるメサ構造211が形成された様子を示している。メサ構造211において、基板の外側を向いた第1の面を符号211a、基板の中心側を向いた第2の面を符号211bとする。図18及び図19は基板上のある凹凸構造に着目した時の凹凸構造とターゲットの位置関係を示した図である。図19は図18の状態から基板が180°回転した状態を示している。図18の状態においては、面211aとターゲット400とが対向しており、スパッタリングにより形成される膜は主に面211aに成膜される。図19の状態においては、面211bがターゲット400と対向しており、スパッタリングによる形成される膜は主に面211bに成膜される。この時、図18におけるターゲット400と面211aの距離と、図19におけるターゲット400と面211bの距離は異なっていることが分かる。ターゲットと被処理面の距離が長ければ長い程、成膜量も少なくなる。よって図18及び図19の場合、面211aの膜厚が面211bよりも厚くなる。このため基板上に形成される凹凸構造が同一であっても、側面の向きによってその膜厚に差が生じてしまう。この事は基板上の略中央に位置する凹凸構造以外の、全ての凹凸構造について当てはまる。
 この傾向は、ターゲットを基板の斜め上方に配置(オフセット配置)する限り、ターゲットをいずれの場所に配置しても言えることである。さらには、基板の斜め上方に配置したターゲットの数を複数にしても言えることである。何故ならば、仮にターゲットを基板の中心軸に対して対称の位置に追加して配置したとしても、ターゲット、面211a及び面211bの位置関係は変わらない。つまりどのターゲットに対しても面211aとターゲットが対向した場合の距離は短く、対して面211bとターゲットが対向した場合の距離は長くなるからである。
 そこで本発明は上記事情に鑑みて、凹凸構造が形成された基板に対しても、該凹凸構造の側面部に付着する膜の膜厚を、該凹凸構造において均一にできるスパッタリング装置、成膜方法、および制御装置を提供することを目的とする。
 本発明は、このような目的を達成するために、基板を回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記位置検出手段の検出した回転位置に応じて、前記基板の回転速度を調整する回転制御手段とを備えたスパッタリング装置であって、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記回転制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記基板の回転速度を制御することを特徴とする。
 また、本発明は、基板を非連続的に回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記位置検出手段の検出した回転位置に応じて、前記基板の回転停止時間を調整する回転制御手段とを備えたスパッタリング装置であって、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記回転制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御することを特徴とする。
 また、本発明は、基板を回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された少なくとも1つのスパッタリングターゲットをスパッタするためのカソードユニットと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記位置検出手段の検出した回転位置に応じて、前記カソードユニットへの供給電力を調整する電力制御手段とを備えたスパッタリング装置であって、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記電力制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力よりも大きくなるように、前記カソードユニットへの供給電力を調整することを特徴とする。
 また、本発明は、スパッタリングによる成膜方法であって、回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、前記基板を回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、前記形成する工程は、前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際には前記被処理面となる側面への成膜量が相対的に多くなり、かつ前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際には前記被処理面となる側面への成膜量が相対的に少なくなるように、前記膜を形成することを特徴とする。
 また、本発明は、スパッタリングによる成膜方法であって、回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、前記基板を回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、前記形成する工程は、前記基板の回転位置を検出する工程と、前記検出した回転位置に応じて、前記基板の回転速度を調整する工程とを有し、前記調整する工程は、前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記基板の回転速度を制御することを特徴とする。
 また、本発明は、スパッタリングによる成膜方法であって、回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、前記基板を非連続的に回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、前記形成する工程は、前記基板の回転位置を検出する工程と、前記検出した回転位置に応じて、前記基板の回転停止時間を調整する工程とを有し、前記調整する工程は、前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御することを特徴とする。
 また、本発明は、スパッタリングによる成膜方法であって、回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、前記基板を回転しながら、カソードユニットに電力を供給することでプラズマを発生させ、前記基板の斜め向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、前記形成する工程は、前記基板の回転位置を検出する工程と、前記検出した回転位置に応じて、前記電力を調整する工程とを有し、前記調整する工程は、前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記カソードユニットに供給される電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記カソードユニットに供給される電力よりも大きくなるように、前記カソードユニットへの供給電力を調整することを特徴とする。
 また、本発明は、基板を回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記基板ホルダの回転を制御する回転駆動手段とを備えたスパッタリング装置を制御するための制御装置であって、前記位置検出手段から前記回転位置に関する情報を取得する手段と、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記回転駆動手段を制御するための制御信号を生成する手段と、前記生成された制御信号を前記回転駆動手段に送信する手段とを備えることを特徴とする。
 また、本発明は、基板を非連続的に回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記位置検出手段の検出した回転位置に応じて、前記基板の回転停止時間を調整する回転駆動手段とを備えたスパッタリング装置を制御するための制御装置であって、前記位置検出手段から前記回転位置に関する情報を取得する手段と、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御するための制御信号を生成する手段と、前記生成された制御信号を前記回転駆動手段に送信する手段とを備えることを特徴とする。
 さらに、本発明は、基板を回転可能に保持するための基板ホルダと、前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、前記カソードユニットへ供給電力を供給する電力供給源とを備えたスパッタリング装置を制御するための制御装置であって、前記スパッタリング装置から前記回転位置に関する情報を取得する手段と、前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力よりも大きくなるように、前記カソードユニットへの供給電力を制御するための制御信号を生成する手段と、前記生成された制御信号を前記電力供給源に送信する手段とを備えることを特徴とする。
 本発明によれば、ターゲットを基板の斜め上方に配置する構成において、基板に凹凸構造が形成されていても、該凹凸構造の個々における、該凹凸構造の、対向する2つの被処理面(例えば、長手方向に沿って形成された対向する2つの側面(斜面や壁面))間の膜厚のバラツキを低減することができる。
本発明の一実施形態に係るスパッタリング装置を模式的に示す概略断面図である。 本発明の一実施形態に係る基板に凹凸構造としてのメサ構造が形成されている様子を示す図である。 本発明の一実施形態に係る基板ホルダとカソードユニットとの配置関係を模式的に示す平面図である。 本発明の一実施形態に係る制御装置を示すブロック図である。 本発明の一実施形態に係る、ターゲットと基板との位置関係および基板の位相を説明するための図である。 本発明の一実施形態に係るスパッタリング方法における基板ホルダの回転速度の制御マップを示す説明図である。 本発明の一実施形態に係るメサ構造が形成された基板の説明図である。 図7AのA-A’線断面図である。 本発明の一実施形態に係る基板の回転角θと基板の回転速度yとの関係を示す図である。 本発明の一実施形態に係るトレンチ構造が形成された基板の説明図である。 図9AのB-B’線断面図である。 本発明の一実施形態に係る波形凹凸構造が形成された基板の説明図である。 図10AのC-C’線断面図である。 本発明の一実施形態に係る波形凹凸構造の断面波形の例を示す図である。 本発明の一実施形態に係る波形凹凸構造の断面波形の例を示す図である。 本発明の一実施形態に係る波形凹凸構造の断面波形の例を示す図である。 本発明の一実施形態に係る波形凹凸構造の断面波形の例を示す図である。 本発明の一実施形態に係る、基板上に形成されたメサ構造の一例としてのTMR素子を示す図である。 本発明の一実施形態に係る、基板回転の回転速度を制御する場合の、連続で基板(基板ホルダ)を回転する場合についての説明図である。 本発明の一実施形態に係る、基板回転の回転速度を制御する場合の、非連続で基板(基板ホルダ)を回転する場合についての説明図である。 本発明の一実施形態に係る制御装置を示すブロック図である。 本発明の一実施形態に係る、カソードへの投入電力を制御する場合の、連続で基板(基板ホルダ)を回転する場合についての説明図である。 本発明の一実施形態に係る、カソードへの投入電力を制御する場合の、非連続で基板(基板ホルダ)を回転する場合についての説明図である。 本発明の一実施形態に係るスパッタリング装置を模式的に示す概略断面図である。 本発明の一実施形態に係るスパッタリング装置を模式的に示す概略断面図である。 基板上の凹凸構造とスパッタリングターゲットとの位置関係を模式的に示した図である。 基板上の凹凸構造とスパッタリングターゲットとの位置関係を模式的に示した図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
 (第1の実施形態) 
 図1から図3を参照して、本実施形態に係るスパッタリング装置について説明する。図1は本実施形態のスパッタリング装置を模式的に示す概略断面図である。また、図2は本実施形態に係る処理面に凹凸構造が集積された基板の一例を模式的に示す平面図および凹凸構造の拡大図である。さらに、図3は基板ホルダとカソードユニットとの配置関係を模式的に示す平面図である。なお、図1は図3のAOB断面に相当する。
 図1に示すように、本実施形態のスパッタリング装置1は、真空チャンバ(以下、単に“チャンバ”とも呼ぶ)10を備えており、該真空チャンバ10には真空シール用Oリング15を介して上蓋14が備えられている。真空チャンバ10には内部を真空排気するための真空ポンプ11が設けられている。この真空チャンバ10は、処理する基板21を搬入するためのゲートバルブ(不図示)を介して隣接する真空搬送チャンバ(不図示)に接続されている。
 このチャンバ10にはガス注入口12が開口され、このガス注入口12にはチャンバ10の内部に反応性のスパッタリングガスを導入するガス導入系13が接続されている。ガス導入系13には、例えば、マスフローコントローラなどの自動流量制御器(不図示)を介して、ガスボンベ(不図示)が接続され、ガス注入口12から反応性ガスが所定の流量で導入される。このガス導入系13は、チャンバ10内で反応性スパッタリングを行う際に、チャンバ10内に反応性ガスを供給する。
 チャンバ10内の処理空間の下部には、その上面に基板21を支持することが可能な基板ホルダ22が設けられている。処理対象である基板21は、通常、隣接する真空搬送チャンバ(不図示)に備えられたハンドリング・ロボットにより、ゲートバルブ(不図示)を通じて基板ホルダ22上に運ばれる。基板ホルダ22は、円板状の載置台(ステージ)であって、例えば、その上面に静電吸着により基板21を吸着支持するように構成されている。この基板ホルダ22は、真空用回転導入機16を介して回転駆動機構60に接続されて、真空を維持しながらその中心軸周りに回転可能に構成されている。従って、基板ホルダ22は、載置面に吸着支持する基板21を処理面に沿って回転することができる。真空用回転導入機16としては磁性流体を用いるが、これに限定されるものではない。
 また、基板ホルダ22には、位置検出手段としての位置センサ23が設けられており、基板21の回転位置を検出することができる。本実施形態では、位置センサ23として、ロータリーエンコーダを用いている。なお、本実施形態では、位置センサ23として、例えば、上述のロータリーエンコーダのように、回転する基板21の回転位置を検出できるものであればいずれの構成を用いても良い。
 なお、本実施形態では、位置センサ23等のセンサによって基板21や基板ホルダ22の回転位置を直接検出することによって基板ホルダ22に保持された基板21の回転位置を検出しているが、基板21の回転位置を検出できればいずれの構成を用いても良い。例えば、基板ホルダ22の回転速度や回転時間から計算により求めるなど、基板21の回転位置を間接的に求めても良い。
 基板21は、基板ホルダ22の載置面上に水平状態を保って保持されている。基板21の材料としては、例えば、円板状のシリコンウェハを用いるが、これに限定されるものではない。
 図2は上述した通り、メサ構造211が多数形成された処理基板である。各メサ構造211の長手方向は平行に揃って規則正しく配列されている。また、本実施形態では、該長手方向に沿った側面211a、211bがメサ構造211の、スパッタリングに対する被処理面(均一性良く成膜を行いたい所望の面)となる。すなわち、メサ構造211が有する複数の側面のうち対向する2つの側面である側面211a、211bが被処理面である。図2から分かるように、側面211aが、メサ構造211の基板21の外側の面であり、側面211bが、メサ構造211の基板21の中心側の面である。また本実施形態では、ノッチ又はオリフラ212とメサ構造211の長手方向の面が向き合う様に、メサ構造が設けられている。
 また、チャンバ10内の上記処理空間の基板ホルダ22の斜め上方には(基板ホルダ22の斜向かいの位置には)、複数のカソードユニット40が配置されている。このカソードユニット40は、スパッタリングターゲット400(以下、ターゲットと記述する)を支持可能に構成されている。すなわち、一つの基板ホルダ22に対して複数のカソードユニット40が設けられ、各カソードユニット40は上蓋14に傾斜した状態で取り付けられている。
 図1および図3に示すように、本実施形態では、上蓋14に5基のカソードユニット40(40a~40e)が設けられているが、カソードユニット40の数はこれに限定されない。また、カソードユニット40を1つ設けても良い。すなわち、ターゲットを支持するためのカソードユニットを、真空チャンバ10において少なくとも1つ設ければよい。各カソードユニット40は、基板ホルダ22上の基板21の処理面に対して傾斜すると共に、基板21の中心軸から面方向へ等間隔を隔ててずらしてオフセット配置されている。具体的には、各カソードユニット40のカソード中心軸は、基板ホルダ22の回転軸とは外れて位置し、回転軸から所定の距離を隔てた同心円上に等間隔で配置されている。このように同一のチャンバ10内に複数のカソードユニット40を設けることにより、一つのチャンバ10内で異なる複数の材料からなる積層膜の成膜が可能である。
 なお、基板径やターゲット径は特に限定されないが、基板中心とカソード中心をオフセット配置させ、本実施形態のように基板21を回転させる場合には、ターゲット径が基板径より小さくても均一性に優れた成膜が可能である。
 各カソードユニット40におけるカソードの裏面側には、複数の永久磁石(カソード側磁石)を配置したマグネトロンが備えられ、ターゲットの表面側に磁界を形成するようになっている。
 各カソードユニット40のカソード表面側には、それぞれ板状のターゲットが取り付けられる。すなわち、各ターゲットは、カソードよりも処理空間側に設けられ、各ターゲットは斜め下方へ臨んで配置されている。ターゲット材料は、基板上に成膜する膜の種類によって異なる。なお、本実施形態では、5基のカソードユニット40が配置されているので、例えば、材料成分の異なる5種類のターゲットが取り付けられるが、これに限定されない。
 各カソードユニット40には、カソードに電圧を印加する放電用電源70が電気的に接続されている。放電用の電力は、高周波電力、DC電力、高周波電力とDC電力との重畳のいずれであっても構わない。また、複数のカソードユニット40に電圧を選択的に印加するが、各カソードユニット40に個別の放電用電源を接続してもよい。あるいは、共通電源として選択的に電力供給を行うスイッチ等の切り替え機構を備えるように放電用電源70を構成しても構わない。すなわち、各カソードユニット40に順次または交互に電圧を印加することによって、基板21上に積層膜を成膜することができる。
 さらに、各カソードユニッ40のケーシングには、カソード近傍に放電用の処理ガス(放電用ガス)を供給する放電用ガス導入系41が接続されている。放電用ガスとしては、例えば、ArやKrなどの不活性ガスが使用される。各カソードは基板ホルダ21との間でプラズマ放電を発生し、各カソードユニット40に取り付けられたターゲットをスパッタリング可能である。
 また、各カソードユニット40の前方には、一部のカソードと基板ホルダ22との間を選択的に遮断するシャッタ45が設けられている。このシャッタ45を選択的に開放することにより複数のカソードユニット40の中から目的のターゲットを選択してスパッタリングを実行することができ、スパッタされている他のターゲットからのコンタミネーションを防止することができる。
 次に、図4を参照して、本実施形態のスパッタリング装置1に備えられ、上述の各構成要素を制御する制御装置50について説明する。図4は本実施形態における制御装置を示すブロック図である。
 図4に示すように、本実施形態の制御装置50は、例えば、一般的なコンピュータと各種のドライバを備える。すなわち、制御装置50は、種々の演算、制御、判別などの処理動作を実行するCPU(不図示)と、このCPUによって実行される様々な制御プログラムなどを格納するROMとを有する。また、制御装置50は、上記CPUの処理動作中のデータや入力データなどを一時的に格納するRAM、およびフラッシュメモリやSRAM等の不揮発性メモリなどを有する。このような構成において、制御装置50は、上記ROMに格納された所定のプログラム又は上位装置の指令に従って成膜処理動作を実行する。具体的には、制御装置50は、放電用電源70、シャッタ45の駆動部、放電用ガス導入系41、不活性ガス導入系13、排気ポンプ11、および基板ホルダ22の回転駆動機構60などに指令を出力する。その指令に従って放電時間、放電電力、ターゲットの選択、プロセス圧力、および基板ホルダ22の回転などの各種プロセス条件がコントロールされる。また、チャンバ10内の圧力を計測する圧力計や、基板の回転位置を検出する位置検出手段としての位置センサ23などのセンサの出力値も取得可能であり、装置の状態に応じた制御も可能である。
 また、制御装置50は、位置センサ23の検出した回転位置に応じて、基板21の回転速度を調整する回転制御手段としてホルダ回転制御部51を備える。ホルダ回転制御部51は、目標速度算出部51aと、駆動信号生成部51bと、を備え、基板21の回転位置と放電中のカソードユニット40との位置関係に基づいて、基板の回転位置に応じて基板ホルダ22の回転部の回転を制御して基板21の回転速度を制御する機能を有する。
 制御装置50は、位置センサ23から、基板21の回転位置に関する情報を受信するように構成されている。制御装置50が上記回転位置に関する情報を受信すると、目標速度算出部51aは、基板21の回転位置を検知する位置センサ23から出力される基板21の現在の回転位置の値に基づいて、当該位置における目標回転速度を算出する。この目標回転速度の値は、例えば、基板21の回転位置と、目標回転速度と、の対応関係を予めマップとして保持しておくことで、演算可能である。駆動信号生成部51bは、目標速度算出部51aにより算出された目標回転速度に基づき、当該目標回転速度とするための駆動信号を生成し、回転駆動機構60に出力する。制御装置50は、駆動信号生成部51bにて生成された上記駆動信号を回転駆動機構60に送信するように構成されている。
 なお、図4の例では、回転駆動機構60は、基板ホルダ22を駆動するモータなどのホルダ回転駆動部61と、目標値と位置センサ23から出力される実値(回転位置や回転速度)との偏差に基づきホルダ回転駆動部61の操作値を決定するフィードバック制御部62と、を備え、サーボ機構により基板ホルダ22を駆動する。しかし、フィードバック制御は本発明の必須の構成ではなく、モータもDCモータ、ACモータのいずれであってもよい。回転駆動機構60は、制御装置50から受信した駆動信号に基づいて、ホルダ回転駆動部61を駆動し、基板ホルダ22を回転させる。
 次に、本実施形態のスパッタリング装置1の作用と共に、この装置1を用いて実施するスパッタリング方法について説明する。
 本実施形態に係るスパッタリング装置1を用いたスパッタリング方法は、まず、基板ホルダ22上に処理対象である基板(ウェハ)21を設置する。基板21は、例えば、隣接する真空搬送チャンバ(不図示)に備えられたハンドリング・ロボットにより、ゲートバルブ(不図示)を通じてチャンバ10内の真空度を維持したまま基板ホルダ22上に運ばれる。
 次に、チャンバ10の内部に放電用ガス導入系41からAr等の放電用ガスを導入する。反応性スパッタリングを行う場合には、チャンバ10の内部に反応性ガス導入系13から反応性ガスを導入する。
 5基のカソードユニット40には、例えば、それぞれ材料成分の異なる5種類のターゲットを取り付ける。各ターゲットは、例えば、円板状を呈し、全て同じサイズに形成されている。前述したように、カソードの傾斜角は本実施形態の適用においては特に限定されないが、基板21の処理面の法線に対するカソード中心軸の角度φが0°を超えて45°以下の角度を成すようにカソードユニット40を配置することが好ましい。より好ましくは、上記角度φを5°以上35°以下に設定すると、優れた面内均一性が得られる。
 この状態で、まず、第1のカソードユニット40aのターゲット表面に、不図示の電源から放電用電力を供給して、基板ホルダ22との間でプラズマ放電を発生させて、第1ターゲットをスパッタリングし、基板21上に第1層を成膜する。
 その成膜の際、第1のカソードユニット40aの放電中に、位置センサ23が基板21の回転位置を検出すると共に、該検出された回転位置に応じたホルダ回転制御部51の制御により、位置センサ23が検出した回転位置に応じて、基板21の回転速度を調整する。
 その後、順次電源を切り替え、第2カソードユニット40bから第5カソードユニット40eについても、同様にして成膜操作を行う。
 以下に、基板の回転速度の制御についてさらに詳しく説明する。図5は本実施形態のターゲットと基板の位置関係および基板の位相を説明するための図である。また、図6は、本実施形態に係る装置を用いたスパッタリング方法における基板の回転速度の制御マップを示す説明図である。
 図5を用いて本実施形態におけるターゲットと基板の位置関係を説明する。基板21は回転可能な基板ホルダ22の上に載置され、基板21の斜め上方に、ターゲット400がその法線が基板の法線に対して30°傾斜するように配置される。さらにターゲット400の法線は基板の中心と交差する必要はなく、また基板面と交差する必要もない。円板状のターゲット400の中心から基板面を含む平面までの距離をT/S距離と定義し、本実施形態では距離T/Sを240mmとしている。
 次に、本実施形態における基板の回転位相について説明する。図5に示すように、基板の回転位相(回転角)θは、ターゲットに最も近い位置を90°、最も遠い位置を270°と定義し、回転角θが90°の位置から時計回りに90°回転した点を0°、該90°の位置から反時計回りに90°回転した点を180°と定義している。便宜的に基板回転の始点を、基板21のノッチまたはオリフラ212が180°の位置にある時としているが、これに限定するものではない。また図2で示したように、本実施形態における基板21はノッチまたはオリフラ212がメサ構造211の長手方向の面が向き合う様に設けられている。そのためノッチまたはオリフラ212が90°と270°の位置にある時、長手方向の面とターゲットが対向する状態となる。
 本実施形態に係る装置を用いたスパッタリング方法の一例では、図5、図6、および下記式(1)に示すように、基板の回転位相θに対し、基板の回転速度yが正弦波となるように、回転速度を制御する。
  y=Asin(2(θ-α))+B   ・・・(1)
  A=a・B              ・・・(2)
 すなわち、本発明の回転制御手段としてのホルダ回転制御部51は、上記式(1)に基づいて、基板21の回転角θの2倍周期正弦波関数として回転速度を算出する。ここで、Aは回転速度の振幅であり、式(2)に示すように、基準速度Bに変動率aを乗じたものである。αは位相差であり、変動率aと位相差αを変えることによって、メサ構造の側面の膜厚分布を最適化することができる。なお、基板の回転位相θの範囲は0°≦θ<360°である。
 図6の例では、基準速度Bを30rpmに設定し、変動率aを0.3とし、位相差αを45°とした時の基板回転位相θに対する基板回転速度yを示している。この場合、基板21のノッチまたはオリフラ212が0°および180°の位置にある時に基板回転数(回転速度)が最も遅くなり、90°および270°の位置にある時に最も速くなることを意味する。
 逆に基板21のノッチまたはオリフラ212が0°および180°の位置にある時に基板回転数が最も速くなり、90°および270°の位置にある時に最も遅くなるようにするためには、位相差αを-45°または45°に設定すれば良い。この場合は、例えば、図2に示すメサ構造211の長手方向と直交する方向に沿った2つの対向する側面が被処理面となる。
 本実施形態では、メサ構造211の側面211a、211bがメサ構造211の被処理面となる。従って、ホルダ回転制御部51は、回転角θが0°および180°になるとき、すなわち、成膜対象のターゲット400の中心と基板ホルダ22の回転中心とを結ぶ線分を含み、かつ基板ホルダ22の基板支持面(基板21の基板処理面)に対して垂直な平面Aに対して、メサ構造211の長手方向が平行となる場合(以降、“第1の回転状態”とも呼ぶ)に、回転速度が最も遅くなるように駆動信号を生成している。一方、ホルダ回転制御部51は、回転角θが90°および270°になるとき、すなわち、上記平面Aに対して、メサ構造211の長手方向が垂直となる場合(以降、“第2の回転状態”とも呼ぶ)に、回転速度が最も速くなるように駆動信号を生成している。
 本実施形態において、基板21上のあるメサ構造211に着目する。第2の回転状態のうち、回転角θが90°であり、基板21の外側の面である側面211aがターゲット400と対向する場合、基板21の中心側の面である側面211bがターゲット400から隠れることになる。このとき側面211bへの成膜も多少はあるが、側面211aへの成膜が支配的になる。一方、第2の回転状態のうち、回転角θが270°の場合、第2の面である側面211bがターゲット400と対向し、第1の面である側面211aがターゲット400から隠れることになる。このとき側面211aへの成膜も多少はあるが、側面211bへの成膜が支配的になる。
 この時、回転角θ=90°の場合の成膜が支配的になる側面211aとターゲット400との第1の距離が、回転角θ=270°の場合の成膜が支配になる側面211bとターゲット400との第2の距離よりも短くなる。従って、ターゲット400からのスパッタ粒子の放出量が一定の場合、回転角θ=90°のときに側面211aに形成される膜厚は、回転角θ=270°のときに側面211bに形成される膜厚よりも厚くなる。この事について、回転角θ=0°のときに基板ホルダ22の中心を通り回転角θの90°→270°のラインに配置されたメサ構造以外のメサ構造について同様のことが言える。
従って、本実施形態では、第2の回転状態における基板21の回転速度をなるべく速くするように基板ホルダ22の回転を制御することにより、側面211aと側面211bとの膜厚のバラツキの大きな原因となる第2の回転状態での成膜をなるべく少なくするようにしている。
 一方、第1の回転状態の場合、メサ構造211の長手方向が上記平面Aに対して平行となっている。この時、側面211a及び側面211bと平行であり且つ基板21の面内方向に平行である方向側にターゲット400が位置することになる。従って、側面211aおよび側面211bは、ターゲット400に対して同様に臨むことになる。よって、側面211aとターゲット400との間の距離および側面211bとターゲット400との間の距離をほぼ同一にすることができ、側面211aおよび側面211bとの間の膜厚のバラツキを低減して成膜を行うことができる。このように、第1の回転状態での成膜をなるべく多くすることにより側面211aと側面211bとの間でより膜厚の均一性に優れた成膜を行うことが出来る。本実施形態では、第1の回転状態における基板21の回転速度をなるべく遅くするように基板ホルダ22の回転を制御している。
 このとき、4つの外壁面を有するメサ構造211を有する基板21を1回転する間に、第1の状態および第2の状態は2回ずつ現れる。従って、ホルダ回転制御部51は、基板ホルダ22が1回転する間に、極大値と極小値が2回ずつ生じる正弦波関数(回転速度の正弦波が2周期進行する正弦波関数)、すなわち、式(1)および図6に示すような回転角θと基板の回転速度(基板ホルダ22の回転速度)yとの関係式に従って基板ホルダ22の回転を制御することが好ましい。
 本実施形態では、図6に示す制御マップを制御装置50が有するROMといったメモリに予め格納しておけば良い。このように、本実施形態では、上記制御マップを予めメモリに格納しておく。よって、目標速度算出部51aは、位置センサ23から基板21の回転位置に関する情報を受信すると、上記メモリに格納された図6に示す制御マップを参照し、現在の基板21の回転角θに対応する回転速度を抽出し、目標回転速度を取得し、該取得された目標回転速度を駆動信号生成部51bに出力する。従って、回転角θが0°、180°といった第1の回転状態のときには基板21の回転速度を最も遅く制御でき、かつ回転角θが90°、270°といった第2の回転状態のときには基板21の回転速度を最も速く制御することができる。
 本実施形態では、このように、第2の回転状態よりも第1の回転状態での成膜を支配的にすることにより、あるメサ構造において、第1の面(側面211a)と第2の面(側面211b)との間の膜厚の不均一要因となる成膜の影響を小さくし、上記第1の面と第2の面との間で膜厚がより均一となるような成膜の影響を大きくすることができる。
このように、本実施形態で重要なことは、第1の面と第2の面とにおける膜厚のバラツキの原因となる、第2の回転状態での成膜よりも、第1の回転状態での成膜を支配的にすることである。従って、ホルダ回転制御部51が、第1の回転状態における基板21の回転速度を、第2の回転状態における基板21の回転速度よりも小さくなるように基板ホルダ22の回転を制御しさえすれば、第1の回転状態での成膜を第2の回転状態での成膜よりも支配的にすることができ、本発明の効果を得ることができる。
 なお、上述においては、基板21に形成された凹凸構造としてメサ構造211について説明したが、上記凹凸構造は基板21の処理面に形成されたトレンチ構造、V溝であっても良い。このようなトレンチ構造、V溝としては、例えば、開口部が長方形を成して掘られ、長手方向が平行であるトレンチ構造、V溝等が挙げられる。また、トレンチ構造の一例としては、開口部から底面に向って間口が狭まっている逆台形構造であっても良い。
 このように、凹凸構造としてトレンチ構造やV溝を用いる場合は、ホルダ回転制御部51は、被処理面となる2つの互いに対向する内壁面(例えば、トレンチ構造やV溝の長手方向に平行な2つの内壁面)に平行な方向が、上記平面Aと平行となるときに、基板ホルダ22の回転が相対的に遅くなるように(好ましくは、回転速度が最小値となるように)基板ホルダ22の回転を制御する。また、ホルダ回転制御部51は、上記平面Aに対して、トレンチ構造やV溝の4つの内壁面のうち、被処理面となる2つの互いに対向する内壁面が垂直となるときに、基板ホルダ22の回転が相対的に早くなるように(好ましくは、回転速度が最大値となるように)基板ホルダ22の回転を制御する。
 このように、本実施形態では、凹凸構造がメサ構造、トレンチ構造、V溝、後述の波形凹凸構造に依らず凹状または凸状の構造を有する場合、ホルダ回転制御部51は、基板21の凹凸構造の側面に平行であり、且つ基板処理面の面内方向に平行である方向(以下第1の方向とも言う)に成膜対象のターゲット400が位置する際(上述した第1の回転状態に相当)には基板21の回転速度が相対的に遅くなるように回転駆動機構60を制御する。逆に、第1の方向に対して垂直であり、且つ基板処理面の面内方向に平行である方向(以下第2の方向とも呼ぶ)側に成膜対象のターゲット400が位置する際(上述した第2の回転状態に相当)には基板21の回転速度が相対的に速くなるように回転駆動機構60を制御している。
 従って、基板の斜め上方にターゲットを配置し、基板を回転させながら成膜を行う場合において、凹凸構造の第1の面と第2の面とにおける膜厚のバラツキに大きく寄与する状況での成膜の割合を少なく、かつ上記第1の面と第2の面とにおける膜厚のバラツキにあまり寄与しない状況での成膜の割合を多くすることができる。よって、第1の面に成膜された膜厚と第2の面に成膜された膜厚との均一性を向上させることができる。
 次に本実施形態の実施例について図面を用いて説明する。
 (実施例1) 
 本実施形態に係るスパッタリング装置1を用いて基板上に凹凸構造がある場合の膜厚分布を調べた。なお膜厚分布は、基板面内の膜厚の最大値と最小値から次式によって求めた。 
 (最大値-最小値)/(最大値+最小値)×100(%) ・・・(3)
 図7Aは本実施形態の効果を検証するのに用いたメサ構造付きの基板の概略図を示している。また図7Bは、図7Aに示すメサ構造211のA-A’線断面図である。直径200mmのシリコン(Si)基板である基板21の中心と、中心からノッチ212a方向を含む4方向に75mmだけ離れた点に、底面寸法が4×2μmの長方形を成したメサ構造211が形成されている。各メサ構造211は、長方形の長手方向が基板中心とノッチ212aを含む直線に対して垂直になるように配置されている。このようなメサ構造211において長手方向に沿った2つ側面のうち、ノッチ側側面(側面212a)とその逆側側面(側面212b)にそれぞれ均一に薄膜を成膜することを目的とする。なお、本実施例ではノッチ側側面および逆側側面の基板の処理面21aに対する傾斜角はともに35°のものを用いた。
 本実施形態の効果を確認するために、以下に説明するA、B、Cの3つの条件について比較した。 
 条件A.基板21の回転速度(基板ホルダ22)を30rpm一定とした場合。つまり、前述の式(1)および式(2)において、a=0、B=30とした場合。 
 条件B.基板21(基板ホルダ22)が1回転する間に正弦波の周期が1周期だけ進行する場合。具体的には、式(1)を 
   y=Asin(θ-α)+B    ・・・(4) 
のように変形する。変動率aおよび基準回転速度Bは、それぞれ、0.1、30とし、このとき式(2)より、A=3となる。αは最適値の90°とした。 
 条件C.基板21(基板ホルダ22)が1回転する間に正弦波の周期が2周期進行する場合(本実施形態)において、上記条件Bと同様にa=0.1、B=30、A=3とした。αは最適値の45°とした。その他の成膜条件では、スパッタリングターゲットとして直径164mmのCuターゲットを用い、基板の法線に対するターゲットの法線の傾斜角を30°、T/S距離を240mm、ターゲットに供給する電力を直流200W、導入するArガス流量を30sccmとした。このような条件で、直径200mmの基板上にCu薄膜を25nm堆積させた。
 上記条件A、B、Cに対する、基板21の回転位相θに対する基板回転速度yのグラフを図8に示す。図8において、符号81は上記条件Aに対するプロットであり、符号82は上記条件Bに対するプロットであり、符号83は上記条件Cに対するプロットである。条件Cにおいて、αが45°というのは、式(1)より基板の回転位相に対する位相差は2αであるから、実質的には90°の位相差となる。この時、基板回転位相θが90°および270°の位置にある時に基板回転数(回転速度)が最大値33rpmをとり、0°および180°の位置にある時に最小値27rpmをとる。すなわち、メサ構造211の目的の側面211a、211bが延在する方向であるメサ構造211の長手方向が、ターゲットの中心と基板ホルダ22の回転中心とを結ぶ線分を含み、かつ基板処理面に対して垂直な平面に対して、垂直となるとき回転速度が最大となる。また、側面211a、211bの双方に平行な方向が、該平面に対して平行となるとき回転速度が最小となる。
 表1は、上記条件A~Cにより成膜した場合の、基板21上にある5つのメサ構造211のノッチ側側面(側面211b)と逆側側面(側面211a)の膜厚の最大値と最小値および式(3)から求められる膜厚分布の測定結果を一覧表にしたものである。
基板回転制御を行わない条件Aの場合、±3.3%の分布であった。それに対して、基板が1回転する間に正弦波の周期が1周期だけ進行するような基板回転制御を行った条件Bの場合では、位相差αが90°の時に最適値を得たが、条件Aの場合と全く同じ膜厚分布となった。これらに対して、本実施形態を適用した条件Cの場合、位相差αは最適値が45°の時に最適値を得ることができ、その時の膜厚分布は±2.7%であった。回転制御しない条件Aおよび従来の回転制御方法を用いた条件Bと比較して、最も膜厚分布の良い値が得られた。
Figure JPOXMLDOC01-appb-T000001
 (実施例2) 
 実施例1の条件Cにおいて、位相差αを最適値の45°に固定したまま、変動率aを0.1から0.7まで試した。膜厚分布の測定結果を表2に示す。本実施例に対してはa=0.5で膜厚分布が最も良くなることがわかった。
Figure JPOXMLDOC01-appb-T000002
 (実施例3) 
 実施例1及び2において基板の処理面側の凹凸構造が、図9A、9Bに示すようにトレンチ構造111であっても本実施形態の2倍周期正弦波関数を用いて基板回転数を制御することによってトレンチ構造111内における膜厚分布の改善効果が期待できる。
 図9A、9Bにおいて、内壁面111aが基板21の外側の第1の面であり、内壁面111bが基板21の中心側の第2の面であり、これら2つの面を被処理面とする。本実施例では、ホルダ回転制御部51は、上記平面Aに対して、トレンチ構造111の長手方向が平行になるとき、回転ホルダ22の回転速度が相対的に小さく(好ましくは、最小値)なるように、回転駆動機構60を制御して、基板ホルダ22の回転を制御する。さらには、ホルダ回転制御部51は、上記平面Aに対して、トレンチ構造111の長手方向bが垂直になるとき、回転ホルダ22の回転速度が相対的に大きく(好ましくは、最大値)なるように、回転駆動機構60を制御して、基板ホルダ22の回転を制御する。
 (実施例4) 
 本実施例では、基板21の処理面側の凹凸構造が、図10A、10Bに示すように、基板21の基板処理面123の全面または一部分がその断面が周期的に波形となる凹凸構造(以下、“波形凹凸構造”とも呼ぶ)を成している。本実施例では、図10A、10Bに示すように、各波形凹凸構造の稜線121および谷線122が略平行に揃っている時、本実施形態の2倍周期正弦波関数を用いて基板回転数(回転速度)を制御することによって基板面内における膜厚分布の改善効果が期待できる。なお、図10A、10Bにおいて、符号124は、基板21の裏面である。
 (実施例5) 
 実施例4において、波形凹凸構造の断面波形が図11A~11Dに示すような正弦波形、矩形波形、三角波形または台形波形の群から選ばれる1つまたは2つ以上の波形であっても、本実施形態の2倍周期正弦波関数を用いて基板回転数を制御することによって基板面内における膜厚分布の改善効果が期待できる。
 実施例4及び5においては、ホルダ回転制御部51は、上記平面Aに対して、波形凹凸構造の稜線および谷線が平行になるとき、回転ホルダ22の回転速度が相対的に小さく(好ましくは、最小値)なるように、回転駆動機構60を制御して、基板ホルダ22の回転を制御する。さらには、ホルダ回転制御部51は、上記平面Aに対して上記稜線および谷線が垂直になるとき、回転ホルダ22の回転速度が相対的に大きく(好ましくは、最大値)なるように、回転駆動機構60を制御して、基板ホルダ22の回転を制御する。
 (実施例6) 
 図12は本実施形態に係る基板21上のメサ構造の例としてハードディスクドライブ(HDD)用磁気ヘッドに用いられるTMR素子131を示す説明図である。ここで、TMR素子とは、磁気効果素子(TMR(Tunneling Magneto resistance:トンネル磁気抵抗効果)素子)である。
 図12に示すように、TMR素子131の基本層構成は、磁化固定層、トンネルバリア層及び磁化自由層を有する磁気トンネルジャンクション部分(MTJ部分)を含む。例えば、磁化固定層は強磁性材料、トンネルバリア層は金属酸化物(酸化マグネシウム、アルミナなど)絶縁材料、および磁化自由層は強磁性材料からなっている。上記TMR素子131は、基板21上に形成された下部電極132上に形成されている。
 TMR素子131は、トンネルバリア層の両側の強磁性層の間に所要電圧を印加して一定電流を流した状態において、外部磁場を掛け、上記両側の強磁性層の磁化の向きが平行で同じであるとき(「平行状態」という)、TMR素子の電気抵抗は最小になる。また、上記両側の強磁性層の磁化の向きが平行で反対であるとき(「反平行状態」という)、TMR素子131の電気抵抗は最大になるという特性を有する。これら両側の強磁性層のうち、磁化固定層は磁化を固定するとともに、磁化自由層は書き込み用の外部磁場の印加により磁化方向が反転可能な状態に形成される。なお、磁化固定層としては、例えば、Co、Fe、Niなどの強磁性材料を主成分として含み、これらに適宜Bなどの材料を添加したものを用いることができる。
 前述のTMR素子131はスパッタリングなどの成膜方法によって平坦な基板面上に成膜され、イオンミリング法や反応性エッチング法などによりメサ形状に加工される。その後、スパッタリングなどの成膜方法によって側壁面(図2においては、メサ構造211の側面211a、側面211b)に絶縁膜133、金属膜134、磁性膜135、金属膜136が成膜される。この時、側壁面に成膜すべき上述の各膜の膜厚はメサ形状の両側壁面で均一であることが望ましい。さらに基板面上の全面に規則配列したメサ構造としてのTMR素子間においてもその膜厚が均一であることが望ましい。そこで本実施形態のスパッタリング装置および成膜方法を用いることによって前述の膜厚の均一性を向上させることができる。
 (第2の実施形態) 
 上述のように、第1の実施形態では、ターゲットから放出されるスパッタ粒子の放出量を一定に保ちつつ、基板(基板ホルダ)の回転速度を、第1の回転状態と第2の回転状態とで異なるように制御している。しかしながら、該基板(基板ホルダ)の回転方式を、連続回転としても良いし、非連続パルス回転としても良い。本実施形態では、該非連続パルス回転の形態について説明する。
 図13Aは、第1の実施形態に係る、基板回転の回転速度を制御する場合の、連続で基板(基板ホルダ)を回転する場合についての説明図である。図13Bは、本実施形態に係る、基板回転の回転速度を制御する場合の、非連続で基板(基板ホルダ)を回転する場合についての説明図である。
 基板21(基板ホルダ22)の回転を連続的に行う場合は、ホルダ回転制御部51は、図13Aに示すように、式(1)に従って基板21が一回転(1周期)する間に該基板21の回転速度を2周期変調させるように、基板21の回転速度(角速度ω)を連続的に変化させるように駆動信号を生成する。すなわち、ホルダ回転制御部51は、基板21が連続的に回転するように基板ホルダ22の回転を制御する。なお、図13Aにおいて、fは、ターゲットからのスパッタ粒子の基準放出量であり、ωは基準角速度である。
 一方、基板21(基板ホルダ22)の回転を非連続的(クロック状)に行う場合は、ホルダ回転制御部51は、回転停止時間sを図13Bに示すように制御する。すなわち、ホルダ回転制御部51は、例えば、基板21が所定の複数の回転角ではその回転を停止し、それ以外の回転角では一定の角速度(回転速度)で基板ホルダ22の回転部が回転するように該基板ホルダ22の回転を制御する。このような制御により、基板21が非連続的に回転するように基板21の回転速度は制御される。なお、ホルダ回転制御部51は、基板ホルダ22の回転部の回転速度は上述のように一定であって良いし、変化させても良い。ここで、縦軸に回転速度(角速度ω)を、横軸に時間tをとる場合の、角速度が0になっている時間を、“回転停止時間s”と呼ぶことにする。すなわち、回転停止時間sとは、基板ホルダ22を非連続に回転させる場合の、基板ホルダ22の回転を停止している時間を指す。sは、基準回転停止時間である。
 本実施形態では、上記平面Aに対して、凹凸構造の被処理面が平行になる場合を長くし、該被処理面が垂直になる場合を短くすることが本質である。上述のように、本実施形態では、基板21(基板ホルダ22)を一回転させる間に、第1の回転状態と第2の回転状態とは2回ずつ現れる。よって、本実施形態では、基板21(基板ホルダ22)を1回転(1周期)する間に、基板21(基板ホルダ22)の停止時間を正弦的に2周期変調させる。従って、凹凸構造の側面に平行であり且つ基板処理面の面内方向に平行である方向側にターゲットが位置する場合では回転停止時間を相対的に長く(好ましくは最も長く)、上記方向側に垂直であり且つ基板処理面の面内方向に平行である方向側にターゲットが位置する場合では回転停止時間を相対的に短く(好ましくは最も短く)することが出来る。
 図2に示すメサ構造211の側面211a、211bが被処理面である場合は、回転角θ=0°、180°の時に側面211a、211bが基板処理面の面内方向に延在する方向側にターゲットが位置することになる。また、回転角θ=90°、270°の時に上記延在方向側と基板21の回転に沿って垂直方向側にターゲットが位置することになる。よって、ホルダ回転制御部51は、図13Bに示すように、回転角θ=0°、180°のときに回転停止時間sが相対的に長くなり、回転角θ=90°、270°のときに回転停止時間sが相対的に短くなるように、駆動信号を生成すれば良い。
 (第3の実施形態) 
 第1及び第2の実施形態では、基板ホルダ22の回転速度を制御する形態について説明したが、本実施形態では、カソードユニット40への投入電力(投入パワー)を制御することによって、基板へのスパッタ粒子の飛来量を制御し、凹凸構造における被処理面間の膜厚の均一化を図る。
 本実施形態においても、第1の実施形態と同様に、基板ホルダ22が回転する場合において、凹凸構造の側面に平行であり且つ基板処理面の面内方向に平行である方向側にターゲットが位置する場合の成膜の割合を相対的に多くし、上記方向側と基板の回転に沿って垂直方向側にターゲットが位置する場合の成膜の割合を相対的に少なくすることが大きな特徴である。
 図14は、本実施形態に係る制御装置50のブロック図である。本実施形態では、制御装置50は、位置センサ23の検出した回転位置に応じて、カソードユニット40へのパワー(電力)を調整する電力制御手段としてのカソードパワー制御部141を備える。カソードパワー制御部141は、目標パワー算出部141aと、出力信号生成部141bと、を備え、基板21の回転位置と放電中のカソードユニット40との位置関係に基づいて、基板の回転位置に応じてカソードユニット40へのパワー(電力)を制御する機能を有する。
 制御装置50は、位置センサ23から、基板ホルダ22の回転位置に関する情報を受信するように構成されている。制御装置50が上記回転位置に関する情報を受信すると、目標パワー算出部141aは、基板ホルダ22の回転位置を検知する位置センサ23から入力する基板ホルダ22の現在の回転位置の値に基づいて、当該位置における目標パワー(目標電力)を算出する。この目標パワーの値は、例えば、基板ホルダ22の回転位置と、目標パワーと、の対応関係を予めマップとして制御装置50が備えるメモリ等に保持しておくことで、演算可能である。出力信号生成部141bは、目標パワー算出部141aにより算出された目標パワーに基づき、当該目標パワーとするための出力信号を生成し、放電用電源70に出力する。制御装置50は、出力信号生成部141bにて生成された上記出力信号を放電用電源70に送信するように構成されている。
 なお、図14の例では、放電用電源70は、カソードユニット40に放電用パワー(放電用電力)を供給するパワー出力部71と、目標値と位置センサ23から出力される実値(回転位置や回転速度)との偏差に基づきパワー出力部71の操作値を決定するフィードバック制御部72と、を備える。しかし、フィードバック制御は本発明の必須の構成ではない。
 以下、凹凸構造として図2に示すメサ構造211を用い、側面211a、211bがメサ構造211の、スパッタリングに対する被処理面である場合を例に挙げて、本実施形態の処理を説明する。なお、本実施形態では、基板ホルダ22の回転速度を一定とする。
 本実施形態では、回転ホルダ22が一定の回転速度で回転している場合において、上記第1の回転状態での基板21(基板ホルダ22)へのスパッタ粒子の飛来量を、上記第2の回転状態での基板21へのスパッタ粒子の飛来量を多くするように、カソードユニット40へと供給される放電用パワーを制御する。従って、メサ構造212の被処理面である側面211a、211bがカソードに対向する際においては、該側面211a、211bに到達するスパッタ粒子の量が少なくなるので、側面211aと側面211bとに形成される膜の厚さのバラツキを抑えることができる。一方、側面211a、211bがカソードに対向する位置から90°回転する場合においては、該側面211a、211bに到達するスパッタ粒子の量が多くなるので、側面211aおよび側面211bがターゲットに対して同様に臨む場合の成膜の割合を多くすることができる。よって、側面211aの膜厚と側面211bの膜厚とを不均一にする要因となる成膜を低減し、側面211aおよび側面211bの膜厚の均一化に大きく寄与する成膜を支配的にすることができ、側面211aおよび側面211bの間の膜厚のバラツキを低減することができる。
 本実施形態においても、第1の実施形態と同様に、基板ホルダの回転方式は、連続回転であっても良いし、非連続パルス回転であっても良い。
 図15Aは、本実施形態に係る、カソードへの投入電力を制御する場合の、連続で基板(基板ホルダ)を回転する場合についての説明図である。図15Bは、本実施形態に係る、カソードへの投入電力を制御する場合の、非連続で基板(基板ホルダ)を回転する場合についての説明図である。
 本実施形態では、カソードパワー制御部141は、式(1)と同様の2倍周期正弦波関数を用いて、基板21の回転角θに応じた放電用パワーを算出することができる。すなわち、カソードパワー制御部141は、基板21(基板ホルダ22)が1回転(1周期)する間に、カソードユニット40への投入パワー(投入電力)を2周期変調させるように、カソードユニット40への投入パワーを連続的に変化させるように出力信号を生成する。例えば、カソードパワー制御部141は、図15A、15Bに示すように、第1の回転状態である回転角θ=0°、180°のときに成膜対象となるカソードユニットへと供給されるパワー(電力)を最大値にすることによりスパッタ粒子放出量fが最大になり、第2の回転状態である回転角θ=90°、270°のときに上記パワーを最小値にすることによりスパッタ粒子放出量fが最小になるように、放電用電源70を制御すれば良い。
 このように本実施形態では、カソードパワー制御部141は、第1の回転状態における成膜対象のカソードユニットへの供給電力を、第2の回転状態における成膜対象のカソードユニットへの供給電力よりも大きくなるように、放電用電源70を制御して、成膜対象のカソードユニットへと供給される電力を制御する。
 なお、本発明の一実施形態では、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、図16に示すスパッタリング装置100は、図1に示すスパッタリング装置1において複数のカソードユニット40を六角柱形状を成した1つのカソードユニット101に置き換えている。カソードユニット101は、柱軸101a周りに回転可能に構成されており、カソードユニット101の各側面にターゲット102を1つずつ配置可能である。カソードユニット101は、上記各側面に配置された各ターゲット102に対して個々に電圧を印加可能に構成されている。このような構成において、スパッタリング装置100は、柱軸101aまわりに回転することによって所望のターゲットを選択することができる。それに応じて、放電用ガス導入系41を真空チャンバ10の側面のカソードユニット101の近傍に移動させている。スパッタリング装置100は、カソードユニット101を順次または交互に回転することによって、基板21上に積層膜を成膜することができる。
 また、図17に示すスパッタリング装置は、図16に示すスパッタリング装置100における六角柱形状を成したカソードユニット101からカソード機能を取り除いた、単なる多角柱構造のターゲットホルダ201を備える。さらに、図17に示すスパッタリング装置では、ターゲットホルダ201を設けることによってカソードユニットを無くし、その代わりにイオンビーム源202を真空チャンバ10の底面に配置している。イオンビーム源202から加速されたイオンビームは六角柱形状を成したターゲットホルダ201の側面に配置されたターゲット102に入射してターゲット表面をスパッタする。それによって、ターゲット表面から飛び出したスパッタ粒子が基板ホルダ22上の基板21に堆積する。六角柱形状を成したターゲットホルダを柱軸まわりに回転させることによって所望のターゲットを選択することができる。この時、放電用ガス導入系41はイオンビーム源に配置し、放電用ガスがイオンビーム源202の中に導入されるよう考慮されている。スパッタリング装置200は、ターゲットホルダ201を順次または交互に回転することによって、基板21に積層膜を成膜することができる。
 なお、イオンビーム源202の配置位置は、真空チャンバ10の底面に限らず、スパッタリングターゲット(すなわち、ターゲットホルダ201のスパッタリングターゲット支持面)の斜向かい、かつ基板ホルダ22とは別個に位置であればいずれの場所に配置しても良い。
 本発明の一実施形態は、例示したHDD用磁気ヘッドのみならず、HDD用磁気記録媒体、磁気センサ、薄膜太陽電池、発行素子、圧電素子、半導体の配線形成など、多方面に利用可能である。
 (その他の実施形態) 
 本発明の一実施形態では、第1の実施形態の基板の回転速度を制御する形態と、第2の実施形態のカソードユニットへの投入パワーを制御する形態との双方を行っても良い。この場合は、制御装置50が、ホルダ回転制御部51およびカソードパワー制御部141の双方を含むように制御装置50を構成すれば良い。
 また本発明の一実施形態では、制御装置50は、スパッタリング装置が備える基板ホルダの回転駆動機構や放電用電源を制御することができれば、該スパッタリング装置に内蔵されても良いし、LAN等によるローカルな接続、または、インターネットといったWANによる接続を介して、スパッタリング装置と別個に設けても良い。
 また、前述した実施形態の機能を実現するように前述した実施形態の構成を動作させるプログラムを記憶媒体に記憶させ、該記憶媒体に記憶されたプログラムをコードとして読み出し、コンピュータにおいて実行する処理方法も上述の実施形態の範疇に含まれる。即ちコンピュータ読み取り可能な記憶媒体も実施例の範囲に含まれる。また、前述のコンピュータプログラムが記憶された記憶媒体はもちろんそのコンピュータプログラム自体も上述の実施形態に含まれる。
 かかる記憶媒体としてはたとえばフロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、ROMを用いることができる。
 また前述の記憶媒体に記憶されたプログラム単体で処理を実行しているものに限らず、他のソフトウエア、拡張ボードの機能と共同して、OS上で動作し前述の実施形態の動作を実行するものも前述した実施形態の範疇に含まれる。

Claims (45)

  1.  基板を回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記位置検出手段の検出した回転位置に応じて、前記基板の回転速度を調整する回転制御手段とを備えたスパッタリング装置であって、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、
     前記回転制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記基板の回転速度を制御することを特徴とするスパッタリング装置。
  2.  前記回転制御手段は、前記基板の回転角の正弦波関数として前記回転速度を算出し、該正弦波関数に基づいて前記基板の回転速度を制御することを特徴とする請求項1に記載のスパッタリング装置。
  3.  前記回転制御手段は、前記基板が1回転する間に前記回転速度の正弦波が2周期進行するように前記回転速度を制御することを特徴とする請求項2に記載のスパッタリング装置。
  4.  前記回転制御手段は、前記成膜対象のスパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記被処理面となる側面が垂直となる時、前記回転速度が最大値をとり、前記被処理面となる側面が前記平面に対して垂直になる時から前記基板が90度回転する時、前記回転速度が最小値をとるように、前記回転速度を制御することを特徴とする請求項1に記載のスパッタリング装置。
  5.  前記凹凸構造は、その断面が周期的な波形形状である波形凹凸構造であり、隣り合う波形凹凸構造の長手方向が略平行に揃っていることを特徴とする請求項1に記載のスパッタリング装置。
  6.  前記波形凹凸構造の波形が正弦波、矩形波、三角波、台形波の群から選ばれるいずれか1つまたは2つ以上の波形であることを特徴とする請求項5に記載のスパッタリング装置。
  7.  前記回転制御手段は、前記成膜対象のスパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記波形凹凸構造の長手方向が垂直となる時、前記回転速度が最大値をとり、前記波形凹凸構造の長手方向が前記平面に対して垂直になる時から前記基板が90度回転する時、前記回転速度が最小値をとるように、前記回転速度を制御することを特徴とする請求項5に記載のスパッタリング装置。
  8.  基板を非連続的に回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記位置検出手段の検出した回転位置に応じて、前記基板の回転停止時間を調整する回転制御手段とを備えたスパッタリング装置であって、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、
     前記回転制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御することを特徴とするスパッタリング装置。
  9.  前記回転制御手段は、前記基板の回転角の正弦波関数として前記回転停止時間を算出し、該正弦波関数に基づいて前記基板の回転停止時間を制御することを特徴とする請求項8に記載のスパッタリング装置。
  10.  前記回転制御手段は、前記基板が1回転する間に前記回転停止時間の正弦波が2周期進行するように前記回転停止時間を制御することを特徴とする請求項9に記載のスパッタリング装置。
  11.  前記回転制御手段は、前記成膜対象のスパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記被処理面となる側面が垂直となる時、前記回転停止時間が最小値をとり、前記被処理面となる側面が前記平面に対して垂直になる時から前記基板が90度回転する時、前記回転停止時間が最大値をとるように、前記回転停止時間を制御することを特徴とする請求項8に記載のスパッタリング装置。
  12.  前記凹凸構造は、その断面が周期的な波形形状である波形凹凸構造であり、隣り合う波形凹凸構造の長手方向が略平行に揃っていることを特徴とする請求項8に記載のスパッタリング装置。
  13.  前記波形凹凸構造の波形が正弦波、矩形波、三角波、台形波の群から選ばれるいずれか1つまたは2つ以上の波形であることを特徴とする請求項12に記載のスパッタリング装置。
  14.  前記回転制御手段は、前記成膜対象のスパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記波形凹凸構造の長手方向が垂直となる時、前記回転停止時間が最小値をとり、前記波形凹凸構造の長手方向が前記平面に対して垂直になる時から前記基板が90度回転する時、前記回転停止時間が最大値をとるように、前記回転停止時間を制御することを特徴とする請求項12に記載のスパッタリング装置。
  15.  基板を回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された少なくとも1つのスパッタリングターゲットをスパッタするためのカソードユニットと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記位置検出手段の検出した回転位置に応じて、前記カソードユニットへの供給電力を調整する電力制御手段とを備えたスパッタリング装置であって、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、
     前記電力制御手段は、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力よりも大きくなるように、前記カソードユニットへの供給電力を調整することを特徴とするスパッタリング装置。
  16.  前記電力制御手段は、前記基板の回転角の正弦波関数として前記供給電力を算出し、該正弦波関数に基づいて前記カソードユニットへの供給電力を制御することを特徴とする請求項15に記載のスパッタリング装置。
  17.  前記電力制御手段は、前記基板が1回転する間に前記供給電力の正弦波が2周期進行するように前記供給電力を制御することを特徴とする請求項16に記載のスパッタリング装置。
  18.  前記電力制御手段は、成膜対象の前記スパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記被処理面となる側面が垂直となる時、前記供給電力が最小値をとり、前記被処理面となる側面が前記平面に対して垂直になる時から前記基板が90度回転する時、前記供給電力が最大値をとるように、前記供給電力を制御することを特徴とする請求項15に記載のスパッタリング装置。
  19.  前記凹凸構造は、その断面が周期的な波形形状である波形凹凸構造であり、隣り合う波形凹凸構造の長手方向が略平行に揃っていることを特徴とする請求項15に記載のスパッタリング装置。
  20.  前記波形凹凸構造の波形が正弦波、矩形波、三角波、台形波の群から選ばれるいずれか1つまたは2つ以上の波形であることを特徴とする請求項19に記載のスパッタリング装置。
  21.  前記電力制御手段は、前記成膜対象のスパッタリングターゲットの中心と前記基板ホルダの回転中心とを結ぶ線分を含み、かつ前記基板の前記凹凸構造が形成された面に対して垂直な平面に対して、前記波形凹凸構造の長手方向が垂直となる時、前記供給電力が最小値をとり、前記波形凹凸構造の長手方向が前記平面に対して垂直になる時から前記基板が90度回転する時、前記供給電力が最大値をとるように、前記供給電力を制御することを特徴とする請求項19に記載のスパッタリング装置。
  22.  前記ターゲットホルダと一体にまたは別個に設けられた、前記スパッタリングターゲットをスパッタするためのカソードユニットをさらに備えることを特徴とする請求項1に記載のスパッタリング装置。
  23.  前記カソードユニット及び前記スパッタリングターゲットは前記基板ホルダの回転軸周りに複数個配置され、
     個々のカソードユニットに順次または交互に電圧を印加することによって、前記基板上に積層膜を成膜することを特徴とする請求項22に記載のスパッタリング装置。
  24.  前記カソードユニットは、多角柱構造のカソードユニットであり、該多角柱のカソードユニットの側面の各々にはスパッタリングターゲットが配置可能であり、
     前記多角柱構造のカソードユニットを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項22に記載のスパッタリング装置。
  25.  前記カソードユニットは、多角柱構造のターゲットホルダであり、該多角柱構造のターゲットホルダの側面の各々にはターゲットが配置可能であり、
     前記スパッタリングターゲットにイオンビームを照射するためのイオンビーム源が、前記多角柱構造のターゲットホルダの斜向かい、かつ前記基板ホルダとは別個の位置に配置されており、
     前記多角柱構造のターゲットホルダを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項22に記載のスパッタリング装置。
  26.  前記ターゲットホルダと一体にまたは別個に設けられた、前記スパッタリングターゲットをスパッタするためのカソードユニットをさらに備えることを特徴とする請求項8に記載のスパッタリング装置。
  27.  前記カソードユニット及び前記スパッタリングターゲットは前記基板ホルダの回転軸周りに複数個配置され、
     個々のカソードユニットに順次または交互に電圧を印加することによって、前記基板上に積層膜を成膜することを特徴とする請求項26に記載のスパッタリング装置。
  28.  前記カソードユニットは、多角柱構造のカソードユニットであり、該多角柱のカソードユニットの側面の各々にはスパッタリングターゲットが配置可能であり、
     前記多角柱構造のカソードユニットを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項26に記載のスパッタリング装置。
  29.  前記カソードユニットは、多角柱構造のターゲットホルダであり、該多角柱構造のターゲットホルダの側面の各々にはターゲットが配置可能であり、
     前記スパッタリングターゲットにイオンビームを照射するためのイオンビーム源が、前記多角柱構造のターゲットホルダの斜向かい、かつ前記基板ホルダとは別個の位置に配置されており、
     前記多角柱構造のターゲットホルダを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項26に記載のスパッタリング装置。
  30.  前記カソードユニット及び前記スパッタリングターゲットは前記基板ホルダの回転軸周りに複数個配置され、
     個々のカソードユニットに順次または交互に電圧を印加することによって、前記基板上に積層膜を成膜することを特徴とする請求項15に記載のスパッタリング装置。
  31.  前記カソードユニットは、多角柱構造のカソードユニットであり、該多角柱のカソードユニットの側面の各々にはスパッタリングターゲットが配置可能であり、
     前記多角柱構造のカソードユニットを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項15に記載のスパッタリング装置。
  32.  前記カソードユニットは、多角柱構造のターゲットホルダであり、該多角柱構造のターゲットホルダの側面の各々にはターゲットが配置可能であり、
     前記スパッタリングターゲットにイオンビームを照射するためのイオンビーム源が、前記多角柱構造のターゲットホルダの斜向かい、かつ前記基板ホルダとは別個の位置に配置されており、
     前記多角柱構造のターゲットホルダを順次または交互に回転することによって、前記基板上に積層膜を成膜することを特徴とする請求項15に記載のスパッタリング装置。
  33.  スパッタリングによる成膜方法であって、
     回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、
     前記基板を回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、
     前記形成する工程は、前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際には前記被処理面となる側面への成膜量が相対的に多くなり、かつ前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際には前記被処理面となる側面への成膜量が相対的に少なくなるように、前記膜を形成することを特徴とする成膜方法。
  34.  スパッタリングによる成膜方法であって、
     回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、
     前記基板を回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、
     前記形成する工程は、
      前記基板の回転位置を検出する工程と、
      前記検出した回転位置に応じて、前記基板の回転速度を調整する工程とを有し、
     前記調整する工程は、
     前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記基板の回転速度を制御することを特徴とする成膜方法。
  35.  スパッタリングによる成膜方法であって、
     回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、
     前記基板を非連続的に回転しながら、前記基板の斜向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、
     前記形成する工程は、
      前記基板の回転位置を検出する工程と、
      前記検出した回転位置に応じて、前記基板の回転停止時間を調整する工程とを有し、
     前記調整する工程は、
     前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御することを特徴とする成膜方法。
  36.  スパッタリングによる成膜方法であって、
     回転可能な基板ホルダ上に、少なくとも1つの凹凸構造が形成された基板を配置する工程と、
     前記基板を回転しながら、カソードユニットに電力を供給することでプラズマを発生させ、前記基板の斜め向かいの位置に配置されたスパッタリングターゲットをスパッタして、前記凹凸構造の被処理面上に膜を形成する工程とを有し、
     前記形成する工程は、
      前記基板の回転位置を検出する工程と、
      前記検出した回転位置に応じて、前記電力を調整する工程とを有し、
     前記調整する工程は、
     前記基板上の前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記カソードユニットに供給される電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記カソードユニットに供給される電力よりも大きくなるように、前記カソードユニットへの供給電力を調整することを特徴とする成膜方法。
  37.  基板を回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記基板ホルダの回転を制御する回転駆動手段とを備えたスパッタリング装置を制御するための制御装置であって、
     前記位置検出手段から前記回転位置に関する情報を取得する手段と、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転速度よりも遅くなるように、前記回転駆動手段を制御するための制御信号を生成する手段と、
     前記生成された制御信号を前記回転駆動手段に送信する手段と
     を備えることを特徴とする制御装置。
  38.  基板を非連続的に回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記位置検出手段の検出した回転位置に応じて、前記基板の回転停止時間を調整する回転駆動手段とを備えたスパッタリング装置を制御するための制御装置であって、
     前記位置検出手段から前記回転位置に関する情報を取得する手段と、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象のスパッタリングターゲットが位置する際の前記基板の回転停止時間よりも長くなるように、前記基板の回転停止時間を制御するための制御信号を生成する手段と、
     前記生成された制御信号を前記回転駆動手段に送信する手段と
     を備えることを特徴とする制御装置。
  39.  基板を回転可能に保持するための基板ホルダと、
     前記基板ホルダの斜向かいの位置に配置された、少なくとも1つのスパッタリングターゲットを支持するためのターゲットホルダと、
     前記基板ホルダ上に保持された基板の回転位置を検出するための位置検出手段と、
     前記カソードユニットへ供給電力を供給する電力供給源とを備えたスパッタリング装置を制御するための制御装置であって、
     前記スパッタリング装置から前記回転位置に関する情報を取得する手段と、
     前記基板ホルダに少なくとも1つの凹凸構造が形成された基板が配置された際、前記取得された回転位置に関する情報に応じて、前記凹凸構造の被処理面となる側面に平行であり且つ前記基板の面内方向に平行である第1の方向側に成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力が、前記第1の方向と垂直であり且つ前記基板面内に平行である第2の方向側に前記成膜対象の前記スパッタリングターゲットが位置する際の前記カソードユニットへの供給電力よりも大きくなるように、前記カソードユニットへの供給電力を制御するための制御信号を生成する手段と、
     前記生成された制御信号を前記電力供給源に送信する手段と
     を備えることを特徴とする制御装置。
  40.  コンピュータを請求項37に記載の制御装置として機能させることを特徴とするコンピュータプログラム。
  41.  コンピュータにより読み出し可能なプログラムを格納した記憶媒体であって、請求項40に記載のコンピュータプログラムを格納したことを特徴とする記憶媒体。
  42.  コンピュータを請求項38に記載の制御装置として機能させることを特徴とするコンピュータプログラム。
  43.  コンピュータにより読み出し可能なプログラムを格納した記憶媒体であって、請求項42に記載のコンピュータプログラムを格納したことを特徴とする記憶媒体。
  44.  コンピュータを請求項39に記載の制御装置として機能させることを特徴とするコンピュータプログラム。
  45.  コンピュータにより読み出し可能なプログラムを格納した記憶媒体であって、請求項44に記載のコンピュータプログラムを格納したことを特徴とする記憶媒体。
PCT/JP2011/060924 2010-06-25 2011-05-12 スパッタリング装置、成膜方法、および制御装置 WO2011162036A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11797923.7A EP2586889A4 (en) 2010-06-25 2011-05-12 CATHODIC SPRAY DEVICE, DEPOSITION METHOD, AND CONTROL DEVICE
CN201180041189.3A CN103080367B (zh) 2010-06-25 2011-05-12 膜沉积方法
JP2012521372A JP5792723B2 (ja) 2010-06-25 2011-05-12 スパッタリング装置、成膜方法、および制御装置
KR1020157009912A KR20150048901A (ko) 2010-06-25 2011-05-12 스퍼터링 장치, 박막증착 방법 및 컨트롤 디바이스
KR1020177015053A KR102083955B1 (ko) 2010-06-25 2011-05-12 스퍼터링 장치, 박막증착 방법 및 컨트롤 디바이스
KR1020137001793A KR20130059384A (ko) 2010-06-25 2011-05-12 스퍼터링 장치, 박막증착 방법 및 컨트롤 디바이스
US13/710,696 US20130105298A1 (en) 2010-06-25 2012-12-11 Sputtering apparatus, film deposition method, and control device
US14/948,481 US9991102B2 (en) 2010-06-25 2015-11-23 Sputtering apparatus, film deposition method, and control device
US15/971,479 US10636634B2 (en) 2010-06-25 2018-05-04 Sputtering apparatus, film deposition method, and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-144847 2010-06-25
JP2010144847 2010-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/710,696 Continuation US20130105298A1 (en) 2010-06-25 2012-12-11 Sputtering apparatus, film deposition method, and control device

Publications (1)

Publication Number Publication Date
WO2011162036A1 true WO2011162036A1 (ja) 2011-12-29

Family

ID=45371237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060924 WO2011162036A1 (ja) 2010-06-25 2011-05-12 スパッタリング装置、成膜方法、および制御装置

Country Status (6)

Country Link
US (3) US20130105298A1 (ja)
EP (1) EP2586889A4 (ja)
JP (2) JP5792723B2 (ja)
KR (3) KR102083955B1 (ja)
CN (2) CN103080367B (ja)
WO (1) WO2011162036A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584196A (zh) * 2012-06-29 2015-04-29 佳能安内华股份有限公司 离子束处理方法和离子束处理装置
CN110578117A (zh) * 2018-06-11 2019-12-17 佳能特机株式会社 基板旋转装置、基板旋转方法及电子装置的制造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786868B1 (ko) 2010-12-28 2017-10-18 캐논 아네르바 가부시키가이샤 제조방법
JP5836485B2 (ja) 2012-06-29 2015-12-24 キヤノンアネルバ株式会社 スパッタリング装置およびスパッタリング方法
US9404182B2 (en) * 2012-10-22 2016-08-02 Sensor Electronic Technology, Inc. Multi-wafer reactor
KR101664187B1 (ko) * 2014-10-27 2016-10-11 주식회사 셀코스 스퍼터링 장치를 이용한 증착 방법
FI126769B (en) * 2014-12-23 2017-05-15 Picodeon Ltd Oy Lighthouse type scanner with a rotating mirror and a circular target
JP6784608B2 (ja) 2017-02-09 2020-11-11 株式会社神戸製鋼所 成膜装置および成膜物の製造方法
CN108690965B (zh) * 2017-03-31 2020-06-30 芝浦机械电子装置株式会社 等离子体处理装置
CN108962709B (zh) * 2017-05-17 2020-07-17 北京北方华创微电子装备有限公司 磁控溅射腔室及托盘位置误差检测方法
CN106958011B (zh) * 2017-05-17 2019-02-22 赵其煜 动态控制溅射靶材利用率的控制装置和控制方法
US20200135464A1 (en) * 2018-10-30 2020-04-30 Applied Materials, Inc. Methods and apparatus for patterning substrates using asymmetric physical vapor deposition
US11557473B2 (en) 2019-04-19 2023-01-17 Applied Materials, Inc. System and method to control PVD deposition uniformity
TW202104628A (zh) 2019-04-19 2021-02-01 美商應用材料股份有限公司 用於控制pvd沉積均勻性的系統及方法
CN110438463A (zh) * 2019-07-29 2019-11-12 光驰科技(上海)有限公司 一种解决镀膜产品横向均匀性的方法及其镀膜装置
JP7382809B2 (ja) * 2019-12-02 2023-11-17 キヤノントッキ株式会社 成膜方法及び成膜装置
JP7318565B2 (ja) * 2020-03-03 2023-08-01 信越化学工業株式会社 反射型マスクブランクの製造方法
CN113388820B (zh) * 2021-08-16 2021-11-09 陛通半导体设备(苏州)有限公司 改善填充膜均匀性的基座装置、溅射设备及溅射工艺
KR20230033053A (ko) * 2021-08-26 2023-03-08 삼성디스플레이 주식회사 스퍼터링 장치
US11631535B1 (en) * 2021-10-07 2023-04-18 Western Digital Technologies, Inc. Longitudinal sensor bias structures and method of formation thereof
CN117051372B (zh) * 2023-08-08 2024-04-02 上海悦匠实业有限公司 一种带限位控制的晶圆载片台升降设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292475A (ja) 1994-04-22 1995-11-07 Sony Corp プラズマエンハンスメント気相成長方法及びその装置
US5877087A (en) 1995-11-21 1999-03-02 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
JP2000265263A (ja) 1999-01-12 2000-09-26 Anelva Corp スパッタリング方法及び装置
US6699783B2 (en) 2000-05-15 2004-03-02 Asm International N.V. Method for controlling conformality with alternating layer deposition
US6716322B1 (en) 2001-04-19 2004-04-06 Veeco Instruments Inc. Method and apparatus for controlling film profiles on topographic features
JP2004107688A (ja) 2002-09-13 2004-04-08 Ulvac Japan Ltd バイアススパッタ成膜方法及びバイアススパッタ成膜装置
JP2004232006A (ja) * 2003-01-29 2004-08-19 Hitachi Metals Ltd 蒸着装置及び方法
JP2009041040A (ja) 2007-08-06 2009-02-26 Ulvac Japan Ltd 真空蒸着方法および真空蒸着装置
WO2010038421A1 (ja) 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 スパッタリング装置及びスパッタリング方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266062A (ja) * 1987-04-23 1988-11-02 Sumitomo Metal Mining Co Ltd 多元素スパツタ薄膜の製造方法及びスパツタ装置
JP4260274B2 (ja) * 1999-03-17 2009-04-30 キヤノンアネルバ株式会社 スパッタリング装置
US6046097A (en) * 1999-03-23 2000-04-04 United Microelectronics Corp. Deposition method with improved step coverage
JP3597762B2 (ja) * 2000-07-24 2004-12-08 株式会社日立製作所 半導体集積回路及びその製造方法
JP2003147519A (ja) 2001-11-05 2003-05-21 Anelva Corp スパッタリング装置
JP2008026093A (ja) * 2006-07-20 2008-02-07 Canon Inc 多層膜反射鏡およびその製造方法
WO2008149635A1 (ja) 2007-06-01 2008-12-11 Yamaguchi University 薄膜作製用スパッタ装置
WO2009044473A1 (ja) 2007-10-04 2009-04-09 Canon Anelva Corporation 高周波スパッタリング装置
JP5259626B2 (ja) * 2007-12-26 2013-08-07 キヤノンアネルバ株式会社 スパッタ装置、スパッタ成膜方法
JP5584409B2 (ja) * 2008-02-21 2014-09-03 キヤノンアネルバ株式会社 スパッタリング装置およびその制御方法
US20110042209A1 (en) 2008-06-25 2011-02-24 Canon Anelva Corporation Sputtering apparatus and recording medium for recording control program thereof
US20130134032A1 (en) 2008-06-25 2013-05-30 Canon Anelva Corporation Method of fabricating and apparatus of fabricating tunnel magnetic resistive element
JP4727764B2 (ja) 2008-12-03 2011-07-20 キヤノンアネルバ株式会社 プラズマ処理装置、磁気抵抗素子の製造装置、磁性薄膜の成膜方法及び成膜制御プログラム
CN101842512A (zh) * 2008-12-24 2010-09-22 佳能安内华股份有限公司 溅射设备和成膜方法
CN102460650B (zh) 2009-06-24 2014-10-01 佳能安内华股份有限公司 真空加热/冷却装置及磁阻元件的制造方法
TW201135845A (en) 2009-10-09 2011-10-16 Canon Anelva Corp Acuum heating and cooling apparatus
JP2011246759A (ja) * 2010-05-26 2011-12-08 Ulvac Japan Ltd 成膜装置及び成膜方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292475A (ja) 1994-04-22 1995-11-07 Sony Corp プラズマエンハンスメント気相成長方法及びその装置
US5877087A (en) 1995-11-21 1999-03-02 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
JP2000265263A (ja) 1999-01-12 2000-09-26 Anelva Corp スパッタリング方法及び装置
US6699783B2 (en) 2000-05-15 2004-03-02 Asm International N.V. Method for controlling conformality with alternating layer deposition
US6716322B1 (en) 2001-04-19 2004-04-06 Veeco Instruments Inc. Method and apparatus for controlling film profiles on topographic features
JP2004107688A (ja) 2002-09-13 2004-04-08 Ulvac Japan Ltd バイアススパッタ成膜方法及びバイアススパッタ成膜装置
JP2004232006A (ja) * 2003-01-29 2004-08-19 Hitachi Metals Ltd 蒸着装置及び方法
JP2009041040A (ja) 2007-08-06 2009-02-26 Ulvac Japan Ltd 真空蒸着方法および真空蒸着装置
WO2010038421A1 (ja) 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 スパッタリング装置及びスパッタリング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2586889A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584196A (zh) * 2012-06-29 2015-04-29 佳能安内华股份有限公司 离子束处理方法和离子束处理装置
CN110578117A (zh) * 2018-06-11 2019-12-17 佳能特机株式会社 基板旋转装置、基板旋转方法及电子装置的制造方法

Also Published As

Publication number Publication date
CN103080367A (zh) 2013-05-01
JP5792723B2 (ja) 2015-10-14
EP2586889A4 (en) 2016-01-20
US20180254172A1 (en) 2018-09-06
CN103080367B (zh) 2015-09-02
KR20170064005A (ko) 2017-06-08
KR20150048901A (ko) 2015-05-07
KR102083955B1 (ko) 2020-03-03
EP2586889A1 (en) 2013-05-01
JP2015155577A (ja) 2015-08-27
US9991102B2 (en) 2018-06-05
CN105088154A (zh) 2015-11-25
CN105088154B (zh) 2018-05-18
JP5952464B2 (ja) 2016-07-13
KR20130059384A (ko) 2013-06-05
US20130105298A1 (en) 2013-05-02
JPWO2011162036A1 (ja) 2013-08-19
US20160079045A1 (en) 2016-03-17
US10636634B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP5952464B2 (ja) 成膜方法、および制御装置
JP5192549B2 (ja) スパッタリング装置及びスパッタリング方法
US10546720B2 (en) Ion beam processing device
JP5587822B2 (ja) スパッタリング装置、スパッタリング方法及び電子デバイスの製造方法
JP6053819B2 (ja) 磁気抵抗効果素子の製造方法
JP5657378B2 (ja) イオンビームエッチング装置、方法及び制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041189.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521372

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011797923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137001793

Country of ref document: KR

Kind code of ref document: A