WO2011155520A1 - スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途 - Google Patents

スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途 Download PDF

Info

Publication number
WO2011155520A1
WO2011155520A1 PCT/JP2011/063123 JP2011063123W WO2011155520A1 WO 2011155520 A1 WO2011155520 A1 WO 2011155520A1 JP 2011063123 W JP2011063123 W JP 2011063123W WO 2011155520 A1 WO2011155520 A1 WO 2011155520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
formula
structural unit
above formula
Prior art date
Application number
PCT/JP2011/063123
Other languages
English (en)
French (fr)
Inventor
芳孝 山川
敏明 門田
拓也 村上
裕志 角田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US13/702,824 priority Critical patent/US8729219B2/en
Priority to JP2012519410A priority patent/JP5692226B2/ja
Publication of WO2011155520A1 publication Critical patent/WO2011155520A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/02Polyphenylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a novel polyarylene block copolymer having a sulfonic acid group, and a solid polymer electrolyte and a proton conducting membrane comprising the polyarylene copolymer having the sulfonic acid group.
  • Electrolytes are usually used in a solution such as an aqueous solution.
  • a solution such as an aqueous solution.
  • the first reason is, for example, the ease of processing when applied to the above-mentioned electric / electronic materials, and the second reason is the shift to light, thin, small and power saving.
  • inorganic compounds are known as proton conductive materials.
  • examples of inorganic compounds include, for example, uranyl phosphate, which is a hydrated compound, but since these inorganic compounds do not have sufficient contact at the substrate or electrode interface, the conductive layer is formed on the substrate or electrode. Many problems arise.
  • organic compounds include sulfonated products of vinyl polymers such as polystyrene sulfonic acid, perfluoroalkyl sulfonic acid polymers represented by Nafion (trade name, manufactured by DuPont), and perfluoroalkyl carboxylic acid polymers.
  • vinyl polymers such as polystyrene sulfonic acid, perfluoroalkyl sulfonic acid polymers represented by Nafion (trade name, manufactured by DuPont), and perfluoroalkyl carboxylic acid polymers.
  • examples include polymers belonging to so-called cation exchange resins, or organic polymers such as polymers in which a sulfonic acid group or a phosphoric acid group is introduced into a heat-resistant polymer such as polybenzimidazole or polyether ether ketone.
  • an electrode-membrane assembly is usually obtained by sandwiching an electrolyte membrane made of the perfluoroalkylsulfonic acid polymer between both electrodes and performing a heat treatment such as hot pressing.
  • a fluorine-based film such as this perfluoroalkyl sulfonic acid polymer has a relatively low heat deformation temperature of about 80 ° C., and can be easily joined.
  • the temperature may be 80 ° C. or higher due to the reaction heat, so that the electrolyte membrane softens and a creep phenomenon occurs, which causes a problem that both electrodes are short-circuited and power generation becomes impossible.
  • the fuel cell is designed so that the thickness of the electrolyte membrane is increased to some extent or the temperature during power generation is 80 ° C. or less, but the maximum output of power generation is It will decline.
  • Patent Document 1 discloses a solid polymer electrolyte made of sulfonated rigid polyphenylene.
  • This polymer is mainly composed of a polymer obtained by polymerizing an aromatic compound comprising a phenylene chain, and this is reacted with a sulfonating agent to introduce a sulfonic acid group.
  • the electrolyte membrane made of this polymer has a heat distortion temperature of 180 ° C. or higher and is excellent in creep resistance at high temperatures.
  • electrolyte membranes are greatly swelled in hot water and contracted during drying, and are still insufficient as electrolyte membranes used for polymer electrolyte fuel cells.
  • An object of the present invention is to provide a polyarylene copolymer having a sulfonic acid group having high proton conductivity, low swelling in hot water, and small shrinkage during drying, and a solid polymer electrolyte produced from the copolymer And providing a proton conducting membrane.
  • each R 1 is independently a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. 1-1) or a structural unit represented by the following formula (1-2), at least one of the plurality of L is a structural unit represented by the following formula (1-1), and a is An integer of 0 to 3, and p represents an integer of 2 to 200.
  • the plurality of R 1 , a, and L may be the same or different, h is an integer of 1 to 4-a)
  • each A is independently —O— or —S—
  • each R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms, or 1 carbon atom.
  • each X 1 independently represents a halogen atom
  • b represents an integer of 1 to 4
  • l represents an integer of 0 to 3, provided that b + l is 4 or less. .
  • each A is independently —O— or —S—
  • D is a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), At least one structure selected from the group consisting of —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group and a fluorenylidene group; R 3 and R 4 are each independently a hydrocarbon group having 1 to 20 carbon atoms or a halogenated hydrocarbon group having 1 to 20 carbon atoms, and X 2 and X 3 are each independently A halogen atom, c and d are integers of 0 to 4,
  • c + m and d + n are 4 or less.
  • the number average molecular weight in terms of polystyrene of the precursor represented by the following formula (1 ′) for deriving the polymer segment (B) having no sulfonic acid group is 1,000 to 50,000.
  • Polyarylene block copolymer
  • the structural unit represented by the above formula (1-1) is a molar ratio of the structural unit represented by the following formula (1-3) and the structural unit represented by the following formula (1-4) (1-3) :
  • R 2 , A, X 1 and l are as defined in the above formula (1-1), and e represents 1 or 3.
  • Ar 11 , Ar 12 , and Ar 13 are each independently at least one selected from the group consisting of a benzene ring, a condensed aromatic ring, and a nitrogen-containing heterocyclic ring, which may be substituted with a fluorine atom.
  • Y represents a divalent group having a structure: Y represents —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) u — (u is an integer of 1 to 10; Z) represents —O—, —S—, direct bond, —CO—, —SO 2 —, —SO—, — (CH 2 ), or —C (CF 3 ) 2 — or a direct bond. l- (l is an integer of 1 to 10) or -C (CH 3 ) 2- .
  • R 22 represents a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p — or — (CF 2 ) p — (p is 1 to 12) Indicates an integer).
  • R 23 and R 24 each independently represent a hydrogen atom, an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, or a heterocyclic group containing oxygen. However, at least one of all R 23 and R 24 included in the above formula is a hydrogen atom.
  • x 1 is an integer from 0 to 4
  • x 2 is an integer from 1 to 5
  • a is an integer from 0 to 1
  • b is an integer from 0 to 3.
  • a polymer electrolyte comprising the polyarylene block copolymer of [1] to [6].
  • a proton conducting membrane comprising the polyarylene block copolymer of [1] to [7].
  • the polyarylene block copolymer having a sulfonic acid group according to the present invention has a specific structural unit, swelling in hot water and shrinkage during drying are small. Therefore, it is possible to introduce a sulfonic acid group at a high concentration, and it is possible to obtain a solid polymer electrolyte and a proton conductive membrane having high proton conductivity, high dimensional stability, and high mechanical strength.
  • the polyarylene copolymer having a sulfonic acid group according to the present invention is a proton conductive membrane for a fuel cell. Can be suitably used.
  • the polyarylene copolymer of the present invention has a polymer segment (A) having a sulfonic acid group and a polymer segment (B) having substantially no sulfonic acid group.
  • the structure of the copolymer is not particularly limited, and may be a random copolymer or a block copolymer, or a mixture thereof.
  • a block copolymer is preferable.
  • the polymer segment (B) having substantially no sulfonic acid group has a structural unit represented by the following formula (1).
  • each R 1 independently represents a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms
  • L represents the following formula (1 -1) or a structural unit represented by the following formula (1-2)
  • at least one of the plurality of L is a structural unit represented by the following formula (1-1)
  • a is 0
  • An integer of ⁇ 3, p is an integer of 2 to 200, and h is an integer of 1 to (4-a).
  • a plurality of R 1 , a and L may be the same or different.
  • each A is independently —O— or —S—
  • each R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms, or 20 halogenated hydrocarbon groups
  • each X 1 independently represents a halogen atom
  • b represents an integer of 1 to 4
  • l represents an integer of 0 to 3.
  • A is each independently —O— or —S—
  • D is a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—. , —CONH—, —COO—, — (CF 2 ) i — (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, an alicyclic aromatic hydrocarbon group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group and a fluorenylidene group
  • R 3 and R 4 are each independently a hydrocarbon group having 1 to 20 carbon atoms or a halogenated hydrocarbon group having 1 to 20 carbon atoms
  • X 2 and X 3 Each independently represents a halogen atom, c and d are integers
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1 to R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a tetramethylbutyl group, C1-C20 alkyl groups such as amyl group, pentyl group and hexyl group; C3-C20 cycloalkyl groups such as cyclopentyl group and cyclohexyl group; C6-C6 such as phenyl group, naphthyl group and biphenyl group 20 aromatic hydrocarbon groups; alkenyl groups having 2 to 20 carbon atoms such as vinyl groups and allyl groups.
  • Examples of the monovalent halogenated hydrocarbon group having 1 to 20 carbon atoms in R 1 to R 4 include a halogenated alkyl group having 1 to 20 carbon atoms, a halogenated cycloalkyl group having 3 to 20 carbon atoms, and 6 carbon atoms. -20 halogenated aromatic hydrocarbon groups and the like.
  • Examples of the halogenated alkyl group include a trichloromethyl group, a trifluoromethyl group, a tribromomethyl group, a pentachloroethyl group, a pentafluoroethyl group, and a pentabromoethyl group; and the halogenated aromatic hydrocarbon group. Examples thereof include a chlorophenyl group and a chloronaphthyl group.
  • the plurality of R 3 , c, m, X 2 , R 4 , and X 3 may be the same or different. Further, when a plurality of R 1 to R 4 are provided, these may be the same or different.
  • R 2 is preferably branched, and if a branched alkyl group such as tert-butyl group, tetramethylbutyl group, or tert-amyl group is introduced, the productivity of the polymer can be improved and the production during film production can be improved. The film property can be improved.
  • A is preferably 0 or 1, more preferably 0.
  • B is preferably 1 to 3, more preferably 1 or 2.
  • C is preferably 0 or 1, more preferably 0.
  • D is preferably 0 or 1, more preferably 0.
  • A is preferably -O-.
  • P is preferably from 2 to 150, more preferably from 3 to 125, and even more preferably from 5 to 100.
  • the polyarylene block polymer according to the present invention includes a polymer segment having a CN group introduced into the main chain and having a structural unit represented by the formula (1) as an essential component.
  • Such a polymer segment can suppress the movement of the molecular chain segment of the polymer main chain, and finally can produce a block copolymer with small swelling during hot water and shrinkage during drying.
  • Q is preferably 1 or 2, and more preferably 1.
  • the structural unit represented by the above formula (1-1) and the structural unit represented by the above formula (1-2) have a molar ratio (1-1) :( 1-2) of 100: 0 to 50:50. It is preferably included in a ratio, and more preferably in a ratio of 100: 0 to 75:25.
  • the structural unit represented by the above formula (1-1) is a molar ratio (1-3) of the structural unit represented by the following formula (1-3) and the structural unit represented by the following formula (1-4): (1-4) is preferably contained in a ratio of 10:90 to 90:10, and more preferably in a ratio of 20:80 to 80:20.
  • the polymer segment (B) is obtained by combining the formulas (1-3) and (1-4), the stereoregularity in the polymer segment (B) is relaxed and dissolved in the solvent for casting film formation. And the film forming property is improved.
  • the formulas (1-3) and (1-4) are formed by highly hydrophobic alkyl side chains or perfluoroalkyl side chains, the swelling of the membrane in hot water decreases. It is thought that there is nothing. This ratio is adjusted by the ratio of the compounds of the formulas (1-6) and (1-7) when preparing the compound (A) which becomes the structural unit of the polymer segment having substantially no sulfonic acid group, which will be described later. It becomes possible.
  • R 2 , A, X 1 , and l have the same meanings as in the above formula (1-1), and e represents 1 or 3.
  • R 2 , A, X 1 , and l have the same meanings as in the above formula (1-1), and f represents 2 or 4.
  • f represents 2 or 4.
  • the number average molecular weight in terms of polystyrene of the precursor represented by the following formula (1 ′) for deriving the polymer segment (B) having substantially no sulfonic acid group is 1,000 to 50,000. It is preferably 2,000 to 30,000, more preferably 3,000 to 20,000.
  • R 1 , L, a, p and h are the same as in formula (1), and X ′ is a halogen atom, a nitro group, —SO 2 CH 3 and —SO 2 CF 3. Indicates the selected atom or group.
  • an arbitrary segment may be included as long as the object of the present invention is not impaired.
  • a segment including a structural unit represented by the following formula may be included.
  • E and F are independently a direct bond, or —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) l — (l is an integer of 1 to 10) ), — (CH 2 ) 1 — (wherein 1 is an integer of 1 to 10), —CR ′ 2 — (R ′ represents an aliphatic hydrocarbon group, aromatic hydrocarbon group and halogenated hydrocarbon group.
  • Ar 11 , Ar 12 , and Ar 13 are each independently at least selected from the group consisting of a benzene ring, a condensed aromatic ring, and a nitrogen-containing heterocyclic ring that may be substituted with a fluorine atom.
  • a divalent group having one type of structure is shown.
  • Y represents —CO—, —CONH—, —COO—, —SO 2 —, —SO—, — (CF 2 ) u — (u is an integer of 1 to 10), —C (CF 3 ) 2 -Or indicates direct binding.
  • Z is —O—, —S—, direct bond, —CO—, —SO 2 —, —SO—, — (CH 2 ) l — (l is an integer of 1 to 10), or C (CH 3 ) Indicates 2- .
  • R 22 represents a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p — or (CF 2 ) p — (p is an integer of 1 to 12) Showing).
  • R 23 and R 24 each independently represent a hydrogen atom, an alkali metal atom or an aliphatic hydrocarbon group. However, at least one of all R 23 and R 24 included in the above formula is a hydrogen atom.
  • x 1 is an integer from 0 to 4
  • x 2 is an integer from 1 to 5
  • a is an integer from 0 to 1
  • b is an integer from 0 to 3.
  • the structural unit having a sulfonic acid group is preferably composed of a repeating unit represented by the following formula (3-1).
  • Ar 11 , Ar 12 , and Ar 13 are each independently at least selected from the group consisting of an aromatic ring such as a benzene ring and a naphthalene ring, and a nitrogen-containing heterocyclic ring, which may be substituted with a fluorine atom.
  • an aromatic ring such as a benzene ring and a naphthalene ring
  • a nitrogen-containing heterocyclic ring which may be substituted with a fluorine atom.
  • One type of structure is shown.
  • Y represents —CO—, —CONH—, —COO—, —SO 2 —, —SO—, — (CF 2 ) u — (u is an integer of 1 to 10), —C (CF 3 ) 2 -Represents at least one structure selected from the group consisting of direct bonds.
  • Z is —O—, —S—, direct bond, —CO—, —SO 2 —, —SO—, — (CH 2 ) l — (l is an integer of 1 to 10), —C (CH 3 ) At least one structure selected from the group consisting of 2- .
  • R 22 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —.
  • P represents an integer of 1 to 12).
  • R 23 and R 24 each independently represent at least one structure selected from the group consisting of a hydrogen atom, an alkali metal atom, and an aliphatic hydrocarbon group. However, at least one of all R 23 and R 24 included in the above formula is a hydrogen atom.
  • x 1 is an integer of 0 to 4
  • x 2 is an integer of 1 to 5
  • a is an integer of 0 to 1
  • b1 and b2 are integers of 0 to 3.
  • the repeating unit represented by the above formula (3) or (3-1) preferably has a structure represented by the following formula (3-2).
  • Y is —CO—, —SO 2 —, —SO—, a direct bond, — (CF 2 ) u — (u is an integer of 1 to 10), —C (CF 3 2 ) At least one structure selected from the group consisting of 2 —.
  • Z is a direct bond, or — (CH 2 ) 1 — (wherein 1 is an integer of 1 to 10), —C (CH 3 ) 2 —, —O—, —S—, —CO—, —SO 2 —.
  • Ar represents a substituent represented by —SO 3 H or —O (CH 2 ) p SO 3 H or —O (CF 2 ) p SO 3 H.
  • the aromatic group which has. p represents an integer of 1 to 12
  • m represents an integer of 0 to 3
  • n represents an integer of 0 to 3
  • k represents an integer of 1 to 4.
  • the single lines at the end of the structural unit those not having a substituent displayed on one side mean connection with the adjacent structural unit.
  • the plurality of Z and k may be the same or different, and the bonding position is not particularly limited.
  • the aromatic group include a phenyl group and a naphthyl group.
  • a structural unit having a phosphonic acid group together with a sulfonic acid group may contain a structural unit having a phosphonic acid group together with a sulfonic acid group.
  • a structural unit having nitrogen-containing heterocyclic group may be included, and the nitrogen-containing heterocyclic group has a structure represented by the following formula (4-1).
  • V is not particularly limited as long as it is a divalent organic group, but is preferably a group consisting of —O—, —S—, direct bond, —CO—, —SO 2 — or — or —SO—. At least one structure selected from the above is shown.
  • R s is a direct bond or any divalent organic group that is not particularly limited.
  • the divalent organic group may be any hydrocarbon group having 1 to 20 carbon atoms, specifically, an alkylene group such as a methylene group or an ethylene group, an aromatic ring such as a phenylene group, a condensed aromatic ring, or a nitrogen-containing group.
  • R s may be a group represented by —W—Ar 9 —.
  • Ar 9 represents a divalent group having at least one structure selected from the group consisting of a benzene ring, a condensed aromatic ring, and a nitrogen-containing heterocyclic ring, which may be substituted with a fluorine atom. .
  • W represents —CO—, —SO 2 —, —SO—, — (CF 2 ) u — (u is an integer of 1 to 10), —C (CF 3 ) 2 —, or a group consisting of direct bonds. It shows at least one selected structure.
  • E represents an integer of 0 to 4
  • f represents an integer of 1 to 5.
  • the aromatic ring of the main chain and the electron-withdrawing group V are preferably bonded directly from the viewpoint of stability, but an arbitrary divalent group (that is, R s ) is interposed as long as the effect of the present invention is not impaired. You may do it.
  • the structure having a nitrogen-containing heterocyclic group of the formula (4-1) is preferably a structure represented by the following formula (4-2).
  • R h represents a nitrogen-containing heterocyclic group, and examples thereof include 5- and 6-membered ring structures containing nitrogen. Further, the number of nitrogen atoms in the heterocycle is not particularly limited as long as it is 1 or more, and the heterocycle may contain oxygen or sulfur in addition to nitrogen.
  • nitrogen-containing heterocyclic group constituting R h examples include pyrrole, thiazole, isothiazole, oxazole, isoxazole, pyridine, imidazole, imidazoline, pyrazole, 1,3,5-triazine, pyrimidine, pyritazine, and pyrazine.
  • nitrogen-containing heterocyclic groups may have a substituent.
  • substituents include alkyl groups such as a methyl group, an ethyl group, and a propyl group, and aryl groups such as a phenyl group, a toluyl group, and a naphthyl group. Group, cyano group, fluorine atom and the like.
  • the structural unit having a nitrogen-containing heterocyclic group contained in the copolymer of the present invention is represented by the following formula (5).
  • Ar 10 represents a trivalent group having at least one structure selected from the group consisting of a benzene ring, a condensed aromatic ring, and a nitrogen-containing heterocyclic ring.
  • Ar 10 is a part of or all of the hydrogen atoms from a fluorine atom, a nitro group, a nitrile group, or an alkyl group, an allyl group or an aryl group in which part or all of the hydrogen atoms may be substituted with fluorine. It may be substituted with at least one atom or group selected from the group consisting of
  • V, e, f, R s and R h are the same as those in the above formulas (4-1) and (4-2).
  • the structure having a nitrogen-containing heterocyclic group preferably has a structure represented by the following formula (6) in the polyarylene block copolymer of the present invention.
  • V, R s and R h are the same as in the case of the formula (5).
  • those not having a substituent displayed on one side mean connection with the adjacent structural unit.
  • the nitrogen-containing heterocyclic group R h is preferably a pyridine ring.
  • the basicity of N is originally low among nitrogen-containing heterocycles, the property of improving proton conductivity in a low humidity region is exhibited.
  • V is preferably —CO— or —SO 2 —.
  • —CO— When —CO— is combined with a pyridine ring, it tends to have a thermally stable structure due to the stabilization effect by conjugation.
  • —SO 2 — lowers the electron density and further suppresses the basicity of nitrogen, whereby proton conductivity in a low humidity region can be particularly increased.
  • a solid polymer electrolyte membrane that is imparted basicity and has high sulfonic acid stability at high temperatures without impairing proton conductivity. Obtainable.
  • the amount of each structural unit is determined according to desired properties such as ion exchange capacity and molecular weight.
  • the polymer segment (B) having substantially no sulfonic acid group is contained in 1 mol of the total block copolymer total segment. It is desirable that it is contained in the range of 0.001 to 0.9 mol, preferably 0.003 to 0.8 mol, more preferably 0.005 to 0.6 mol.
  • the polyarylene block copolymer according to the present invention preferably has a swelling shrinkage of 20% or less.
  • a swelling shrinkage amount performs the hot water test for the film which consists of a polyarylene-type block copolymer, and calculates
  • the polymer segment (B) as described above since the polymer segment (B) as described above is included, it is possible to introduce sulfonic acid groups at a high concentration.
  • the amount of the polymer segment (A) having a sulfonic acid group is appropriately selected according to the ion exchange capacity.
  • the amount thereof is not particularly limited, but the segment including the structural unit having a nitrogen-containing heterocyclic group is 0.5 mol or less in a total of 1 mol of all segments. , Preferably 0.3 mol or less, more preferably 0.1 mol or less.
  • the molecular weight of the polymer of the present invention is 10,000 to 1,000,000, preferably 20,000 to 800,000, and more preferably 50,000 to 300,000 in terms of polystyrene-equivalent weight average molecular weight by gel permeation chromatography (GPC).
  • the ion exchange capacity of the polymer according to the present invention is usually 0.3 to 6 meq / g, preferably 0.5 to 4 meq / g, more preferably 0.8 to 3.5 meq / g. If the ion exchange capacity is within this range, the proton conductivity is high, the power generation performance can be enhanced, and sufficiently high water resistance can be provided.
  • the above-mentioned ion exchange capacity can be adjusted by changing the type, usage ratio, and combination of each structural unit. Therefore, it can be adjusted by changing the charge amount ratio and type of the precursor (monomer / oligomer) that induces the structural unit during polymerization.
  • the polyarylene copolymer of the present invention can be produced using, for example, the following A1 method or B1 method. (A1 method) For example, in the method described in JP-A No.
  • a compound (A) that is a structural unit of a polymer segment substantially free of a sulfonic acid group, a sulfonic acid that is a structural unit of a polymer segment having a sulfonic acid group It can be synthesized by copolymerizing the ester (B) and, if necessary, the compound (C), which is a structural unit having a nitrogen-containing heterocyclic group, and converting the sulfonic acid ester group to a sulfonic acid group.
  • Compound (A) to be a structural unit of a polymer segment substantially having no sulfonic acid group (hereinafter also referred to as “compound A”)
  • the polymer segment having substantially no sulfonic acid group can be introduced by using, for example, a compound represented by the following formula (1-5) as a polymerization raw material for the polyarylene copolymer.
  • R 1 , L, a, p and h are as defined in the above formula (1), and X ′ is a halogen atom, a nitro group, —SO 2 CH 3 and —SO 2 CF 3.
  • X ′ is a halogen atom, a nitro group, —SO 2 CH 3 and —SO 2 CF 3.
  • the compound represented by the above formula (1-5) can be synthesized, for example, by the following reaction.
  • bis (thio) phenols represented by the following formula (1-6) and, if necessary, bis (thio) phenols represented by the following formula (1-7) are used as alkali metal salts.
  • a polar solvent having a high dielectric constant such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, diphenylsulfone, dimethylsulfoxide
  • an alkali metal such as lithium, sodium, potassium
  • the alkali metal is reacted in excess with respect to the hydroxyl group of phenol, and is usually used in an amount of 1.1 to 2 times equivalent, preferably 1.2 to 1.5 times equivalent.
  • it is preferable to promote the progress of the reaction by coexisting a solvent azeotropic with water such as benzene, toluene, xylene, chlorobenzene, and anisole.
  • R 2 , A, l, X 1 and b are as defined in the above formula (1-1).
  • R 3 , R 4 , X 2 , X 3 , A, D, b, q are as defined in the above formula (1-2).
  • R 1 , a and h are as defined in the above formula (1), and Z is an atom selected from a halogen atom, a nitro group, —SO 2 CH 3 and —SO 2 CF 3 Or a group.
  • Examples of the bis (thio) phenol represented by the formula (1-6) include 2-methylhydroquinone, 2,3-dimethylhydroquinone, 2-tert-butylhydroquinone, 2,5-di-1,1,3,3 -Tetramethylbutylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,5-di-tert-butylhydroquinone, and those in which these OH groups are substituted with SH groups are preferred.
  • These bis (thio) phenols may be used alone or in combination of two or more.
  • Examples of the bis (thio) phenols represented by the formula (1-7) include 1,3-bis [1-methyl-1- (4-hydroxyphenyl) ethyl] benzene (Bis-M), 1,4 -Bis [1-methyl-1- (4-hydroxyphenyl) ethyl] benzene, 1,3- (4-hydroxybenzoylbenzene), 1,4- (4-hydroxybenzoylbenzene), 1,3-bis (4 -Hydroxyphenoxy) benzene, 1,4-bis (4-hydroxyphenoxy) benzene, 1,4-bis (4-hydroxyphenyl) benzene, 1,3-bis (4-hydroxyphenyl) benzene, 4,4'- Isopropylidenebiphenol (Bis-A), 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (Bis- AF), 4,4′-bishydroxybenzophenone (4,4′-DHBP), 4,4′
  • Examples of the compound represented by the formula (1-8) include 2,6-dinitrobenzonitrile, 2,5-dinitrobenzonitrile, 2,4-dinitrobenzonitrile, 2,6-dichlorobenzonitrile (2,6 -DCBN), 2,5-dichlorobenzonitrile (2,5-DCBN), 2,4-dichlorobenzonitrile (2,4-DBN), 2,6-difluorobenzonitrile (2,6-DFBN), 2 , 5-difluorobenzonitrile (2,5-DFBN), 2,4-difluorobenzonitrile (2,4-DFBN), and the like. These compounds may be used individually by 1 type, and may use 2 or more types together.
  • Sulfonic acid ester (B) which is a structural unit of a polymer segment having a sulfonic acid group (hereinafter also referred to as “compound B”)
  • the compound (B) is a monomer having a sulfonic acid group and is represented by the following formula (16).
  • Ar 11 , Ar 12 , Ar 13 may be the same or different, and may be substituted with a fluorine atom, a benzene ring, a condensed aromatic ring (A naphthalene ring or the like) and at least one structure selected from the group consisting of nitrogen-containing heterocycles.
  • X represents at least one structure selected from the group consisting of chlorine, bromine, iodine, methanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonyl group, and toluenesulfonyl group.
  • Y represents —CO—, —CONH—, —COO—, —SO 2 —, —SO—, — (CF 2 ) 1 — (l is an integer of 1 to 10), —C (CF 3 ) 2 -Represents at least one structure selected from the group consisting of direct bonds.
  • Z is —O—, —S—, direct bond, —CO—, —SO 2 —, —SO—, — (CH 2 ) l — (l is an integer of 1 to 10), —C (CH 3 ) At least one structure selected from the group consisting of 2- .
  • R 22 is at least one selected from the group consisting of a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p —, and — (CF 2 ) p —.
  • P represents an integer of 1 to 12).
  • R 23 and R 24 are at least one selected from the group consisting of a hydrogen atom, an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and a hydrocarbon group containing a heterocycle containing oxygen as a hetero atom.
  • the structure of is shown.
  • x 1 is an integer from 0 to 4
  • x 2 is an integer from 1 to 5
  • a is an integer from 0 to 1
  • b is an integer from 0 to 3.
  • a is 2 or more, a plurality of Y, Z, b, x 1 , Ar 12 , Ar 13 , R 23 , and R 24 may be the same or different.
  • the monomer represented by the above formula (16) preferably has a structure represented by the following formula (17).
  • X represents an atom or group selected from a chlorine atom, a bromine atom and —OSO 2 Rb (where Rb represents an alkyl group, a fluorine-substituted alkyl group or an aryl group).
  • C is an integer of 0 to 10, preferably 0 to 2
  • d is an integer of 0 to 10, preferably 0 to 2
  • k is an integer of 1 to 4.
  • c and d are 2 or more, a plurality of Z, R, and k may be the same or different.
  • Ar is an aromatic group having a substituent represented by —SO 3 R or —O (CH 2 ) h SO 3 R or —O (CF 2 ) h SO 3 R (h represents an integer of 1 to 12).
  • R is a branched or straight chain alkyl group, a cycloalkyl group, or a heterocyclic group containing oxygen as a hetero atom, and preferably has 4 to 20 carbon atoms. A part of R may be substituted with a hydrogen atom.
  • Specific examples of the compound represented by the formula (17) include compounds represented by the following formulas, JP-A Nos. 2004-137444, 2004-345997, and 2004-346163.
  • the sulfonic acid esters that have been described can be mentioned.
  • the bonding position of the sulfonate structure is not particularly limited to the exemplified positions.
  • Compound C as a structural unit having a nitrogen-containing heterocyclic group (hereinafter also referred to as “compound C”))
  • Compound C is a monomer having a nitrogen-containing heterocyclic structure and is represented by the following formula (24).
  • Ar 10 , V, e, f, R s and R h are the same as those in the above formulas (4-1), (4-2) and (5). Moreover, X is synonymous with said Formula (16).
  • W, V, R h , e and f are the same as in the above formulas (4-1), (4-2) and (5). Moreover, X is synonymous with said Formula (16).
  • Specific examples of the compound (C) include the following compounds.
  • Examples of a method for synthesizing Compound C include a method of subjecting a compound represented by the following formula (26) and a nitrogen-containing heterocyclic compound to a nucleophilic substitution reaction.
  • X ′ represents a halogen atom, specifically, preferably a fluorine atom or a chlorine atom, and more preferably a fluorine atom.
  • Specific examples of the compound represented by the formula (26) include 2,4-dichloro-4′-fluorobenzophenone, 2,5-dichloro-4′-fluorobenzophenone, and 2,6-dichloro-4′-fluorobenzophenone.
  • the nitrogen-containing heterocyclic compound has active hydrogen, and this active hydrogen is subjected to a substitution reaction with the group represented by X ′ of the compound represented by the formula (26).
  • nitrogen-containing heterocyclic compounds having active hydrogen examples include pyrrole, thiazole, isothiazole, oxazole, isoxazole, pyridine, imidazole, imidazoline, pyrazole, 1,3,5-triazine, pyrimidine, pyritazine, pyrazine, indole, quinoline, Isoquinoline, bromine, benzimidazole, benzoxazole, benzthiazole, tetrazole, tetrazine, triazole, carbazole, acridine, quinoxaline, quinazoline, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, 3-hydroxyquinoline, 8-hydroxy Quinoline, 2-hydroxypyrimidine, 2-mercaptopyridine, 3-mercaptopyridine, 4-mercaptopyridine, 2-mercaptopyrimidine, 2- , And the like mercaptoethyloleates benzthiazole.
  • pyrrole, imidazole, indole, carbazole, benzoxazole, benzimidazole, 2-hydroxypyridine, 3-hydroxypyridine, and 4-hydroxypyridine are preferable.
  • the reaction between the compound represented by formula (26) and the nitrogen-containing heterocyclic compound having active hydrogen is preferably carried out in an organic solvent.
  • a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, diphenylsulfone, dimethylsulfoxide is used.
  • alkali metal, alkali metal hydride, alkali metal hydroxide, alkali metal carbonate, or the like is used.
  • the ratio between the compound represented by the formula (26) and the nitrogen-containing heterocyclic compound having active hydrogen is such that an equimolar amount or nitrogen-containing heterocyclic compound having active hydrogen is added in excess.
  • the nitrogen-containing heterocyclic compound having active hydrogen is preferably used in an amount of 1 to 3 times mol, particularly 1 to 1.5 times mol of the compound represented by the formula (26).
  • the reaction temperature is 0 ° C to 300 ° C, preferably 10 ° C to 200 ° C.
  • the reaction time is 15 minutes to 100 hours, preferably 1 hour to 24 hours.
  • the product is preferably used after being purified by a method such as recrystallization.
  • the above-mentioned various compounds are copolymerized to obtain a precursor.
  • This copolymerization is carried out in the presence of a catalyst, and the catalyst used in this case is a catalyst system containing a transition metal compound.
  • This catalyst system is (1) a transition metal salt and a ligand.
  • a compound hereinafter referred to as “ligand component” or a transition metal complex coordinated with a ligand (including a copper salt) and (2) a reducing agent as essential components, and further increase the polymerization rate. Therefore, salts other than transition metal salts may be added.
  • transition metal salts include nickel compounds such as nickel chloride, nickel bromide, nickel iodide and nickel acetylacetonate, palladium compounds such as palladium chloride, palladium bromide and palladium iodide, iron chloride and iron bromide. And iron compounds such as iron iodide and cobalt compounds such as cobalt chloride, cobalt bromide and cobalt iodide. Of these, nickel chloride, nickel bromide and the like are particularly preferable.
  • Examples of the ligand include triphenylphosphine, tri (2-methyl) phenylphosphine, tri (3-methyl) phenylphosphine, tri (4-methyl) phenylphosphine, 2,2′-bipyridine, 1,5- Examples thereof include cyclooctadiene and 1,3-bis (diphenylphosphino) propane. Triphenylphosphine, tri (2-methyl) phenylphosphine, and 2,2′-bipyridine are preferable.
  • the said ligand can be used individually by 1 type or in combination of 2 or more types.
  • transition metal (salt) in which the ligand is coordinated in advance for example, nickel chloride bis (triphenylphosphine), nickel chloride bis (tri (2-methyl) phenylphosphine), nickel bromide bis (triphenyl) Phosphine), nickel iodide bis (triphenylphosphine), nickel nitrate bis (triphenylphosphine), nickel chloride (2,2′bipyridine), nickel bromide (2,2′bipyridine), nickel iodide (2,2) 'Bipyridine), nickel nitrate (2,2'bipyridine), bis (1,5-cyclooctadiene) nickel, tetrakis (triphenylphosphine) nickel, tetrakis (triphenylphosphite) nickel, tetrakis (triphenylphosphine) palladium Nickel chloride bis (Triphenylphosphine), nickel chloride bis (tri (2-methyl) phen
  • Examples of the reducing agent that can be used in the catalyst system of the present invention include iron, zinc, manganese, aluminum, magnesium, sodium, and calcium, and zinc, magnesium, and manganese are preferable. These reducing agents can be used after being more activated by bringing them into contact with an acid such as an organic acid.
  • salts other than transition metal salts that can be used in the catalyst system of the present invention include sodium compounds such as sodium fluoride, sodium chloride, sodium bromide, lithium bromide, sodium iodide, sodium sulfate, and fluorides.
  • Examples include potassium compounds such as potassium, potassium chloride, potassium bromide, potassium iodide, and potassium sulfate, and ammonium compounds such as tetraethylammonium fluoride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, and tetraethylammonium sulfate.
  • sodium bromide, sodium iodide, potassium bromide, lithium bromide, tetraethylammonium bromide and tetraethylammonium iodide are preferred.
  • the proportion of each component in the catalyst system is such that the transition metal salt or the transition metal (salt) coordinated with the ligand can be a structural unit represented by the above general formula (1) and the above general formula.
  • the amount is generally 0.0001 to 10 mol, preferably 0.01 to 0.5 mol, based on 1 mol in total with the compound B that can be the structural unit represented by (3). Within this range, the polymerization reaction proceeds sufficiently, and the catalytic activity is high and the molecular weight can be increased. When the amount is less than the above range, the polymerization reaction does not proceed sufficiently. On the other hand, when the amount is too large, the molecular weight is lowered.
  • the amount of the ligand used is usually 0.1 to 100 mol, preferably 1 to 10 mol, per 1 mol of the transition metal salt. If it exists in this range, superposition
  • the ratio of the reducing agent used in the catalyst system is 1 in total of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (3).
  • the amount is usually 0.1 to 100 mol, preferably 1 to 10 mol, relative to mol. If it exists in this range, superposition
  • the proportion of use is the compound A that can be a structural unit represented by the general formula (1) and the structure represented by the general formula (3).
  • the amount is generally 0.001 to 100 mol, preferably 0.01 to 1 mol, relative to a total of 1 mol with compound B which can be a unit.
  • the amount is less than 0.001 mol, the effect of increasing the polymerization rate is insufficient.
  • the amount exceeds 100 mol, there is a problem that it is difficult to purify the resulting polymer.
  • Examples of the polymerization solvent that can be used in the present invention include tetrahydrofuran, cyclohexanone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ - Examples include butyrolactam, and tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone are preferable. These polymerization solvents are preferably used after sufficiently dried.
  • the concentration of the compound A that can be the structural unit represented by the general formula (1) and the compound B that can be the structural unit represented by the general formula (3) in the polymerization solvent is usually 1 to 90% by weight, Preferably, it is 5 to 40% by weight.
  • reaction of compounds A, B and C corresponds to the composition of each structural unit with the charged amount as it is.
  • the polymerization temperature for polymerizing the polymer of the present invention is usually 0 to 200 ° C., preferably 50 to 80 ° C.
  • the polymerization time is usually 0.5 to 100 hours, preferably 1 to 40 hours.
  • the sulfonic acid ester group contained in the obtained copolymer is converted into a sulfonic acid group (—SO 3 H).
  • the polyarylene is heated at a temperature of about 80 to 120 ° C. in trifluoroacetic acid. Method of reacting for about 10 hours
  • a solution containing 1 to 9 moles of lithium bromide per mole of sulfonate group (—SO 3 R) in polyarylene for example, in a solution such as N-methylpyrrolidone
  • hydrochloric acid is added after the polyarylene is reacted at a temperature of about 80 to 150 ° C. for about 3 to 10 hours.
  • a compound represented by the formula (1-5) and a precursor monomer that can be a structural unit represented by the above general formula (3) or (3-1) are copolymerized, and then an alkylsulfonic acid or It can also be synthesized by a method of introducing a fluorine-substituted alkylsulfonic acid.
  • R 40 represents at least one atom or group selected from the group consisting of a hydrogen atom, a fluorine atom, an alkyl group, and a fluorine-substituted alkyl group, and g is an integer of 1 to 20 Indicates.
  • L represents any of a chlorine atom, a bromine atom, and an iodine atom
  • M represents a hydrogen atom or an alkali metal atom.
  • the membrane state When used for an ion exchange membrane or the like, it can be used in a membrane state, a solution state, or a powder state, and among these, a membrane state and a solution state are preferable (hereinafter, the membrane state is referred to as a polymer electrolyte membrane). .
  • the polymer electrolyte membrane of the present invention can be produced by a casting method or the like in which the polyarylene copolymer is mixed in an organic solvent and cast on a substrate to form a film.
  • the substrate is not particularly limited as long as it is a substrate used in a normal solution casting method.
  • a substrate made of plastic, metal, or the like is used, and preferably a heat treatment such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • a substrate made of a plastic resin is used.
  • the solvent for mixing the polyarylene copolymer may be any solvent that dissolves the copolymer or a solvent that swells, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, and ⁇ -butyrolactone.
  • N, N-dimethylacetamide, dimethylsulfoxide, dimethylurea, dimethylimidazolidinone, acetonitrile, and other aprotic polar solvents dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and other chlorinated solvents, methanol , Ethanol, propanol, iso-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol and other alcohols, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol Alkylene glycol monoalkyl ethers Roh ethyl ether, acetone, methyl ethyl ketone, cyclohexanone, ketones such as ⁇ - butyrolactone, tetrahydrofuran, solvents such as ethers 1,3-dioxane and the like.
  • solvents can be used alone or
  • the composition of the mixture is 95-25% by weight of the aprotic polar solvent, preferably 90-25% by weight
  • the solvent is 5 to 75% by weight, preferably 10 to 75% by weight (however, the total is 100% by weight).
  • the amount of the other solvent is within the above range, the effect of lowering the solution viscosity is excellent.
  • the combination of the aprotic polar solvent and the other solvent is preferably NMP as the aprotic polar solvent and methanol having an effect of lowering the solution viscosity in a wide composition range as the other solvent.
  • the polymer concentration of the solution in which the copolymer and the additive are dissolved depends on the molecular weight of the sulfonic acid-containing polyarylene copolymer, but is usually 5 to 40% by weight, preferably 7 to 25% by weight. is there. If the polymer concentration is within the above range, a film having a desired film thickness can be formed, no pinholes are generated, and film formation is easy in terms of solution viscosity. Is excellent.
  • the solution viscosity is usually from 2,000 to 100,000 mPa ⁇ s, preferably from 3,000 to 50, although it depends on the molecular weight of the polyarylene copolymer, the polymer concentration, and the concentration of the additive. 000 mPa ⁇ s. If the viscosity is within this range, the solution stays well during film formation, does not flow from the substrate, and is low in viscosity, so it can be easily extruded from a die and can be easily formed into a film by the casting method. It becomes.
  • the organic solvent in the undried film can be replaced with water, and the amount of residual solvent in the resulting polymer electrolyte membrane is reduced. can do.
  • the undried film may be preliminarily dried before the undried film is immersed in water.
  • the preliminary drying is performed by holding the undried film at a temperature of usually 50 to 150 ° C. for 0.1 to 10 hours.
  • the undried film When the undried film is immersed in water and dried as described above, a film with a reduced amount of residual solvent is obtained.
  • the residual solvent amount of the film thus obtained is usually 5% by weight or less. Further, depending on the dipping conditions, the amount of residual solvent in the obtained film can be set to 1% by weight or less.
  • the amount of water used is 50 parts by weight or more with respect to 1 part by weight of the undried film
  • the temperature of the water during immersion is 10 to 60 ° C.
  • the immersion time is 10 minutes to 10 hours. is there.
  • the film After immersing the undried film in water as described above, the film is dried at 30-100 ° C., preferably 50-80 ° C., for 10-180 minutes, preferably 15-60 minutes, and then at 50-150 ° C.
  • the film can be obtained by vacuum drying under reduced pressure of 500 mmHg to 0.1 mmHg for 0.5 to 24 hours.
  • the polymer electrolyte membrane obtained by the method of the present invention has a dry film thickness of usually 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the polyarylene copolymer having the sulfonic acid ester group or the alkali metal salt of sulfonic acid into a film by the method as described above, by performing an appropriate post-treatment such as hydrolysis or acid treatment.
  • the polymer electrolyte membrane according to the present invention can also be produced. Specifically, a polyarylene copolymer having a sulfonic acid ester group or an alkali metal salt of sulfonic acid is formed into a film by the method described above, and then the membrane is hydrolyzed or acid-treated. A polymer electrolyte membrane made of an arylene copolymer can be produced.
  • inorganic acids such as sulfuric acid and phosphoric acid, phosphoric acid glass, tungstic acid, phosphate hydrate, ⁇ -alumina proton substitution product, Inorganic proton conductor particles such as proton-introduced oxides, organic acids containing carboxylic acids, organic acids containing sulfonic acids, organic acids containing phosphonic acids, appropriate amounts of water, etc. may be used in combination.
  • the copolymer obtained in each Example / Comparative Example was dissolved in an N-methylpyrrolidone buffer solution (hereinafter referred to as NMP buffer solution) and subjected to gel permeation chromatography (GPC) to obtain a number average molecular weight in terms of polystyrene ( Mn) and weight average molecular weight (Mw) were determined.
  • NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
  • the impedance at AC 10 kHz was measured in an environment of 85 ° C. and relative humidity 90%.
  • a chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. was used as the resistance measurement device, and JW241 manufactured by Yamato Scientific Co., Ltd. was used as the constant temperature and humidity device.
  • Five platinum wires were pressed at intervals of 5 mm, the distance between the wires was changed to 5 to 20 mm, and the AC resistance was measured.
  • the specific resistance of the film was calculated from the distance between the lines and the resistance gradient. The reciprocal of this specific resistance corresponds to proton conductivity.
  • 2,2-dimethyl-1-propanol (neopentyl alcohol) (38.8 g, 440 mmol) was added to 300 ml of pyridine and cooled to about 10 ° C.
  • the crude crystals obtained above were gradually added thereto over about 30 minutes. After the total amount was added, the reaction was further stirred for 30 minutes. After the reaction, the reaction solution was poured into 1000 ml of aqueous hydrochloric acid, and the precipitated solid was collected. The obtained solid was dissolved in ethyl acetate, washed with aqueous sodium hydrogen carbonate solution and brine, dried over magnesium sulfate, and then ethyl acetate was distilled off to obtain crude crystals. This was recrystallized from methanol to obtain white crystals of neopentyl (30-1) 3- (2,5-dichlorobenzoyl) benzenesulfonate, which was the target product.
  • Example 1 Synthesis of a structural unit having no sulfonic acid group> To a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen introduction tube, and cooling tube, 90.1 g (0.52 mol) of 2,6-dichlorobenzonitrile, 59.1 g of 2-methylhydroquinone (0 .48 mol) and 85.6 g (0.62 mol) of potassium carbonate. After nitrogen substitution, 599 mL of sulfolane and 299 mL of toluene were added and stirred. The reaction solution was heated to reflux at 150 ° C. in an oil bath.
  • the reaction solution was allowed to cool and then coagulated in 2395 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution.
  • the precipitated product was filtered and stirred in 2395 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2395 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in 2395 mL of methanol at 55 ° C. for 1 hour, filtered, and stirred again in methanol 2395 mL at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum dried at 80 ° C. to obtain 100 g (yield 90%) of the target product.
  • the Mn measured by GPC was 7,200. It was confirmed that the obtained compound was an oligomer represented by formula (40-1).
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 193 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Example 2 It is represented by the following (40-2) in the same manner as in Example 1 except that 59.1 g (0.48 mol) of 2-methylhydroquinone is changed to 65.8 g (0.48 mol) of 2,3-dimethylhydroquinone. An oligomer was obtained. Mn measured by GPC was 6,500.
  • Example 3 Example 1 except that 59.1 g (0.48 mol) of 2-methylhydroquinone was changed to 44.3 g (0.36 mol) of 2-methylhydroquinone and 16.5 g (0.12 mol) of 2,3-dimethylhydroquinone In the same manner as described above, an oligomer represented by the following (40-3) was obtained. Mn measured by GPC was 6,800.
  • Example 4 To a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen introduction tube, and cooling tube, 32.1 g (0.187 mol) of 2,6-dichlorobenzonitrile and 27.2 g of 2-tert-butylhydroquinone (0.163 mol) and 31.0 g (0.224 mol) of potassium carbonate were weighed. After nitrogen substitution, 219 mL of sulfolane and 109 mL of toluene were added and stirred. The reaction solution was heated to reflux at 130 ° C. in an oil bath. Water produced by the reaction was trapped in a Dean-stark tube.
  • the reaction solution was allowed to cool and then coagulated in 875 mL of methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution.
  • the precipitated product was filtered and stirred in 875 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 875 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred in 875 mL of methanol at 55 ° C. for 1 hour, filtered, and again stirred in 875 mL of methanol at 55 ° C. for 1 hour and filtered. After air drying, it was vacuum dried at 80 ° C. to obtain 43.2 g (yield 95%) of the desired product.
  • Mn measured by GPC was 4,700. It was confirmed that the obtained compound was an oligomer represented by formula (40-4).
  • the reaction system was heated with stirring (finally heated to 80 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 129 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Example 5 The reaction product was changed to 3,1.5 g (0.183 mol) of 2,6-dichlorobenzonitrile, 27.7 g (0.167 mol) of 2-tert-butylhydroquinone, and 30.4 g (0.220 mol) of potassium carbonate.
  • An oligomer represented by the following (40-5) was obtained in the same manner as in Example 4, except that the additive added to was changed to 8.6 g (0.050 mol) of 2,6-dichlorobenzonitrile.
  • Mn measured by GPC was 6,900.
  • Example 6 Example 1 except that 59.1 g (0.48 mol) of 2-methylhydroquinone was changed to 159.3 g (0.48 mol) of 2,5-di-1,1,3,3-tetramethylbutylhydroquinone Similarly, an oligomer represented by the following (40-6) was obtained. Mn measured by GPC was 6,400.
  • Example 7 The same as in Example 1 except that 59.1 g (0.48 mol) of 2-methylhydroquinone was changed to 119.2 g (0.48 mol) of 2,5-di-tert-amylhydroquinone (40-7 ) was obtained. Mn measured by GPC was 6,600.
  • Example 8 2-methylhydroquinone 59.1 g (0.48 mol), 2,5-di-1,1,3,3-tetramethylbutylhydroquinone 39.83 g (0.12 mol), tert-butylhydroquinone 79.4 g (0
  • the oligomer represented by the following (40-8) was obtained in the same manner as in Example 1 except that the amount was changed to 36 mol). Mn measured by GPC was 6,400.
  • Example 9 To a 1 L three-necked flask equipped with a stirrer, thermometer, Dean-stark tube, nitrogen inlet tube, and condenser tube, 90.1 g (0.52 mol) of 2,6-dichlorobenzonitrile and 2,5-di-tert-butyl Weighed 26.6 g (0.12 mol) of hydroquinone, 59.4 g (0.36 mol) of 2-tert-butylhydroquinone, and 85.6 g (0.62 mol) of potassium carbonate. After substitution with nitrogen, 600 mL of sulfolane and 300 mL of toluene were added and stirred. The reaction solution was heated to reflux at 150 ° C.
  • the reaction solution was allowed to cool and then coagulated in 2401 mL of a methanol / 4 wt% (5/1 (volume ratio)) sulfuric acid solution.
  • the precipitated product was filtered and stirred in water (2401 mL) at 55 ° C. for 1 hour. After filtration, the mixture was again stirred in 2401 mL of water at 55 ° C. for 1 hour. After filtration, the mixture was stirred for 1 hour at 55 ° C. in 2401 mL of methanol, then filtered, and again stirred for 1 hour at 55 ° C. in 2401 mL of methanol and filtered. After air drying, it was vacuum-dried at 80 ° C. to obtain 125 g (yield 90%) of the desired product. Mn measured by GPC was 7,000. It was confirmed that the obtained compound was an oligomer represented by formula (40-9).
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 207 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.
  • Example 10 2,6.6 g (0.12 mol) of 2,5-di-tert-butylhydroquinone, 59.4 g (0.36 mol) of 2-tert-butylhydroquinone, 10.63 g (0 0.048 mol) and an oligomer represented by the following (40-10) was obtained in the same manner as in Example 9 except that the amount was changed to 71.2 g (0.43 mol) of 2-tert-butylhydroquinone. Mn measured by GPC was 6,900.
  • Example 11 2-methylhydroquinone 59.1 g (0.48 mol), 2-methylhydroquinone 50.3 g (0.41 mol), 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3
  • An oligomer represented by the following (40-11) was obtained in the same manner as in Example 1 except that the amount was changed to 24.0 g (0.07 mol) of hexafluoropropane.
  • Mn measured by GPC was 6,700.
  • Example 12 The reaction product was mixed with 31.5 g (0.183 mol) of 2,6-dichlorobenzonitrile, 24.9 g (0.150 mol) of 2-tert-butylhydroquinone, 2,2-bis (4-hydroxyphenyl) -1,1, The amount was changed to 5.60 g (0.017 mol) of 1,3,3,3-hexafluoropropane and 30.4 g (0.220 mol) of potassium carbonate, and the additive added during the reaction was changed to 2,6-dichlorobenzonitrile.
  • An oligomer represented by the following (40-12) was obtained in the same manner as in Example 4 except that the amount was changed to 6 g (0.050 mol). Mn measured by GPC was 7,300.
  • Example 13 The reaction product was converted to 31.5 g (0.183 mol) of 2,6-dichlorobenzonitrile, 22.2 g (0.133 mol) of 2-tert-butylhydroquinone, 3.67 g (0.033 mol) of hydroquinone, 30.4 g of potassium carbonate ( 0.220 mol), and the same as in Example 4 except that the additive added during the reaction was changed to 8.6 g (0.050 mol) of 2,6-dichlorobenzonitrile.
  • the oligomer represented was obtained.
  • Mn measured by GPC was 6,700.
  • Example 14 The reaction product was treated with 31.5 g (0.183 mol) of 2,6-dichlorobenzonitrile, 24.9 g (0.150 mol) of 2-tert-butylhydroquinone, 1.84 g (0.017 mol) of resorcinol, 30.4 g of potassium carbonate ( 0.220 mol), and the same as in Example 4 except that the additive added during the reaction was changed to 8.6 g (0.050 mol) of 2,6-dichlorobenzonitrile.
  • the oligomer represented was obtained. Mn measured by GPC was 6,200.
  • Example 15 2,6.6 g (0.12 mol) of 2,5-di-tert-butylhydroquinone, 59.4 g (0.36 mol) of 2-tert-butylhydroquinone, and 26.6 g (0 0.048 mol) and an oligomer represented by the following (40-15) was obtained in the same manner as in Example 9, except that the amount was changed to 47.5 g (0.29 mol) of 2-tert-butylhydroquinone.
  • the Mn measured by GPC was 7,200.
  • Example 16 2-tert-butylhydroquinone (59.1 g, 0.48 mol), 2-tert-butylhydroquinone (10.6 g, 0.048 mol), 2,2-bis (4-hydroxyphenyl) -1,1,1,3 2,4.0 g (0.07 mol) of 3,3-hexafluoropropane was converted into 144.1 g (0.43 mol) of 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane.
  • the oligomer (40-16) was obtained in the same manner as in Example 12, except for changing to).
  • the Mn measured by GPC was 7,200.
  • the reaction solution was allowed to cool and then diluted by adding 250 mL of toluene.
  • Inorganic salts insoluble in the reaction solution were filtered, and the filtrate was poured into 8 L of methanol to precipitate the product.
  • the precipitated product was filtered and dried, then dissolved in 500 mL of tetrahydrofuran, and poured into 5 L of methanol for reprecipitation.
  • the precipitated white powder was filtered and dried to obtain 258 g of the desired product.
  • Mn measured by GPC was 8,200. It was confirmed that the obtained compound was an oligomer represented by formula (60-1).
  • the reaction system was heated with stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 373 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)

Abstract

[課題] プロトン伝導度が高く、しかも寸法安定性が高く、機械的強度も高い固体高分子電解質およびプロトン伝導膜を提供する。 [解決手段] スルホン酸基を有するポリマーセグメント(A)およびスルホン酸基を実質的に有しないポリマーセグメント(B)を有し、前記スルホン酸基を実質的に有しないポリマーセグメント(B)が下記式(1)で表わされる構造単位を有する、ポリアリーレン系ブロック共重合体。(上記式(1)中、R1はハロゲン原子、炭素数1~20の炭化水素基など、Lは、式(1-1)または(1-2)で表わされる構造単位であり、複数あるLの少なくとも一つは下記式(1-1)で表わされる構造単位であり、aは0~3の整数、pは2~200の整数を表わす。式(1-1)中は、Aは、-O-または-S-、R2は、炭素数1~20の炭化水素基などであり、X1は、ハロゲン原子、bは1~4、lは0~3の整数を表わす。式(1-2)中、Aは、-O-または-S-、Dは、直接結合、-O-、-S-などの構造、R3及びR4は、炭素数1~20の炭化水素基など、X2及びX3は、ハロゲン原子であり、c及びdは0~4の整数、m及びnは0~4の整数、qは0~4の整数を表わす。)

Description

スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途
 本発明は、新規なスルホン酸基を有するポリアリーレン系ブロック共重合体、ならびに該スルホン酸基を有するポリアリーレン系共重合体からなる固体高分子電解質およびプロトン伝導膜に関する。
 電解質は、通常、水溶液などの溶液で用いられることが多い。しかし、近年、この電解質を固体系に置き替えていく傾向が高まってきている。その第1の理由として、例えば、上記の電気・電子材料に応用する場合のプロセッシングの容易さが挙げられ、第2の理由として、軽薄短小・省電力化への移行が挙げられる。
 従来より、プロトン伝導性材料として、無機化合物、有機化合物の双方が知られている。無機化合物の例としては、例えば水和化合物であるリン酸ウラニルが挙げられるが、これらの無機化合物は基板または電極界面での接触が十分でないため、伝導層を基板または電極上に形成する際に多くの問題が生じる。
 一方、有機化合物の例としては、例えばポリスチレンスルホン酸などのビニル系ポリマーのスルホン化物、ナフィオン(商品名、デュポン社製)を代表とするパーフルオロアルキルスルホン酸ポリマー、パーフルオロアルキルカルボン酸ポリマーなどのいわゆる陽イオン交換樹脂に属するポリマー、あるいはポリベンズイミダゾールまたはポリエーテルエーテルケトンなどの耐熱性高分子にスルホン酸基またはリン酸基を導入したポリマーなどの有機系ポリマーなどが挙げられる。
 燃料電池を作製する際、通常、両電極間に前記パーフルオロアルキルスルホン酸系ポリマーからなる電解質膜を挟み、ホットプレス等の熱処理加工により、電極―膜接合体を得ている。このパーフルオロアルキルスルホン系酸ポリマーのようなフッ素系膜は、熱変形温度が80℃程度と比較的低く、容易に接合加工が可能である。しかし、燃料電池発電時には、その反応熱により80℃以上の温度となる場合があるため、電解質膜が軟化してクリープ現象が生じることにより、両極が短絡して発電不能となる問題が起こる。
 このような問題を回避するために、現状では、電解質膜の膜厚をある程度厚くしたり、発電時の温度が80℃以下になるように燃料電池を設計しているが、発電の最高出力が低下してしまう。
 パーフルオロアルキルスルホン酸系ポリマーの熱変形温度が低いことによって、該ポリマーからなる電解質の高温での機械特性が乏しくなることを解決するために、近年エンジニアプラスチック等に用いられる芳香族系ポリマーを用いた固体高分子電解質膜が開発されている。
 例えば、米国特許第5,403,675号公報(特許文献1)には、スルホン化された剛直ポリフェニレンからなる固体高分子電解質が開示されている。このポリマーは、フェニレン連鎖からなる芳香族化合物を重合して得られるポリマーを主成分とし、これをスルホン化剤と反応させてスルホン酸基を導入している。このポリマーからなる電解質膜は、熱変形温度が180℃以上であり、高温でのクリープ耐性に優れる。
 しかし、これらの電解質膜は、熱水中での膨潤および乾燥時の収縮が大きく、固体高分子型燃料電池に利用する電解質膜としては、まだ不十分であった。
米国特許第5,403,675号公報
 本発明の課題は、プロトン伝導度が高く、熱水中での膨潤および乾燥時の収縮の小さいスルホン酸基を有するポリアリーレン系共重合体、ならびに該共重合体から作製される固体高分子電解質およびプロトン伝導膜を提供することにある。
 本発明者らは、上記の問題点を解決すべく、鋭意研究した。その結果、特定の構造単位を有するポリアリーレンによって、上記課題を解決できることを見出し、本発明を完成させるに至った。
 本発明の態様は、以下[1]~[7]に示される。
[1]スルホン酸基を有するポリマーセグメント(A)およびスルホン酸基を実質的に有しないポリマーセグメント(B)を有し、前記スルホン酸基を実質的に有しないポリマーセグメント(B)が下記式(1)で表わされる構造単位を有する、ポリアリーレン系ブロック共重合体。
Figure JPOXMLDOC01-appb-C000008
(上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、Lは、下記式(1-1)で表わされる構造単位または下記式(1-2)で表わされる構造単位であり、複数あるLの少なくとも一つは下記式(1-1)で表わされる構造単位であり、aは0~3の整数、pは2~200の整数を表わす。なお、複数のR1、aおよびLは、同一であっても異なっていてもよい。hは1~4-aの整数)
Figure JPOXMLDOC01-appb-C000009
(上記式(1-1)中は、Aは、各々独立に、-O-または-S-であり、R2は、各々独立に、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、X1は、各々独立に、ハロゲン原子であり、bは1~4の整数、lは0~3の整数を表わす。ただし、b+lは4以下である。)
Figure JPOXMLDOC01-appb-C000010
(上記式(1-2)中、Aは、各々独立に、-O-または-S-であり、Dは、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す)、シクロヘキシリデン基およびフルオレニリデン基からなる群より選ばれた少なくとも1種の構造を表わし、R3及びR4は、各々独立に、炭素数1~20の炭化水素基、または、炭素数1~20のハロゲン化炭化水素基であり、X2及びX3は、各々独立に、ハロゲン原子であり、c及びdは0~4の整数、m及びnは0~4の整数、qは0~4の整数を表わす。ただし、q=0のとき、dは0である。また、c+mおよびd+nは4以下である。)
[2]スルホン酸基を有しないポリマーセグメント(B)を誘導する下記式(1')で表される前駆体のポリスチレン換算の数平均分子量が1,000~50,000である、[1]のポリアリーレン系ブロック共重合体。
Figure JPOXMLDOC01-appb-C000011
(上記式(1')中、R1、L、a、p、hは式(1)と同じであり、X'はハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基を示す。)
[3]上記式(1)において、pが2~150である、[1]または[2]のポリアリーレン系ブロック共重合体。
[4]上記式(1-1)で表わされる構造単位と上記式(1-2)で表わされる構造単位をモル比(1-1):(1-2)で100:0~50:50の割合で含む、[1]~[3]のポリアリーレン系ブロック共重合体。
[5]上記式(1-1)で表わされる構造単位が、下記式(1-3)で表わされる構造単位と下記式(1-4)で表わされる構造単位をモル比(1-3):(1-4)で10:90~90:10の割合で含む、[1]~[4]のポリアリーレン系ブロック共重合体。
Figure JPOXMLDOC01-appb-C000012
(上記式中、R2、A、X1、lは上記式(1-1)と同義であり、eは1または3を表わす。)
Figure JPOXMLDOC01-appb-C000013
(上記式中、R2、A、X1、lは上記式(1-1)と同義であり、fは2または4を表わす。)
[6]スルホン酸基を有するポリマーセグメント(A)が下記式(3)で表される構造単位を有する、[1]~[4]のポリアリーレン系ブロック共重合体。
Figure JPOXMLDOC01-appb-C000014
(上記式中、Ar11、Ar12、Ar13は、それぞれ独立に、フッ素原子で置換されていてもよい、ベンゼン環、縮合芳香環、含窒素複素環からなる群より選ばれる少なくとも1種の構造を有する2価の基を示す。Yは、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2)u-(uは1~10の整数である)、-C(CF3)2-、または直接結合を示す。Zは、-O-、-S-、直接結合、-CO-、-SO2-、-SO-、-(CH2)l-(lは1~10の整数である)、または-C(CH3)2-を示す。
 R22は、直接結合、-O(CH2)p-、-O(CF2p-、-(CH2p-または-(CF2p-を示す(pは、1~12の整数を示す)。R23、R24は、それぞれ独立に、水素原子、アルカリ金属原子または脂肪族炭化水素基、脂環基、酸素を含む複素環基を示す。
ただし、上記式中に含まれる全てのR23およびR24のうち少なくとも1個は水素原子である。
 x1は0~4の整数、x2は1~5の整数、aは0~1の整数、bは0~3の整数を示す。)
[7]前記[1]~[6]のポリアリーレン系ブロック共重合体からなる高分子電解質。
[8]前記[1]~[7]のポリアリーレン系ブロック共重合体からなるプロトン伝導膜。
 本発明に係るスルホン酸基を有するポリアリーレン系ブロック共重合体は、特定の構造単位を有しているので、熱水中での膨潤および乾燥時の収縮が小さい。したがって、スルホン酸基を高い濃度で導入することが可能となり、プロトン伝導度が高く、しかも寸法安定性が高く、機械的強度も高い固体高分子電解質およびプロトン伝導膜を得ることができる。
 また、熱水中での膨潤および乾燥時の収縮が小さいことから、耐熱性、耐久性も高いので、本発明に係るスルホン酸基を有するポリアリーレン系共重合体は燃料電池用のプロトン伝導膜に好適に使用できる。
 以下、本発明に係るポリアリーレン系共重合体、固体高分子電解質、およびプロトン伝導膜について詳細に説明する。
[ポリアリーレン系共重合体]
 本発明のポリアリーレン系共重合体は、スルホン酸基を有するポリマーセグメント(A)およびスルホン酸基を実質的に有しないポリマーセグメント(B)を有する。共重合体としては、これらのセグメントを有するかぎり、その構造は特に制限なく、ランダム共重合体、ブロック共重合体のいずれであってもよく、またこれらの混合物であってもよい。とくに本発明では、ブロック共重合体が好ましい。

[スルホン酸基を実質的に有しないポリマーセグメント]
 前記スルホン酸基を実質的に有しないポリマーセグメント(B)は、下記式(1)で表わされる構造単位を有する。
Figure JPOXMLDOC01-appb-C000015
 上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、Lは、下記式(1-1)で表わされる構造単位または下記式(1-2)で表わされる構造単位であり、複数あるLの少なくとも一つは下記式(1-1)で表わされる構造単位であり、aは0~3の整数、pは2~200の整数、hは1~(4-a)の整数を表わす。なお、複数ののR1、aおよびLは、同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000016
 上記式(1-1)中は、Aは、各々独立に、-O-または-S-であり、R2は、各々独立に、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、X1は、各々独立に、ハロゲン原子であり、bは1~4の整数、lは0~3の整数を表わす。
Figure JPOXMLDOC01-appb-C000017
 上記式(1-2)中、Aは、各々独立に、-O-または-S-、Dは、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、脂環式芳香族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す)、シクロヘキシリデン基およびフルオレニリデン基からなる群より選ばれた少なくとも1種の構造を表わし、R3及びR4は、各々独立に、炭素数1~20の炭化水素基、または、炭素数1~20のハロゲン化炭化水素基であり、X2及びX3は、各々独立に、ハロゲン原子であり、c及びdは0~4の整数、m及びnは0~4の整数、qは0~4の整数を表わす。ただし、q=0のとき、dは0である。また、c+mおよびd+nは4以下である。
 上記R1~R4における炭素数1~20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、テトラメチルブチル基、アミル基、ペンチル基およびヘキシル基などの炭素数1~20のアルキル基;シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基;フェニル基、ナフチル基およびビフェニル基などの炭素数6~20の芳香族炭化水素基;ビニル基およびアリル基などの炭素数2~20のアルケニル基などが挙げられる。
 上記R1~R4における炭素数1~20の1価のハロゲン化炭化水素基としては、炭素数1~20のハロゲン化アルキル基、炭素数3~20のハロゲン化シクロアルキル基および炭素数6~20のハロゲン化芳香族炭化水素基などが挙げられる。前記ハロゲン化アルキル基としては、トリクロロメチル基、トリフルオロメチル基、トリブロモメチル基、ペンタクロロエチル基、ペンタフルオロエチル基およびペンタブロモエチル基などが挙げられ;前記ハロゲン化芳香族炭化水素基としては、クロロフェニル基およびクロロナフチル基などが挙げられる。
 なお、複数のR3、c,m、X2、R4、X3は、同一であっても異なっていてもよい。また、複数のR1~R4を有する場合、これらは、それぞれ同一であっても異なるものであってもよい。
 R2としては、分岐を有するものが望ましく、tert-ブチル基、テトラメチルブチル基、tert-アミル基などの分岐型アルキル基が導入されているとポリマーの生産性の向上やフィルム製造時の製膜性を向上させることが出来る。
 aとしては、0または1であることが好ましく、0であることがより好ましい。
 bとしては、1~3であることが好ましく、1または2であることがより好ましい。
 cとしては、0または1であることが好ましく、0であることがより好ましい。
 dとしては、0または1であることが好ましく、0であることがより好ましい。
 Aとしては、-O-であることが好ましい。
 pとしては、2~150であることが好ましく、3~125であることがより好ましく、5~100であることがさらに好ましい。
 本発明にかかるポリアリーレン系ブロック重合体は、主鎖にCN基が導入され、しかも、式(1)で表される構造単位を必須成分として有するポリマーセグメントを含む。
 このようなポリマーセグメントによって、ポリマー主鎖の分子鎖セグメントの運動を抑制でき、最終的に熱水中での膨潤および乾燥時の収縮が小さいブロック共重合体を製造できる。
 qとしては、1または2であることが好ましく、1であることがより好ましい。
 また、上記式(1-1)で表わされる構造単位と上記式(1-2)で表わされる構造単位をモル比(1-1):(1-2)で100:0~50:50の割合で含むことが好ましく、100:0~75:25の割合で含むことがより好ましい。
 この比率で、(1-1)で表される構造単位を含むことによって、加熱・冷却による膨張および収縮が小さくなり、最終的に熱水中での膨潤および乾燥時の収縮が小さいブロック共重合体を製造できる。
 さらに、上記式(1-1)で表わされる構造単位は、下記式(1-3)で表わされる構造単位と下記式(1-4)で表わされる構造単位をモル比(1-3):(1-4)にして10:90~90:10の割合で含むことが好ましく、20:80~80:20の割合で含むことがより好ましい。
 この比率で、(1-3)および(1-4)で表される構造単位を含むことによって、ポリマーの生産性やフィルムの製膜性を損なうことなく、熱水中での膨潤および乾燥時の収縮が小さいフィルムを得ることができる。その理由は明確ではないものの、式(1-3)または(1-4))のいずれか単独でポリマーセグメント(B)を得た場合は、一定の立体規則性により、ポリマーセグメント(B)間の相互作用は高まるが、溶剤への溶解性が低下し、キャスト製膜用のポリマー溶液濃度が低くなり、平滑なフィルムが得られず、製膜性が低下する問題が生じる。一方、式(1-3)および(1-4)を併用してポリマーセグメント(B)を得た場合、ポリマーセグメント(B)中の立体規則性が緩和され、キャスト製膜用溶剤への溶解性が高まり、製膜性が向上する。その際、疎水性の高いアルキル側鎖、またはパーフルオロアルキル側鎖により、式(1-3)および(1-4)は形成されていることから、膜の熱水中での膨潤は低下することは無いと考えられる。
 この比率は、後述するスルホン酸基を実質的に有しないポリマーセグメントの構造単位となる化合物(A)を調製する際の式(1-6)、(1-7)の化合物の比率によって調整することが可能となる。
Figure JPOXMLDOC01-appb-C000018
 上記式中、R2、A、X1、lは上記式(1-1)と同義であり、eは1または3を表わす。
Figure JPOXMLDOC01-appb-C000019
 上記式中、R2、A、X1、lは上記式(1-1)と同義であり、fは2または4を表わす。
このようにR2の置換基数が異なうように構造単位を併用することは、ポリマーセグメント(B)中の立体規則性が緩和され、製膜用ワニス溶剤への溶解性が高まるため好ましい。
 なお、上記スルホン酸基を実質的に有しないポリマーセグメント(B)を誘導する下記式(1')で表される前駆体のポリスチレン換算の数平均分子量は、1,000~50,000であることが好ましく、2,000~30,000であることがより好ましく、3,000~20,000であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000020
(上記式(1')中、R1、L、a、p、hは式(1)と同じであり、X'はハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基を示す。)
 また、本発明の目的を損なわない範囲で、任意のセグメントを含んでいてもよく、たとえば、下式で表される構成単位からなるセグメントを含んでいてもよい。
Figure JPOXMLDOC01-appb-C000021
(式中、E,Fは独立に直接結合または、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2l-(lは1~10の整数である)、-(CH2l-(lは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、-O-、-S-からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、R5~R21は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基からなる群より選ばれた少なくとも1種の原子または基を示す。s、tは0~4の整数を示し、rは、0または1以上の整数を示す。)
[スルホン酸基を有する構造単位]
 スルホン酸基を有するポリマーセグメント(A)としては、特に限定されるものではないが、下記式(3)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(3)中、Ar11、Ar12、Ar13は、それぞれ独立に、フッ素原子で置換されていてもよい、ベンゼン環、縮合芳香環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を有する2価の基を示す。
 Yは、-CO-、-CONH-、-COO-、-SO2-、-SO-、-(CF2u-(uは1~10の整数である)、-C(CF32-、または直接結合を示す。
 Zは、-O-、-S-、直接結合、-CO-、-SO2-、-SO-、-(CH2l-(lは1~10の整数である)、またはC(CH32-を示す。
 R22は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-または(CF2p-を示す(pは、1~12の整数を示す)。
 R23、R24は、それぞれ独立に、水素原子、アルカリ金属原子または脂肪族炭化水素基を示す。ただし、上記式中に含まれる全てのR23およびR24のうち少なくとも1個は水素原子である。
 x1は、0~4の整数、x2は、1~5の整数、aは、0~1の整数、bは、0~3の整数を示す。
 スルホン酸基を有する構成単位は、好ましくは、下記式(3-1)で表される繰り返し単位から構成される。
Figure JPOXMLDOC01-appb-C000023
 上記式中、Ar11、Ar12、Ar13は、各々独立に、フッ素原子で置換されていてもよい、ベンゼン環、ナフタレン環などの芳香環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を示す。
 Yは、-CO-、-CONH-、-COO-、-SO2-、-SO-、-(CF2u-(uは1~10の整数である)、-C(CF32-、直接結合からなる群より選ばれた少なくとも1種の構造を示す。
 Zは、-O-、-S-、直接結合、-CO-、-SO2-、-SO-、-(CH2l-(lは1~10の整数である)、-C(CH32-からなる群より選ばれた少なくとも1種の構造を示す。
 R22は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-、-(CF2p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。
 R23、R24は、それぞれ独立に、水素原子、アルカリ金属原子、脂肪族炭化水素基からなる群より選ばれた少なくとも1種の構造を示す。ただし、上記式中に含まれる全てのR23およびR24のうち少なくとも1個は水素原子である。
 x1は0~4の整数、x2は1~5の整数、aは0~1の整数、b1、b2は0~3の整数を示す。
 上記式(3)又は(3-1)で表される繰り返し単位は、好ましくは、下記式(3-2)で表される構造である。
Figure JPOXMLDOC01-appb-C000024
 式(3-2)中、Yは-CO-、-SO2-、-SO-、直接結合、-(CF2u-(uは1~10の整数である)、-C(CF32-からなる群より選ばれた少なくとも1種の構造を示す。
 Zは直接結合または、-(CH2l-(lは1~10の整数である)、-C(CH32-、-O-、-S-、-CO-、-SO2-からなる群より選ばれた少なくとも1種の構造を示し、Arは-SO3Hまたは-O(CH2pSO3Hまたは-O(CF2pSO3Hで表される置換基を有する芳香族基を示す。pは1~12の整数を示し、mは0~3の整数を示し、nは0~3の整数を示し、kは1~4の整数を示す。構造単位の端部における単線のうち、一方に置換基が表示されていないものは隣り合う構造単位との接続を意味する。m、nが2以上の場合、複数のZおよびkは同じであっても異なるものであってもよく、また結合位も特に制限されない。芳香族基としては、フェニル基、ナフチル基などが挙げられる。
 スルホン酸基を有する構造単位の具体的構造としては、下記を挙げることができる。
Figure JPOXMLDOC01-appb-C000025
 本発明では、スルホン酸基とともに、ホスホン酸基を有する構造単位を含むものであってもよい。
[含窒素複素環基を有する構造単位]
 本発明では、含窒素複素環基を有する構造単位を含んでいてもよく、かかる含窒素複素環基は、下記式(4-1)で表される構造を有するものである。
-(Rs)e-(V-Rhf           ・・・(4-1)
 式中、Vは、2価の有機基であれば特に限定されないが、好ましくは、-O-、-S-、直接結合、-CO-、-SO2-又は-または-SO-からなる群より選ばれた少なくとも1種の構造を示す。
 Rsは、直接結合、または特に限定されない、任意の二価の有機基である。二価の有機基としては、炭素数1~20炭化水素基であればよく、具体的には、メチレン基、エチレン基などのアルキレン基、フェニレン基などの芳香族環、縮合芳香環、含窒素複素環があげられる。Rsとして、-W-Ar9-で示される基でもよい。
 上記式中、Ar9としては、フッ素原子で置換されていてもよい、ベンゼン環、縮合芳香環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を有する2価の基を示す。
 Wは、-CO-、-SO2-、-SO-、-(CF2u-(uは1~10の整数である)、-C(CF32-、直接結合からなる群より選ばれた少なくとも1種の構造を示す。
 eは、0~4の整数を示し、fは、1~5の整数を示す。
 主鎖の芳香環と電子吸引性基Vは、直接結合していることが安定性の面から好ましいが、本発明の効果を阻害しない範囲で任意の2価の基(すなわちRs)が介在しても良い。
 前記式(4-1)の含窒素複素環基を有する構造としては、具体的には、下記式(4-2)で表されるものが好ましい。
 -V-Rh            ・・・(4-2a)
 -Rs-V-Rh         ・・・(4-2b)
 Rhは含窒素複素環基を示し、窒素を含む5員環、6員環構造が挙げられる。また、複素環内の窒素原子の数は、1個以上あれば特に制限されない、また複素環内には、窒素以外に、酸素や硫黄を含んでいても良い。
 Rhを構成する含窒素複素環基として、具体的には、ピロール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、イミダゾール、イミダゾリン、ピラゾール、1,3,5-トリアジン、ピリミジン、ピリタジン、ピラジン、インドール、キノリン、イソキノリン、プリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、テトラゾール、テトラジン、トリアゾール、カルバゾール、アクリジン、キノキサリン、キナゾリンからなる含窒素複素環化合物およびこれらの誘導体の炭素または窒素に結合する水素原子が引き抜かれてなる構造の基である。
 これらの含窒素複素環基は、置換基を有していてもよく、置換基としては、例えば、メチル基、エチル基、プロピル基などのアルキル基、フェニル基、トルイル基、ナフチル基等のアリール基、シアノ基、フッ素原子などがあげられる。
 本発明の共重合体が有する含窒素複素環基を有する構成単位は、下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000026
 上記式(5)中、Ar10は、ベンゼン環、縮合芳香環、含窒素複素環からなる群より選ばれた少なくとも1種の構造を有する3価の基を示す。ただし、Ar10は、その水素原子の一部又はすべてが、フッ素原子、ニトロ基、ニトリル基、又は水素原子の一部またはすべてがフッ素置換されていてもよいアルキル基、アリル基若しくはアリール基からなる群より選ばれた少なくとも1種の原子または基で置換されていてもよい。
 式(5)中、V、e、f、Rs、Rhは前記式(4-1)および(4-2)と同様である。
 含窒素複素環基を有する構造は、本発明のポリアリーレン系ブロック共重合体中に、好ましくは下記式(6)で表される構造を有している。
Figure JPOXMLDOC01-appb-C000027
 式(6)中、V、RsおよびRhは、式(5)の場合と同様である。構成単位の端部における単線のうち、一方に置換基が表示されていないものは隣り合う構成単位との接続を意味する。
 上記式(6)における、含窒素複素環基Rhは、ピリジン環であることが好ましい。ピリジン環であると、含窒素複素環の中でも元来Nの塩基性度が低めであるため、低湿度領域でのプロトン伝導度が向上するという特性が発揮される。
 また、上記式(6)における、Vは-CO-か-SO2-であることが好ましい。-CO-はピリジン環と組合わせると、共役による安定化効果により熱的に安定な構造となりやすい。また、-SO2-は電子密度を下げて窒素の塩基性度がより抑制され、これによって、低湿度領域でのプロトン伝導性を特に高めることができる。
 なお、e、fは式(4-1)および(4-2)と同じ。
 以上のような、含窒素複素環基を有する構成単位を含むことにより、塩基性が付与され、プロトン伝導性を損なうことなく、高温下で高いスルホン酸の安定性を有する固体高分子電解質膜を得ることができる。
 本発明にかかるポリアリーレン系ブロック共重合体は、イオン交換容量、分子量などの所望の性状に応じて、各構成単位の量が決定される。
 熱水中での膨潤および乾燥時の収縮が小さくするために、本発明では、ブロック共重合体全セグメント総計1モル中に、スルホン酸基を実質的に有しないポリマーセグメント(B)が、0.001~0.9モル、好ましくは0.003~0.8モル、より好ましくは0.005~0.6モルの範囲で含まれていることが望ましい。
 本発明にかかるポリアリーレン系ブロック共重合体は、膨潤収縮量が20%以下であることが好ましい。
 なお、膨潤収縮量は、後述する実施例に示すように、ポリアリーレン系ブロック共重合体からなるフィルムを熱水試験を行い、膨潤率および収縮率から求める。
 また、上記のようなポリマーセグメント(B)が含まれているので、スルホン酸基を高い濃度で導入することが可能となる。なお、スルホン酸基を有するポリマーセグメント(A)の量は、イオン交換容量に応じて適宜選択される。
 さらに、含窒素複素環基を有する構造単位を含む場合、その量は特に制限されないが、含窒素複素環基を有する構造単位を含むセグメントが、全セグメント総計1モル中に、0.5モル以下、好ましくは0.3モル以下、より好ましくは0.1モル以下の範囲で含まれていることが望ましい。
 本発明の重合体の分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量で、1万~100万、好ましくは2万~80万、さらに好ましくは5万~30万である。
 本発明に係る重合体のイオン交換容量は通常0.3~6meq/g、好ましくは0.5~4meq/g、さらに好ましくは0.8~3.5meq/gである。イオン交換容量が、この範囲にあれば、プロトン伝導度が高く、かつ発電性能を高くすることができとともに、充分に高い耐水性を具備できる。
 上記のイオン交換容量は、各構造単位の種類、使用割合、組み合わせを変えることにより、調整することができる。したがって重合時に構成単位を誘導する前駆体(モノマー・オリゴマー)の仕込み量比、種類を変えれば調整することができる。
 概してスルホン酸基やホスホン酸基を含む構造単位が多くなるとイオン交換容量が増え、プロトン伝導性が高くなるが、耐水性が低下する傾向にあり、一方、これらの構造単位が少なくなると、イオン交換容量が小さくなり、耐水性が高まるが、プロトン伝導性が低下する傾向にある。また、ホスホン酸基の量が多くなると、ラジカル耐性が高くなる傾向になる。
[ポリアリーレン系共重合体の製造方法]
 本発明のポリアリーレン系共重合体は、例えば下記に示すA1法またはB1法を用いて製造することができる。
(A1法)
 例えば、特開2004-137444号公報に記載の方法で、スルホン酸基を実質的に有しないポリマーセグメントの構造単位となる化合物(A)、スルホン酸基を有するポリマーセグメントの構造単位となるスルホン酸エステル(B)、および必要に応じて、含窒素複素環基を有する構造単位となる化合物(C)を共重合させ、スルホン酸エステル基をスルホン酸基に変換することにより合成することができる。
(スルホン酸基を実質的に有しないポリマーセグメントの構造単位となる化合物(A)(以下、「化合物A」ともいう。))
 スルホン酸基を実質的に有しないポリマーセグメントは、ポリアリーレン系共重合体の重合原料として、例えば、下記式(1-5)で示される化合物を使用することにより導入することができる。
Figure JPOXMLDOC01-appb-C000028
 上記式(1-5)中、R1、L、a、p、hは上記式(1)と同義であり、X'はハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基を示す。
 さらに、上記式(1-5)で表わされる化合物は、例えば次に示すような反応により合成することができる。
 まず、下記式(1-6)で表わされるビス(チオ)フェノール類、および必要に応じて下記式(1-7)で表わされるビス(チオ)フェノール類をアルカリ金属塩とする。
 このとき、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキサイドなどの誘電率の高い極性溶媒に溶解した後、リチウム、ナトリウム、カリウムなどのアルカリ金属、水素化アルカリ金属、水酸化アルカリ金属、アルカリ金属炭酸塩などを加える。アルカリ金属はフェノールの水酸基に対し、過剰気味で反応させ、通常、1.1~2倍当量、好ましくは1.2~1.5倍当量で使用する。このとき、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソールなどの水と共沸する溶媒を共存させて、反応の進行を促進させることが好ましい。
 次いで、上記ビスフェノール類またはビスチオフェノール類のアルカリ金属塩を下記式(1-8)で表されるジハロゲン化物と反応させる。
Figure JPOXMLDOC01-appb-C000029
 上記式(1-6)中、R2、A、l、X1、bは、上記式(1-1)と同義である。
Figure JPOXMLDOC01-appb-C000030
 上記式(1-7)中、R3、R4、X2、X3、A、D、b、qは、上記式(1-2)と同義である。
Figure JPOXMLDOC01-appb-C000031
 上記式(1-8)中、R1、a、hは、上記式(1)と同義であり、Zはハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基を示す。式(1-6)で表わされるビス(チオ)フェノール類としては、2-メチルハイドロキノン、2,3-ジメチルハイドロキノン、2-tert-ブチルハイドロキノン、2,5-ジ-1,1,3,3-テトラメチルブチルハイドロキノン、2,5-ジ-tert-アミルハイドロキノン、2,5-ジ-tert-ブチルハイドロキノン、およびこれらのOH基がSH基に置換したものなどが好ましい。これらの、ビス(チオ)フェノール類は、1種単独で用いてもよいし、2種以上を併用してもよい。
 式(1-7)で表わされるビス(チオ)フェノール類としては、例えば、1,3-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン(Bis-M)、1,4-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,3-(4-ヒドロキシベンゾイルベンゼン)、1,4-(4-ヒドロキシベンゾイルベンゼン)、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェニル)ベンゼン、1,3-ビス(4-ヒドロキシフェニル)ベンゼン、4,4'-イソプロピリデンビフェノール(Bis-A)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(Bis-AF)、4,4'-ビスヒドロキシベンゾフェノン(4,4'-DHBP)、4,4'-ビスヒドロキシジフェニルスルホン(4,4'-DHDS)、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシビフェニル(4,4'-DHBP)、ビス(4―ヒドロキシフェニル)メタン、レゾルシノール(RES)、ヒドロキノン(HQ)、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCFL)、4,4'-イソプロピリデンビス(2-フェニルフェノール)、4,4'-シクロヘキシリデンビス(2-シクロヘキシルフェノール)などが挙げられる。なかでも1,3-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン(Bis-M)、1,4-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(Bis-AF)、レゾルシノール(RES)、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)が好ましい。これらのビス(チオ)フェノール類は、1種単独で用いてもよいし、2種以上を併用しても良い。
 式(1-8)で表わされる化合物としては、例えば、2,6-ジニトロベンゾニトリル、2,5-ジニトロベンゾニトリル、2,4-ジニトロベンゾニトリル、2,6-ジクロロベンゾニトリル(2,6-DCBN)、2,5-ジクロロベンゾニトリル(2,5-DCBN)、2,4-ジクロロベンゾニトリル(2,4-DBN)、2,6-ジフルオロベンゾニトリル(2,6-DFBN)、2,5-ジフルオロベンゾニトリル(2,5-DFBN)、2,4-ジフルオロベンゾニトリル(2,4-DFBN)などが挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を併用しても良い。
(スルホン酸基を有するポリマーセグメントの構造単位となるスルホン酸エステル(B)(以下、「化合物B」ともいう。))
 化合物(B)は、スルホン酸基を有するモノマーであり、下記式(16)で表される。
Figure JPOXMLDOC01-appb-C000032
 式中の符号は前記した式(3)と同様であり、Ar11、Ar12、Ar13は同一でも、異なっていてもよく、フッ素原子で置換されていてもよい、ベンゼン環、縮合芳香環(ナフタレン環など)、含窒素複素環からなる群より選ばれた少なくとも1種の構造を示す。
 Xは、塩素、臭素、ヨウ素、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、トルエンスルホニル基からなる群より選ばれた少なくとも1種の構造を示す。Yは、-CO-、-CONH-、-COO-、-SO2-、-SO-、-(CF2l-(lは1~10の整数である)、-C(CF32-、直接結合からなる群より選ばれた少なくとも1種の構造を示す。Zは、-O-、-S-、直接結合、-CO-、-SO2-、-SO-、-(CH2l-(lは1~10の整数である)、-C(CH32-からなる群より選ばれた少なくとも1種の構造を示す。R22は、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-、-(CF2p-からなる群より選ばれた少なくとも1種の構造を示す(pは、1~12の整数を示す)。
 R23、R24は、水素原子、アルカリ金属原子、脂肪族炭化水素基、脂環族炭化水素基、ヘテロ原子として酸素を含む複素環を含む炭化水素基からなる群より選ばれた少なくとも1種の構造を示す。
 x1は、0~4の整数、x2は、1~5の整数、aは、0~1の整数、bは、0~3の整数を示す。
 なおaが2以上の場合、複数のY、Z、b、x1、Ar12、Ar13、R23、R24は同一でも異なるものであってもよい。
 上記式(16)で表されるモノマーは、好ましくは下記式(17)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000033
 式(17)中、Xは塩素原子、臭素原子および-OSO2Rb(ここで、Rbはアルキル基、フッ素置換アルキル基またはアリール基を示す)から選ばれる原子または基を示す。
 Y,Z、kは式(16)と同じである。
 cは0~10、好ましくは0~2の整数であり、dは0~10、好ましくは0~2の整数であり、kは1~4の整数を示す。なお、c、dが2以上の場合、複数のZ、R、kは同一でも異なるものであってもよい。
 Arは-SO3Rまたは-O(CH2hSO3Rまたは-O(CF2hSO3Rで表される置換基(hは1~12の整数を示す)を有する芳香族基を示す。Rは分岐ないし直鎖アルキル基、シクロアルキル基、ヘテロ原子として酸素を含む複素環基であり、炭素数は4~20が望ましい。なお、Rの一部が水素原子に置換されていてもよい。
 式(17)で表される化合物の具体的な例としては、下記式で表される化合物、特開2004-137444号公報、特開2004-345997号公報、特開2004-346163号公報に記載されているスルホン酸エステル類を挙げることができる。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 式(17)で表される化合物において、スルホン酸エステル構造の結合位は上記例示の位置に特に限定されない。
(含窒素複素環基を有する構造単位となる化合物(C)(以下、「化合物C」ともいう。))
 化合物Cは、含窒素複素環構造を有するモノマーであり、下記式(24)で表される。
Figure JPOXMLDOC01-appb-C000037
Ar10、V、e、f、Rs、Rhは前記式(4-1)および(4-2)、(5)と同様である。
また、Xは上記式(16)と同義である。
 具体的には、下記式(25)で表される。
Figure JPOXMLDOC01-appb-C000038
 W、V、Rh、eおよびfは前記式(4-1)および(4-2)、(5)と同様である。また、Xは上記式(16)と同義である。
 化合物(C)の具体例として、下記の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 さらに、塩素原子が臭素原子に置き換わった化合物、塩素原子や臭素原子の結合位置の異なる異性体を挙げることができる。また-CO-結合が、-SO2-結合に置き換わった化合物を挙げることができる。これらの化合物は、単独で用いてもよく、2種類以上を併用してもよい。
 化合物Cを合成する方法としては、例えば下記式(26)で表される化合物と、含窒素複素環化合物とを、求核置換反応させる方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000041
 式中、X、W、eおよびfは、式(24)および(25)で示した定義と同一である。
 X'はハロゲン原子を示し、具体的にはフッ素原子または塩素原子であることが好ましく、フッ素原子がより好ましい。
 式(26)で表される化合物の具体例としては、2,4-ジクロロ-4'-フルオロベンゾフェノン、2,5-ジクロロ-4'-フルオロベンゾフェノン、2,6-ジクロロ-4'-フルオロベンゾフェノン、2,4-ジクロロ-2'-フルオロベンゾフェノン、2,5-ジクロロ-2'-フルオロベンゾフェノン、2,6-ジクロロ-2'-フルオロベンゾフェノン、2,4-ジクロロフェニル-4'-フルオロフェニルスルホン、2,5-ジクロロフェニル-4'-フルオロフェニルスルホン、2,6-ジクロロフェニル-4'-フルオロフェニルスルホン、2,4-ジクロロフェニル-2'-フルオロフェニルスルホン、2,4-ジクロロフェニル-2'-フルオロフェニルスルホン、2,4-ジクロロフェニル-2'-フルオロフェニルスルホン。これらの化合物のうち2,5-ジクロロ-4'-フルオロベンゾフェノンが好ましい。
 含窒素複素環化合物は、活性水素を有するものであり、この活性水素と式(26)で表される化合物のX'で表される基を置換反応させる。
 活性水素を有する含窒素複素環化合物としては、ピロール、チアゾール、イソチアゾール、オキサゾール、イソオキサゾール、ピリジン、イミダゾール、イミダゾリン、ピラゾール、1,3,5-トリアジン、ピリミジン、ピリタジン、ピラジン、インドール、キノリン、イソキノリン、ブリン、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、テトラゾール、テトラジン、トリアゾール、カルバゾール、アクリジン、キノキサリン、キナゾリン、2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、3-ヒドロキシキノリン、8-ヒドロキシキノリン、2-ヒドロキシピリミジン、2-メルカプトピリジン、3-メルカプトピリジン、4-メルカプトピリジン、2-メルカプトピリミジン、2-メルカプトベンズチアゾールなどを挙げることができる。
 これらの化合物のうち、ピロール、イミダゾール、インドール、カルバゾール、ベンズオキサゾール、ベンズイミダゾール、2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジンが好ましい。
 式(26)で表される化合物と活性水素を有する含窒素複素環化合物との反応は、有機溶媒中で行うことが好ましい。N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキシドなどの極性溶媒を用いる。反応を促進するために、アルカリ金属、水素化アルカリ金属、水酸化アルカリ金属、アルカリ金属炭酸塩などを用いる。式(26)で表される化合物と、活性水素を有する含窒素複素環化合物との比率は、等モルもしくは活性水素を有する含窒素複素環化合物を過剰に加えて反応させる。具体的には、活性水素を有する含窒素複素環化合物は式(26)で表される化合物の1~3倍モル、特に1~1.5倍モル使用することが好ましい。
 反応温度は0℃~300℃で、10℃~200℃が好ましい。反応時間は15分~100時間、好ましくは1時間~24時間である。生成物は再結晶などの方法で精製して用いることが好ましい。
重合方法
 目的のポリアリーレン系共重合体を得るためは、まず、上記各種化合物を共重合させ前駆体を得る。この共重合は、触媒の存在下に行われるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、ならびに(2)還元剤を必須成分とし、さらに、重合速度を上げるために、遷移金属塩以外の塩を添加してもよい。
 ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセチルアセトナートなどのニッケル化合物、塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのパラジウム化合物、塩化鉄、臭化鉄、ヨウ化鉄などの鉄化合物、塩化コバルト、臭化コバルト、ヨウ化コバルトなどのコバルト化合物などが挙げられる。これらのうち特に、塩化ニッケル、臭化ニッケルなどが好ましい。また、配位子としては、トリフェニルホスフィン、トリ(2-メチル)フェニルホスフィン、トリ(3-メチル)フェニルホスフィン、トリ(4-メチル)フェニルホスフィン、2,2'-ビピリジン、1,5-シクロオクタジエン、1,3-ビス(ジフェニルホスフィノ)プロパンなどが挙げられるが、トリフェニルホスフィン、トリ(2-メチル)フェニルホスフィン、2,2'-ビピリジンが好ましい。上記配位子は、1種単独で、あるいは2種以上を併用することができる。
 さらに、あらかじめ配位子が配位された遷移金属(塩)としては、例えば、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケルビス(トリ(2ーメチル)フェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)、硝酸ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'ビピリジン)、臭化ニッケル(2,2'ビピリジン)、ヨウ化ニッケル(2,2'ビピリジン)、硝酸ニッケル(2,2'ビピリジン)、ビス(1,5-シクロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、テトラキス(トリフェニルホスファイト)ニッケル、テトラキス(トリフェニルホスフィン)パラジウムなどが挙げられるが、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケルビス(トリ(2ーメチル)フェニルホスフィン)、塩化ニッケル(2,2'ビピリジン)が好ましい。
 本発明の触媒系において使用することができる上記還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、カルシウムなどを挙げることできるが、亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸などの酸に接触させることにより、より活性化して用いることができる。
 また、本発明の触媒系において使用することのできる遷移金属塩以外の塩としては、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、臭化リチウム、ヨウ化ナトリウム、硫酸ナトリウムなどのナトリウム化合物、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリウム化合物、フッ化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、硫酸テトラエチルアンモニウムなどのアンモニウム化合物などが挙げられるが、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化リチウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウムが好ましい。
 触媒系における各成分の使用割合は、遷移金属塩または配位子が配位された遷移金属(塩)が、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(3)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.0001~10モル、好ましくは0.01~0.5モルである。この範囲にあれば重合反応が充分に進行し、しかも触媒活性が高く、分子量を高くすることも可能となる。前記範囲よりも少ないと、重合反応が充分に進行せず、一方、多すぎても、分子量が低下するという問題がある。
 触媒系において、遷移金属塩および配位子を用いる場合、この配位子の使用割合は、遷移金属塩1モルに対し、通常、0.1~100モル、好ましくは1~10モルである。この範囲にあれば、重合が充分に進行し、高収率で重合体を得ることができ、重合体の精製も容易である。
 また、触媒系における還元剤の使用割合は、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(3)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.1~100モル、好ましくは1~10モルである。この範囲にあれば、重合が充分に進行し、高収率で重合体を得ることができる。この範囲にあれば、重合速度が高く、また得られる重合体の精製も容易である。また前記範囲の下限満では、重合が充分進行せず、一方、上限を超えると、得られる重合体の精製が困難になるという問題がある。
 さらに、触媒系に遷移金属塩以外の塩を使用する場合、その使用割合は、上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(3)で表される構造単位となりうる化合物Bとの総計1モルに対し、通常、0.001~100モル、好ましくは0.01~1モルである。0.001モル未満では、重合速度を上げる効果が不充分であり、一方、100モルを超えると、得られる重合体の精製が困難となるという問題がある。
 本発明で使用することのできる重合溶媒としては、例えば、テトラヒドロフラン、シクロヘキサノン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、γ-ブチロラクトン、γ-ブチロラクタムなどが挙げられ、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドンが好ましい。これらの重合溶媒は、充分に乾燥してから用いることが好ましい。重合溶媒中における上記一般式(1)で表される構造単位となりうる化合物Aと、上記一般式(3)で表される構造単位となりうる化合物Bの濃度は、通常、1~90重量%、好ましくは5~40重量%である。
 なお、含窒素複素環基を有する構造単位やその他の構成単位を導入する場合、上記化合物AとBとを反応させる際に化合物Cや、その他の構成単位に相当するモノマーを添加したり、あるいは、化合物AないしBのどちらかと化合物Cなどを予め反応させておき、ついで、化合物AないしBのまだ反応させていない方と反応させればよい。
 化合物A、B、Cの反応は仕込み量がそのまま、各構成単位の組成に相当する。
 また、本発明の重合体を重合する際の重合温度は、通常、0~200℃、好ましくは50~80℃である。また、重合時間は、通常、0.5~100時間、好ましくは1~40時間である。
 以上の製造方法では、得られた共重合体に含まれる、スルホン酸エステル基をスルホン酸基(-SO3H)に転換する。
 具体的には、
(1)少量の塩酸を含む過剰量の水またはアルコールに、上記ポリアリーレンを投入し、5分間以上撹拌する方法
(2)トリフルオロ酢酸中で上記ポリアリーレンを80~120℃程度の温度で5~10時間程度反応させる方法
(3)ポリアリーレン中のスルホン酸エステル基(-SO3R)1モルに対して1~9倍モルのリチウムブロマイドを含む溶液、例えばN-メチルピロリドンなどの溶液中で上記ポリアリーレンを80~150℃程度の温度で3~10時間程度反応させた後、塩酸を添加する方法
などを挙げることができる。
 なお、スルホン酸金属塩となっている場合、イオン交換などの方法で水素置換すればよい。
(B1法)
 B1法では、一般式(3)または(3-1)において、Arが-O(CH2)pSO3Hまたは-O(CF2)pSO3Hで表される置換基を有する芳香族基である場合には、例えば、特願2003-295974号(特開2005-60625号公報)に記載の方法で、上記一般式(1)で表される構造単位となりうる前駆体(前駆体化合物(式(1-5)で表される化合物)と上記一般式(3)または(3-1)で表される構造単位となりうる前駆体のモノマーとを共重合させ、次にアルキルスルホン酸またはフッ素置換されたアルキルスルホン酸を導入する方法で合成することもできる。
 具体的には、上記一般式(3)または(3-1)で表される骨格を有しスルホン酸基、スルホン酸エステル基を有しないモノマーでありかつ末端にOR"基、SR"基(炭化水素基)を有するもの(下記式(3'a)、(3'b)、(3'-1a)、(3'-1b))と、式(1-5)で表される化合物とを共重合させたのち、OR"基およびSR"基を、-OM基あるいは-SM基(Mは、水素原子あるいはアルカリ金属原子を示す)に置換し、下記一般式(7)又は(8)で表される化合物をアルカリ条件下で反応させることによって製造することができる。なお、必要に応じて、脱エステル、脱塩を行ってもよい。
Figure JPOXMLDOC01-appb-C000042
 式(3'a)、(3'b)、(3'-1a)、(3'-1b)中、Y、Z、Ar11、Ar12、Ar13、a、b、m、nおよびkは、上記式(3)、(3-1)および(3-2)と同義である。
Xはハロゲン原子であり、R"は炭化水素基であり、Ar"はOR"基またはSR"基(R"は炭化水素基)を有する芳香族基を示す。
 式(7)および(8)中、R40は水素原子、フッ素原子、アルキル基、およびフッ素置換アルキル基からなる群より選ばれる少なくとも1種の原子または基を示し、gは1~20の整数を示す。
 式(8)中、Lは、塩素原子、臭素原子、およびヨウ素原子のいずれかを示し、Mは水素原子あるいはアルカリ金属原子を示す。
[電解質膜の製造方法]
 本発明のポリアリーレン系共重合体は、上記共重合体からなるが、一次電池用電解質、二次電池用電解質、燃料電池用高分子固体電解質、表示素子、各種センサー、信号伝達媒体、固体コンデンサー、イオン交換膜などに用いる場合、膜状態、溶液状態、粉体状態で用いることが考えられるが、このうち膜状態、溶液状態が好ましい(以下、膜状態のことを高分子電解質膜と呼ぶ)。
 本発明の高分子電解質膜は、上記ポリアリーレン系共重合体を有機溶剤中で混合させ、それを基体上に流延してフィルム状に成形するキャスティング法などにより製造することができる。ここで、上記基体としては、通常の溶液キャスティング法に用いられる基体であれば特に限定されず、たとえばプラスチック製、金属製などの基体が用いられ、好ましくは、ポリエチレンテレフタレート(PET)フィルムなどの熱可塑性樹脂からなる基体が用いられる。
 上記ポリアリーレン系共重合体を混合させる溶媒としては、共重合体を溶解する溶媒や膨潤させる溶媒であれば良く、たとえば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素、ジメチルイミダゾリジノン、アセトニトリルなどの非プロトン系極性溶剤や、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶剤、メタノール、エタノール、プロパノール、iso-プロピルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン、γ-ブチルラクトン等のケトン類、テトラヒドロフラン、1,3-ジオキサン等のエーテル類などの溶剤が挙げられる。これらの溶剤は、1種単独で、または2種以上を組み合わせて用いることができる。特に溶解性、溶液粘度の面から、N-メチル-2-ピロリドン(以下「NMP」ともいう。)が好ましい。
 また、上記溶媒として、非プロトン系極性溶剤と他の溶剤との混合物を用いる場合、該混合物の組成は、非プロトン系極性溶剤が95~25重量%、好ましくは90~25重量%、他の溶剤が5~75重量%、好ましくは10~75重量%(但し、合計は100重量%)である。他の溶剤の量が上記範囲内にあると、溶液粘度を下げる効果に優れる。この場合の非プロトン系極性溶剤と他の溶剤との組み合わせとしては、非プロトン系極性溶剤としてNMP、他の溶剤として幅広い組成範囲で溶液粘度を下げる効果があるメタノールが好ましい。
 上記共重合体と添加剤を溶解させた溶液のポリマー濃度は、上記スルホン酸含有ポリアリーレン系共重合体の分子量にもよるが、通常、5~40重量%、好ましくは7~25重量%である。ポリマー濃度が前記範囲にあれば所望の膜厚のものを形成できるとともに、ピンホールなどを生じることもなく、また、溶液粘度の点でもフィルム化が容易であり、得られたフィルムも表面平滑性に優れている。
 なお、溶液粘度は、上記ポリアリーレン系共重合体の分子量や、ポリマー濃度や、添加剤の濃度にもよるが、通常、2,000~100,000mPa・s、好ましくは3,000~50,000mPa・sである。この範囲の粘度であれば、成膜中の溶液の滞留性が良く、基体から流れてしまうこともなく、粘度が低いので、ダイからの押し出しも容易であり、流延法によるフィルム化が容易となる。
 上記のようにして成膜した後、得られた未乾燥フィルムを水に浸漬すると、未乾燥フィルム中の有機溶剤を水と置換することができ、得られる高分子電解質膜の残留溶媒量を低減することができる。
 なお、成膜後、未乾燥フィルムを水に浸漬する前に、未乾燥フィルムを予備乾燥してもよい。予備乾燥は、未乾燥フィルムを通常50~150℃の温度で、0.1~10時間保持することにより行われる。
 上記のように未乾燥フィルムを水に浸漬した後乾燥すると、残存溶媒量が低減された膜が得られるが、このようにして得られる膜の残存溶媒量は、通常5重量%以下である。また、浸漬条件によっては、得られる膜の残存溶媒量を1重量%以下とすることができる。
このような条件としては、たとえば、未乾燥フィルム1重量部に対する水の使用量が50重量部以上であり、浸漬する際の水の温度が10~60℃、浸漬時間が10分~10時間である。
 上記のように未乾燥フィルムを水に浸漬した後、フィルムを30~100℃、好ましくは50~80℃で、10~180分、好ましくは15~60分乾燥し、次いで、50~150℃で、好ましくは500mmHg~0.1mmHgの減圧下、0.5~24時間、真空乾燥することにより、膜を得ることができる。
 本発明の方法により得られる高分子電解質膜は、その乾燥膜厚が、通常10~100μm、好ましくは20~80μmである。
 また、上記スルホン酸エステル基ないしスルホン酸のアルカリ金属塩を有するポリアリーレン系共重合体を上述したような方法でフィルム状に成形した後、加水分解や酸処理等の適切な後処理することにより本発明に係る高分子電解質膜を製造することもできる。具体的には、スルホン酸エステル基ないしスルホン酸のアルカリ金属塩を有するポリアリーレン系共重合体を上述したような方法でフィルム状に成形した後、その膜を加水分解あるいは酸処理することによりポリアリーレン共重合体からなる高分子電解質膜を製造することができる。
 また、高分子電解質膜を製造する際に、上記ポリアリーレン共重合体以外に、硫酸、リン酸などの無機酸、リン酸ガラス、タングステン酸、リン酸塩水和物、β-アルミナプロトン置換体、プロトン導入酸化物等の無機プロトン伝導体粒子、カルボン酸を含む有機酸、スルホン酸を含む有機酸、ホスホン酸を含む有機酸、適量の水などを併用しても良い。
 以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例において、「%」とは特に断りのない限り「重量%」を意味する。
 [評価用電解質膜の調製]
 各実施例・比較例で得られた共重合体をN-メチルピロリドン/メタノール溶液に溶解させた後、アプリケーターを用いてPET基板上にキャスティングし、オーブンを用いて60℃×30分、80℃×40分、120℃×60分乾燥させた。乾燥した膜を脱イオン水に浸漬した。浸漬後、50℃で45分乾燥させることにより評価用の膜を得た。
 [分子量]
 各実施例・比較例で得られた共重合体をN-メチルピロリドン緩衝溶液(以下、NMP緩衝溶液という。)に溶解し、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調製した。
 [スルホン酸基の当量]
 得られたスルホン化ポリマーの水洗水が中性になるまで蒸留水で洗浄して、フリーの残存している酸を除去した後、乾燥させた。この後、所定量を秤量し、THF/水の混合溶剤に溶解させ、フェノールフタレインを指示薬として、NaOHの標準液にて滴定し、中和点から、スルホン酸基の当量(イオン交換容量)(meq/g)を求めた。
 [熱水試験:膨潤収縮量の求め方]
 フィルムを2.0cm×3.0cmにカットし秤量して、試験用のテストピースとした。24℃、相対湿度(RH)50%条件下にて状態調整した後、このフィルムを、ポリカーボネート製の250ml瓶に入れ、そこに約100mlの蒸留水を加え、プレッシャークッカー試験機(HIRAYAMA MFS CORP製、 PC-242HS)を用いて、120℃で24時間加温した。試験終了後、各フィルムを熱水中から取り出し、軽く表面の水をキムワイプで拭き取り、寸法を測定し膨潤率を求めた。この膜を24℃、RH50%条件下で状態調整し、水を留去して、熱水試験後の膜の寸法を測定し収縮率を求めた。膨潤収縮量は、下記式にしたがって求めた。
膨潤率=(含水時の2cm辺の寸法/2+含水時の3cm辺の寸法/3)×100/2
収縮率=(乾燥時の2cm辺の寸法/2+乾燥時の3cm辺の寸法/3)×100/2
膨潤収縮量=(膨潤率-100)+(100-収縮率)
[プロトン伝導度の測定]
 交流抵抗は、5mm幅の短冊状の試料膜の表面に、白金線(f=0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定から求めた。すなわち、85℃、相対湿度90%の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。
白金線は、5mm間隔に5本押し当てて、線間距離を5~20mmに変化させ、交流抵抗を測定した。線間距離と抵抗の勾配から、膜の比抵抗を算出した。この比抵抗の逆数がプロトン伝導度に相当する。
 比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
 <スルホン酸基を有する構造単位の合成>
 攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸(233.0g、2mol)を加え、続いて2,5-ジクロロベンゾフェノン(100.4g、400mmol)を加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷(1000g)にゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶(3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリド)を得た。粗結晶は精製することなく、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)(38.8g、440mmol)をピリジン300mlに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000ml中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、目的物である3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル(30-1)の白色結晶を得た。
Figure JPOXMLDOC01-appb-C000043
 <塩基性構造単位の合成>
 撹拌羽根、温度計、窒素導入管を取り付けた2Lの3口フラスコに、フルオロベンゼン240.2g(2.50mol)を取り、氷浴で10℃まで冷却し、2,5-ジクロロ安息香酸クロライド134.6g(0.50mol)、塩化アルミニウム86.7g(0.65mol)を反応温度が40℃を超えないように徐々に添加した。添加後、40℃で8時間撹拌した。薄層クロマトグラフィーにより原料の消失を確認した後、氷水に滴下し、酢酸エチルから抽出を行った。5%重曹水により中和した後、飽和食塩水で洗浄し、硫酸マグネシウムにより乾燥させた後、エバポレーターでにより溶媒を留去した。メタノールから再結晶を行うことにより、中間体の2,5-ジクロロ-4'-フルオロベンゾフェノンを得た。収量は130gであり、収率は97%であった。なお、収率は、収率(%)=(生成物収量/理論生成量)×100により算出し、以下同様とする。
 撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた2Lの3口フラスコに、上記2,5-ジクロロ-4'-フルオロベンゾフェノン130.5g(0.49mol)、2-ヒドロキシピリジン46.1g(0.49mol)、炭酸カリウム73.7g(0.53mol)、を取り、N,N-ジメチルアセトアミド(DMAc)500mL、トルエン100mLを加え、オイルバス中、窒素雰囲気下で加熱、撹拌下130℃で反応させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。その後、大部分のトルエンを除去し、130℃で10時間反応を続けた。得られた反応液を放冷後、濾液を2Lの水/メタノール(9/1)中に投入した。沈殿した生成物を濾別、回収し乾燥した。撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた2Lの3口フラスコに乾燥物を取り、トルエン1L中で100℃で撹拌し、残留した水分を留去し溶解させた。放冷後、結晶化物を濾過することにより淡黄色の目的物である2,5-ジクロロ-4'-(ピリジン-2-オキシ)ベンゾフェノン(30-2)を142g、収率83%で得た。
Figure JPOXMLDOC01-appb-C000044
[実施例1]
<スルホン酸基を有しない構造単位の合成>
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル90.1g(0.52mol)、2-メチルハイドロキノン59.1g(0.48mol)、炭酸カリウム85.6g(0.62mol)をはかりとった。窒素置換後、スルホラン599mL、トルエン299mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を180から190℃に上げ、3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル24.6g(0.14mol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%(5/1(体積比))硫酸溶液2395mL中に凝固した。沈殿した生成物を濾過し、水2395mL中、55℃で1時間攪拌した。濾過後、再度水2395mL中、55℃で1時間攪拌した。濾過後、メタノール2395mL中、55℃で1時間攪拌した後、濾過し、再度メタノール2395mL中、55℃で1時間攪拌し濾過した。風乾後、80℃で真空乾燥し目的物100g(収率90%)を得た。
GPCで測定したMnは7,200であった。得られた化合物は式(40-1)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000045
<スルホン化ブロックポリマーの合成>
 上記(30-1)で表される化合物38.99g(97.1mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-1)で表される化合物14.05g(1.95mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)160mLを窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 193mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム29.51g(340mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.1Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(50-1)であった。
Figure JPOXMLDOC01-appb-C000046
[実施例2]
 2-メチルハイドロキノン59.1g(0.48mol)を、2,3-ジメチルハイドロキノン65.8g(0.48mol)へ変更した以外は、実施例1と同様にして下記(40-2)で表されるオリゴマーを得た。GPCで測定したMnは6,500であった。
Figure JPOXMLDOC01-appb-C000047
 また、上記(30-1)で表される化合物38.87g(96.9mmol)と、上記(30-2)で表される化合物0.333g(0.97mmol)と、上記(40-2)で表される化合物14.03g(2.16mmol)、臭化リチウム29.45g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-2)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000048
[実施例3]
 2-メチルハイドロキノン59.1g(0.48mol)を、2-メチルハイドロキノン44.3g(0.36mol)、2,3-ジメチルハイドロキノン16.5g(0.12mol)へ変更した以外は、実施例1と同様にして下記(40-3)で表されるオリゴマーを得た。GPCで測定したMnは6,800であった。
Figure JPOXMLDOC01-appb-C000049
 また、上記(30-1)で表される化合物38.91g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-3)で表される化合物14.04g(2.06mmol)、臭化リチウム29.48g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-3)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000050
[実施例4]
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル32.1g(0.187mol)、2-tert-ブチルハイドロキノン27.2g(0.163mol)、炭酸カリウム31.0g(0.224mol)をはかりとった。窒素置換後、スルホラン219mL、トルエン109mLを加えて攪拌した。オイルバスで反応液を130℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を180から190℃に上げ、7時間攪拌を続けた後、2,6-ジクロロベンゾニトリル12.0g(0.070mol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%(5/1(体積比))硫酸溶液875mL中に凝固した。沈殿した生成物を濾過し、水875mL中、55℃で1時間攪拌した。濾過後、再度水875mL中、55℃で1時間攪拌した。濾過後、メタノール875mL中、55℃で1時間攪拌した後、濾過し、再度メタノール875mL中、55℃で1時間攪拌し濾過した。風乾後、80℃で真空乾燥し目的物43.2g(収率95%)を得た。GPCで測定したMnは4,700であった。得られた化合物は式(40-4)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000051
 上記(30-1)で表される化合物19.27g(48.0mmol)と、上記(30-2)で表される化合物0.165g(0.48mmol)と、上記(40-4)で表される化合物7.30g(1.49mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド0.98g(1.5mmol)、トリフェニルホスフィン1.18g(4.5mmol)、亜鉛5.88g(90mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)80mLを窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には80℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 129mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム14.60g(168mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水2.0Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸3200gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(50-4)であった。
Figure JPOXMLDOC01-appb-C000052
[実施例5]
反応物を2,6-ジクロロベンゾニトリル31.5g(0.183mol)、2-tert-ブチルハイドロキノン27.7g(0.167mol)、炭酸カリウム30.4g(0.220mol)へ変更し、反応中に加える添加物を2,6-ジクロロベンゾニトリル8.6g(0.050mol)へ変更した以外は、実施例4と同様にして下記(40-5)で表されるオリゴマーを得た。GPCで測定したMnは6,900であった。
Figure JPOXMLDOC01-appb-C000053
 また、上記(30-1)で表される化合物19.46g(48.5mmol)と、上記(30-2)で表される化合物0.167g(0.49mmol)と、上記(40-5)で表される化合物7.33g(1.03mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.31g(2.0mmol)、トリフェニルホスフィン1.57g(6.0mmol)、亜鉛7.84g(120mmol)、臭化リチウム14.74g(170mmol)へ変更した以外は、実施例4と同様にして下記(50-5)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000054
[実施例6]
 2-メチルハイドロキノン59.1g(0.48mol)を、2,5-ジ-1,1,3,3-テトラメチルブチルハイドロキノン159.3g(0.48mol)へ変更した以外は、実施例1と同様にして下記(40-6)で表されるオリゴマーを得た。GPCで測定したMnは6,400であった。
Figure JPOXMLDOC01-appb-C000055
 また、上記(30-1)で表される化合物38.86g(97.0mmol)と、上記(30-2)で表される化合物0.333g(0.97mmol)と、上記(40-6)で表される化合物14.03g(2.19mmol)、臭化リチウム29.44g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-6)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000056
[実施例7]
 2-メチルハイドロキノン59.1g(0.48mol)を、2,5-ジ-tert-アミルハイドロキノン119.2g(0.48mol)へ変更した以外は、実施例1と同様にして下記(40-7)で表されるオリゴマーを得た。GPCで測定したMnは6,600であった。
Figure JPOXMLDOC01-appb-C000057
 また、上記(30-1)で表される化合物38.89g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-7)で表される化合物14.04g(2.13mmol)、臭化リチウム29.46g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-7)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000058
[実施例8]
 2-メチルハイドロキノン59.1g(0.48mol)を、2,5-ジ-1,1,3,3-テトラメチルブチルハイドロキノン39.83g(0.12mol)、tert-ブチルハイドロキノン79.4g(0.36mol)へ変更した以外は、実施例1と同様にして下記(40-8)で表されるオリゴマーを得た。GPCで測定したMnは6,400であった。
Figure JPOXMLDOC01-appb-C000059
 また、上記(30-1)で表される化合物38.86g(97.0mmol)と、上記(30-2)で表される化合物0.333g(0.97mmol)と、上記(40-8)で表される化合物14.03g(2.19mmol)、臭化リチウム29.44g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-8)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000060
[実施例9]
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル90.1g(0.52mol)、2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)、炭酸カリウム85.6g(0.62mol)をはかりとった。窒素置換後、スルホラン600mL、トルエン300mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を180から190℃に上げ、3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル24.6g(0.14mol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%(5/1(体積比))硫酸溶液2401mL中に凝固した。沈殿した生成物を濾過し、水2401mL中、55℃で1時間攪拌した。濾過後、再度水2401mL中、55℃で1時間攪拌した。濾過後、メタノール2401mL中、55℃で1時間攪拌した後、濾過し、再度メタノール2401mL中、55℃で1時間攪拌し濾過した。風乾後、80℃で真空乾燥し目的物125g(収率90%)を得た。
GPCで測定したMnは7,000であった。得られた化合物は式(40-9)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000061
 上記(30-1)で表される化合物38.90g(96.9mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-9)で表される化合物14.75g(2.11mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したジメチルアセトアミド(DMAc)172mLを窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc 207mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム29.46g(339mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.3Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(50-9)であった。
Figure JPOXMLDOC01-appb-C000062
[実施例10]
 2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)を、2,5-ジ-tert-ブチルハイドロキノン10.63g(0.048mol)、2-tert-ブチルハイドロキノン71.2g(0.43mol)へ変更した以外は、実施例9と同様にして下記(40-10)で表されるオリゴマーを得た。GPCで測定したMnは6,900であった。
Figure JPOXMLDOC01-appb-C000063
 また、上記(30-1)で表される化合物38.88g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-10)で表される化合物14.75g(2.14mmol)、臭化リチウム29.45g(339mmol)へ変更した以外は、実施例9と同様にして下記(50-10)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000064
[実施例11]
 2-メチルハイドロキノン59.1g(0.48mol)を、2-メチルハイドロキノン50.3g(0.41mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン24.0g(0.07mol)へ変更した以外は、実施例1と同様にして下記(40-11)で表されるオリゴマーを得た。GPCで測定したMnは6,700であった。
Figure JPOXMLDOC01-appb-C000065
 また、上記(30-1)で表される化合物38.90g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-11)で表される化合物14.04g(2.10mmol)、臭化リチウム29.47g(340mmol)へ変更した以外は、実施例1と同様にして下記(50-11)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000066
[実施例12]
 反応物を2,6-ジクロロベンゾニトリル31.5g(0.183mol)、2-tert-ブチルハイドロキノン24.9g(0.150mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン5.60g(0.017mol)、炭酸カリウム30.4g(0.220mol)へ変更し、反応中に加える添加物を2,6-ジクロロベンゾニトリル8.6g(0.050mol)へ変更した以外は、実施例4と同様にして下記(40-12)で表されるオリゴマーを得た。GPCで測定したMnは7,300であった。
Figure JPOXMLDOC01-appb-C000067
 また、上記(30-1)で表される化合物19.46g(48.5mmol)と、上記(30-2)で表される化合物0.167g(0.49mmol)と、上記(40-12)で表される化合物7.33g(1.03mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.31g(2.0mmol)、トリフェニルホスフィン1.57g(6.0mmol)、亜鉛7.84g(120mmol)、臭化リチウム14.74g(170mmol)へ変更した以外は、実施例4と同様にして下記(50-12)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000068
[実施例13]
 反応物を2,6-ジクロロベンゾニトリル31.5g(0.183mol)、2-tert-ブチルハイドロキノン22.2g(0.133mol)、ハイドロキノン3.67g(0.033mol)、炭酸カリウム30.4g(0.220mol)へ変更し、反応中に加える添加物を2,6-ジクロロベンゾニトリル8.6g(0.050mol)へ変更した以外は、実施例4と同様にして下記(40-13)で表されるオリゴマーを得た。
GPCで測定したMnは6,700であった。
Figure JPOXMLDOC01-appb-C000069
 また、上記(30-1)で表される化合物19.46g(48.5mmol)と、上記(30-2)で表される化合物0.167g(0.49mmol)と、上記(40-13)で表される化合物7.38g(1.02mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.31g(2.0mmol)、トリフェニルホスフィン1.57g(6.0mmol)、亜鉛7.84g(120mmol)、臭化リチウム14.74g(170mmol)へ変更した以外は、実施例4と同様にして下記(50-13)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000070
[実施例14]
 反応物を2,6-ジクロロベンゾニトリル31.5g(0.183mol)、2-tert-ブチルハイドロキノン24.9g(0.150mol)、レゾルシノール1.84g(0.017mol)、炭酸カリウム30.4g(0.220mol)へ変更し、反応中に加える添加物を2,6-ジクロロベンゾニトリル8.6g(0.050mol)へ変更した以外は、実施例4と同様にして下記(40-14)で表されるオリゴマーを得た。
GPCで測定したMnは6,200であった。
Figure JPOXMLDOC01-appb-C000071
 また、上記(30-1)で表される化合物19.40g(48.3mmol)と、上記(30-2)で表される化合物0.166g(0.48mmol)と、上記(40-14)で表される化合物7.32g(1.18mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.31g(2.0mmol)、トリフェニルホスフィン1.57g(6.0mmol)、亜鉛7.84g(120mmol)、臭化リチウム14.69g(169mmol)へ変更した以外は、実施例4と同様にして下記(50-14)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000072
[実施例15]
 2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)を、2,5-ジ-tert-ブチルハイドロキノン26.6g(0.048mol)、2-tert-ブチルハイドロキノン47.5g(0.29mol)へ変更した以外は、実施例9と同様にして下記(40-15)で表されるオリゴマーを得た。GPCで測定したMnは7,200であった。
Figure JPOXMLDOC01-appb-C000073
 また、上記(30-1)で表される化合物38.92g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-15)で表される化合物14.76g(2.05mmol)、臭化リチウム29.48g(339mmol)へ変更した以外は、実施例9と同様にして下記(50-15)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000074
 [実施例16]
 2-tert-ブチルハイドロキノン59.1g(0.48mol)を2-tert-ブチルハイドロキノン10.6g(0.048mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン24.0g(0.07mol)を2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン144.1g(0.43mol)へ変更した以外は、実施例12と同様にしてオリゴマー(40-16)を得た。GPCで測定したMnは7,200であった。また、上記(30-1)で表される化合物38.96g(97.0mmol)と、上記(30-2)で表される化合物0.334g(0.97mmol)と、上記(40-16)で表される化合物14.05g(1.95mmol)、臭化リチウム29.51g(340mmol)へ変更した以外は、実施例9と同様にして(50-16)で表されるポリマーを得た。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。
Figure JPOXMLDOC01-appb-C000075
 [比較例1]
 攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル154.8g(0.9mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン269.0g(0.8mol)、炭酸カリウム143.7g(1.04mol)をはかりとった。窒素置換後、スルホラン1020mL、トルエン510mLを加えて攪拌した。
オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を200℃に上げ、3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル51.6g(0.3mol)を加え、さらに5時間反応させた。
 反応液を放冷後、トルエン250mLを加えて希釈した。反応液に不溶の無機塩を濾過し、濾液をメタノール8Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥後、テトラヒドロフラン500mLに溶解し、これをメタノール5Lに注いで再沈殿させた。沈殿した白色粉末を濾過、乾燥し、目的物258gを得た。GPCで測定したMnは8,200であった。得られた化合物は式(60-1)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000076
 上記(30-1)で表される化合物39.05g(97.3mmol)と、上記(30-2)で表される化合物0.335g(0.97mmol)と、上記(60-1)で表される化合物14.06g(1.72mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.96g(3.0mmol)、トリフェニルホスフィン2.36g(9mmol)、亜鉛11.77g(180mmol)の混合物中に乾燥したDMAc160mLを窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc373mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム29.58g(340mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、水4.1Lに注ぎ、凝固した。凝固物をアセトンに浸漬し、濾過し洗浄した。洗浄物を1N硫酸6500gで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、イオン交換容量を表1に示す。得られたポリマーは、下記一般式(70-1)であった。
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-T000078
 表1に示すように、スルホン酸基を有しない特定の構造を用いることにより熱水時の膨潤および乾燥時の収縮を抑制することが出来る。

Claims (8)

  1.  スルホン酸基を有するポリマーセグメント(A)およびスルホン酸基を実質的に有しないポリマーセグメント(B)を有し、前記スルホン酸基を実質的に有しないポリマーセグメント(B)が下記式(1)で表わされる構造単位を有する、ポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、R1は、各々独立に、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、Lは、下記式(1-1)で表わされる構造単位または下記式(1-2)で表わされる構造単位であり、複数あるLの少なくとも一つは下記式(1-1)で表わされる構造単位であり、aは0~3の整数、pは2~200の整数を表わす。なお、複数のR1、aおよびLは、同一であっても異なっていてもよい。hは1~4-aの整数)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(1-1)中は、Aは、各々独立に、-O-または-S-であり、R2は、各々独立に、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン化炭化水素基であり、X1は、各々独立に、ハロゲン原子であり、bは1~4の整数、lは0~3の整数を表わす。ただし、b+lは4以下である。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1-2)中、Aは、各々独立に、-O-または-S-であり、Dは、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す)、シクロヘキシリデン基およびフルオレニリデン基からなる群より選ばれた少なくとも1種の構造を表わし、R3及びR4は、各々独立に、炭素数1~20の炭化水素基、または、炭素数1~20のハロゲン化炭化水素基であり、X2及びX3は、各々独立に、ハロゲン原子であり、c及びdは0~4の整数、m及びnは0~4の整数、qは0~4の整数を表わす。ただし、q=0のとき、dは0である。また、c+mおよびd+nは4以下である。)
  2.  スルホン酸基を有しないポリマーセグメント(B)を誘導する下記式(1')で表される前駆体のポリスチレン換算の数平均分子量が1,000~50,000である、請求項1に記載のポリアリーレン系ブロック共重合体。
    (上記式(1')中、R1、L、a、p、hは式(1)と同じであり、X'はハロゲン原子、ニトロ基、-SO2CH3および-SO2CF3から選ばれる原子または基を示す。)
  3.  上記式(1)において、pが2~150である、請求項1または2に記載のポリアリーレン系ブロック共重合体。
  4.  上記式(1-1)で表わされる構造単位と上記式(1-2)で表わされる構造単位をモル比(1-1):(1-2)で100:0~50:50の割合で含む、請求項1~3のいずれかに記載のポリアリーレン系ブロック共重合体。
  5.  上記式(1-1)で表わされる構造単位が、下記式(1-3)で表わされる構造単位と下記式(1-4)で表わされる構造単位をモル比(1-3):(1-4)で10:90~90:10の割合で含む、請求項1~4のいずれかに記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000005
    (上記式中、R2、A、X1、lは上記式(1-1)と同義であり、eは1または3を表わす。)
    Figure JPOXMLDOC01-appb-C000006
    (上記式中、R2、A、X1、lは上記式(1-1)と同義であり、fは2または4を表わす。)
  6.  スルホン酸基を有するポリマーセグメント(A)が下記式(3)で表される構造単位を有する、請求項1~4のいずれかに記載のポリアリーレン系ブロック共重合体。
    Figure JPOXMLDOC01-appb-C000007
    (上記式中、Ar11、Ar12、Ar13は、それぞれ独立に、フッ素原子で置換されていてもよい、ベンゼン環、縮合芳香環、含窒素複素環からなる群より選ばれる少なくとも1種の構造を有する2価の基を示す。Yは、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2)u-(uは1~10の整数である)、-C(CF3)2-、または直接結合を示す。Zは、-O-、-S-、直接結合、-CO-、-SO2-、-SO-、-(CH2)l-(lは1~10の整数である)、または-C(CH3)2-を示す。
     R22は、直接結合、-O(CH2)p-、-O(CF2p-、-(CH2p-または-(CF2p-を示す(pは、1~12の整数を示す)。R23、R24は、それぞれ独立に、水素原子、アルカリ金属原子または脂肪族炭化水素基、脂環基、酸素を含む複素環基を示す。
    ただし、上記式中に含まれる全てのR23およびR24のうち少なくとも1個は水素原子である。
     x1は0~4の整数、x2は1~5の整数、aは0~1の整数、bは0~3の整数を示す。)
  7.  請求項1~6のいずれか1項に記載のポリアリーレン系ブロック共重合体からなる高分子電解質。
  8.  請求項1~6のいずれか1項に記載のポリアリーレン系ブロック共重合体からなるプロトン伝導膜。
PCT/JP2011/063123 2010-06-10 2011-06-08 スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途 WO2011155520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/702,824 US8729219B2 (en) 2010-06-10 2011-06-08 Polyarylene block copolymer having sulfonic acid group and use thereof
JP2012519410A JP5692226B2 (ja) 2010-06-10 2011-06-08 スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133097 2010-06-10
JP2010-133097 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155520A1 true WO2011155520A1 (ja) 2011-12-15

Family

ID=45098124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063123 WO2011155520A1 (ja) 2010-06-10 2011-06-08 スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途

Country Status (3)

Country Link
US (1) US8729219B2 (ja)
JP (1) JP5692226B2 (ja)
WO (1) WO2011155520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258461A (ja) * 2010-06-10 2011-12-22 Jsr Corp 固体高分子型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181004B2 (ja) * 2010-08-27 2013-04-10 Jsr株式会社 スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途
WO2013031675A1 (ja) * 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048942A1 (ja) * 2004-11-01 2006-05-11 Honda Motor Co., Ltd. ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2006344481A (ja) * 2005-06-08 2006-12-21 Jsr Corp 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP2006342243A (ja) * 2005-06-08 2006-12-21 Jsr Corp ポリアリーレン系共重合体、その製造方法およびプロトン伝導膜
WO2008078810A1 (ja) * 2006-12-27 2008-07-03 Jsr Corporation 芳香族化合物およびスルホン酸基を有するポリアリーレン系共重合体、ならびにその用途
JP2010031226A (ja) * 2008-06-26 2010-02-12 Jsr Corp ポリアリーレン系共重合体および固体高分子電解質

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403675A (en) 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
JP3975908B2 (ja) 2002-08-22 2007-09-12 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
JP4269777B2 (ja) 2003-05-21 2009-05-27 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP4193581B2 (ja) 2003-05-21 2008-12-10 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP4131216B2 (ja) 2003-08-20 2008-08-13 Jsr株式会社 ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP5181004B2 (ja) 2010-08-27 2013-04-10 Jsr株式会社 スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048942A1 (ja) * 2004-11-01 2006-05-11 Honda Motor Co., Ltd. ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2006344481A (ja) * 2005-06-08 2006-12-21 Jsr Corp 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP2006342243A (ja) * 2005-06-08 2006-12-21 Jsr Corp ポリアリーレン系共重合体、その製造方法およびプロトン伝導膜
WO2008078810A1 (ja) * 2006-12-27 2008-07-03 Jsr Corporation 芳香族化合物およびスルホン酸基を有するポリアリーレン系共重合体、ならびにその用途
JP2010031226A (ja) * 2008-06-26 2010-02-12 Jsr Corp ポリアリーレン系共重合体および固体高分子電解質

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258461A (ja) * 2010-06-10 2011-12-22 Jsr Corp 固体高分子型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体

Also Published As

Publication number Publication date
JPWO2011155520A1 (ja) 2013-08-01
JP5692226B2 (ja) 2015-04-01
US8729219B2 (en) 2014-05-20
US20130085236A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5472267B2 (ja) 含窒素芳香族化合物およびその製造方法、重合体およびプロトン伝導膜
KR100962980B1 (ko) 신규한 방향족 술폰산 에스테르 유도체, 폴리아릴렌,술폰산기를 갖는 폴리아릴렌 및 그의 제조 방법, 및고분자 고체 전해질 및 양성자 전도막
KR101023577B1 (ko) 직접 메탄올형 연료 전지용 막-전극 접합체 및 프로톤전도막
JP5181004B2 (ja) スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途
KR101338588B1 (ko) 방향족 화합물 및 술폰화 폴리아릴렌계 중합체
JPWO2008143179A1 (ja) 新規な芳香族化合物および側鎖にスルホン酸基を含む含窒素複素環を有するポリアリーレン系共重合体
JP5417864B2 (ja) 重合体およびプロトン伝導膜
JP5625317B2 (ja) 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
KR20090005215A (ko) 플루오렌 골격을 갖는 방향족 화합물 및 술폰산기를 갖는 폴리아릴렌
JP5692226B2 (ja) スルホン酸基を有するポリアリーレン系ブロック共重合体、ならびにその用途
JP5581937B2 (ja) 芳香族系共重合体、ならびにその用途
JP2010031231A (ja) 新規な芳香族化合物および含窒素芳香環を有するポリアリーレン系共重合体
JP5417863B2 (ja) ポリアリーレン系共重合体および固体高分子電解質
JP5597924B2 (ja) 芳香族化合物およびスルホン酸基を有するポリアリーレン系共重合体、ならびにその用途
JP5266691B2 (ja) ポリマー、高分子電解質およびそれを用いてなる燃料電池
WO2011155528A1 (ja) スルホン酸基を有する芳香族系共重合体、ならびにその用途
WO2011049211A1 (ja) 側鎖にホスホン酸基を含む芳香環を有するポリアリーレン系共重合体
WO2012017965A1 (ja) スルホン酸基を有する芳香族系共重合体、ならびにその用途
JP2006176682A (ja) アルキル基側鎖を有する化合物およびスルホン化ポリマー
JP5562129B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2006299081A (ja) 多核芳香族スルホン酸誘導体、スルホン化ポリマー、固体高分子電解質およびプロトン伝導膜
JP2007210919A (ja) 芳香族スルホン酸エステルおよびスルホン化ポリアリーレン系重合体
JP5454561B2 (ja) 固体高分子電解質膜形成用溶液
JP2019019273A (ja) 高分子電解質の製造方法
WO2012017960A1 (ja) スルホン酸基を有する芳香族系共重合体、ならびにその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519410

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13702824

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792477

Country of ref document: EP

Kind code of ref document: A1