WO2011148938A1 - ジアホラーゼ活性を有するタンパク質 - Google Patents

ジアホラーゼ活性を有するタンパク質 Download PDF

Info

Publication number
WO2011148938A1
WO2011148938A1 PCT/JP2011/061865 JP2011061865W WO2011148938A1 WO 2011148938 A1 WO2011148938 A1 WO 2011148938A1 JP 2011061865 W JP2011061865 W JP 2011061865W WO 2011148938 A1 WO2011148938 A1 WO 2011148938A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
diaphorase
protein
seq
Prior art date
Application number
PCT/JP2011/061865
Other languages
English (en)
French (fr)
Inventor
至道 川瀬
理文 八尾
美和 千葉
一恵 川原
啓介 黒坂
伸一 横堀
明彦 山岸
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2012517277A priority Critical patent/JP5821843B2/ja
Publication of WO2011148938A1 publication Critical patent/WO2011148938A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)

Definitions

  • the present invention relates to a protein having a highly stable diaphorase activity. Furthermore, the present invention relates to a method for producing the protein.
  • Diaphorase [EC. 1.6.99. -] Is an enzyme that plays an important role in the electron transport system in vivo, but on the other hand, as a component of a composition for clinical testing and a catalyst for electrochemical reactions such as biosensors and enzyme batteries in vitro. It is an industrially useful enzyme used.
  • thermophilic microorganism Bacillus stearothermophilus
  • Patent Documents 1 and 2 a thermophilic microorganism that produces a diaphorase that is heat-stable as compared to known diaphorases.
  • Patent Documents 1 and 2 a gene encoding wild-type diaphorase was isolated and a more efficient production method was developed (for example, see Patent Document 3).
  • Diaphorase with excellent stability can be obtained by the above production method, and it can be produced industrially efficiently, and is used for various industrial uses as described above.
  • wild-type diaphorase is extremely stable in comparison with other biomolecules, but the decrease in activity due to the passage of heat or time is remarkable as compared with the stability required for general industrial products.
  • the stability of wild-type diaphorase which was not a problem as long as it was used in clinical laboratory compositions and sensors for medical institutions, which are assumed to be used under good management, Diaphorase with improved stability is required for use in biosensors that are hand-held, and enzyme batteries that are expected to be used in harsh environments.
  • Evolutionary engineering methods are often used as methods for functional modification of enzymes.
  • the functional modification of an enzyme using an evolutionary engineering method can be started, for example, by first introducing a random mutation into the gene sequence of the target protein.
  • Random mutagenesis is a technique mainly using PCR, and the following method introduces various mutations at various sites on a gene by intentionally setting the accuracy of PCR low.
  • a kit such as Diversity PCR Random Mutagenesis Kit (Clontech) or GeneMorph II Randommutagenesis Kit (Stratagene) is used.
  • a mutant library of a gene into which a mutation has been introduced by PCR is ligated to an appropriate expression plasmid using an ordinary method, transformed into an appropriate host, and spread on a plate medium to form a colony. create.
  • the above mutant library is cultured in a 96-well plate or the like in a single colony, and the mutant enzyme is expressed. If the functionally modified target of the enzyme is stable, the 96-well format mutant enzyme library is fixed. A highly stable mutant enzyme is screened by selecting a mutant that heats for a period of time and has a smaller change in the reaction rate of the enzyme reaction before and after heating. It has been reported in various literatures that a certain level of results can be obtained by such a method (see, for example, Non-Patent Documents 1 to 5).
  • diaphorase based on the technique described in the above patent document still cannot be said to be sufficiently stable as an industrial product, and the production process or use environment is more limited than that of an industrial product that does not use biomolecules. Handling is required. On the other hand, there is no indication of how much stability is sufficient, and there is a constant need for diaphorases that are significantly more stable than existing ones.
  • an object of the present invention is to provide a mutant diaphorase in which the residual rate of diaphorase activity is improved with respect to the wild type even when subjected to a certain heat treatment.
  • the present inventors adopted an approach different from the conventional evolutionary engineering method, and in addition to the consensus method based on the multiple alignment diagram, the ancestor based on the phylogenetic method It was found that a specific mutation different from that conventionally known in the amino acid sequence of wild-type diaphorase can be obtained by using the amino acid introduction method together. Furthermore, by introducing the mutation into the amino acid sequence of wild-type diaphorase, it was found that a mutant diaphorase with an improved diaphorase activity remaining rate compared to the wild-type can be obtained even when subjected to a certain heat treatment. The invention has been completed.
  • the present invention has the following configuration. 1.
  • the remaining ratio of diaphorase activity when the protein having diaphorase activity including the following amino acid sequence (i) or (ii) and subjected to heat treatment at 80 ° C. for 10 minutes is represented by SEQ ID NO: 1 in the sequence listing.
  • the protein according to item 1 wherein in the amino acid sequence of the protein described in (i), the 150th phenylalanine in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing is an amino acid sequence substituted with another amino acid. 3.
  • the 120th valine, 150th phenylalanine, 167th serine and 168th valine in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing are substituted with other amino acids.
  • the protein according to item 1 which has an amino acid sequence. 4).
  • substitution to other amino acids in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing is from S65A, Y96I, A117H, V120R, Q130N, V133Q, F150D, S167K, and V168T. 4.
  • the protein according to any one of 1 to 4 above which comprises (1) S65A (2) Y96I (3) A117H / V120R (4) V120R (5) Q130N (6) V133Q (7) F150D (8) S167K / V168T 6).
  • the amino acid sequence comprising at least one amino acid substitution selected from the group consisting of the following (1) to (13) in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing in the amino acid sequence of the protein described in (i) above
  • the diaphorase activity after heat treatment at 80 ° C. for 10 minutes is 2 times or more as compared with the protein comprising the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing after the heat treatment.
  • V133Q / F150D (2) F150D (3) V120R / F150D / S167K / V168T (4) V120R / V133Q / S167K / V168T (5) V120R / S167K / V168T (6) V120R / Q130N / V133Q / S167K / V168T (7) Y96I / V120R / S167K / V168T (8) S65A / V120R / S167K / V168T (9) S65A / V120R (10) S65A / Y96I / V120R / S167K / V168T (11) Y96I / V120R (12) S65A (13) V133Q 7).
  • the amino acid sequence comprising at least one amino acid substitution selected from the group consisting of the following (1) to (7) in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing in the amino acid sequence of the protein described in (i) above
  • the residual rate of diaphorase activity when subjected to heat treatment at 80 ° C. for 10 minutes is 3 times or more compared to the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing 7.
  • the protein according to any one of 1 to 6 above.
  • a protein having diaphorase activity comprising an amino acid sequence containing one amino acid substitution selected from the group consisting of the following (a) to (u) in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing.
  • the 65th serine, 96th tyrosine, 117th alanine, 120th valine, 130th glutamine, 133th position in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing Heat treatment at 80 ° C. for 10 minutes, including an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than valine, 150th phenylalanine, 167th serine and 168th valine
  • a protein in which the residual rate of diaphorase activity in the case of applying is applied as compared with a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing. 10.
  • the protein according to item 8 or 9 above which comprises an amino acid sequence comprising an amino acid substitution of F150D or V120R / F150D / S167K / V168T in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing.
  • Any one of items 8 to 10 above, wherein the diaphorase activity after heat treatment at 80 ° C. for 10 minutes is twice or more as compared with the protein comprising the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing after the heat treatment.
  • the protein according to 1. 12 The residual ratio of diaphorase activity after heat treatment at 80 ° C. for 10 minutes is 3 times or more as compared with the protein consisting of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing after the heat treatment. 11.
  • 14 14.
  • 15. A transformant comprising the recombinant vector according to item 14 above.
  • 16. A method for producing a thermostable diaphorase, wherein diaphorase is produced by culturing the transformant according to item 15 and the diaphorase is collected.
  • the residual rate of diaphorase activity after heat treatment is improved with respect to the wild-type diaphorase, so products such as reagents, sensors and enzyme batteries produced using the diaphorase of the present invention have a quality assurance period.
  • products such as reagents, sensors and enzyme batteries produced using the diaphorase of the present invention have a quality assurance period.
  • movement period becomes long and it can preserve
  • distribution and storage at a higher temperature becomes possible, and convenience for the user is improved, and transportation and storage costs are reduced.
  • FIG. 1 is an alignment diagram of proteins having high homology with wild-type diaphorase used for site-directed mutagenesis based on a consensus method and site-directed mutagenesis based on a predicted ancestral amino acid sequence.
  • Example 1 FIG. 2 is a molecular phylogenetic tree of proteins having high homology with wild-type diaphorase, created by a phylogenetic tree creation program based on the amino acid sequence information in the alignment diagram of FIG. 1 and the maximum likelihood method.
  • Example 1 FIG. 3 shows the results of Blue-Sepharose chromatography in the purification of mutation 42 (V133Q / F150D).
  • FIG. 4 is a graph showing the results of evaluating the stability of mutation 22 (F150D) and mutation 39 (V120R / F150D / S167K / V168T). (Example 6)
  • glycine (Gly) is G
  • alanine (Ala) is A
  • valine (Val) is V
  • leucine (Leu) is L
  • isoleucine (Ile) is I
  • phenylalanine (Phe) is F
  • tyrosine (Tyr) is Y
  • Tryptophan (Trp) is W
  • serine (Ser) is S
  • threonine (Thr) is T
  • cysteine (Cys) is C
  • methionine (Met) is M
  • aspartic acid (Asp) is D
  • glutamic acid (Glu) is E
  • Asparagine (Asn) is N
  • glutamine (Gln) is Q
  • lysine (Lys) is K
  • arginine (Arg) is R
  • histidine (His) is H
  • proline (Pro) is P.
  • S65A amino acid substitution notations.
  • S65A means that the 65th serine from the N-terminal side in a specific amino acid sequence is substituted with alanine.
  • V120R / S167K / V168T means that amino acid substitutions of V120R, S167K, and V168T are introduced simultaneously.
  • Diaphorase is an enzyme having an activity (diaphorase activity) that catalyzes a reaction that oxidizes NADH or NADPH with pigments such as potassium ferricyanide, methylene blue, 2,6-dichloroindophenol, and tetrazolium salt.
  • pigments such as potassium ferricyanide, methylene blue, 2,6-dichloroindophenol, and tetrazolium salt.
  • Microorganisms such as bacteria and yeasts Widely distributed from mammals to mammals.
  • Diaphorase plays an important role in the electron transport system in vivo and catalyzes the reaction in the reaction between reduced nicotinamide adenine dinucleotide or reduced nicotinamide adenine dinucleotide phosphate and an electron acceptor. .
  • the mutant diaphorase of the present invention has a 65th serine, 96th tyrosine, 117th alanine, 120th valine, 130th glutamine, 133 in the amino acid sequence of the wild type diaphorase shown in SEQ ID NO: 1 in the Sequence Listing.
  • a protein having a diaphorase activity comprising an amino acid sequence in which at least one amino acid selected from the group consisting of: th valine, 150 th phenylalanine, 167 th serine and 168 th valine is substituted with another amino acid;
  • the diaphorase activity remaining rate when subjected to heat treatment at 80 ° C. for 10 minutes is improved compared to the protein consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • the 150th phenylalanine in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing is preferably substituted with another amino acid.
  • the other amino acid is preferably aspartic acid.
  • the 120th valine, the 150th phenylalanine, the 167th serine and the 168th valine in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing are substituted with other amino acids.
  • the other amino acid is preferably an ancestral amino acid described later.
  • diaphorase activity remaining rate is a value representing the percentage of activity value after heat treatment measured before and after heat treatment under the same conditions, and the amount of activity value after heat treatment compared with that before heat treatment. It is. Further, the condition of the “heat treatment” as a reference in the present invention is a standing treatment for 10 minutes in an 80 ° C. hot water bath, and the ratio of diaphorase activity values before and after the heat treatment is shown as a percentage.
  • the residual rate of diaphorase activity is improved compared to the protein comprising the amino acid sequence represented by SEQ ID NO: 1 means that the residual diaphorase activity is expressed as a percentage of the ratio of diaphorase activity before and after heat treatment of the mutant diaphorase. The rate is higher than the diaphorase activity remaining rate expressed as a percentage of the ratio of diaphorase activity values before and after heat treatment under the same conditions for the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 which is wild-type diaphorase.
  • the 117th alanine is preferably substituted with another amino acid together with the 120th valine.
  • the 167th serine is preferably substituted with another amino acid together with the 168th valine, and the 120th valine is further substituted with another amino acid. Is more preferable.
  • the 167th serine is at least one selected from the group consisting of the 120th valine and the following (1) to (6) in addition to the 168th valine: More preferably, the amino acid at the above position is substituted with another amino acid. Further, it is particularly preferred that the amino acid at at least one position shown in (1) to (3) and (5) is substituted with another amino acid.
  • the 133rd valine is preferably substituted with another amino acid together with the 150th phenylalanine.
  • the 120th valine is preferably substituted with another amino acid together with the 65th serine or the 96th tyrosine.
  • the 65th serine, 96th tyrosine, 117th alanine, 120th valine, 130th glutamine, 133th valine, 150th phenylalanine in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing As other amino acids for substituting 167th serine and 168th valine, the residual diaphorase activity of the mutant diaphorase obtained by amino acid substitution at 80 ° C. for 10 minutes is Any amino acid can be used as long as it is improved.
  • each amino acid it is preferable to substitute each amino acid by the following amino acid, for example.
  • 65th serine substitution to alanine, valine, leucine, isoleucine or proline is preferred, and substitution to alanine is more preferred.
  • alanine is an ancestral amino acid described later of the 65th serine.
  • 96th tyrosine preferably substituted with isoleucine, alanine, valine, leucine or proline, more preferably substituted with isoleucine.
  • isoleucine is an ancestral amino acid described later of the 96th tyrosine.
  • 117th alanine substitution to isoleucine, valine, leucine or proline is preferred, and substitution to isoleucine is more preferred.
  • isoleucine is an ancestral amino acid described later of the 117th alanine.
  • 120th valine substitution with arginine, lysine or histidine is preferred, and substitution with arginine is more preferred.
  • arginine is an ancestral amino acid described later of the 120th valine.
  • 130th glutamine preferably substituted with asparagine or glutamine, more preferably substituted with asparagine.
  • isoleucine is an ancestral amino acid described later of the 96th tyrosine.
  • 133rd valine preferably substituted with glutamine or asparagine, more preferably substituted with glutamine.
  • glutamine is an ancestral amino acid described later of the 133rd valine.
  • 150th phenylalanine substitution to aspartic acid or glutamic acid is preferred, and substitution to aspartic acid is more preferred.
  • aspartic acid is an ancestral amino acid described later of the 150th phenylalanine.
  • Substitution to 167th serine lysine, arginine or histidine is preferred, and substitution to lysine is more preferred.
  • lysine is an ancestral amino acid described later of the 167th serine.
  • 168th valine substitution to threonine or serine is preferred, and substitution to threonine is more preferred.
  • threonine is an ancestral amino acid described later of the 168th valine.
  • the mutant diaphorase of the present invention is a protein comprising an amino acid sequence comprising at least one amino acid substitution selected from the group consisting of the following (1) to (8) in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing.
  • the mutant diaphorase of the present invention is a protein comprising an amino acid sequence comprising at least one amino acid substitution selected from the group consisting of the following (1) to (13) in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing. It is more preferable that the diaphorase activity after heat treatment at 80 ° C. for 10 minutes is twice or more as compared with the protein comprising the amino acid sequence represented by SEQ ID NO: 1 after the heat treatment.
  • V133Q / F150D (2) F150D (3) V120R / F150D / S167K / V168T (4) V120R / V133Q / S167K / V168T (5) V120R / S167K / V168T (6) V120R / Q130N / V133Q / S167K / V168T (7) Y96I / V120R / S167K / V168T (8) S65A / V120R / S167K / V168T (9) S65A / V120R (10) S65A / Y96I / V120R / S167K / V168T (11) Y96I / V120R (12) S65A (13) V133Q
  • the diaphorase activity after heat treatment at 80 ° C. for 10 minutes is more than twice that of the protein comprising the amino acid sequence represented by SEQ ID NO: 1 after the heat treatment” means that the mutant diaphorase is When the diaphorase activity is measured under the same conditions after heat-treating the wild-type diaphorase under the same conditions (80 ° C., 10 minutes), the activity value of the mutant diaphorase is at least twice that of the wild-type diaphorase. Say.
  • the mutant diaphorase of the present invention is a protein comprising an amino acid sequence comprising at least one amino acid substitution selected from the group consisting of the following (1) to (7) in the amino acid sequence represented by SEQ ID NO: 1 in the Sequence Listing.
  • the diaphorase activity remaining rate when subjected to heat treatment at 80 ° C. for 10 minutes is 3 times or more as compared with the protein consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • V133Q / F150D (2) F150D (3) V120R / F150D / S167K / V168T (4) V120R / V133Q / S167K / V168T (5) V120R / S167K / V168T (6) V120R / Q130N / V133Q / S167K / V168T (7) S65A / V120R / S167K / V168T
  • the mutant diaphorase of the present invention includes a diaphorase activity comprising an amino acid sequence comprising one amino acid substitution selected from the group consisting of the following (a) to (u) in the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing Proteins having the In the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, one or more of these amino acid substitutions may be introduced.
  • the residual ratio of diaphorase activity when heat-treated at 80 ° C. for 10 minutes is usually improved as compared with the protein comprising the amino acid sequence represented by SEQ ID NO: 1 after the heat treatment. It is preferably at least twice, more preferably at least 3 times, and even more preferably at least 4 times.
  • amino acid substitutions (a) to (u) from the viewpoint of the residual ratio of diaphorase activity after heat treatment, S65A, F150D, A117H / V120R, S65A / V120R, Y96I / V120R, V133Q / F150D, V120R / S167K are particularly preferred.
  • the mutant diaphorase of the present invention is the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, wherein the 65th serine, 96th tyrosine, 117th alanine, 120th valine, 130th glutamine, 133th position
  • SEQ ID NO: 1 in the sequence listing, wherein the 65th serine, 96th tyrosine, 117th alanine, 120th valine, 130th glutamine, 133th position
  • a protein comprising the amino acid sequence even if one or several amino acids are deleted, substituted or added, and 80 Any mutant diaphorase may be used as long as the diaphorase activity remaining rate after heat treatment at 10 ° C. for 10 minutes is improved as compared with the protein consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • the number of amino acid residues to be modified is 1 or several, preferably 1 to 20, and more preferably 1 to 10 It is preferably 1 to 6, more preferably several (1 to 2 or 3), and most preferably 1.
  • the method for obtaining a wild-type diaphorase gene from which the gene encoding the mutant diaphorase of the present invention is produced is appropriately selected from the following (1) to (2) in addition to the method described in Japanese Patent No. 395578. Although it can select and use, it is not limited.
  • Genomic DNA is extracted from cells of Bacillus stearothermophilus, and the gene is obtained by PCR with an oligonucleotide specific for the wild-type diaphorase gene using the genomic DNA as a template. can do.
  • the same gene as the nucleotide sequence of the desired gene can be amplified and obtained according to the total synthesis method of the gene by PCR as described in 15, p263, 1993.
  • the mutant diaphorase of the present invention is not a random mutagenesis method using a commonly used evolutionary engineering technique, but in addition to the following (1) consensus method based on multiple alignment diagrams, and (2) phylogeny An amino acid substitution determined by using an ancestral amino acid introduction method based on a genetic technique is introduced into the amino acid sequence of wild-type diaphorase shown in SEQ ID NO: 1 in the sequence listing.
  • Consensus method based on a multiple alignment diagram The consensus method based on a multiple alignment diagram is originally used for the purpose of modifying the function of an antibody, and has been used for the purpose of improving the thermal stability of an enzyme. This is a site-specific mutagenesis method in a sequence or amino acid sequence (a method for site-specific determination of which mutation is to be introduced at which position on the sequence). See B. for details. Steipe, et al. , J .; Mol. Biol. 240, 188-192, 1994.
  • the candidate protein when the candidate protein is not active due to deletion of the amino acid sequence or the like, there is a situation where a specific locus of the amino acid sequence of the candidate protein is deleted and some amino acid is arranged in the amino acid sequence other than the candidate gene. Observed. If, for example, methionine (M) is abundantly arranged at amino acid residues other than the candidate protein at that locus, M is inserted into the deletion site. Similarly, if serine (S) is arranged in a large amount, S is inserted at the deletion site.
  • M methionine
  • S serine
  • Such a method for introducing a mutation by majority decision is called a consensus method.
  • the consensus method can be used to modify and improve various performances of enzymes.
  • the consensus method is not necessarily a method for achieving heat resistance of the enzyme when used alone.
  • the present inventors have found that, in addition to the consensus method, a mutant enzyme having improved heat resistance can be obtained by using an ancestral amino acid introduction method based on the following phylogenetic technique, and the present invention Was completed.
  • An ancestral amino acid introduction method based on a phylogenetic method estimates an amino acid sequence of a common ancestor in a plurality of species for a specific enzyme, This technique was developed for the purpose of inferring the functions of common ancestor enzymes by introducing amino acid sequences into the original enzyme as mutations. For details, see Hisako, I .; , Et al. , FEMS Microbiology Letters, 243, 393-398, 2005; Keiko, W. et al. , Et al. , FEBS Letters, 580, 3867-3871, 2006; Japanese Patent Application Laid-Open No. 2002-247991.
  • phylogenetic tree estimation programs such as TREE PUZZLE, MOLPHY and PHYLIP can be used.
  • an algorithm based on the maximum likelihood principle is known, and a computer program for realizing it can also be used or obtained.
  • various phylogenetic tree estimation programs such as ModelTest, PHYML, PHYLIP, and TreeFinder can be used.
  • a phylogenetic tree can be prepared using them, but a phylogenetic tree that has already been published can also be used more conveniently.
  • a phylogenetic tree species close to evolutionary positions appear in close positions in the phylogenetic tree.
  • the species near the root in the phylogenetic tree are considered to be closer to the ancestors.
  • the result of multiple alignment is obtained using an appropriate program, and the ancestors in a specific phylogenetic tree
  • the amino acid sequence of the type protein can be deduced.
  • a method of estimating an ancestor type process having the smallest number of mutation events expected to occur after assuming an ancestor type as a true ancestor type is more preferable.
  • a program PROTPARS for estimating ancestral types directly from amino acid sequences based on the maximum saving method is also available.
  • the maximum saving method estimates a phylogenetic tree and an ancestral amino acid at the same time, so it is not always necessary to create a phylogenetic tree. It is preferable to create a phylogenetic tree.
  • any ancestral amino acid at a specific position (mainly the root of the phylogenetic tree) based on the tree shape and amino acid substitution model of the phylogenetic tree determined in advance. More preferred is a method of estimating the sequence and selecting the most likely sequence as the most promising ancestral amino sequence. Further, based on the maximum likelihood method, a program PAML for performing ancestor type estimation from a phylogenetic tree and multiple alignments of amino acid sequences can be used.
  • An ancestral amino acid can be determined for each site of multiple aligned amino acid residues using the phylogenetic tree obtained by either method. In this way, an ancestral amino acid residue can be estimated for each residue of a multiple aligned sequence, and as a result, an ancestral amino acid sequence of the corresponding region can be estimated.
  • changing the species used to estimate the ancestral amino acid sequence may change the tree shape of the phylogenetic tree, resulting in different ancestral amino residues. It also depends on the protein used for comparison.
  • the amino acid residue is used to create a phylogenetic tree, such as changing the species used to create a phylogenetic tree, or using only part of the amino acid sequence information used to create a phylogenetic tree without changing the species. It can also be determined by estimating the degree of dendritic change when sequence information is changed, and selecting residues that have little effect on the dendritic tree.
  • the ancestral amino acid residue is determined as described above, and the protein can be modified by substituting at least one of the wild-type amino acid residues with the ancestral amino acid residue for the protein to be analyzed.
  • the specific ancestral amino acid of all living organisms that are said to be specific mutations different from those conventionally known, that is, hyperthermophilic bacteria It is considered that the mutation can be effectively introduced into the amino acid sequence of the wild type diaphorase, and the heat resistance of the obtained mutant diaphorase is improved.
  • a DNA site-specific mutagenesis method or the like widely available on the market and available to those skilled in the art can be used.
  • Specific methods for converting bases in DNA include, for example, commercially available kits (for example, Transformer Mutagenesis Kit: Clonetech, EXOIII / Mung Bean Selection Kit: Stratagene, QuickChangeMadeDirecte-MadeStrain-DirectedMadeDirect-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-MadeStrain-Directed-Made-Strain-Directed-K)).
  • Plus-.Mutageness Kit .: manufactured by Toyobo etc.
  • the base sequence of the DNA thus obtained can be confirmed using a DNA sequencer.
  • the obtained nucleotide sequence can be analyzed by nucleotide sequence analysis software such as DNASIS (manufactured by Hitachi Software Engineering Co., Ltd.) and GENETX (manufactured by Software Development Co., Ltd.) to identify the coding region of the diaphorase gene in DNA. it can.
  • the mutant diaphorase of the present invention is encoded by chemical synthesis, PCR using a cloned probe as a template, or hybridization using a DNA fragment having the base sequence as a probe. Gene can be obtained.
  • a mutant form of the gene encoding the mutant diaphorase of the present invention having a function equivalent to that before mutation can be synthesized by site-directed mutagenesis.
  • a known method such as the Kunkel method, the Gapped duplex method, the megaprimer PCR method or the like can be employed.
  • the mutant diaphorase of the present invention can be a fusion protein linked to a foreign protein or peptide.
  • the foreign protein or peptide means a protein or peptide exogenous to the mutant diaphorase of the present invention.
  • proteins or peptides used for protein purification eg, glutathione S-transferase, maltose-binding protein, thioredoxin, cellulose-binding domain, streptavidin-binding peptide, and histidine tag.
  • the position where the foreign protein or peptide is linked to the mutant diaphorase of the present invention can be appropriately selected so that the mutant diaphorase of the present invention and the foreign protein or peptide have their respective functions or activities.
  • the gene of the present invention is a gene encoding the mutant diaphorase of the present invention or the fusion protein described above. By introducing these genes into a host, the mutant diaphorase or fusion protein of the present invention can be expressed.
  • the host is not particularly limited as long as the recombinant vector is stable, can autonomously proliferate, and can express a trait of a foreign gene.
  • Escherichia such as Escherichia coli, Bacillus subtilis, etc.
  • Bacteria belonging to the genus Bacillus such as (Bacillus subtilis) and bacteria belonging to the genus Pseudomonas such as Pseudomonas putida
  • animal cells such as yeast and COS cells
  • insect cells such as Sf9, and the whole plant belonging to Brassicaceae, etc.
  • Examples include plant organs (for example, leaves, petals, stems, roots, and seeds), plant tissues (for example, epidermis, phloem, soft tissue, xylem, vascular bundles, etc.), plant cultured cells, and the like. More preferably, E. coli, more preferably E. coli DH5 ⁇ and E. coli XL-1 Blue MR can be used.
  • the gene encoding the mutant diaphorase of the present invention is linked to the gene encoding the foreign protein or peptide to produce a gene encoding the fusion protein
  • the gene encoding the mutant diaphorase of the present invention is added to the foreign protein.
  • DNA linked with a gene encoding a peptide is prepared.
  • the DNA may be a linked DNA itself or a vector containing the DNA.
  • the method of linking a gene encoding a foreign protein or peptide to a gene encoding a mutant diaphorase of the present invention is appropriately performed by using a purified gene encoding a mutant diaphorase of the present invention and a gene encoding a foreign protein or peptide, respectively.
  • a method of cleaving with a restriction enzyme and ligating is used.
  • a recombinant vector containing the gene of the present invention (hereinafter referred to as the recombinant vector of the present invention) can be obtained by inserting the gene of the present invention into an appropriate vector.
  • the vector to be used is not particularly limited as long as it can be replicated in the host, and examples thereof include plasmids, shuttle vectors, and helper plasmids. If the vector itself does not have replication ability, it may be a DNA fragment that can be replicated by inserting it into the host chromosome.
  • plasmids examples include pBR322, pUC18, pUC118, pUC19, pUC119, pTrc99A, pBluescript, and Super Cos I, which is a cosmid, when Escherichia coli is used as a host.
  • RSF1010, pBBR122, pCN51, etc. which are wide host range vectors for Gram-negative bacteria are exemplified.
  • animal viruses such as retrovirus and vaccinia virus, and insect virus vectors such as baculovirus can also be used.
  • the method of inserting the gene of the present invention into a vector can be performed according to the above-described method of linking a gene encoding a foreign protein or peptide to the gene encoding the mutant diaphorase of the present invention described above.
  • the method for introducing the recombinant vector of the present invention into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a method using calcium ions and an electroporation method.
  • the method for introducing the recombinant vector of the present invention into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • Examples thereof include an electroporation method (electroporation method), a spheroplast method, and a lithium acetate method.
  • the method for introducing the recombinant vector of the present invention into animal cells is not particularly limited as long as it is a method for introducing DNA into animal cells.
  • electroporation method, calcium phosphate method, lipofection method and the like can be mentioned.
  • the method for introducing the recombinant vector of the present invention into insect cells is not particularly limited as long as it is a method for introducing DNA into insect cells.
  • a method for introducing DNA into insect cells For example, calcium phosphate method, lipofection method, electroporation method and the like can be mentioned.
  • the method for introducing the recombinant vector of the present invention into a plant is not particularly limited as long as it is a method for introducing DNA into a plant.
  • electroporation method Agrobacterium method, particle gun method, PEG method and the like can be mentioned.
  • telomere length is prepared from the transformant, PCR is performed by designing a DNA-specific primer.
  • the amplified product obtained by PCR is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide or SYBR Green solution, and the amplified product is detected as a band. Confirm that it has been transformed.
  • PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
  • a method of binding an amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence, enzyme reaction, or the like may be employed.
  • the obtained transformant is cultured under conditions that allow it to grow.
  • the culture or culture supernatant of the transformant is directly used for measurement of enzyme activity, it is cultured under conditions where the mutant diaphorase of the present invention is not inactivated.
  • the culture form of the transformant may be selected in consideration of the nutritional physiological properties of the host, and is preferably a liquid culture. Industrially, aeration and agitation culture is advantageous.
  • nutrient source of the medium those commonly used for culturing microorganisms can be used. Any carbon compound may be used as the carbon source, and for example, glucose, sucrose, lactose, maltose, molasses, pyruvic acid, and the like are used.
  • any nitrogen compound that can be assimilated may be used.
  • peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline extract, and the like are used.
  • salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids, specific vitamins and the like are used as necessary.
  • the culture temperature can be appropriately changed within the range in which the host grows and the host produces the mutant diaphorase of the present invention, but is preferably about 20 to 37 ° C. Cultivation may be completed at an appropriate time in consideration of the time when the mutant diaphorase reaches the maximum yield, and the culture time is usually about 12 to 48 hours.
  • the pH of the medium can be appropriately changed within the range in which the host grows and the host produces the mutant diaphorase of the present invention, but is preferably in the range of about pH 5.0 to 9.0.
  • a water-soluble fraction containing the mutant diaphorase of the present invention can be obtained by solubilization by using a protease and other enzymes together with a surfactant such as sodium lauryl sulfate (SDS).
  • SDS sodium lauryl sulfate
  • the expressed mutant diaphorase can be secreted into the culture medium by selecting an appropriate expression vector and host.
  • the enzyme can be immediately purified from the water-soluble fraction, but the mutant diaphorase in the water-soluble fraction is concentrated. It can also be done after.
  • Concentration can be performed by, for example, vacuum concentration, membrane concentration, salting-out treatment, and fractional precipitation with a hydrophilic organic solvent (for example, methanol, ethanol and acetone). Heat treatment and isoelectric point treatment are also effective purification means for concentrating mutant diaphorase.
  • a hydrophilic organic solvent for example, methanol, ethanol and acetone.
  • Purification of the concentrated solution can be performed by appropriately combining, for example, gel filtration, adsorption chromatography, ion exchange chromatography, and affinity chromatography. These methods are already known and can be carried out by referring to appropriate documents, journals, textbooks, and the like.
  • the purified enzyme thus obtained can be pulverized by, for example, freeze drying, vacuum drying and spray drying and distributed to the market.
  • mutant diaphorase of the present invention or a fusion protein of the mutant diaphorase of the present invention and a foreign protein or peptide can be obtained from the above-described transformant.
  • the stability of the mutant diaphorase of the present invention can be evaluated by comparing the diaphorase activity after heat treatment under a certain condition and the change in activity before and after the heat treatment with wild-type diaphorase, respectively.
  • diaphorase activity is measured under the following conditions (A) or (B).
  • DCIP 2,6-dichlorophenolindophenol
  • the unit of diaphorase activity is defined as the amount of enzyme required to reduce 1 ⁇ mol of DCIP per minute under the above conditions.
  • the unit of diaphorase activity is defined as the amount of enzyme required to reduce 1 ⁇ mol of vitamin K3 (molar extinction coefficient 680 M ⁇ 1 cm ⁇ 1 ) per minute under the above conditions.
  • mutation 1 Y6H
  • mutation 2 T8D / A9S / H10S
  • mutation 3 S65A
  • mutation 4 Y96I
  • mutation 5 Y96L
  • Mutation 6 Y96V
  • mutation 7 V99G
  • mutation 8 W103Y
  • mutation 9 F107I
  • mutation 10 P109S / V110T
  • mutation 11 A117H
  • mutation 12 A117H / V120R
  • mutation 13 V120R
  • mutation 14 Q130K
  • mutation 15 Q130N
  • mutation 16 V133Q
  • mutation 17 V133R
  • mutation 18 T137E / D138G
  • mutation 19 T137S / D138G
  • mutation 20 L142I / H143V
  • mutation 22 F150D
  • mutation 23 F150I
  • Mutation 24 S167K / V168T
  • Variant 25 H186L
  • H186L means that the 186th amino acid residue H (histidine residue) from the N-terminal side of SEQ ID NO: 1 is substituted with the amino acid residue L (leucine residue).
  • S65A / V120R means that amino acid residue substitutions of S65A and V120R are introduced simultaneously.
  • Example 2 Introduction of amino acid substitution for wild-type diaphorase The substitution mutation for the amino acid sequence of wild-type diaphorase determined in Example 1 was introduced by the site-specific mutation shown below.
  • oligonucleotide primers shown in SEQ ID NOs: 4 to 45 used for site-directed mutagenesis by PCR are designed to be complementary to the base sequence of the gene shown in SEQ ID NO: 2 in the sequence listing encoding wild type diaphorase. did.
  • Table 1 shows SEQ ID Nos. Of the oligonucleotide primer sequences corresponding to the 42 mutations determined in Example 1.
  • Each of the introduced plasmid DNAs was purified using QIAprep Spin Miniprep Kit (manufactured by QIAGEN), and the nucleotide sequence was examined to confirm that the desired mutation was introduced.
  • the obtained mutation-introduced plasmid DNA was named pSDEI-x (x is a mutation number) in the order of mutation 1 to mutation 42.
  • E. coli DH5 transformed with each plasmid was named DH5 / pSDEI-x and used for the expression and purification of mutant diaphorase.
  • Example 3 Production of mutant diaphorase using Escherichia coli as a host
  • the transformed Escherichia coli DH5 / pSDEI-42 (mutation 42: V133Q / F150D) prepared in Example 2 is commercially available LB-broth (produced by Invitrogen) containing 50 ⁇ g / ml of ampicillin. Inoculated to 300 ml. After culturing at 37 ° C. for 10 hours, 1 mM isopropyl ⁇ thiogalactopyranoside was added, and the cells were further cultured for 15 hours, and then collected. The diaphorase activity obtained from 300 ml of the culture solution was 262000 units.
  • the obtained cells were suspended in 20 ml of 25 mM phosphate buffer (pH 8.0) and then crushed by ultrasonic waves.
  • 210,000 units of diaphorase having a specific activity of 968 u / mg were obtained.
  • FIG. 3 shows the results of chromatography in purification of mutant diaphorase.
  • purified enzymes were obtained by the same method. Each purified diaphorase was subjected to the following stability evaluation.
  • Example 4 Stability evaluation of mutant diaphorase (1)
  • the diaphorase solution obtained in Example 3 was dissolved in 100 mM phosphate buffer (pH 8.0) to a protein concentration of 1 mg / ml, and then divided into two and placed on ice.
  • One of each diaphorase was treated in a hot water bath at 80 ° C. for 10 minutes and immediately returned to ice.
  • the diaphorase activity measurement method and activity display method were as follows. Specifically, the activity was measured in 1.0 ml of a solution containing 50 mM Tris-HCl buffer (pH 8.5), 1 mM reduced nicotinamide adenine dinucleotide (NADH), and 0.06 mM 2,6-dichlorophenolindophenol (DCIP). 10 ⁇ l of enzyme solution diluted to about 5 U / ml with 100 mM phosphate buffer (pH 8.0) containing 0.1% by mass BSA was mixed, and the initial rate of absorbance change at 600 nm was measured at 30 ° C. The unit of enzyme activity was defined as 1 unit of the amount of enzyme required to reduce 1 ⁇ mol of DCIP per minute under the aforementioned conditions.
  • the “diaphorase activity remaining rate” indicates what percentage (percent) of the activity of the diaphorase activity of the sample treated in a hot water bath at 80 ° C. for 10 minutes stored on ice.
  • post-heat treatment activity refers to diaphorase activity per 1 mg of protein after treatment in a hot water bath at 80 ° C. for 10 minutes.
  • mutation 3 S65A
  • mutation 4 Y96I
  • mutation 12 A117H / V120R
  • mutation 13 V120R
  • mutation 15 Q130N
  • mutation 16 V133Q
  • mutation 22 F150D
  • mutation 24 8 mutant diaphorases obtained by introducing S167K / V168T into the amino acid sequence of the wild-type diaphorase shown in SEQ ID NO: 1 are compared to the wild-type diaphorase.
  • SEQ ID NO: 1 mutant diaphorases obtained by introducing S167K / V168T into the amino acid sequence of the wild-type diaphorase shown in SEQ ID NO: 1 are compared to the wild-type diaphorase.
  • mutant diaphorase mutation 3: S65A, mutation 16: V133Q, mutation 22: F150D, mutation 28: S65A / Y96I / V120R / S167K / V168T, mutation 30, which are combinations of these eight kinds: S65A / V120R, mutation 31: S65A / V120R / S167K / V168T, mutation 33: Y96I / V120R, mutation 34: Y96I / V120R / S167K / V168T, mutation 37: V120R / Q130N / V133Q / S167K / V168T, mutation 38: V120R / V133Q / S167K / V168T, mutation 39: V120R / F150D / S167K / V168T, mutation 40: V120R / S167K / V168T, mutation 42: V133Q / F150D shown in SEQ ID NO: 1 Variant diaphorase introduced to the
  • mutant diaphorases mutation 22: F150D
  • mutation 31 S65A / V120R / S167K / V168T
  • mutation 37 V120R / Q130N / V133Q / S167K / V168T
  • mutation 38 V120R / V133Q / S167K / V168T
  • Mutant diaphorase obtained by introducing mutation 39: V120R / F150D / S167K / V168T
  • mutation 40 V120R / S167K / V168T
  • mutation 42 V133Q / F150D into the amino acid sequence of the wild-type diaphorase represented by SEQ ID NO: 1 Later diaphorase activity remaining rate was more than 3 times that of wild-type diaphorase.
  • Example 5 Evaluation of substrate affinity of mutant diaphorase Thirteen mutant diaphorases evaluated as having excellent stability in Example 4, mutation 3: S65A, mutation 16: V133Q, mutation 22: F150D, mutation 28: S65A / Y96I / V120R / S167K / V168T, mutation 30: S65A / V120R, mutation 31: S65A / V120R / S167K / V168T, mutation 33: Y96I / V120R, mutation 34: Y96I / V120R / S167K / V168T, mutation 37: V120R / Q130N / V133Q / S167K / V168T, mutation 38: V120R / V133Q / S167K / V168T, mutation 39: V120R / F150D / S167K / V168T, mutation 40: V120R / S167K / V168T, mutation 42: V133Q / F Substrate affinity was analyzed for
  • the substrate affinity of the mutant diaphorase was measured as follows. To a solution containing 50 mM Tris-HCl buffer (pH 8.5) and 0.06 mM 2,6-dichlorophenolindophenol (DCIP), 0.02, 0.05, reduced nicotinamide adenine dinucleotide (NADH) was added. A solution with 0.1, 0.2, 0.35, 0.5, 0.75, 1.0, 2.0, and 3.0 mM added was prepared, and each mutant diaphorase was used as an activity measurement solution. Was measured to determine the Km for NADH. The results are shown in Table 3.
  • phosphate buffer pH 7.0
  • the diaphorase activity measurement method and activity display method were as follows. That is, the activity was measured by removing 1.0 ml of a solution containing 100 mM phosphate buffer (pH 8.0), reduced nicotinamide adenine dinucleotide (NADH) 40 mM, and vitamin K3 0.33 mM by nitrogen bubbling. 10 ⁇ l of enzyme solution diluted to about 20 U / ml with 100 mM phosphate buffer (pH 8.0) containing 0.1% by mass BSA was mixed, and the initial rate of absorbance change at 520 nm was measured at 25 ° C. The unit of enzyme activity was defined as the amount of enzyme required to reduce 1 ⁇ mol of vitamin K3 (molar extinction coefficient 680 M ⁇ 1 cm ⁇ 1 ) per minute under the above-mentioned conditions.
  • the “diaphorase activity remaining ratio” indicates what percentage (percent) of the activity of the diaphorase activity of the sample treated at 80 ° C. stored on ice.
  • the diaphorase activity remaining rate after treatment for 10 minutes is 4.0 times that of the wild type mutation 22 and 4.4 times that of the wild type mutation 39, and vitamin K3 as a substrate. In addition, it showed extremely high thermal stability compared to the wild type.
  • the protein having diaphorase of the present invention can be used in products such as clinical test reagents, biosensors and enzyme batteries.
  • SEQ ID NO: 1 amino acid sequence of wild-type diaphorase
  • SEQ ID NO: 2 nucleotide sequence of wild-type diaphorase gene
  • SEQ ID NO: 3 amino acid sequence of ancestral diaphorase
  • SEQ ID NOs: 4-45 nucleotide sequence of primer for mutagenesis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の目的は、一定の熱処理を施した場合にも、野生型に対してジアホラーゼ活性残存率が向上している変異型ジアホラーゼを提供することである。本発明は、配列表の配列番号1で示される野生型ジアホラーゼのアミノ酸配列に特定のアミノ酸置換を導入したアミノ酸配列を含むジアホラーゼ活性を有するタンパク質であって、かつ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質に関する。

Description

ジアホラーゼ活性を有するタンパク質
 本発明は、安定性が高いジアホラーゼ活性を有するタンパク質に関する。さらに本発明は、該タンパク質の製造方法に関する。
 ジアホラーゼ[EC.1.6.99.-]は、生体内では電子伝達系において重要な役割を果たす酵素であるが、一方で、生体外においても臨床検査用組成物の成分、並びにバイオセンサーおよび酵素電池などの電気化学反応の触媒として用いられる、産業上有用な酵素である。
 本発明者らは、好熱性微生物であるバチルス・ステアロサーモフィラス(Bacillus stearothermophilus)が、公知のジアホラーゼと比較して熱に安定なジアホラーゼを生産する事を見出し、該ジアホラーゼ(以降、「野生型ジアホラーゼ」と称す)生産菌および野生型ジアホラーゼの精製方法を開発した(例えば、特許文献1、2参照)。さらに、野生型ジアホラーゼをコードする遺伝子を単離し、より効率的な製造方法を開発した(例えば、特許文献3参照)。
 上記の製造方法により、安定性に優れたジアホラーゼが得られ、また産業的にも効率よく製造することが可能となり、前述の通り様々な産業用途に用いられている。
 一方、野生型ジアホラーゼは他の生体分子との比較では極めて安定であるが、一般的な工業製品に求められる安定性と比較すると、熱または時間の経過による活性の低下は顕著であった。良好な管理下で使用されることが前提である臨床検査用組成物や医療機関向けのセンサーなどに用いられる限りは問題にはならなかった野生型ジアホラーゼの安定性であるが、一般消費者の手に渡るバイオセンサー、さらには、より過酷な環境での使用が想定される酵素電池などへの適用に際しては、より安定性の向上したジアホラーゼが求められている。
 この課題に対して、進化工学的なアプローチからの取り組みがなされ、ジアホラーゼの安定性において一定の成果が見出された。(例えば、特許文献4~6参照)
 酵素の機能改変に関する方法としては、進化工学的手法が多く用いられる。進化工学的手法を利用した酵素の機能改変は例えば、まず目的のタンパク質の遺伝子配列にランダム変異を導入する工程から始められる。
 ランダム変異導入とは、主としてPCRを利用した手法であり、PCRの正確性をわざと低く設定することで遺伝子上の様々な部位に様々な変異を導入する次のような方法である。PCRにより変異を導入するには、例えば、Diversity PCR Random Mutagenesis Kit(Clontech製)、GeneMorph II RandomMutagenesis Kit(Stratagene製)等のキットが使用されている。PCRにより変異を導入した遺伝子の変異型を通常の方法を用いて適当な発現プラスミドに連結して適当な宿主に形質転換し、プレート培地上に撒いてコロニーを形成させることにより、変異型ライブラリを作成する。
 上記の変異型ライブラリは単コロニーずつ、96ウェルプレート等において液体培養し、変異型酵素を発現させ、酵素の機能改変ターゲットが安定性であれば、上記96ウェルフォーマットの変異型酵素のライブラリを一定時間加熱し、加熱前後で酵素反応の反応速度変化がより小さい変異型を選択することにより、安定性の高い変異型酵素をスクリーニングする。このような方法によって、ある程度の成果が得られることは種々の文献で報告されている(例えば、非特許文献1~5参照)。
日本国特許第1715795号公報 日本国特許第1973434号公報 日本国特許第3953578号公報 日本国特開2008-289419号公報 日本国特開2007-143493号公報 日本国特開2008-048703号公報
Drone J,Dion M,Tellier C,Rabiller C.,Protein Eng Des Sel.,2007,20(1),7-14. Sugiyama M,Hong Z,Greenberg WA,Wong CH.,Bioorg Med Chem.,2007,15(17),5905-11 Ren C,Chen T,Zhang J,Liang L,Lin Z.,Microb Cell Fact.,2009,8:66. Christ TN,Deweese KA,Woodyer RD.,Comb Chem High Throughput Screen.,2010. Labrou NE.,Curr Protein Pept Sci.,2010,11(1),91-100.
 しかしながら、上記特許文献に記載の技術によるジアホラーゼは、依然として工業製品としての安定性は十分とは言えず、製造工程または使用環境について、生体分子を使用しない工業製品と比較して、より限定された取扱いが要求されている。他方で、どの程度の安定性を示せば十分であるかについての指標は無く、現存するものよりも有意に安定であるジアホラーゼが常に求められている。
 さらに、上記進化工学的手法によるランダム変異の導入によって得られる成果は偶然の産物に過ぎず、より優れた変異型酵素を見逃す危険性が指摘されている。
 したがって、本発明の目的は、一定の熱処理を施した場合にも、野生型に対してジアホラーゼ活性残存率が向上している変異型ジアホラーゼを提供することである。
 本発明者らは上記課題を達成するために鋭意検討した結果、従来の進化工学的手法とは異なるアプローチを採用し、マルチプルアライメント図に基づくコンセンサス法に加えて、系統学的手法に基づいた祖先型アミノ酸導入法を併用することにより、野生型ジアホラーゼのアミノ酸配列における従来知られているものとは異なる特定の変異が得られることを見出した。さらには、野生型ジアホラーゼのアミノ酸配列に当該変異を導入することにより、一定の熱処理を施した場合にも、野生型に比べジアホラーゼ活性残存率が向上した変異型ジアホラーゼが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のような構成からなる。
1.以下の(i)または(ii)のアミノ酸配列を含むジアホラーゼ活性を有するタンパク質であって、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質。
(i)配列表の配列番号1で示されるアミノ酸配列において65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列
(ii)前記(i)記載のタンパク質のアミノ酸配列において、前記65番目、96番目、117番目、120番目、130番目、133番目、150番目、167番目および168番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列
2.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における150番目のフェニルアラニンが他のアミノ酸に置換されたアミノ酸配列である前項1に記載のタンパク質。
3.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における120番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンが他のアミノ酸に置換されたアミノ酸配列である前項1に記載のタンパク質。
4.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における他のアミノ酸への置換が、S65A、Y96I、A117H、V120R、Q130N、V133Q、F150D、S167KおよびV168Tから選ばれる少なくともいずれか1である前項1~3のいずれか1に記載のタンパク質。
5.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(8)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含む前項1~4のいずれか1に記載タンパク質。
(1)S65A
(2)Y96I
(3)A117H/V120R
(4)V120R
(5)Q130N
(6)V133Q
(7)F150D
(8)S167K/V168T
6.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(13)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、2倍以上である前項1~5のいずれか1に記載のタンパク質。
(1)V133Q/F150D
(2)F150D
(3)V120R/F150D/S167K/V168T
(4)V120R/V133Q/S167K/V168T
(5)V120R/S167K/V168T
(6)V120R/Q130N/V133Q/S167K/V168T
(7)Y96I/V120R/S167K/V168T
(8)S65A/V120R/S167K/V168T
(9)S65A/V120R
(10)S65A/Y96I/V120R/S167K/V168T
(11)Y96I/V120R
(12)S65A
(13)V133Q
7.前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(7)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、3倍以上である前項1~6のいずれか1に記載のタンパク質。
(1)V133Q/F150D
(2)F150D
(3)V120R/F150D/S167K/V168T
(4)V120R/V133Q/S167K/V168T
(5)V120R/S167K/V168T
(6)V120R/Q130N/V133Q/S167K/V168T
(7)S65A/V120R/S167K/V168T
8.配列表の配列番号1で示されるアミノ酸配列において以下の(a)~(u)からなる群から選択される1のアミノ酸置換を含むアミノ酸配列を含む、ジアホラーゼ活性を有するタンパク質。
(a)S65A
(b)Y96I
(c)V120R
(d)Q130N
(e)V133Q
(f)F150D
(g)A117H/V120R
(h)S65A/V120R
(i)Y96I/V120R
(j)Q130N/V133Q
(k)V133Q/F150D
(l)S167K/V168T
(m)S65A/Y96I/V120R
(n)S65A/S167K/V168T
(o)V120R/S167K/V168T
(p)S65A/V120R/S167K/V168T
(q)Y96I/V120R/S167K/V168T
(r)V120R/F150D/S167K/V168T
(s)V120R/V133Q/S167K/V168T
(t)V120R/Q130N/V133Q/S167K/V168T
(u)S65A/Y96I/V120R/S167K/V168T
9.前項8に記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリン以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列を含み、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質。
10.配列表の配列番号1で示されるアミノ酸配列におけるF150DまたはV120R/F150D/S167K/V168Tのアミノ酸置換を含むアミノ酸配列を含む前項8または9に記載のタンパク質。
11.80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して2倍以上である前項8~10のいずれか1に記載のタンパク質。
12.80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して3倍以上である前項8~11のいずれか1に記載のタンパク質。
13.前項1~12のいずれか1に記載のタンパク質をコードする遺伝子。
14.前項13に記載の遺伝子を含む組換えベクター。
15.前項14に記載の組換えベクターを含む形質転換体。
16.前項15に記載の形質転換体を培養することによりジアホラーゼを生成させ、該ジアホラーゼを採取する耐熱性ジアホラーゼの製造方法。
 本発明のジアホラーゼは、熱処理後のジアホラーゼ活性残存率が野生型ジアホラーゼに対して向上しているため、本発明のジアホラーゼを用いて製造した試薬、センサー、酵素電池などの製品は、その品質保証期間もしくは動作期間が長くなり、より長期間保存または使用できるという利点がある。さらに、より高温での流通および保管が可能となり、利用者の利便性が向上するとともに輸送および保管コストが低減されるという利点がある。
図1は、コンセンサス法に基づく部位特異的変異導入および、推定祖先型アミノ酸配列に基づく部位特異的変異導入に使用した、野生型ジアホラーゼと相同性が高いタンパク質のアライメント図である。(実施例1) 図2は、図1のアライメント図のアミノ酸配列情報と最尤法に基づく系統樹作成プログラムにより作成した、野生型ジアホラーゼと相同性が高いタンパク質の分子系統樹である。(実施例1) 図3は、変異42(V133Q/F150D)の精製におけるBlue-sepharoseクロマトグラフィーの結果である。(実施例3) 図4は、変異22(F150D)および変異39(V120R/F150D/S167K/V168T)の安定性を評価した結果を示すグラフである。(実施例6)
 配列表を除いた本明細書におけるアミノ配列中の20種類のアミノ酸残基は、一文字略記で表現している。すなわち、グリシン(Gly)はG、アラニン(Ala)はA、バリン(Val)はV、ロイシン(Leu)はL、イソロイシン(Ile)はI、フェニルアラニン(Phe)はF、チロシン(Tyr)はY、トリプトファン(Trp)はW、セリン(Ser)はS、スレオニン(Thr)はT、システイン(Cys)はC、メチオニン(Met)はM、アスパラギン酸(Asp)はD、グルタミン酸(Glu)はE、アスパラギン(Asn)はN、グルタミン(Gln)はQ、リジン(Lys)はK、アルギニン(Arg)はR、ヒスチジン(His)はH、プロリン(Pro)はPである。
 本明細書における「S65A」等の表現は、アミノ酸置換の表記法である。例えば「S65A」とは、ある特定のアミノ酸配列におけるN末端側から65番目のセリンを、アラニンに置換することを意味する。
 また、例えば「V120R/S167K/V168T」とは、V120R、S167KおよびV168Tのアミノ酸置換を同時に導入することを意味する。
 ジアホラーゼは、NADH又はNADPHをフェリシアン化カリウム、メチレンブルー、2,6-ジクロルインドフェノールおよびテトラゾリウム塩等の色素で酸化する反応を触媒する活性(ジアホラーゼ活性)を持つ酵素であり、細菌および酵母等の微生物から哺乳類動物まで広く分布する。
 ジアホラーゼは、生体内の電子伝達系において重要な役割を果たしており、還元型ニコチンアミドアデニンジヌクレオチドまたは還元型ニコチンアミドアデニンジヌクレオチドリン酸と電子受容体との反応において、該反応の触媒作用をする。
 本発明の変異型ジアホラーゼは、配列表の配列番号1に示される野生型ジアホラーゼのアミノ酸配列において65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列を含むジアホラーゼ活性を有するタンパク質であって、かつ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質である。
 前記変異型ジアホラーゼのアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における150番目のフェニルアラニンが他のアミノ酸に置換されていることが好ましい。当該他のアミノ酸は、アスパラギン酸であることが好ましい。
 また、前記変異型ジアホラーゼのアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における120番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンが他のアミノ酸に置換されていることが好ましい。当該他のアミノ酸は、後述する祖先型アミノ酸であることが好ましい。
 本明細書において、「ジアホラーゼ活性残存率」とは、熱処理した前後において、同一条件でジアホラーゼ活性を測定し、熱処理後の活性値が熱処理前に比べてどれだけ存在するかを百分率で表した値である。また、本発明において基準とする「熱処理」の条件は、80℃の湯浴の10分間静置処理であり、当該熱処理前後におけるジアホラーゼ活性値の比を百分率で示している。
 「ジアホラーゼ活性残存率が、配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上している」とは、変異型ジアホラーゼの熱処理前後におけるジアホラーゼ活性値の比を百分率で表したジアホラーゼ活性残存率が、野生型ジアホラーゼである配列番号1で示されるアミノ酸配列からなるタンパク質の同一条件による熱処理前後におけるジアホラーゼ活性値の比を百分率で表したジアホラーゼ活性残存率と比較して、高いことをいう。
 配列表の配列番号1に示されるアミノ酸配列において117番目のアラニンは120番目のバリンとともに他のアミノ酸に置換されていることが好ましい。
 配列表の配列番号1に示されるアミノ酸配列において、167番目のセリンは168番目のバリンとともに他のアミノ酸に置換されていることが好ましく、さらに120番目のバリンが他のアミノ酸に置換されていることがより好ましい。
 配列表の配列番号1に示されるアミノ酸配列において、167番目のセリンは168番目のバリンに加えて、さらに120番目のバリンと以下の(1)~(6)からなる群から選択される少なくとも1以上の位置におけるアミノ酸が他のアミノ酸に置換されていることがより好ましい。さらには、(1)~(3)および(5)に示す少なくとも1の位置におけるアミノ酸が他のアミノ酸に置換されていることが特に好ましい。
(1)150番目
(2)133番目
(3)130番目および133番目
(4)96番目
(5)65番目
(6)65番目および96番目
 配列表の配列番号1に示されるアミノ酸配列において、133番目のバリンは150番目のフェニルアラニンとともに他のアミノ酸に置換されていることが好ましい。
 配列表の配列番号1に示されるアミノ酸配列において、120番目のバリンは、65番目のセリンまたは96番目のチロシンとともに他のアミノ酸に置換されていることが好ましい。
 本発明において、配列表の配列番号1で示されるアミノ酸配列における65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンを置換する他のアミノ酸としては、アミノ酸置換により得られる変異型ジアホラーゼの80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、野生型ジアホラーゼに比して向上するアミノ酸であればよい。
 前記他のアミノ酸としては、例えば、各アミノ酸を下記のアミノ酸に置換することが好ましい。
(1)65番目のセリン:アラニン、バリン、ロイシン、イソロイシンまたはプロリンへの置換が好ましく、アラニンへの置換がより好ましい。ここで、アラニンは、65番目のセリンの後述する祖先型アミノ酸である。
(2)96番目のチロシン:イソロイシン、アラニン、バリン、ロイシンまたはプロリンへの置換が好ましく、イソロイシンへの置換がより好ましい。ここで、イソロイシンは、96番目のチロシンの後述する祖先型アミノ酸である。
(3)117番目のアラニン:イソロイシン、バリン、ロイシンまたはプロリンへの置換が好ましく、イソロイシンへの置換がより好ましい。ここで、イソロイシンは、117番目のアラニンの後述する祖先型アミノ酸である。
(4)120番目のバリン:アルギニン、リシンまたはヒスチジンへの置換が好ましく、アルギニンへの置換がより好ましい。ここで、アルギニンは、120番目のバリンの後述する祖先型アミノ酸である。
(5)130番目のグルタミン:アスパラギンまたはグルタミンへの置換が好ましく、アスパラギンへの置換がより好ましい。ここで、イソロイシンは、96番目のチロシンの後述する祖先型アミノ酸である。
(6)133番目のバリン:グルタミンまたはアスパラギンへの置換が好ましく、グルタミンへの置換がより好ましい。ここで、グルタミンは、133番目のバリンの後述する祖先型アミノ酸である。
(7)150番目のフェニルアラニン:アスパラギン酸またはグルタミン酸への置換が好ましく、アスパラギン酸への置換がより好ましい。ここで、アスパラギン酸は、150番目のフェニルアラニンの後述する祖先型アミノ酸である。
(8)167番目のセリン:リシン、アルギニンまたはヒスチジンへの置換が好ましく、リシンへの置換がより好ましい。ここで、リシンは、167番目のセリンの後述する祖先型アミノ酸である。
(9)168番目のバリン:トレオニンまたはセリンへの置換が好ましく、トレオニンへの置換がより好ましい。ここで、トレオニンは、168番目のバリンの後述する祖先型アミノ酸である。
 本発明の変異型ジアホラーゼは、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(8)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であることが好ましい。
(1)S65A
(2)Y96I
(3)A117H/V120R
(4)V120R
(5)Q130N
(6)V133Q
(7)F150D
(8)S167K/V168T
 本発明の変異型ジアホラーゼは、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(13)からなる群より選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、2倍以上であることが、より好ましい。
(1)V133Q/F150D
(2)F150D
(3)V120R/F150D/S167K/V168T
(4)V120R/V133Q/S167K/V168T
(5)V120R/S167K/V168T
(6)V120R/Q130N/V133Q/S167K/V168T
(7)Y96I/V120R/S167K/V168T
(8)S65A/V120R/S167K/V168T
(9)S65A/V120R
(10)S65A/Y96I/V120R/S167K/V168T
(11)Y96I/V120R
(12)S65A
(13)V133Q
 ここで、「80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、2倍以上である」とは、変異型ジアホラーゼと野生型ジアホラーゼを同一条件で熱処理(80℃、10分間)した後に同一条件で、ジアホラーゼ活性を測定した場合に、変異型ジアホラーゼの活性値が野生型ジアホラーゼの活性値の2倍以上であることをいう。
 本発明の変異型ジアホラーゼは、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(7)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列番号1で示されるアミノ酸配列からなるタンパク質に比して、3倍以上であることが特に好ましい。
(1)V133Q/F150D
(2)F150D
(3)V120R/F150D/S167K/V168T
(4)V120R/V133Q/S167K/V168T
(5)V120R/S167K/V168T
(6)V120R/Q130N/V133Q/S167K/V168T
(7)S65A/V120R/S167K/V168T
 本発明の変異型ジアホラーゼには、配列表の配列番号1で示されるアミノ酸配列において以下の(a)~(u)からなる群から選択される1のアミノ酸置換を含むアミノ酸配列を含む、ジアホラーゼ活性を有するタンパク質が含まれる。配列表の配列番号1で示されるアミノ酸配列において、これらのアミノ酸置換は1または複数導入されていてもよい。
(a)S65A
(b)Y96I
(c)V120R
(d)Q130N
(e)V133Q
(f)F150D
(g)A117H/V120R
(h)S65A/V120R
(i)Y96I/V120R
(j)Q130N/V133Q
(k)V133Q/F150D
(l)S167K/V168T
(m)S65A/Y96I/V120R
(n)S65A/S167K/V168T
(o)V120R/S167K/V168T
(p)S65A/V120R/S167K/V168T
(q)Y96I/V120R/S167K/V168T
(r)V120R/F150D/S167K/V168T
(s)V120R/V133Q/S167K/V168T
(t)V120R/Q130N/V133Q/S167K/V168T
(u)S65A/Y96I/V120R/S167K/V168T
 前記変異型ジアホラーゼは、80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、該熱処理後の配列番号1で示されるアミノ酸配列からなるタンパク質に比して通常向上しており、2倍以上であることが好ましく、3倍以上であることがより好ましく、4倍以上であることがさらに好ましい。
 前記(a)~(u)のアミノ酸置換の中でも、熱処理後のジアホラーゼ活性残存率の観点から、特に、S65A、F150D、A117H/V120R、S65A/V120R、Y96I/V120R、V133Q/F150D、V120R/S167K/V168T、S65A/V120R/S167K/V168T、Y96I/V120R/S167K/V168T、V120R/F150D/S167K/V168T、V120R/V133Q/S167K/V168T、V120R/Q130N/V133Q/S167K/V168TおよびS65A/Y96I/V120R/S167K/V168Tが好ましく、F150D、V133Q/F150D、V120R/S167K/V168T、S65A/V120R/S167K/V168T、V120R/F150D/S167K/V168T、V120R/V133Q/S167K/V168TおよびV120R/Q130N/V133Q/S167K/V168Tがより好ましく、F150D、V133Q/F150DおよびV120R/F150D/S167K/V168Tがさらに好ましく、F150DおよびV120R/F150D/S167K/V168Tが特に好ましい。
 本発明の変異型ジアホラーゼは、配列表の配列番号1に示されるアミノ酸配列において、前記の65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリン以外に、1又は数個のアミノ酸が欠失、置換又は付加されていても、該アミノ酸配列を含むタンパク質であって、かつ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上した変異型ジアホラーゼであれば、どのような変異体でもよい。
 前記配列番号1に示されるアミノ酸配列において、前記の65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリン以外に、アミノ酸改変がなされるアミノ酸残基の個数は、1又は数個であり、1個乃至20個であることが好ましく、1個乃至10個であることがより好ましく、1個乃至6個であることが更に好ましく、数個(1から2または3個)であることが特に好ましく、1個であることが最も好ましい。
 本発明の変異型ジアホラーゼをコードする遺伝子を作製する元となる野生型ジアホラーゼ遺伝子の入手方法は、日本国特許第3953578号公報に記載の方法に加えて次の(1)~(2)から適宜選択して使用することができるが、限定されるものではない。
(1)バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)の菌体からゲノムDNAを抽出し、該ゲノムDNAを鋳型に野生型ジアホラーゼ遺伝子に特異的なオリゴヌクレオチドでPCRすることにより、該遺伝子を入手することができる。
(2)野生型ジアホラーゼのアミノ酸配列および遺伝子配列は、日本国特許第3953578号公報に記載の通り明らかになっており公知のデータベースに登録されているので、データベース上で公開されている遺伝子の塩基配列に基づいて、Dillon,P.J.,Rosen,C.A.,Humana Press,Totowa,New Jersey,Vol.15,p263,1993に記載されている様なPCRによる遺伝子の全合成法に従って、所望の遺伝子の塩基配列と全く同じ遺伝子を増幅し、入手することができる。
 本発明の変異型ジアホラーゼは、一般的に用いられる進化工学的な手法を利用したランダム変異導入方法ではなく、以下の(1)マルチプルアライメント図に基づくコンセンサス法に加えて、さらに(2)系統学的手法に基づいた祖先型アミノ酸導入法を併用することにより決定されるアミノ酸置換を、配列表の配列番号1で示される野生型ジアホラーゼのアミノ酸配列に導入することにより得る。
(1)マルチプルアライメント図に基づくコンセンサス法
 マルチプルアライメント図に基づくコンセンサス法とは、本来は抗体の機能改変を目的として利用され始め、酵素の熱安定性の向上を目的として利用された実績もあるDNA配列またはアミノ酸配列における部位特異的変異導入法(配列上のどの位置にどの変異を導入するか部位特異的に決定する方法)である。詳細についてはB.Steipe,et al.,J.Mol.Biol.,240,188-192,1994に記述されている。
 マルチプルアライメント図に基づくコンセンサス法の材料としては、既知のアミノ酸配列を公知のデータベースに対して相同性検索することで得られる複数のアミノ酸配列を、公知のアライメントプログラムなどを利用してマルチプルアライメントさせた図を使用する。マルチプルアライメント図のすべての座位は、コンピュータープログラムにより挿入、欠失、置換等が最小となるように並べられる。
 例えば、アミノ酸配列の欠失等により候補タンパク質に活性がない場合には、候補タンパク質のアミノ酸配列の特定の座位が欠失し、候補遺伝子以外のアミノ酸配列には何らかのアミノ酸が配置されている状況が観察される。その座位において候補タンパク質以外のアミノ酸残基に例えばメチオニン(M)が多く配列していれば、該欠失部位にMを挿入する。同様にセリン(S)が多く配置していれば、該欠失部位にSを挿入する。このような多数決的な決定による変異導入法をコンセンサス法と呼ぶ。
 コンセンサス法は、酵素の様々な性能の改変や向上に利用できる。しかしながら、その反面、コンセンサス法は、単独で用いた場合、必ずしも酵素の耐熱化を図る手法とは言えない。本発明者らは、コンセンサス法に加えて、以下に示す系統学的手法に基づいた祖先型アミノ酸導入法を併用することによって、耐熱性の向上した変異型酵素が得られることを見出し、本発明を完成させた。
(2)系統学的手法に基づいた祖先型アミノ酸導入法
 系統学的手法に基づいた祖先型アミノ酸導入法は、ある特定の酵素についての複数の生物種における共通祖先のアミノ酸配列を推定し、該アミノ酸配列をもとの酵素に変異として導入することにより共通祖先の酵素の機能を推察する目的で開発された手法である。詳細についてはHisako,I.,et al.,FEMS Microbiology Letters,243,393-398,2005;Keiko,W.,et al.,FEBS Letters,580,3867-3871,2006;日本国特開2002-247991号公報に記述されている。
 祖先型アミノ酸導入法において共通祖先を推定する際には、前述のコンセンサス法でも用いた、候補遺伝子のアミノ酸配列をデータベースに対して相同性検索することで得られた複数の相同アミノ酸配列とそのマルチプルアライメント図に加えて、それらを基に作成した分子系統樹(以下、系統樹とも表記する)および系統樹作成のためのアルゴリズム、マルチプルアライメント図を利用する。
 系統樹を作成するためのいくつかのアルゴリズムには、例えば、最大節約原理に基づくアルゴリズム等が知られており、それを実現するコンピュータープログラムも利用または入手することができる。例えば、TREE PUZZLE、MOLPHYおよびPHYLIP等の種々の系統樹推定プログラムが利用できる。
 また、最尤原理に基づくアルゴリズム等も知られており、それを実現するコンピュータープログラムも利用または入手することができる。例えば、ModelTest、PHYML、PHYLIPおよびTreeFinder等の種々の系統樹推定プログラムが利用できる。それらを用いて系統樹を作製することができるが、より簡便には、既に公表されている系統樹を利用することもできる。
 このような系統樹においては、進化的に近い位置の生物種は、系統樹中で近い位置に現れる。また、系統樹中で根元に近い位置にある生物種はより祖先に近いと考えられる。本発明には、比較的根元に近い部分の系統樹を利用することが好ましく、トリまたは偶蹄類よりも古い部分を利用することがより好ましく、好熱菌または古細菌を含む系統樹部分を利用するのが特に好ましい。
 候補遺伝子のアミノ酸配列をデータベースに対して相同性検索することで得られた複数の相同アミノ酸配列のデータを基に適当なプログラムを使用してマルチプルアラインメントの結果を得て、特定の系統樹における祖先型タンパク質のアミノ酸配列を推定することができる。
 本発明においては、特定の系統樹における祖先型タンパク質のアミノ酸配列を推定するためには、最大節約法または最尤法を使用することが好ましい。最大節約法および最尤法の手順は当業者に知られたものであり、詳しくはYoung,Z.,Kumar,S.,Nei.M,Genetics 141,1641-16510,1995;Stewart,C.-B.Active ancestral molecules,Nature 374,12-13,1995;根井正利「分子進化遺伝学」培風館;根井正利、S.クマー「分子進化と分子系統学」培風館に記載されている。
 本発明に使用し得る最大節約法としては、祖先型を仮定したときにその後生じると予想される変異の事象の数が最も少ない祖先型の過程を真の祖先型と推定する方法がより好ましい。また、最大節約法に基づいてアミノ酸配列から直接に祖先型推定を行なうためのプログラムPROTPARSも利用可能である。
 前記最大節約法では原理的には系統樹の推定と祖先型アミノ酸の推定が同時に行われるため、必ずしも系統樹を作成することは必要ではないが、特に手動計算で祖先型アミノ酸を推定する場合には系統樹を作成することが好ましい。
 本発明に使用し得る最尤法としては、予め決定した系統樹の樹形とアミノ酸置換モデルに基づいて、樹形の特定の位置に(主に系統樹の根にあたる部分)おけるあらゆる祖先型アミノ酸配列を推定し、最も尤度の高い配列を最も有望な祖先型アミノ配列として選択する方法がより好ましい。また、最尤法に基づいて、系統樹およびアミノ酸配列のマルチプルアライメントから祖先型推定を行うためのプログラムPAML等も利用可能である。
 いずれかの方法で得られた系統樹を利用してマルチプルアラインメントしたアミノ酸残基のそれぞれの部位に関して祖先型アミノ酸を決定することができる。このようにして、マルチプルアラインメントした配列の各々の残基に関して祖先型アミノ酸残基を推定し、その結果、対応する領域の祖先型アミノ酸配列を推定することができる。
 この場合、祖先型アミノ酸配列を推定するために用いる生物種を変えると、系統樹の樹形が変化し、それと関連して異なる祖先型アミノ残基が得られる場合もあり、その位置と種類は比較に用いるタンパク質にも依存する。
 従って、そのような変動が比較的少ない位置のアミノ酸残基を改変の対象とすることが好ましい。当該アミノ酸残基は、系統樹の作成に用いる生物種を変える、または、生物種は変えずに系統樹作成に使用するアミノ酸配列情報の一部のみを用いるなど、系統樹の作成に使用するアミノ酸配列情報を変化させた場合の樹形変化の程度を見積り、樹形への影響の少ない残基を選択することによって決定することもできる。
 上述のようにして祖先型アミノ酸残基を決定し、解析対象としたタンパク質について野生型であるアミノ酸残基の少なくとも1つを祖先型アミノ酸残基に置換して当該タンパク質を改変することができる。
 上記のように(1)マルチプルアライメント図に基づくコンセンサス法に、さらに(2)系統学的手法に基づいた祖先型アミノ酸導入法を併用して決定されるアミノ酸置換を導入することにより、耐熱性が向上した本発明の変異型ジアホラーゼを得ることができる。
 前記(1)の手法に前記(2)の手法を併用することにより、従来知られているものとは異なる特定の変異、すなわち超高熱菌であったと言われている全生物の共通祖先型アミノ酸変異を効果的に野生型ジアホラーゼのアミノ酸配列に対して導入することができ、得られる変異型ジアホラーゼの耐熱性が向上するものと考えられる。
 特定の部位に特定の変異を導入する方法として、キットなどが広く販売され当業者が容易に利用可能なDNAの部位特異的変異導入法などが利用できる。DNA中の塩基を変換する具体的な方法としては、例えば、市販のキット(例えば、Transformer Mutagenesis Kit:Clonetech製、EXOIII/Mung Bean Deletion Kit:Stratagene製、QuickChange Site Directed Mutagenesis Kit:Stratagene製およびKOD-Plus-.Mutagenesis Kit.:東洋紡製等)の使用等が挙げられる。また、DNAを幾つかの断片に分割して化学合成し、DNAリガーゼで結合するという手法を採ることも可能である。
 このようにして得られたDNAは、DNAシーケンサーを用いて塩基配列を確認することができる。得られた塩基配列については、DNASIS(日立ソフトエンジニアリング社製)およびGENETIX(ソフトウェア開発社製)等の塩基配列解析ソフトによる解析を行うことにより、DNA中のジアホラーゼ遺伝子のコード領域を特定することができる。
 一旦、塩基配列が確定されると、その後は化学合成、クローニングされたプローブを鋳型としたPCR、または該塩基配列を有するDNA断片をプローブとするハイブリダイゼーションによって、本発明の変異型ジアホラーゼをコードする遺伝子を得ることができる。
 さらに、部位特異的突然変異誘発法等によって本発明の変異型ジアホラーゼをコードする遺伝子の変異型であって変異前と同等の機能を有するものを合成することができる。なお、本発明の変異型ジアホラーゼをコードする遺伝子に変異を導入するには、Kunkel法、Gapped duplex法およびメガプライマーPCR法等の公知の手法又はこれに準ずる方法を採用することができる。
 本発明の変異型ジアホラーゼは、外来タンパク質又はペプチドと連結された融合タンパク質とすることができる。ここで、外来タンパク質又はペプチドとは、本発明の変異型ジアホラーゼに対して外因的なタンパク質又はペプチドを意味する。
 前記外来タンパク質又はペプチドとしては、例えば、タンパク質精製に使用されるタンパク質又はペプチド(例えば、グルタチオンS-トランスフェラーゼ、マルトース結合タンパク質、チオレドキシン、セルロース結合ドメイン、ストレプトアビジン結合ペプチドおよびヒスチジンタグ等)が挙げられる。
 本発明の変異型ジアホラーゼに対して外来タンパク質又はペプチドを連結する位置は、本発明の変異型ジアホラーゼと外来タンパク質又はペプチドとがそれぞれの機能又は活性を有するように適宜選択することができる。
 本発明の遺伝子は、本発明の変異型ジアホラーゼ又は上述の融合タンパク質をコードする遺伝子である。これら遺伝子を宿主に導入することで、本発明の変異型ジアホラーゼ又は融合タンパク質を発現させることができる。
 宿主としては、組換えベクターが安定であり、かつ自律増殖可能で外来性遺伝子の形質を発現できるのであれば特に限定されるものではないが、大腸菌(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属およびシュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属等に属する細菌、酵母、COS細胞等の動物細胞、Sf9等の昆虫細胞、並びにアブラナ科等に属する植物体全体、植物器官(例えば、葉、花弁、茎、根および種子等)、植物組織(例えば、表皮、師部、柔組織、木部および維管束等)および植物培養細胞等が挙げられる。より好ましくは大腸菌、さらに好ましくは大腸菌DH5αおよび大腸菌XL-1 Blue MRを用いることができる。
 本発明の変異型ジアホラーゼをコードする遺伝子と外来タンパク質又はペプチドをコードする遺伝子とを連結し、融合タンパク質をコードする遺伝子を作製する場合には、本発明の変異型ジアホラーゼをコードする遺伝子に外来タンパク質又はペプチドをコードする遺伝子を連結したDNAを準備する。
 前記DNAは、連結したDNA自体であってもよく、当該DNAを含むベクター等であってよい。本発明の変異型ジアホラーゼをコードする遺伝子に外来タンパク質又はペプチドをコードする遺伝子を連結する方法は、それぞれ精製された本発明の変異型ジアホラーゼをコードする遺伝子及び外来タンパク質又はペプチドをコードする遺伝子を適当な制限酵素で切断し、連結する方法が採用される。
 また、本発明の変異型ジアホラーゼをコードする遺伝子と外来タンパク質又はペプチドをコードする遺伝子のそれぞれ一部に相同な領域を持たせることにより、PCR等を用いたin vitro法又は酵母等を用いたin vivo法によって両者を連結する方法であってもよい。
 本発明の遺伝子を含む組換えベクター(以下、本発明の組換えベクターという)は、適当なベクターに本発明の遺伝子を挿入することにより得ることができる。使用するベクターは、宿主中で複製可能なものであれば特に限定されず、例えば、プラスミド、シャトルベクターおよびヘルパープラスミド等が挙げられる。また該ベクター自体に複製能がない場合には、宿主の染色体に挿入すること等によって複製可能となるDNA断片であってもよい。
 プラスミドとしては、例えば、大腸菌を宿主とする場合には、pBR322、pUC18、pUC118、pUC19、pUC119、pTrc99A、pBluescriptおよびコスミドであるSuper Cos Iなどが例示される。
 シュードモナスを用いる場合には、グラム陰性菌用広宿主域ベクターであるRSF1010、pBBR122およびpCN51などが例示される。さらに、レトロウイルスおよびワクシニアウイルス等の動物ウイルス並びにバキュロウイルス等の昆虫ウイルスベクターを用いることもできる。
 ベクターに本発明の遺伝子を挿入する方法は、上述した本発明の変異型ジアホラーゼをコードする遺伝子に外来タンパク質又はペプチドをコードする遺伝子を連結する方法に準じて行うことができる。
 細菌への本発明の組換えベクター等の導入方法は、細菌にDNAを導入する方法であれば特に限定されるものではない。例えば、カルシウムイオンを用いる方法およびエレクトロポレーション法等が挙げられる。
 酵母への本発明の組換えベクター等の導入方法は、酵母にDNAを導入する方法であれば特に限定されるものではない。例えば、電気穿孔法(エレクトロポレーション法)、スフェロプラスト法および酢酸リチウム法等が挙げられる。
 動物細胞への本発明の組換えベクター等の導入方法としては、動物細胞にDNAを導入する方法であれば特に限定されるものではない。例えば、エレクトロポレーション法、リン酸カルシウム法およびリポフェクション法等が挙げられる。
 昆虫細胞への本発明の組換えベクター等の導入方法としては、昆虫細胞にDNAを導入する方法であれば特に限定されるものではない。例えば、リン酸カルシウム法、リポフェクション法およびエレクトロポレーション法等が挙げられる。
 植物への本発明の組換えベクター等の導入方法としては、植物にDNAを導入する方法であれば特に限定されるものではない。例えば、エレクトロポレーション法、アグロバクテリウム法、パーティクルガン法およびPEG法等が挙げられる。
 本発明の組換えベクター等が宿主に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法およびノーザンハイブリダイゼーション法等により行うことができる。例えば、形質転換体からDNAを調製し、DNA特異的プライマーを設計してPCRを行う。
 その後、PCRにより得られた増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動またはキャピラリー電気泳動等を行い、臭化エチジウムまたはSYBR Green液等により染色し、そして増幅産物をバンドとして検出することにより、形質転換されたことを確認する。
 また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結合させ、蛍光および酵素反応等により増幅産物を確認する方法も採用してもよい。
 次いで、得られた形質転換体を生育可能な条件下で培養する。形質転換体の培養物または培養上清をそのまま酵素活性の測定に供する場合には、本発明の変異型ジアホラーゼが失活しない条件下で培養することとなる。
 形質転換体の培養形態は、宿主の栄養生理的性質を考慮して培養条件を選択すればよく、好ましくは液体培養で行う。工業的には通気攪拌培養を行うのが有利である。
 培地の栄養源としては、微生物の培養に通常用いられるものが使用され得る。炭素源としては、資化可能な炭素化合物であればよく、例えば、グルコース、シュークロース、ラクトース、マルトース、糖蜜およびピルビン酸などを使用する。
 窒素源としては、資化可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物および大豆粕アルカリ抽出物などを使用する。
 その他に、例えば、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガンおよび亜鉛などの塩類、特定のアミノ酸並びに特定のビタミンなどを必要に応じて使用する。
 培養温度は、宿主が生育し、宿主が本発明の変異型ジアホラーゼを産生する範囲で適宜変更し得るが、好ましくは20~37℃程度である。培養は、変異型ジアホラーゼが最高収量に達する時期を見計らって適当時期に完了すればよく、通常は培養時間が12~48時間程度である。
 培地のpHは、宿主が発育し、宿主が本発明の変異型ジアホラーゼを産生する範囲で適宜変更し得るが、好ましくはpH5.0~9.0程度の範囲である。
 形質転換体を培養し、培養液を遠心分離などの方法により培養上清または菌体を回収し、菌体に超音波およびフレンチプレスといった機械的方法またはリゾチームなどの溶菌酵素により処理を施し、必要に応じてプロテアーゼおよび他の酵素並びにラウリル硫酸ナトリウム(SDS)などの界面活性剤を併用することにより可溶化し、本発明の変異型ジアホラーゼを含む水溶性画分を得ることができる。
 また、適当な発現ベクターと宿主を選択することにより、発現した変異型ジアホラーゼを培養液中に分泌させることができる。
 上記のようにして得られた変異型ジアホラーゼを含む水溶性画分から該酵素を精製する方法としては、該水溶性画分から直ちに行うこともできるが、該水溶性画分中の変異型ジアホラーゼを濃縮した後に行うこともできる。
 濃縮は、例えば、減圧濃縮、膜濃縮、塩析処理および親水性有機溶媒(例えば、メタノール、エタノールおよびアセトン)による分別沈殿法により行うことができる。変異型ジアホラーゼの濃縮には、加熱処理および等電点処理も有効な精製手段である。
 濃縮液の精製は、例えば、ゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィーおよびアフィニティークロマトグラフィーを適宜組み合わせることによって行うことができる。これらの方法はすでに公知であり、適当な文献、雑誌および教科書等を参照することで進めることができる。このようにして得られた精製酵素は、例えば、凍結乾燥、真空乾燥およびスプレードライにより粉末化して市場に流通させることができる。
 以上のようにして、本発明の変異型ジアホラーゼ又は本発明の変異型ジアホラーゼと外来タンパク質若しくはペプチドとの融合タンパク質を上述の形質転換体より得ることができる。
 本発明の変異型ジアホラーゼの安定性は、一定の条件下における熱処理後のジアホラーゼ活性および、熱処理前後の活性の変化をそれぞれ野生型ジアホラーゼと比較することにより評価できる。
 本発明において、ジアホラーゼ活性の測定は以下の(A)または(B)の条件で行う。
(A)2,6-ジクロロフェノールインドフェノール(DCIP)を基質とする測定
 塩酸緩衝液(pH8.5)50mM、還元型ニコチンアミドアデニンジヌクレオチド(NADH)1mM、DCIP0.06mMを含む溶液1.0mlに、0.1質量%BSAが入った100mMリン酸バッファー(pH8.0)で5U/ml程度に希釈した酵素液10μlを混合し、30℃にて600nmにおける吸光度変化の初速度を測定する。
 また、ジアホラーゼ活性の単位は、前記の条件下で1分間に1μmolのDCIPが還元されるのに要する酵素量を1ユニットとして定義する。
(B)ビタミンK3を基質とする測定
 リン酸バッファー(pH8.0)100mM、還元型ニコチンアミドアデニンジヌクレオチド(NADH)40mM、ビタミンK3 0.33mMを含む溶液1.0mlを、窒素バブリングにより除酸素した後、そこに0.1質量%BSAが入った100mMリン酸バッファー(pH8.0)で20U/ml程度に希釈した酵素液10μlを混合し、25℃にて520nmにおける吸光度変化の初速度を測定する。
 また、ジアホラーゼ活性の単位は、前記の条件下で1分間に1μmolのビタミンK3(モル吸光係数680M-1cm-1)が還元されるのに要する酵素量を1ユニットとして定義する。
 次に、本発明を具体的に説明するが、本発明は以下に限定されるものではない。
〔実施例1〕
部位特異的変異を導入するアミノ酸残基の決定
 野生型ジアホラーゼのアミノ酸配列に対して、どの部位のどの変異を導入するかは下記の様に決定した。
(1-1)野生型ジアホラーゼ相同タンパク質情報の取得
 配列番号1に示した野生型ジアホラーゼのアミノ酸配列を使用して、Blastp(http://blast.ncbi.nlm.nih.gov/Blast.cgi)により相同性検索を行い、野生型ジアホラーゼと相同性が高い様々な生物種由来のアミノ酸配列情報を得た。
 具体的には、野生型ジアホラーゼを含めて9種のアミノ酸配列情報を得た。以下に、得たアミノ酸配列の由来を、配列番号、GeneID(アクセッション番号)、生物属名の順に示す。
SEQ01:GI29377086_ENTEROCOCCUS
SEQ02:GI23130059_NOSTOC
SEQ03:GI78486398_THIOMICROSPIRA
SEQ04:GI89054511_JANNASCHIA
SEQ05:GI126651524_BACILLUS
SEQ06:GI156937413_IGNICOCCUS
SEQ07:GI126465114_STAPHYLOTHERMUS
SEQ08:GI124027290_HYPERTHERMUS
SEQ09:UTK_GEOBACILLUS(野生型ジアホラーゼ)
(1-2)野生型ジアホラーゼを含むマルチプルアライメント図の作成
 上記のデータベースに登録されたアミノ酸配列データを、マルチプルアライメントソフトClustalXを用いてアライメントし、アライメント図を得た(図1)。得られたアライメント図は、以降の祖先型アミノ酸配列の推定と、コンセンサス法による部位特異的変異導入に使用した。
(1-3)分子系統樹の作成と祖先型アミノ酸配列の推定
 上記アミノ酸配列のアライメント図に基づき、公知のコンピュータープログラム(TreeFinder)を使用して最尤法による系統樹を作成した(図2)。得られた系統樹に基づいて、9種の生物由来の共通祖先(系統樹の根の位置)のアミノ酸配列を、公知のコンピュータープログラムを使用して最尤法により推定した。配列番号3に共通祖先のアミノ酸配列(祖先型アミノ酸配列)を示す。
(1-4)野生型ジアホラーゼに対するアミノ酸置換部位の決定
 野生型ジアホラーゼに対し、どの部位に祖先型アミノ酸を導入するかを決定した。同時に、該アライメント図においてコンセンサス法により、どの部位にどのアミノ酸配列を導入するか決定した。
 すなわち、配列番号1の野生型ジアホラーゼのアミノ酸配列に対し下記42種の置換変異、変異1:Y6H、変異2:T8D/A9S/H10S、変異3:S65A、変異4:Y96I、変異5:Y96L、変異6:Y96V、変異7:V99G、変異8:W103Y、変異9:F107I、変異10:P109S/V110T、変異11:A117H、変異12:A117H/V120R、変異13:V120R、変異14:Q130K、変異15:Q130N、変異16:V133Q、変異17:V133R、変異18:T137E/D138G、変異19:T137S/D138G、変異20:L142I/H143V、変異21:Q145T、変異22:F150D、変異23:F150I、変異24:S167K/V168T、変異25:H186L、変異26:S65A/Y96I、変異27:S65A/Y96I/V120R、変異28:S65A/Y96I/V120R/S167K/V168T、変異29:S65A/Y96I/S167K/V168T、変異30:S65A/V120R、変異31:S65A/V120R/S167K/V168T、変異32:S65A/S167K/V168T、変異33:Y96I/V120R、変異34:Y96I/V120R/S167K/V168T、変異35:Y96I/S167K/V168T、変異36:A117H/V120R/S167K/V168T、変異37:V120R/Q130N/V133Q/S167K/V168T、変異38:V120R/V133Q/S167K/V168T、変異39:V120R/F150D/S167K/V168T、変異40:V120R/S167K/V168T、変異41:Q130N/V133Q、変異42:V133Q/F150Dを導入することとした。
 ここで例えば「H186L」とは、配列番号1のN末端側から186番目のアミノ酸残基H(ヒスヒジン残基)を、アミノ酸残基L(ロイシン残基)に置換することを意味する。さらに「S65A/V120R」とは、S65AとV120Rのアミノ酸残基置換を、同時に導入することを意味する。
〔実施例2〕
野生型ジアホラーゼに対するアミノ酸置換の導入
 実施例1において決定した野生型ジアホラーゼのアミノ酸配列に対する置換変異は、以下に示す部位特異的変異によって導入した。
 PCRによる部位特異的変異導入に使用する配列番号4から45に示す42種のオリゴヌクレオチドプライマーを、野生型ジアホラーゼをコードする配列表の配列番号2に示す遺伝子の塩基配列と相補的になるよう設計した。表1に実施例1において決定した42種の変異に対応するオリゴヌクレオチドプライマーの配列表の配列番号を示す。
Figure JPOXMLDOC01-appb-T000001
 次いで、表1に示す組合せのオリゴヌクレオチドプライマーを使用し、日本国特許第3953578号公報に記載の野生型ジアホラーゼ発現プラスミドpSDEIを鋳型としたPCRによって部位特異的変異を導入した。本操作には、KOD-Plus-.Mutagenesis Kit.(東洋紡製)を使用し、添付のプロトコールに従って操作した。
 変異導入したそれぞれのプラスミドDNAは、QIAprep Spin Miniprep Kit(QIAGEN製)を用いて精製し、塩基配列を調べて所望の変異が導入されていることを確認した。
 得られた変異導入プラスミドDNAを、変異1から変異42の順に、pSDEI-x(xは変異番号)と命名した。また、それぞれのプラスミドで形質転換された大腸菌DH5は、DH5/pSDEI-xと命名し、変異型ジアホラーゼの発現と精製に使用した。
〔実施例3〕
大腸菌を宿主とした変異型ジアホラーゼの作成
 実施例2で作成した形質転換大腸菌DH5/pSDEI-42(変異42:V133Q/F150D)を、アンピシリン50μg/mlを含む市販のLB-broth(Invitrogen社製)300mlに植菌した。37℃にて10時間培養後、イソプロピルβチオガラクトピラノシドを1mM加え、さらに15時間培養した後集菌した。300mlの培養液から得られたジアホラーゼ活性は、262000unitであった。得られた菌体は20mlの25mMリン酸緩衝液(pH8.0)に懸濁後、超音波によって破砕した。菌体破砕物を除いた上清より、Blue-セファロースを用いたアフィニティークロマトグラフィーにて変異型ジアホラーゼの精製を行なった結果、比活性968u/mgのジアホラーゼを210000unit得た。変異型ジアホラーゼの精製におけるクロマトグラフィーの結果を図3に示す。野生型ジアホラーゼおよび他の変異型ジアホラーゼについても、同様の方法によって精製酵素を得た。精製した各ジアホラーゼはそれぞれ、以下の安定性評価に供した。
〔実施例4〕
変異型ジアホラーゼの安定性評価(1)
 実施例3で得たジアホラーゼ溶液を、それぞれ100mMリン酸バッファー(pH8.0)にタンパク濃度が1mg/mlとなるよう溶解した後2つに分け、氷上に置いた。各ジアホラーゼの片方を、80℃の湯浴で10分間処理したのち直ちに氷上に戻した。
 ジアホラーゼの活性測定法並びに活性表示法は以下の通りとした。すなわち、活性測定はトリス塩酸緩衝液(pH8.5)50mM、還元型ニコチンアミドアデニンジヌクレオチド(NADH)1mM、2,6-ジクロロフェノールインドフェノール(DCIP)0.06mMを含む溶液1.0mlに、0.1質量%BSAが入った100mMリン酸バッファー(pH8.0)で5U/ml程度に希釈した酵素液10μlを混合し、30℃にて600nmにおける吸光度変化の初速度を測定した。また、酵素活性の単位は、前述の条件下で1分間に1μmolのDCIPが還元されるのに要する酵素量を1ユニットとした。
全てのサンプルのジアホラーゼ活性を測定し、熱処理後のジアホラーゼ活性、およびジアホラーゼ活性残存率を野生型ジアホラーゼと比較した。その結果を表2に示す。
 ここで、「ジアホラーゼ活性残存率」とは、80℃の湯浴で10分間処理したサンプルのジアホラーゼ活性が、氷上に保存した同酵素の活性の何割(パーセント)であるかを示す。
 また、「熱処理後活性」とは、80℃の湯浴で10分間処理した後のタンパク質1mgあたりのジアホラーゼ活性を示す。
 表2では、実験間の誤差を相殺するため、同時に行った実験における野生型ジアホラーゼの測定値に対する変異型ジアホラーゼの測定値の倍率によって、これらの値を表した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、1または2のアミノ酸残基のみが置換された変異型ジアホラーゼの中では、変異3:S65A、変異4:Y96I、変異12:A117H/V120R、変異13:V120R、変異15:Q130N、変異16:V133Q、変異22:F150D、変異24:S167K/V168Tを配列番号1に示される野生型ジアホラーゼのアミノ酸配列に対し導入した8種の変異型ジアホラーゼが、野生型ジアホラーゼに比して、高いジアホラーゼ活性残存率を示し、安定性が向上した。
 また、これら8種の組み合わせである、次の13種の変異型ジアホラーゼ、変異3:S65A、変異16:V133Q、変異22:F150D、変異28:S65A/Y96I/V120R/S167K/V168T、変異30:S65A/V120R、変異31:S65A/V120R/S167K/V168T、変異33:Y96I/V120R、変異34:Y96I/V120R/S167K/V168T、変異37:V120R/Q130N/V133Q/S167K/V168T、変異38:V120R/V133Q/S167K/V168T、変異39:V120R/F150D/S167K/V168T、変異40:V120R/S167K/V168T、変異42:V133Q/F150Dを配列番号1に示される野生型ジアホラーゼのアミノ酸配列に対し導入した変異型ジアホラーゼは、熱処理後のジアホラーゼ活性が、熱処理後の野生型ジアホラーゼの2倍以上であった。
 さらに、次の7種の変異型ジアホラーゼ、変異22:F150D、変異31:S65A/V120R/S167K/V168T、変異37:V120R/Q130N/V133Q/S167K/V168T、変異38:V120R/V133Q/S167K/V168T、変異39:V120R/F150D/S167K/V168T、変異40:V120R/S167K/V168T、変異42:V133Q/F150Dを配列番号1に示される野生型ジアホラーゼのアミノ酸配列に対し導入した変異型ジアホラーゼは、熱処理後のジアホラーゼ活性残存率が、野生型ジアホラーゼの3倍以上であった。
〔実施例5〕
変異型ジアホラーゼの基質親和性の評価
 実施例4において安定性に優れると評価された13種の変異型ジアホラーゼ、変異3:S65A、変異16:V133Q、変異22:F150D、変異28:S65A/Y96I/V120R/S167K/V168T、変異30:S65A/V120R、変異31:S65A/V120R/S167K/V168T、変異33:Y96I/V120R、変異34:Y96I/V120R/S167K/V168T、変異37:V120R/Q130N/V133Q/S167K/V168T、変異38:V120R/V133Q/S167K/V168T、変異39:V120R/F150D/S167K/V168T、変異40:V120R/S167K/V168T、変異42:V133Q/F150Dを配列番号1の野生型ジアホラーゼのアミノ酸配列に対し導入した変異型ジアホラーゼについて、基質親和性を解析した。
 変異型ジアホラーゼの基質親和性は、次のように測定した。トリス塩酸緩衝液(pH8.5)50mM、2,6-ジクロロフェノールインドフェノール(DCIP)0.06mMを含む溶液に、還元型ニコチンアミドアデニンジヌクレオチド(NADH)を、0.02、0.05、0.1、0.2、0.35、0.5、0.75、1.0、2.0、3.0mMとなるよう添加した溶液を作成し、これを活性測定溶液として各変異ジアホラーゼの活性を測定することによって、NADHに対するKmを求めた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に結果を示すように、いずれの変異型ジアホラーゼも、基質に対する親和性は野生型と同等であった。
〔実施例6〕
変異型ジアホラーゼの安定性評価(2)
 実施例3で得たジアホラーゼ溶液の内、野生型、変異22:F150D、および変異39:V120R/150D/S167K/V168Tを、それぞれジアホラーゼの補酵素であるフラビンモノヌクレオチド(Flavin Mononucleotide)に由来する460nmの吸光度が0.1となるように100mMリン酸バッファー(pH7.0)に溶解し、氷上に置いた。各ジアホラーゼ溶液を、80℃の湯浴で10分、20分、45分間処理した後直ちに氷上に戻して冷却し、活性を測定した。
 ジアホラーゼの活性測定法並びに活性表示法は以下の通りとした。すなわち、活性測定はリン酸バッファー(pH8.0)100mM、還元型ニコチンアミドアデニンジヌクレオチド(NADH)40mM、ビタミンK3 0.33mMを含む溶液1.0mlを、窒素バブリングにより除酸素した後、そこに0.1質量%BSAが入った100mMリン酸バッファー(pH8.0)で20U/ml程度に希釈した酵素液10μlを混合し、25℃にて520nmにおける吸光度変化の初速度を測定した。また、酵素活性の単位は、前述の条件下で1分間に1μmolのビタミンK3(モル吸光係数680M-1cm-1)が還元されるのに要する酵素量を1ユニットとした。
 全てのサンプルのジアホラーゼ活性を測定し、ジアホラーゼ活性残存率を野生型ジアホラーゼと比較した。その結果を図4に示す。
 ここで、「ジアホラーゼ活性残存率」とは、80℃で処理したサンプルのジアホラーゼ活性が、氷上に保存した同酵素の活性の何割(パーセント)であるかを示す。
 図4に示すように、10分処理した後のジアホラーゼ活性残存率は、変異22が野生型の4.0倍、変異39が野生型の4.4倍であり、ビタミンK3を基質とした場合にも、野生型と比して極めて高い熱安定性を示した。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2010年5月24日付で出願された日本特許出願(特願2010-118352)に基づいており、その全体が引用により援用される。
 本願発明のジアホラーゼを有するタンパク質は、臨床検査試薬、バイオセンサーおよび酵素電池などの製品に用いることができる。
配列番号1:野生型ジアホラーゼのアミノ酸配列
配列番号2:野生型ジアホラーゼ遺伝子の塩基配列
配列番号3:祖先型ジアホラーゼのアミノ酸配列
配列番号4~45:変異導入用プライマーの塩基配列

Claims (16)

  1.  以下の(i)または(ii)のアミノ酸配列を含むジアホラーゼ活性を有するタンパク質であって、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質。
    (i)配列表の配列番号1で示されるアミノ酸配列において65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンからなる群より選択される少なくとも1以上のアミノ酸が他のアミノ酸に置換されたアミノ酸配列
    (ii)前記(i)記載のタンパク質のアミノ酸配列において、前記65番目、96番目、117番目、120番目、130番目、133番目、150番目、167番目および168番目のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列
  2.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における150番目のフェニルアラニンが他のアミノ酸に置換されたアミノ酸配列である請求項1に記載のタンパク質。
  3.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における120番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリンが他のアミノ酸に置換されたアミノ酸配列である請求項1に記載のタンパク質。
  4.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における他のアミノ酸への置換が、S65A、Y96I、A117H、V120R、Q130N、V133Q、F150D、S167KおよびV168Tから選ばれる少なくともいずれか1である請求項1~3のいずれか1項に記載のタンパク質。
  5.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(8)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含む請求項1~4のいずれか1項に記載タンパク質。
    (1)S65A
    (2)Y96I
    (3)A117H/V120R
    (4)V120R
    (5)Q130N
    (6)V133Q
    (7)F150D
    (8)S167K/V168T
  6.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(13)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、2倍以上である請求項1~5のいずれか1項に記載のタンパク質。
    (1)V133Q/F150D
    (2)F150D
    (3)V120R/F150D/S167K/V168T
    (4)V120R/V133Q/S167K/V168T
    (5)V120R/S167K/V168T
    (6)V120R/Q130N/V133Q/S167K/V168T
    (7)Y96I/V120R/S167K/V168T
    (8)S65A/V120R/S167K/V168T
    (9)S65A/V120R
    (10)S65A/Y96I/V120R/S167K/V168T
    (11)Y96I/V120R
    (12)S65A
    (13)V133Q
  7.  前記(i)記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における以下の(1)~(7)からなる群から選択される少なくとも1以上のアミノ酸置換を含むアミノ酸配列を含むタンパク質であって、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して、3倍以上である請求項1~6のいずれか1項に記載のタンパク質。
    (1)V133Q/F150D
    (2)F150D
    (3)V120R/F150D/S167K/V168T
    (4)V120R/V133Q/S167K/V168T
    (5)V120R/S167K/V168T
    (6)V120R/Q130N/V133Q/S167K/V168T
    (7)S65A/V120R/S167K/V168T
  8.  配列表の配列番号1で示されるアミノ酸配列において以下の(a)~(u)からなる群から選択される1のアミノ酸置換を含むアミノ酸配列を含む、ジアホラーゼ活性を有するタンパク質。
    (a)S65A
    (b)Y96I
    (c)V120R
    (d)Q130N
    (e)V133Q
    (f)F150D
    (g)A117H/V120R
    (h)S65A/V120R
    (i)Y96I/V120R
    (j)Q130N/V133Q
    (k)V133Q/F150D
    (l)S167K/V168T
    (m)S65A/Y96I/V120R
    (n)S65A/S167K/V168T
    (o)V120R/S167K/V168T
    (p)S65A/V120R/S167K/V168T
    (q)Y96I/V120R/S167K/V168T
    (r)V120R/F150D/S167K/V168T
    (s)V120R/V133Q/S167K/V168T
    (t)V120R/Q130N/V133Q/S167K/V168T
    (u)S65A/Y96I/V120R/S167K/V168T
  9.  請求項8に記載のタンパク質のアミノ酸配列において、配列表の配列番号1で示されるアミノ酸配列における65番目のセリン、96番目のチロシン、117番目のアラニン、120番目のバリン、130番目のグルタミン、133番目のバリン、150番目のフェニルアラニン、167番目のセリンおよび168番目のバリン以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列を含み、且つ80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して向上しているタンパク質。
  10.  配列表の配列番号1で示されるアミノ酸配列におけるF150DまたはV120R/F150D/S167K/V168Tのアミノ酸置換を含むアミノ酸配列を含む請求項8または9に記載のタンパク質。
  11.  80℃、10分間の熱処理後のジアホラーゼ活性が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して2倍以上である請求項8~10のいずれか1項に記載のタンパク質。
  12.  80℃、10分間の熱処理を施した場合のジアホラーゼ活性残存率が、該熱処理後の配列表の配列番号1で示されるアミノ酸配列からなるタンパク質に比して3倍以上である請求項8~11のいずれか1項に記載のタンパク質。
  13.  請求項1~12のいずれか1項に記載のタンパク質をコードする遺伝子。
  14.  請求項13に記載の遺伝子を含む組換えベクター。
  15.  請求項14に記載の組換えベクターを含む形質転換体。
  16.  請求項15に記載の形質転換体を培養することによりジアホラーゼを生成させ、該ジアホラーゼを採取する耐熱性ジアホラーゼの製造方法。
PCT/JP2011/061865 2010-05-24 2011-05-24 ジアホラーゼ活性を有するタンパク質 WO2011148938A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517277A JP5821843B2 (ja) 2010-05-24 2011-05-24 ジアホラーゼ活性を有するタンパク質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-118352 2010-05-24
JP2010118352 2010-05-24

Publications (1)

Publication Number Publication Date
WO2011148938A1 true WO2011148938A1 (ja) 2011-12-01

Family

ID=45003928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061865 WO2011148938A1 (ja) 2010-05-24 2011-05-24 ジアホラーゼ活性を有するタンパク質

Country Status (2)

Country Link
JP (1) JP5821843B2 (ja)
WO (1) WO2011148938A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094630A1 (ja) 2011-12-21 2013-06-27 東洋紡株式会社 ジアホラーゼ
JP2016202085A (ja) * 2015-04-23 2016-12-08 東洋紡株式会社 改変型ジアホラーゼ
JP2018033441A (ja) * 2016-08-24 2018-03-08 東洋紡株式会社 改変型ジアホラーゼ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309192A (ja) * 1997-05-09 1998-11-24 Unitika Ltd 耐熱性ジアホラーゼ遺伝子
JP2002247991A (ja) * 2000-07-04 2002-09-03 Ajinomoto Co Inc タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸
JP2007143493A (ja) * 2005-11-29 2007-06-14 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008048703A (ja) * 2006-08-28 2008-03-06 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008289398A (ja) * 2007-05-23 2008-12-04 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008289419A (ja) * 2007-05-25 2008-12-04 Sony Corp ジアホラーゼ活性を有する変異型タンパク質

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309192A (ja) * 1997-05-09 1998-11-24 Unitika Ltd 耐熱性ジアホラーゼ遺伝子
JP2002247991A (ja) * 2000-07-04 2002-09-03 Ajinomoto Co Inc タンパク質の耐熱性を向上させる方法、該方法により耐熱性の向上したタンパク質、および該タンパク質をコードする核酸
JP2007143493A (ja) * 2005-11-29 2007-06-14 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008048703A (ja) * 2006-08-28 2008-03-06 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008289398A (ja) * 2007-05-23 2008-12-04 Sony Corp ジアホラーゼ活性を有する変異型タンパク質
JP2008289419A (ja) * 2007-05-25 2008-12-04 Sony Corp ジアホラーゼ活性を有する変異型タンパク質

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IWABATA H ET AL.: "Thermostability of ancestral mutants of Caldococcus noboribetus isocitrate dehydrogenase", FEMS MICROBIOL. LETT., vol. 243, no. 2, 2005, pages 393 - 398 *
WATANABE K ET AL.: "The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase", FEBS LETT., vol. 580, no. 16, 2006, pages 3867 - 3871 *
YANG Z ET AL.: "A new method of inference of ancestral nucleotide and amino acid sequences", GENETICS, vol. 141, no. 4, 1995, pages 1641 - 1650 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094630A1 (ja) 2011-12-21 2013-06-27 東洋紡株式会社 ジアホラーゼ
US9506043B2 (en) 2011-12-21 2016-11-29 Toyobo Co., Ltd. Diaphorase
JP2016202085A (ja) * 2015-04-23 2016-12-08 東洋紡株式会社 改変型ジアホラーゼ
JP2018033441A (ja) * 2016-08-24 2018-03-08 東洋紡株式会社 改変型ジアホラーゼ

Also Published As

Publication number Publication date
JP5821843B2 (ja) 2015-11-24
JPWO2011148938A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
KR101814588B1 (ko) 변이 효소 및 그 용도
JP5169991B2 (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
EP2003199B1 (en) Glucose dehydrogenase
US7741100B2 (en) Method for highly expressing recombinant glucose dehydrogenase derived from filamentous fungi
JP4561764B2 (ja) 糸状菌由来グルコースデヒドロゲナーゼを組換え体で高発現するための方法
WO2010053161A1 (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2011139677A (ja) 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP4946019B2 (ja) ジアホラーゼ活性を有する変異型タンパク質
JP5408125B2 (ja) 糸状菌由来フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(fadgdh)
JPWO2009087826A1 (ja) シュウ酸脱炭酸酵素の生産に利用される組換え発現プラスミドベクター及び組換え菌、並びに組換えシュウ酸脱炭酸酵素の生産方法
WO2013100006A1 (ja) 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
JP5821843B2 (ja) ジアホラーゼ活性を有するタンパク質
JP2008206433A (ja) グルコースデヒドロゲナーゼをコードするdna
WO2002044387A1 (fr) Nouvelle fructosyle aminoacide oxydase
EP2695939B1 (en) Modified glucose dehydrogenase
WO2012043601A1 (ja) アマドリアーゼ改変体
JP6514849B2 (ja) 低温における酵素活性を向上させた好熱菌由来酵素の改変体の取得方法、及び低温における酵素活性が向上しているサーマス・サーモフィラス由来3−イソプロピルリンゴ酸脱水素酵素の改変体
JP6398295B2 (ja) 変異型グルコース−6−リン酸脱水素酵素
JP6476542B2 (ja) 変異型グルコース−6−リン酸脱水素酵素
JP6369052B2 (ja) 熱安定性アシルCoAシンテターゼ及びその製造方法
JP6398313B2 (ja) 熱安定性アシルCoAオキシダーゼ及びその製造方法
US7037698B2 (en) Pyrroloquinoline quinone-dependent glucose dehydrogenase
WO2024090562A1 (ja) Fad型グルタミン酸デヒドロゲナーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517277

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786637

Country of ref document: EP

Kind code of ref document: A1