WO2011145265A1 - 酸化マグネシウム焼結体及びその製造方法 - Google Patents

酸化マグネシウム焼結体及びその製造方法 Download PDF

Info

Publication number
WO2011145265A1
WO2011145265A1 PCT/JP2011/002133 JP2011002133W WO2011145265A1 WO 2011145265 A1 WO2011145265 A1 WO 2011145265A1 JP 2011002133 W JP2011002133 W JP 2011002133W WO 2011145265 A1 WO2011145265 A1 WO 2011145265A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
sintered body
magnesium
oxide sintered
group
Prior art date
Application number
PCT/JP2011/002133
Other languages
English (en)
French (fr)
Inventor
忠輔 亀井
卓司 辻田
潤 橋本
島村 隆之
後藤 真志
Original Assignee
タテホ化学工業株式会社
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タテホ化学工業株式会社, パナソニック株式会社 filed Critical タテホ化学工業株式会社
Priority to CN2011800184372A priority Critical patent/CN102822113A/zh
Priority to US13/697,764 priority patent/US20130224421A1/en
Priority to KR1020127033032A priority patent/KR20130045273A/ko
Publication of WO2011145265A1 publication Critical patent/WO2011145265A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a magnesium oxide sintered body suitable as a vapor deposition material capable of forming a protective film in a plasma display panel (hereinafter referred to as PDP), and a manufacturing method thereof.
  • PDP plasma display panel
  • the PDP is a display device provided with a large number of minute discharge spaces sealed in the gap between two glass substrates.
  • a large number of electrodes are arranged in a grid pattern, and an image is displayed by selectively causing discharge cells at intersections of the electrodes to emit light.
  • the display electrode of the front plate is covered with a dielectric layer, and a protective film is formed on the dielectric layer.
  • the protective film has a function to prevent the dielectric layer surface from changing due to the direct exposure of the dielectric layer to the discharge start voltage, and is not changed by ion bombardment sputtering. It is a layer to show.
  • a protective film for PDP is generally formed on a dielectric layer by an electron beam evaporation method using a sintered body such as magnesium oxide as a target material.
  • a sintered body such as magnesium oxide
  • it is required to further lower the discharge start voltage in order to further reduce the power consumption of the PDP, and as a protective film for the PDP, a material having a low discharge start voltage, a high secondary electron emission coefficient, and strong against sputtering. Is required.
  • a vapor deposition material made of high-purity magnesium oxide has been proposed as a material constituting the protective film (see Patent Documents 1 to 3). These protective film materials are preferable because the discharge start voltage is relatively low and the sputtering resistance is good.
  • Patent Document 1 describes a magnesium oxide vapor deposition material having a magnesium oxide purity of 99.0% or more, a relative density of 90.0% or more, and an external volume of 35 to 1500 mm 3 .
  • the surface roughness Ra is 1.0 ⁇ m to 10 ⁇ m
  • the actual surface area is 200 mm 2 to 1200 mm 2
  • the external volume is 30 mm 3 to 1500 mm 3
  • the specific surface area is 20 cm 2 / g to 100 cm 2 / g
  • the magnesium oxide purity Is a magnesium oxide vapor deposition material having a relative density of 90.0% or more.
  • Patent Document 3 describes a magnesium oxide vapor deposition material having a magnesium oxide purity of 99.0% or more, a relative density of 90.0% or more, and an external volume of 35 mm 3 to 1500 mm 3 .
  • the magnesium oxide vapor deposition material has a cubic or rectangular parallelepiped shape, the vapor deposition materials are in point contact with each other at the sharp projections located at the eight corners thereof, and the heat generated by the electron beam irradiated during vapor deposition. Is difficult to diffuse and is rapidly heated locally, so that splash (bumping) is likely to occur. When the frequency of occurrence of splash is high, the deposition material adheres to the film surface, which causes a problem of poor display of PDP.
  • the magnesium oxide vapor deposition material containing calcium oxide is inferior to the smoothness of the surface of the sintered body compared to the vapor deposition material made of high-purity magnesium oxide, easily causes friction, and the flowability is reduced.
  • the vapor deposition material is supplied to the film forming apparatus, there is a problem that the supply port is easily clogged with the vapor deposition material due to generated friction, bridge, and the like.
  • the present invention can suppress the occurrence of splash when forming a film using a magnesium oxide sintered body as a vapor deposition material, and the supply port is clogged when the vapor deposition material is supplied to the film forming apparatus.
  • An object of the present invention is to provide a magnesium oxide sintered body that is difficult, a vapor deposition material for a protective film of a PDP using the same, and a method for producing the sintered body.
  • the composition of the magnesium oxide sintered body was adjusted to include a specific amount of magnesium oxide and an oxide of a Group 2A element of the periodic table other than magnesium, and the shape of the sintered body was adjusted. , Disk shape, elliptical plate shape, polygonal plate shape or meniscus plate shape, or a cube or a rectangular parallelepiped with a rounded apex. Splashing can be suppressed when the film is formed, and display failure of the PDP due to adhesion of vapor deposition material fragments can be prevented. Furthermore, it has been found that clogging of the supply port is less likely to occur when supplying the vapor deposition material to the film forming apparatus, and the present invention has been completed.
  • the present invention relates to a magnesium oxide sintered body containing magnesium oxide and 3 to 50% by mass of an oxide of a Group 2A element of the periodic table other than magnesium, and the shape thereof is a disk shape, an elliptical plate shape,
  • the present invention relates to a magnesium oxide sintered body characterized by being in the shape of a square plate or a meniscus, or having a round shape at the apex of a cube or a rectangular parallelepiped.
  • the present invention also relates to a vapor deposition material for a protective film of a plasma display panel, comprising the magnesium oxide sintered body.
  • the present invention is a method for producing the magnesium oxide sintered body, comprising mixing a magnesium-containing compound powder, a periodic table group 2A element-containing compound powder other than magnesium, and a binder to prepare a mixture, Magnesium oxide, comprising: granulating the mixture and drying to obtain a granulated powder; molding the granulated powder in a mold to form a molded body; and sintering the molded body
  • the present invention also relates to a method for producing a sintered body.
  • the shape is a disk shape, an elliptical plate shape, a polygonal plate shape or a meniscus shape, or a shape in which eight vertices of a cube or a rectangular parallelepiped are rounded. Therefore, there are few sharp protrusions compared with a normal cube or a rectangular parallelepiped, and local heating by the electron beam irradiated during vapor deposition is avoided, so that occurrence of splash can be suppressed. Further, because of these shapes, it is possible to make it difficult for the supply port to be clogged when the vapor deposition material is supplied to the film forming apparatus.
  • Perspective perspective view showing the magnesium oxide sintered body of the present invention presenting a disk shape
  • the magnesium oxide sintered body of the present invention mainly contains magnesium oxide as a constituent component, and further contains an oxide of a Group 2A element of the periodic table other than magnesium.
  • a sintered body is manufactured by heating a powder aggregate at a temperature lower than the melting point and connecting the powders by solid phase diffusion of the powder, growth of the neck portion, movement of crystal grain boundaries, etc. It refers to a dense compact.
  • Group 2A elements of the periodic table other than magnesium include calcium, beryllium, strontium, barium, and radium. Only one of these may be used, or two or more may be used in combination. Among these, calcium is preferable because it has a small band gap and a high effect of reducing the discharge start voltage.
  • the content of oxides of Group 2A elements of the periodic table other than magnesium is 3 to 50% by mass. If the content is less than 3% by mass, the low voltage effect is insufficient. If the content exceeds 50% by mass, the strength of the sintered body is rapidly lowered and splash tends to occur, and the supply port of the film forming apparatus is clogged. It becomes easy.
  • the amount is preferably 5 to 35% by mass, more preferably 9 to 25% by mass.
  • 1000 ppm or less of one or more elements selected from the group consisting of aluminum, yttrium, cerium, zirconium, scandium, and chromium are added to the magnesium oxide as a sintering aid in the magnesium oxide sintered body of the present invention. can do.
  • a sintering aid By adding a sintering aid, the smoothness of the surface of the sintered body is improved, but if added in a large amount, the properties as a protective film for PDP will be deteriorated, so it is preferably 500 ppm or less, more preferably 300 ppm or less.
  • the shape of the magnesium oxide sintered body of the present invention is a disk shape, an elliptical plate shape, a polygonal plate shape or a meniscus shape, or a shape in which the vertex of a cube or a rectangular parallelepiped is rounded.
  • the shape of the rectangular parallelepiped has a rounded shape, the flowability is improved and the supply port is less likely to be clogged when the vapor deposition material is supplied to the film forming apparatus.
  • FIG. 1 is a perspective perspective view showing a magnesium oxide sintered body of the present invention having a disk shape.
  • the disc shape means a circular plate shape as shown in FIG.
  • the elliptical plate shape means that the surface constituting the bottom surface in the disk shape is an ellipse
  • the polygonal plate shape means that the surface constituting the bottom surface in the disk shape is a polygon.
  • Good meniscus shape means that the surface constituting the bottom surface of the disk shape is a semicircle (one of the circles divided into two equal parts in diameter).
  • FIG. 2 is a perspective perspective view showing a normal rectangular parallelepiped magnesium oxide sintered body (comparative example), and FIG. 3 is a diagram showing the magnesium oxide sintered body of the present invention having a rounded shape at the top of the rectangular parallelepiped. It is a perspective perspective view which shows a ligation. As shown in FIG. 3, the shape in which the vertex of the rectangular parallelepiped is rounded has a shape of a rectangular parallelepiped as a whole, but the shape of the rectangular parallelepiped having eight rounded corners is rounded off. Say.
  • the magnesium oxide sintered body of the present invention preferably has a relative density of 80% or more.
  • the magnesium oxide sintered body of the present invention is prepared by mixing a magnesium-containing compound powder, a periodic table group 2A element-containing compound powder other than magnesium, and a binder to prepare a mixture, granulating the mixture, and drying the mixture.
  • a magnesium-containing compound powder a periodic table group 2A element-containing compound powder other than magnesium
  • a binder a binder to prepare a mixture, granulating the mixture, and drying the mixture.
  • it can be manufactured through a step of obtaining granulated powder, a step of forming the granulated powder in a mold to form a molded body, and a step of sintering the molded body.
  • magnesium-containing compound examples include magnesium oxide, carbonate, and hydroxide.
  • the periodic table Group 2A element-containing compound other than magnesium include oxides, carbonates, and hydroxides of the Periodic Table Group 2A element other than magnesium.
  • One or more element-containing compounds selected from the group consisting of aluminum, yttrium, cerium, zirconium, scandium, and chromium are selected from the group consisting of aluminum, yttrium, cerium, zirconium, scandium, and chromium, for example. And oxides, carbonates, and hydroxides of one or more elements.
  • the D 50 particle diameter of the raw material powder made of a compound such as magnesium oxide powder, carbonate powder or hydroxide powder of high purity is set to 0.1. It is adjusted to about ⁇ 10 ⁇ m, preferably about 0.2 to 2 ⁇ m.
  • compound powder such as oxide powder, carbonate powder or hydroxide powder of Group 2A element of periodic table other than magnesium having high purity (for example, purity of 99% or more, preferably purity of 99.9% or more)
  • the D 50 particle size is preferably adjusted to about 1 to 20 ⁇ m.
  • These powders are mixed at a predetermined weight ratio, and an appropriate amount of a resin binder solution is added, and after mixing well, granulation is performed.
  • a rolling granulation method, a spray granulation method, or the like can be used.
  • After drying the obtained granulated material it is put into a predetermined mold, and is shaped like a disc, an ellipse, a polygon or a meniscus, or a round shape at the top of a cube or a rectangular parallelepiped To form.
  • a uniaxial press machine or the like can be used.
  • the mold pressure is preferably set to 0.01 to 600 MPa, for example, in order to adjust the relative density of the obtained molded body.
  • the obtained compact is fired to obtain the magnesium oxide sintered body of the present invention.
  • This firing is preferably set to firing temperature: 1300 to 1800 ° C. and firing time: 0.5 to 20 hours.
  • firing temperature 1300 to 1800 ° C.
  • firing time 0.5 to 20 hours.
  • an electric furnace, a gas furnace, or the like can be used.
  • the resin binder is not particularly limited, and for example, a binder made of CMC (carboxymethyl cellulose), PVA (polyvinyl alcohol), acrylic resin, vinyl acetate resin, or the like can be used.
  • the amount used is about 1 to 10 parts by weight in terms of solid content with respect to 100 parts by weight of the total amount of powder in terms of oxide.
  • the binder concentration is preferably about 5% to 50%.
  • the magnesium oxide sintered body of the present invention is suitable as a vapor deposition material used as a film forming material when a protective film of a plasma display panel is formed by a vacuum vapor deposition method such as an electron beam vapor deposition method, an ion plating method, or a sputtering method. Can be used.
  • a vacuum vapor deposition method such as an electron beam vapor deposition method, an ion plating method, or a sputtering method.
  • Example 1 Magnesium oxide powder (purity 99.9%, D 50 particle size (volume basis median diameter) 0.5 [mu] m) of the 90 g, the calcium carbonate powder (purity 99.99%, D 50 particle size 8.63Myuemu), sintered An amount of 10% by weight of calcium oxide content in the body was added. Next, 100 to 200% by weight of an organic solvent was added to the mixed powder of magnesium oxide and calcium carbonate. The obtained mixture was put into a resin pot containing nylon balls, and pulverized and mixed for 8 hours.
  • the produced slurry was spray-dried with a spray dryer to produce a granulated body.
  • the granulated body was put in a predetermined mold and molded with a uniaxial press at a pressure of 400 MPa.
  • a degreasing process is performed in an air atmosphere in a gas furnace under conditions of 300 ° C. ⁇ 1 hour, and then a firing process is performed by holding at 1600 ° C. for 8 hours. A plate-like sintered body was obtained.
  • the hearth was filled with 10 kg of the magnesium oxide sintered body containing calcium oxide obtained as described above as a vapor deposition material, and then vapor deposition was performed on the substrate at an output of 18 kV and 900 mA for 15 minutes using an electron beam vapor deposition apparatus.
  • the state of occurrence of splash was visually observed from the viewport.
  • the surface of the thin film was observed and evaluated in three stages based on the following evaluation criteria.
  • Splash was observed, but no deposits of vapor deposition material on the film surface were observed.
  • X Many splashes were observed, and deposition material fragments were confirmed to adhere to the film surface.
  • Vapor deposition materials were put in between and evaluated in three stages based on the following evaluation criteria.
  • Supply of the vapor deposition material is smooth, and a bridge (one formed as a lump by pressing two or more vapor deposition materials in the supply pipe) does not occur.
  • Supply of vapor deposition material was smooth, but bridging occurred.
  • X The supply of the vapor deposition material was not smooth, and a bridge was also generated.
  • Maximum static friction force measurement method In order to confirm the frictional force of the sintered body, deposit the vapor deposition material into a stainless steel groove that can change the angle, and calculate the following as the maximum static frictional force: F from the angle ⁇ at which the sintered body begins to slide. Calculated from the formula.
  • Example 2 Magnesium oxide baked in the same manner as in Example 1 except that the content of calcium oxide in the sintered body was 3% by weight and the shape of the sintered body was changed to a disk shape having a diameter of 8.0 mm and a thickness of 3.0 mm. A knot was produced and evaluated.
  • Example 3 Except for changing calcium carbonate to calcium hydroxide, changing the content of calcium oxide in the sintered body to 15% by weight, and changing the shape of the sintered body to a disk shape with a diameter of 10 mm and a thickness of 3.5 mm Magnesium oxide sintered bodies were produced and evaluated in the same manner as in Example 1.
  • Example 4 A magnesium oxide sintered body was produced and evaluated in the same manner as in Example 1 except that the content of calcium oxide in the sintered body was 25% by weight.
  • Example 5 (Example 5) Implemented except that calcium carbonate was changed to calcium hydroxide, the content of calcium oxide in the sintered body was 35% by weight, and the shape of the sintered body was changed to a disk shape with a diameter of 8 mm and a thickness of 3.0 mm.
  • Magnesium oxide sintered bodies were produced and evaluated in the same manner as in Example 1.
  • Example 6 Magnesium oxide sintered body as in Example 1 except that the content of calcium oxide in the sintered body is 45% by weight and the shape of the sintered body is changed to a disk shape having a diameter of 10 mm and a thickness of 3.5 mm. Were manufactured and evaluated.
  • Example 7 A magnesium oxide sintered body was produced and evaluated in the same manner as in Example 1 except that the shape of the sintered body was a rectangular solid with no apex of 4 mm ⁇ 4 mm ⁇ 2.5 mm.
  • Example 8 Example except that calcium carbonate was changed to calcium hydroxide, the content of calcium oxide in the sintered body was 25% by weight, and the shape of the sintered body was a rectangular parallelepiped of 8 mm ⁇ 8 mm ⁇ 3.5 mm A magnesium oxide sintered body was produced in the same manner as in Example 1 and evaluated.
  • Example 9 A magnesium oxide sintered body was prepared in the same manner as in Example 1 except that the content of calcium oxide in the sintered body was 45% by weight and the shape of the sintered body was a rectangular parallelepiped of 8 mm ⁇ 4 mm ⁇ 3.5 mm. Manufactured and evaluated.
  • Example 1 A magnesium oxide sintered body was produced and evaluated in the same manner as in Example 1 except that the shape of the sintered body was a rectangular parallelepiped with a vertex of 4 mm ⁇ 4 mm ⁇ 2.5 mm (ordinary rectangular solid).
  • Example 2 A magnesium oxide sintered body was produced and evaluated in the same manner as in Example 1 except that the shape of the sintered body was a rectangular parallelepiped with an apex of 8 mm ⁇ 4 mm ⁇ 3.5 mm.
  • Example 3 A magnesium oxide sintered body was prepared in the same manner as in Example 1 except that the content of calcium oxide in the sintered body was 20% by weight and the shape of the sintered body was a rectangular parallelepiped with 8 mm ⁇ 8 mm ⁇ 3.5 mm. Manufactured and evaluated.
  • Example 4 A magnesium oxide sintered body was prepared in the same manner as in Example 1 except that the content of calcium oxide in the sintered body was 20% by weight and the shape of the sintered body was a rectangular parallelepiped with a top of 10 mm ⁇ 5 mm ⁇ 3.5 mm. Manufactured and evaluated.
  • Table 1 shows the results obtained as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

成膜時にスプラッシュ発生の抑制が可能であり、成膜装置の供給口での詰まりが発生しにくい酸化マグネシウム焼結体、及び、これを用いたPDPの保護膜用蒸着材、並びに、前記焼結体の製造方法を提供する。酸化マグネシウムと、マグネシウム以外の周期表第2A族元素の酸化物3~50質量%と、必要によりアルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素を1000ppm以下を含む酸化マグネシウム焼結体であって、その形状が、円板状、楕円板状、多角形板状若しくは半月板状であるか、又は、立方体若しくは直方体の頂点に丸みを持たせた形状である酸化マグネシウム焼結体。

Description

酸化マグネシウム焼結体及びその製造方法
 本発明は、プラズマディスプレイパネル(以下、PDPと称する)における保護膜を形成可能な蒸着材として好適な酸化マグネシウム焼結体、及び、その製造方法に関する。
 PDPは2枚のガラス基板の間隙に密閉された微小な放電空間を多数設けた表示デバイスである。たとえば、マトリックス表示方式のPDPでは、多数の電極が格子状に配列され、各電極の交差部の放電セルを選択的に発光させて画像を表示する。代表的な面放電型のAC型PDPでは、前面板の表示電極は誘電体層で被覆され、さらに誘電体層上に保護膜が形成されている。保護膜は、誘電体層が直接放電にさらされることで誘電体層表面が変化して放電開始電圧が上昇するのを防止する役割を有しており、イオン衝撃のスパッタリングによって変化しないという特性を示す層である。
 現在、PDP用の保護膜は、酸化マグネシウム等の焼結体をターゲット材とする電子ビーム蒸着法により誘電体層上に形成されることが一般的である。しかし、PDPを更に省電力化するために放電開始電圧を更に下げることが要求され、PDP用の保護膜としても、低い放電開始電圧を有し、二次電子放出係数が高く、スパッタリングに強い材料が求められている。
 このような観点から、保護膜を構成する材料として、高純度の酸化マグネシウムからなる蒸着材が提案されている(特許文献1~3を参照)。これら保護膜材料は、放電開始電圧が比較的低く、耐スパッタ性が良好であるため好ましい。
 特許文献1では、酸化マグネシウム純度が99.0%以上、相対密度が90.0%以上、外形体積が35~1500mmである酸化マグネシウム蒸着材が記載されている。
 特許文献2では、表面粗さRaが1.0μm~10μm、実表面積が200mm~1200mm、外形体積が30mm~1500mm、比表面積が20cm/g~100cm/g、酸化マグネシウム純度が99.0%以上、相対密度が90.0%以上である酸化マグネシウム蒸着材が記載されている。
 特許文献3では、酸化マグネシウム純度が99.0%以上、相対密度が90.0%以上、外形体積が35mm~1500mmである酸化マグネシウム蒸着材が記載されている。
特開2004-43955号公報 特開2004-43956号公報 特開2008-274442号公報
 酸化マグネシウム蒸着材が立方体又は直方体の形状を呈するものであると、その八個の隅に位置する鋭角な突起部では蒸着材同士が点接触となるため蒸着の際に照射される電子ビームによる熱が拡散しにくく、局所的に急速加熱されるため、スプラッシュ(突沸)が発生しやすい。スプラッシュの発生頻度が高い場合には膜表面への蒸着材の付着が起こるためPDPの表示不良が発生するという問題があった。
 また、酸化カルシウムを含む酸化マグネシウム蒸着材では、高純度の酸化マグネシウムからなる蒸着材と比較して、焼結体表面の円滑性に劣り、摩擦が生じやすく、流れ性が低下していることから、成膜装置に蒸着材を供給する際、発生する摩擦やブリッジ等により、供給口が蒸着材によって詰まりやすいという問題があった。
 そこで、本発明は、酸化マグネシウム焼結体を蒸着材として用いて成膜する際にスプラッシュ発生の抑制が可能であるとともに、成膜装置に蒸着材を供給する際に供給口のつまりが発生しにくい酸化マグネシウム焼結体、及び、これを用いたPDPの保護膜用蒸着材、並びに、前記焼結体の製造方法を提供することを目的とする。
 本発明者が検討したところ、酸化マグネシウム焼結体の組成を、酸化マグネシウムと、マグネシウム以外の周期表第2A族元素の酸化物とを特定量含むように調整し、かつ焼結体の形状を、円板状、楕円板状、多角形板状若しくは半月板状、又は、立方体若しくは直方体の頂点に丸みを持たせた形状とすることで、当該酸化マグネシウム焼結体を蒸着材として用いて成膜する際にスプラッシュ発生の抑制が可能であり、蒸着材破片の付着によるPDPの表示不良を防止することができる。さらに、成膜装置に蒸着材を供給する際に供給口のつまりが発生しにくくなることを見出し、本発明を完成するに至った。
 すなわち本発明は、酸化マグネシウムと、マグネシウム以外の周期表第2A族元素の酸化物3~50質量%と含む酸化マグネシウム焼結体であって、その形状が、円板状、楕円板状、多角形板状若しくは半月板状であるか、又は、立方体若しくは直方体の頂点に丸みを持たせた形状であることを特徴とする酸化マグネシウム焼結体に関する。
 また本発明は、当該酸化マグネシウム焼結体からなる、プラズマディスプレイパネルの保護膜用蒸着材にも関する。
 さらに本発明は、前記酸化マグネシウム焼結体を製造する方法であって、マグネシウム含有化合物粉末、マグネシウム以外の周期表第2A族元素含有化合物粉末、及び、バインダーを混合して混合物を調製する工程、前記混合物を造粒し、乾燥して造粒粉末を得る工程、前記造粒粉末を型内で成形して成形体を形成する工程、並びに、前記成形体を焼結する工程を含む、酸化マグネシウム焼結体の製造方法にも関する。
 本発明の酸化マグネシウム焼結体によれば、形状が円板状、楕円板状、多角形板状若しくは半月板状、又は、立方体若しくは直方体の八個の頂点に丸みを持たせた形状であるので、通常の立方体や直方体と比較して鋭角な突起部が少なく、蒸着の際に照射された電子ビームによる局所加熱が回避されるため、スプラッシュの発生を抑制することができる。さらに、これらの形状のために、成膜装置に蒸着材を供給する際に供給口のつまりを発生しにくくすることができる。
円板状を呈している本発明の酸化マグネシウム焼結体を示す斜視透視図 通常の直方体状の酸化マグネシウム焼結体(比較例)を示す斜視透視図 直方体の頂点に丸みを持たせた形状を呈している本発明の酸化マグネシウム焼結体を示す斜視透視図 焼結体の流れ性を確認するための装置を示す上面図
 本発明の酸化マグネシウム焼結体は、構成成分として酸化マグネシウムを主体とし、さらに、マグネシウム以外の周期表第2A族元素の酸化物を含有する。焼結体とは、粉末の集合体を、融点よりも低い温度で加熱することで、粉体の固相拡散、ネック部の成長、結晶粒界の移動などによって粉末同士が連結して製造された緻密な成形体のことをいう。
 マグネシウム以外の周期表第2A族元素としては、カルシウム、ベリリウム、ストロンチウム、バリウム、及び、ラジウムが挙げられる。これらを1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよい。なかでも、バンドギャップが小さく、放電開始電圧を低下させる効果が高いため、カルシウムが好ましい。
 本発明の酸化マグネシウム焼結体におけるマグネシウム以外の周期表第2A族元素の酸化物の含量は3~50質量%である。3質量%未満であると、低電圧効果が不十分であり、50質量%を超えると、焼結体強度が急激に低くなりスプラッシュが発生しやすくなり、成膜装置の供給口の詰まりも起こりやすくなる。好ましくは5~35質量%であり、より好ましくは9~25質量%である。
 また、本発明の酸化マグネシウム焼結体に焼結助剤として前記酸化マグネシウムにアルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素を1000ppm以下添加することができる。焼結助剤を添加することにより焼結体表面の円滑性が改善されるが、多量に添加するとPDP用保護膜としての特性を劣化させてしまうため、好ましくは500ppm以下であり、より好ましくは300ppm以下である。
 本発明の酸化マグネシウム焼結体の形状は、円板状、楕円板状、多角形板状若しくは半月板状であるか、又は、立方体若しくは直方体の頂点に丸みを持たせた形状である。これにより、通常の立方体や直方体と比較して鋭角な突起部が少なくなり、蒸着の際に照射された電子ビームが特定箇所に集中しにくくなる。その結果、スプラッシュの発生を抑制することができる。さらに、酸化カルシウムを含む酸化マグネシウム焼結体であるために表面の円滑性に劣り摩擦が生じやすいものの、円板状、楕円板状、多角形板状若しくは半月板状であるか、又は、立方体若しくは直方体の頂点に丸みを持った形状であるために、流れ性が改善され、成膜装置に蒸着材を供給する際に供給口の詰まりを発生しにくくすることができる。
 図1は、円板状を呈している本発明の酸化マグネシウム焼結体を示す斜視透視図である。円板状とは、図1に示すように、円形の板状のものをいう。また、楕円板状とは、前記円板状において底面を構成する面が楕円であるものをいい、多角形板状とは、前記円板状において底面を構成する面が多角形であるものをいい、半月板状とは、前記円板状において底面を構成する面が半円(円を直径で2等分した一方のもの)であるものをいう。
 図2は、通常の直方体状の酸化マグネシウム焼結体(比較例)を示す斜視透視図であり、図3は、直方体の頂点に丸みを持たせた形状を呈している本発明の酸化マグネシウム焼結体を示す斜視透視図である。直方体の頂点に丸みを持たせた形状とは、図3に示すように、全体としては直方体の形状を保持しているものの、直方体の8つの頂点が削りとられて丸みを帯びている形状をいう。
 本発明の酸化マグネシウム焼結体は相対密度が80%以上であることが好ましい。
 次に本発明の酸化マグネシウム焼結体を製造する方法を説明する。
 本発明の酸化マグネシウム焼結体は、マグネシウム含有化合物粉末、マグネシウム以外の周期表第2A族元素含有化合物粉末、及び、バインダーを混合して混合物を調製する工程、前記混合物を造粒し、乾燥して造粒粉末を得る工程、前記造粒粉末を型内で成形して成形体を形成する工程、並びに、前記成形体を焼結する工程を経ることにより製造することができる。アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素をも含む焼結体を製造する場合には、混合物調製工程で、アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素含有化合物をさらに混合すればよい。ここで、マグネシウム含有化合物としては、例えば、マグネシウムの酸化物、炭酸化物、水酸化物が挙げられる。マグネシウム以外の周期表第2A族元素含有化合物としては、例えば、マグネシウム以外の周期表第2A族元素の酸化物、炭酸化物、水酸化物が挙げられる。アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素含有化合物としては、例えば、アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素の酸化物、炭酸化物、水酸化物が挙げられる。
 具体的には、まず、高純度(例えば99.9%以上の純度)のマグネシウムの酸化物粉末、炭酸化物粉末又は水酸化物粉末等の化合物からなる原料粉末のD50粒子径を0.1~10μm程度、好ましくは0.2~2μm程度に調節する。
 別途、高純度(例えば99%以上の純度、好ましくは99.9%以上の純度)の、マグネシウム以外の周期表第2A族元素の酸化物粉末、炭酸化物粉末又は水酸化物粉末等の化合物粉末のD50粒子径を、好ましくは1~20μm程度に調節する。
 これら粉末を所定の重量比で混合し、さらに樹脂バインダー溶液を適当量添加して、十分に混合後、造粒する。造粒には、転動造粒法やスプレー造粒法等が利用できる。得られた造粒体を乾燥後、所定の金型に投入して、円板状、楕円板状、多角形板状若しくは半月板状、又は、立方体若しくは直方体の頂点に丸みを持たせた形状に成形する。成形には例えば1軸プレス装置などを使用することができる。金型圧力は、得られる成形体の相対密度を調整するために、例えば、0.01~600MPaに設定することが好ましい。
 次に、得られた成形体を焼成することによって、本発明の酸化マグネシウム焼結体を得る。この焼成は、焼成温度:1300~1800℃、焼成時間:0.5~20時間にそれぞれ設定することが好ましい。焼成には、電気炉、ガス炉等が利用できる。
 前記樹脂バインダーとしては、特に限定されず、例えばCMC(カルボキシメチルセルロース)、PVA(ポリビニルアルコール)、アクリル系樹脂、酢酸ビニル系樹脂等からなるバインダーを使用することができる。その使用量としては、酸化物換算した粉末量の合計100重量部に対して、固形分で1~10重量部程度である。バインダー濃度は5%~50%程度にすることが好ましい。
 本発明の酸化マグネシウム焼結体は、プラズマディスプレイパネルの保護膜を電子ビーム蒸着法やイオンプレーティング法、スパッタリング法等の真空蒸着法で成膜する際に成膜原料として使用する蒸着材として好適に利用することができる。本発明の酸化マグネシウム焼結体を利用すると、蒸着時のエネルギー効率が良好でありながら、スプラッシュも発生しにくく、不良の発生を抑え膜性能に優れた保護膜を形成することができる。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (実施例1)
 酸化マグネシウム粉末(純度99.9%、D50粒子径(体積基準のメディアン径)0.5μm)90gに、炭酸カルシウム粉末(純度99.99%、D50粒子径 8.63μm)を、焼結体中の酸化カルシウム含有量が10重量%となる量を添加した。次に、有機溶剤を、酸化マグネシウムと炭酸カルシウムの混合粉末に対して100~200重量%添加した。得られた混合物を、ナイロンボールを入れた樹脂性ポットに入れ、8時間粉砕・混合した。
 粉砕・混合後、上記樹脂製ポットに、有機溶剤で30%に希釈したアクリル系バインダ溶液を、酸化マグネシウムと炭酸カルシウムの混合粉末に対して固形分換算で2~10重量%添加し、30分間混合しスラリーを作製した。
 作製したスラリーをスプレードライヤーにて噴霧乾燥させ造粒体を作製し、この造粒体を所定の金型に入れ、一軸プレス機にて圧力400MPaで成形した。
 成形後、ガス炉にて大気雰囲気中、300℃×1時間の条件で脱脂工程を行った後、1600℃で8時間保持して焼成工程を行い、径6.0mm×厚み2.5mmの円板状の焼結体を得た。
 以上により得られた酸化カルシウムを含む酸化マグネシウム焼結体を蒸着材としてハース内に10kg充填した後、電子ビーム蒸着装置を使用して出力18kV、900mAで15分間、基板上に蒸着を行った。この成膜時にビューポートより目視でスプラッシュの発生状態を観察し、さらに、成膜後に薄膜表面を観察し、下記評価基準に基づいて3段階で評価した。
◎:スプラッシュ、膜表面への蒸着材破片の付着ともに観測されず。
○:スプラッシュは観測されたが、膜表面への蒸着材破片の付着は観測されず。
×:スプラッシュを多数観測し、膜表面への蒸着材破片の付着を確認。
 また、成膜装置への焼結体の流れ性を確認する為に、角度35°で傾斜させたステンレス製の板の上にステンレス製の棒2本を図4のように設置し、棒の間に蒸着材を投入して、下記評価基準に基づいて3段階で評価した。
○:蒸着材の供給がスムーズであり、ブリッジ(供給パイプ内で2つ以上の蒸着材同士が押し合うことで塊を形成したもの)が発生しない。
△:蒸着材の供給はスムーズだが、ブリッジが発生した。
×:蒸着材の供給がスムーズではなく、ブリッジも発生した。
 (最大静止摩擦力の測定方法)
 焼結体の摩擦力を確認するため、角度を変化させ得るステンレス製の溝に蒸着材を投入し、滑り始める角度θから、焼結体にかかる力を最大静止摩擦力:Fとして下記の計算式より算出した。
 F(×10-3N)=μ・m・g・cosθ 
 μ:静摩擦係数(μ=tanθとして算出)
 m:焼結体重量
 g:重力加速度
 (酸化カルシウム濃度の測定法)
 焼結体中の酸化カルシウムの濃度は、試料を酸に溶解した後、ICP発光分析装置(Agilent社製:4500)を使用して測定した。
 (実施例2)
 焼結体中の酸化カルシウムの含有量を3重量%とし、焼結体の形状を径8.0mm×厚み3.0mmの円板状に変更した以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例3)
 炭酸カルシウムを水酸化カルシウムに変更し、焼結体中の酸化カルシウムの含有量を15重量%とし、焼結体の形状を径10mm×厚み3.5mmの円板状に変更した以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例4)
 焼結体中の酸化カルシウムの含有量を25重量%とした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例5)
 炭酸カルシウムを水酸化カルシウムに変更し、焼結体中の酸化カルシウムの含有量を35重量%とし、焼結体の形状を径8mm×厚み3.0mmの円板状に変更した以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例6)
 焼結体中の酸化カルシウムの含有量を45重量%とし、焼結体の形状を径10mm×厚み3.5mmの円板状に変更した以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例7)
 焼結体の形状を4mm×4mm×2.5mmの頂点なし直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例8)
 炭酸カルシウムを水酸化カルシウムに変更し、焼結体中の酸化カルシウムの含有量を25重量%とし、焼結体の形状を8mm×8mm×3.5mmの頂点なし直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (実施例9)
 焼結体中の酸化カルシウムの含有量を45重量%とし、焼結体の形状を8mm×4mm×3.5mmの頂点なし直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (比較例1)
 焼結体の形状を4mm×4mm×2.5mmの頂点あり直方体(通常の直方体)にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (比較例2)
 焼結体の形状を8mm×4mm×3.5mmの頂点あり直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (比較例3)
 焼結体中の酸化カルシウムの含有量を20重量%とし、焼結体の形状を8mm×8mm×3.5mmの頂点あり直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 (比較例4)
 焼結体中の酸化カルシウムの含有量を20重量%とし、焼結体の形状を10mm×5mm×3.5mmの頂点あり直方体にした以外は、実施例1と同様に酸化マグネシウム焼結体を製造し、評価を行った。
 以上により得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1より、実施例1~9の酸化マグネシウム焼結体は成膜時のスプラッシュ発生が抑止されており、かつ成膜装置の供給時での流れ性が良好であることが分かる。

Claims (8)

  1.  酸化マグネシウムと、マグネシウム以外の周期表第2A族元素の酸化物3~50質量%とを含む酸化マグネシウム焼結体であって、その形状が、円板状、楕円板状、多角形板状若しくは半月板状であるか、又は、立方体若しくは直方体の頂点に丸みを持たせた形状であることを特徴とする酸化マグネシウム焼結体。
  2.  前記マグネシウム以外の周期表第2A族元素が、カルシウム、ベリリウム、ストロンチウム、バリウム、及び、ラジウムからなる群より選ばれる一種類又は二種類以上である、請求項1に記載の酸化マグネシウム焼結体。
  3.  前記マグネシウム以外の周期表第2A族元素が、カルシウムである、請求項2記載の酸化マグネシウム焼結体。
  4.  さらに、アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素を1000ppm以下含む、請求項1~3のいずれか1項に記載の酸化マグネシウム焼結体。
  5.  前記焼結体の相対密度が80%以上である、請求項1~4のいずれか1項に記載の酸化マグネシウム焼結体。
  6.  請求項1~5のいずれか1項に記載の酸化マグネシウム焼結体からなる、プラズマディスプレイパネルの保護膜用蒸着材。
  7.  請求項1~3及び5のいずれかに記載の酸化マグネシウム焼結体を製造する方法であって、
     マグネシウム含有化合物粉末、マグネシウム以外の周期表第2A族元素含有化合物粉末、及び、バインダーを混合して混合物を調製する工程、
     前記混合物を造粒し、乾燥して造粒粉末を得る工程、
     前記造粒粉末を型内で成形して成形体を形成する工程、並びに、
     前記成形体を焼結する工程を含む、酸化マグネシウム焼結体の製造方法。
  8.  請求項4~5のいずれかに記載の酸化マグネシウム焼結体を製造する方法であって、
     マグネシウム含有化合物粉末、マグネシウム以外の周期表第2A族元素含有化合物粉末、アルミニウム、イットリウム、セリウム、ジルコニウム、スカンジウム、及びクロムからなる群より選ばれる一種類又は二種類以上の元素含有化合物粉末及び、バインダーを混合して混合物を調製する工程、
     前記混合物を造粒し、乾燥して造粒粉末を得る工程、
     前記造粒粉末を型内で成形して成形体を形成する工程、並びに、
     前記成形体を焼結する工程を含む、酸化マグネシウム焼結体の製造方法。
     
PCT/JP2011/002133 2010-05-20 2011-04-11 酸化マグネシウム焼結体及びその製造方法 WO2011145265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800184372A CN102822113A (zh) 2010-05-20 2011-04-11 氧化镁烧结体及其制造方法
US13/697,764 US20130224421A1 (en) 2010-05-20 2011-04-11 Sintered magnesium oxide material, and process for production thereof
KR1020127033032A KR20130045273A (ko) 2010-05-20 2011-04-11 산화마그네슘 소결체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010116160A JP2011241123A (ja) 2010-05-20 2010-05-20 酸化マグネシウム焼結体及びその製造方法
JP2010-116160 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145265A1 true WO2011145265A1 (ja) 2011-11-24

Family

ID=44991388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002133 WO2011145265A1 (ja) 2010-05-20 2011-04-11 酸化マグネシウム焼結体及びその製造方法

Country Status (5)

Country Link
US (1) US20130224421A1 (ja)
JP (1) JP2011241123A (ja)
KR (1) KR20130045273A (ja)
CN (1) CN102822113A (ja)
WO (1) WO2011145265A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736246B2 (ja) * 2010-07-08 2015-06-17 宇部マテリアルズ株式会社 物理的気相成長法に用いる成膜用材料
CN104129807A (zh) * 2014-08-05 2014-11-05 四川虹欧显示器件有限公司 一种微晶材料MgCaO粉体及微晶材料及制备方法及应用
CN104157535B (zh) * 2014-08-18 2016-10-19 北京大学工学院包头研究院 等离子显示面板用复合氧化镁薄膜及其制法和应用
JP6845645B2 (ja) * 2016-09-26 2021-03-24 タテホ化学工業株式会社 酸化マグネシウム含有スピネル粉末及びその製造方法
JP6779435B2 (ja) * 2017-02-27 2020-11-04 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法
EP3587376A4 (en) * 2017-02-27 2020-12-23 Shiraishi Central Laboratories Co. Ltd. HIGHLY PURE Sintered CALCIUM CARBONATE Sintered BODIES AND MANUFACTURING METHODS FOR IT AND HIGHLY PURE POROUS CALCIUM CARBONATE Sintered BODIES AND MANUFACTURING METHODS FOR THEREFOR
CN107382283A (zh) * 2017-09-06 2017-11-24 盐城市华康电热绝缘材料厂 氧化镁陶瓷的干压制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129857A (ja) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp 多結晶MgO蒸着材及びその製造方法
JP2000290062A (ja) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp MgO蒸着材及びその製造方法
JP2006207014A (ja) * 2004-07-14 2006-08-10 Mitsubishi Materials Corp MgO蒸着材
JP2008274442A (ja) * 2002-05-20 2008-11-13 Mitsubishi Materials Corp MgO蒸着材およびその製造方法
JP2010037608A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料
JP2010037609A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料
JP2010037610A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100997068B1 (ko) * 2003-10-21 2010-11-30 우베 마테리알즈 가부시키가이샤 산화마그네슘 증착재

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129857A (ja) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp 多結晶MgO蒸着材及びその製造方法
JP2000290062A (ja) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp MgO蒸着材及びその製造方法
JP2008274442A (ja) * 2002-05-20 2008-11-13 Mitsubishi Materials Corp MgO蒸着材およびその製造方法
JP2006207014A (ja) * 2004-07-14 2006-08-10 Mitsubishi Materials Corp MgO蒸着材
JP2010037608A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料
JP2010037609A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料
JP2010037610A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 成膜材料

Also Published As

Publication number Publication date
US20130224421A1 (en) 2013-08-29
KR20130045273A (ko) 2013-05-03
JP2011241123A (ja) 2011-12-01
CN102822113A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2011145265A1 (ja) 酸化マグネシウム焼結体及びその製造方法
JP4762062B2 (ja) 焼結体、膜及び有機エレクトロルミネッセンス素子
EP1947673B1 (en) Method of manufacturing an indium tin oxide target
JP3893793B2 (ja) MgO蒸着材及びその製造方法
EP2767610A1 (en) ZnO-Al2O3-MgO sputtering target and method for the production thereof
JP5887625B1 (ja) 円筒型スパッタリングターゲット、円筒型焼結体、円筒型成形体及びそれらの製造方法
JP3470633B2 (ja) MgOを主成分とする蒸着材及びその製造方法
JP4575035B2 (ja) 単結晶酸化マグネシウム焼結体及びその製造方法並びにプラズマディスプレイパネル用保護膜
TW201217557A (en) Sintered material for zno-mgo-based sputtering target
JP4445193B2 (ja) 蒸着材料
KR20070041440A (ko) 단결정 산화마그네슘 소결체, 그 제조 방법 및 플라즈마디스플레이 패널용 보호막
JP5979082B2 (ja) 蒸着用タブレットとその製造方法
JP5425457B2 (ja) プラズマディスプレイパネルの保護膜用蒸着材
JPH1192212A (ja) MgO焼結体、その製造方法及びMgO薄膜
JP4955916B2 (ja) 単結晶酸化マグネシウム焼結体及びその製造方法並びにプラズマディスプレイパネル用保護膜
JP5969146B1 (ja) 円筒型スパッタリングターゲットの製造方法及び円筒型成形体の製造方法
JP2004043955A (ja) MgO蒸着材およびその製造方法、MgO膜の製造方法
JP2010031384A (ja) 光学薄膜および光学部品
JPH10130828A (ja) MgOターゲット及びその製造方法
JP4196438B2 (ja) 蒸着材料及びその製造方法
JP5203113B2 (ja) 特殊な構造の酸化マグネシウム焼結体及びpdp保護膜用蒸着材
KR19980079548A (ko) 엠지오 증착재 및 그 제조방법
JP2008255481A (ja) 蒸着材
JP5417720B2 (ja) ZnO蒸着材の製造方法及び該方法により製造された蒸着材を用いて蒸着膜を形成する方法
JP2006022374A (ja) 単結晶酸化マグネシウム焼結体及びその製造方法並びにプラズマディスプレイパネル用保護膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018437.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127033032

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13697764

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11783204

Country of ref document: EP

Kind code of ref document: A1