WO2011145240A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2011145240A1
WO2011145240A1 PCT/JP2011/000927 JP2011000927W WO2011145240A1 WO 2011145240 A1 WO2011145240 A1 WO 2011145240A1 JP 2011000927 W JP2011000927 W JP 2011000927W WO 2011145240 A1 WO2011145240 A1 WO 2011145240A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
cell
pattern
diode
semiconductor device
Prior art date
Application number
PCT/JP2011/000927
Other languages
English (en)
French (fr)
Inventor
池上智朗
中西和幸
田丸雅規
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180000675.0A priority Critical patent/CN102334183B/zh
Priority to US13/179,214 priority patent/US8399928B2/en
Publication of WO2011145240A1 publication Critical patent/WO2011145240A1/ja
Priority to US13/767,396 priority patent/US8598668B2/en
Priority to US14/062,450 priority patent/US8748987B2/en
Priority to US14/253,551 priority patent/US8946824B2/en
Priority to US14/574,330 priority patent/US9142539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Definitions

  • the present invention relates to a layout of a semiconductor device, and particularly relates to a technique effective for suppressing the optical proximity effect.
  • a semiconductor substrate is generally obtained by repeating a photolithography process including resist coating, exposure, and development, an etching process for patterning elements using a resist mask, and a resist removing process. An integrated circuit is formed thereon. If the pattern dimension is less than the exposure wavelength during exposure in the photolithography process, an error between the design layout dimension and the pattern dimension on the semiconductor substrate increases due to the optical proximity effect due to the influence of diffracted light.
  • the gate length of a transistor is an important factor that determines its performance. For this reason, when the gate dimension shifts in the manufacturing process, the operation performance of the semiconductor integrated circuit is greatly affected.
  • OPC Optical / Proximity / effect / Correction
  • a protection diode is used for antenna rule countermeasures.
  • a gate is not usually arranged in a diode cell, there is no definition of gate length or gate interval. For this reason, a gate dimension cannot be limited.
  • the diode cell protects the transistor from the phenomenon called ESD (Electro-Static-Discharge) caused by the charge of the metal wiring connected to the gate of the transistor or the gate by plasma irradiation, called the antenna effect. This is a cell that constitutes a diode for the purpose.
  • ESD Electro-Static-Discharge
  • FIG. 14 is an example of a layout pattern of a semiconductor device in which conventional diode cells are arranged.
  • gate patterns G1, G2, and G3 are arranged in the standard cell C1
  • the diode cell C2 includes a first diode A1 and a second diode A2 that are connected in series in the forward direction.
  • a contact for connecting the diffusion region and the upper metal wiring and an input connection terminal IN arranged on the upper metal wiring are provided.
  • the diode cell C2 functions as a bypass path for the charge current path passing through the gate oxide film of the MOS transistor, and functions as a protection diode cell for antenna rule countermeasures.
  • the end portions of the gate patterns G1, G2, and G3 do not have shape regularity, resulting in variations in gate length due to the optical proximity effect.
  • An object of the present invention is to provide a layout capable of reliably suppressing variations in gate length due to the optical proximity effect in a standard cell adjacent to a diode cell in a semiconductor device having a diode cell.
  • a semiconductor device in one embodiment, includes: A standard cell having three or more gate patterns extending in a first direction and arranged at the same pitch in a second direction orthogonal to the first direction;
  • the standard cell includes a diode cell adjacent in the first direction,
  • Each of the gate patterns of the standard cell is terminated in the vicinity of a cell boundary with the diode cell, each termination is located at the same position in the first direction, and the second direction
  • the widths of The diode cell is At least one diffusion layer functioning as a diode; In the vicinity of the cell boundary, there are provided a plurality of opposing terminal portions made of gate patterns arranged to face the terminal portions of the gate patterns of the standard cell.
  • the standard cell has three or more gate patterns arranged at the same pitch, and the diode cell is adjacent to the standard cell in the first direction.
  • the terminal portion in the vicinity of the cell boundary of the gate pattern of the standard cell has the same position in the first direction and the width in the second direction.
  • the diode cell is arranged in the vicinity of the cell boundary so as to face the terminal portion of each gate pattern included in the standard cell. It has a termination.
  • the variation in gate length due to the optical proximity effect can be reliably suppressed for the standard cell adjacent to the diode cell.
  • FIG. 1 is a simplified diagram of a layout pattern of a semiconductor device according to a first embodiment.
  • FIG. 6 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the first embodiment. 6 is a simplified diagram of a layout pattern of a semiconductor device according to a second embodiment.
  • FIG. It is a simplification figure of the layout pattern of the semiconductor device concerning the modification of a 2nd embodiment. It is a simplification figure of the layout pattern of the semiconductor device concerning a 3rd embodiment. It is a simplification figure of the layout pattern of the semiconductor device which concerns on the modification of 3rd Embodiment. It is a simplification figure of the layout pattern of the semiconductor device which concerns on the modification of 3rd Embodiment.
  • FIG. 1 is a simplified diagram of a layout pattern of a semiconductor device according to the first embodiment.
  • FIG. 1 shows a layout of a gate pattern, a diffusion region, a contact and a metal wiring, and a cell boundary is shown by a solid line (the same applies to other drawings).
  • the gate pattern refers to a pattern formed in a layer used for a gate electrode of a transistor, and is manufactured using a material such as polysilicon.
  • the transistor includes a gate pattern and a diffusion region, and a portion sandwiched between the diffusion regions of the gate pattern functions as the gate of the transistor. As shown in FIG.
  • the standard cell C1 extends in the Y direction (the vertical direction in the figure) as the first direction, and has the same pitch in the X direction (the horizontal direction in the figure) as the second direction.
  • the gate patterns G1, G2, and G3 are arranged.
  • the widths of the gate patterns G1, G2, and G3 are L1, and the interval is S1, and the gate pattern G2 forms a transistor T1.
  • the width L1 and the interval S1 of the gate patterns G1, G2, G3 are usually set to the minimum dimensions.
  • For the standard cell C1 only the layout of the gate pattern and the diffusion region is shown, and the contact and the metal wiring are omitted (the same applies to other drawings).
  • the diode cell C2 is adjacent to the standard cell C1 in the Y direction.
  • the diode cell C2 has diffusion region patterns D1 to D8 for forming a diffusion region functioning as a diode.
  • the diffusion regions D1 to D8 are connected to each other by an upper layer metal wiring, and the diode cell C2 realizes a function as a protection diode by including the input connection terminal IN.
  • the diffusion regions D1 to D4 and the diffusion regions D5 to D8 are set to have the same length in the Y direction.
  • the diode cell C2 has a plurality of gate patterns G4, G5, G6 extending in the Y direction.
  • the gate patterns G4, G5, and G6 are dummy patterns, and the lengths in the Y direction are set to be the same.
  • the diffusion regions D1 to D8 are respectively disposed between the gate patterns including the gate patterns G4, G5, and G6.
  • the termination region R1 which is a region where the gate patterns G1, G2, and G3 of the standard cell C1 and the gate patterns G4, G5, and G6 of the diode cell C2 face each other.
  • the gate patterns G1, G2, and G3 are terminated in the vicinity of the cell boundary with the diode cell C2, and the end portions e1, e2, and e3 are at the same position in the Y direction and have a width in the X direction. They are the same (that is, the width L1).
  • the gate patterns G4, G5, and G6 have a plurality of opposed terminal portions eo1, eo2, and eo3 that are arranged to face the terminal portions e1, e2, and e3 of the gate patterns G1, G2, and G3.
  • the opposed terminal portions eo1, eo2, eo3 are arranged at the same position in the Y direction. That is, the gate patterns G1, G2, G3 included in the standard cell C1 and the gate patterns G4, G5, G6 included in the diode cell C2 are arranged at the same interval in the Y direction. Since it has shape regularity, variation in gate length due to the optical proximity effect can be suppressed.
  • FIG. 2 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the present embodiment.
  • the configuration of FIG. 2 is almost the same as that of FIG. 1, but the gate pattern shape in the diode cell C2 is slightly different. That is, in addition to the gate patterns G4, G5, and G6 extending in the Y direction, a gate pattern G7 as a second gate pattern extending in the X direction is provided.
  • the gate pattern G7 is a lattice type in the diode cell C2.
  • the gate patterns G4, G5, and G6 are connected to form a gate pattern, respectively.
  • FIG. 3 is a simplified diagram of the layout pattern of the semiconductor device according to the second embodiment.
  • the configuration of FIG. 3 is almost the same as that of FIG. 1, but the gate pattern shape and diffusion region shape in the diode cell C2 are slightly different. That is, in FIG. 3, the gate patterns G4, G5, and G6 included in the diode cell C2 are arranged at the same pitch in the X direction as the gate patterns G1, G2, and G3 included in the standard cell C1, and each of the opposing termination portions eo1, eo2, and eo3 are in the same position in the Y direction, and the width in the X direction is the same.
  • the diffusion regions D1 to D5 are arranged at the same pitch in the X direction between the gate patterns, and the position of the terminal portion in the Y direction and the width in the X direction are the same.
  • the diffusion regions D6 to D10 are arranged at the same pitch in the X direction between the gate patterns, and the positions of the terminal portions in the Y direction and the widths in the X direction are the same.
  • the diffusion regions D1 to D10 are connected to each other by an upper layer metal wiring, and the diode cell C2 realizes a function as a protection diode by including the input connection terminal IN.
  • the gate of the standard cell C1 in the termination region R1 which is a region where the gate patterns G1, G2, and G3 of the standard cell C1 and the gate patterns G4, G5, and G6 of the diode cell C2 face each other. Since the end portions e1, e2, e3 of the patterns G1, G2, G3 and the opposite end portions eo1, eo2, eo3 of the gate pattern of the diode cell C2 have the same shape regularity, the gate length due to the optical proximity effect Can be more reliably suppressed.
  • FIG. 4 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the present embodiment.
  • the configuration of FIG. 4 is almost the same as that of FIG. 3, but the gate pattern shape in the diode cell C2 is slightly different. That is, in addition to the gate patterns G4, G5, G6 extending in the Y direction, a gate pattern G7 extending in the X direction is provided, and the gate pattern G7 is formed so that a lattice-type gate pattern is formed in the diode cell C2.
  • G4 gate pattern extending in the Y direction
  • the gate pattern G7 is formed so that a lattice-type gate pattern is formed in the diode cell C2.
  • G4 and G6 are connected to gate patterns G4, G5 and G6, respectively.
  • the gate pattern variation due to the optical proximity effect can be predicted in advance, and correction by OPC in the standard cell state Can be hung. Therefore, correction by OPC after cell placement is not necessary.
  • FIG. 5 is a simplified diagram of the layout pattern of the semiconductor device according to the third embodiment.
  • the configuration of FIG. 5 is substantially the same as that of FIG. 1, but the shape of the diffusion region in the diode cell C2 is slightly different. That is, in FIG. 5, a continuous diffusion region D11 is formed with the gate patterns G4, G5, G6 sandwiched between the diffusion regions D1 to D4 of FIG. Similarly, a continuous diffusion region D12 sandwiching the gate patterns G4, G5, and G6 is formed in such a manner that the diffusion regions D5 to D8 of FIG. 1 are connected to each other. Gate patterns G4, G5, and G6 sandwiched between diffusion regions D11 and D12 function as transistor gates.
  • the cell C2 realizes a function as a protection diode.
  • the same effect as the configuration of FIG. 1 can be obtained.
  • the diffusion regions D11 and D12 of the diode cell C2 are continuous diffusion regions, formation in manufacturing can be easily performed, and contact slipping due to the small diffusion region can be prevented.
  • the junction capacitance of the diode can be increased by increasing the area of the diffusion region.
  • the diode cell C2 can be provided with a plurality of types of diode junction capacitances with the same cell size in the X direction, thereby preventing an unnecessary increase in the diode junction capacitance.
  • FIG. 6 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the present embodiment.
  • the configuration of FIG. 6 is obtained by forming a continuous diffusion region D11 instead of the diffusion regions D1 to D4 and forming a continuous diffusion region D12 instead of the diffusion regions D5 to D8 in the configuration of FIG. .
  • the effect similar to the above-mentioned FIG. 5 is acquired.
  • FIG. 7 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the present embodiment.
  • the configuration of FIG. 7 is obtained by forming a continuous diffusion region D11 instead of the diffusion regions D1 to D5 in the configuration of FIG. 3 and forming a continuous diffusion region D12 instead of the diffusion regions D6 to D10. .
  • the effect similar to the above-mentioned FIG. 5 is acquired.
  • FIG. 8 is a simplified diagram of a layout pattern of a semiconductor device according to a modification of the present embodiment.
  • the configuration of FIG. 8 is obtained by forming a continuous diffusion region D11 instead of the diffusion regions D1 to D5 in the configuration of FIG. 4 and forming a continuous diffusion region D12 instead of the diffusion regions D6 to D10. .
  • the effect similar to the above-mentioned FIG. 5 is acquired.
  • FIG. 9 is a simplified diagram of the layout pattern of the semiconductor device according to the fourth embodiment.
  • the configuration of FIG. 9 is almost the same as that of FIG. 7, and the same shape regularity is maintained with respect to the termination portions e1, e2, e3 and the opposed termination portions eo1, eo2, eo3 in the termination region R1.
  • the internal configuration of the diode C2 is different from that in FIG.
  • the diode cell C2 has a gate pattern G8 which is a dummy pattern.
  • the gate pattern G8 includes a pattern main body 8a extending in the X direction and a plurality of protrusions 8b protruding from the pattern main body 8a toward the standard cell C1 in the Y direction. And this protrusion part 8b comprises opposing termination
  • the contacts arranged on the diffusion regions D11 and D12 are connected by the upper metal wiring, and the input connection terminal IN is provided, so that the diode cell C2 realizes a function as a protection diode.
  • the gate pattern G8 which is a dummy pattern, the same shape regularity is maintained with respect to the opposing gate pattern in the termination region R1 at the cell boundary between the standard cell C1 and the diode cell C2. Yes. Therefore, variations in gate length due to the optical proximity effect can be reliably suppressed.
  • FIG. 10 to 13 are simplified diagrams of the layout pattern of the semiconductor device according to the modification of the present embodiment.
  • the gate pattern G8 and the diffusion region D11 are overlapped to ensure a diode area.
  • a gate pattern is formed so as to surround the contact.
  • a gate pattern G9 which is a dummy pattern having two opposing terminal portions eo2 and eo3, is formed in the diode cell C2.
  • the gate pattern G8 is connected to another gate pattern to ensure the gate pattern area.
  • the variation in the gate length due to the optical proximity effect can be surely suppressed for the standard cell adjacent to the diode cell, so that it is not necessary to re-correct the OPC after the standard cell placement, thereby reducing the development man-hours. can do. For this reason, for example, it is useful for a semiconductor integrated circuit mounted on various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

 標準セル(C1)は、Y方向に延び、X方向に同一ピッチで配置されたゲートパターン(G1,G2,G3)を有し、その各終端部(e1,e2,e3)がY方向において同じ位置にあり、X方向の幅が同一である。ダイオードセル(C2)は、標準セル(C1)にY方向に隣り合っており、ダイオードとして機能する拡散層(D1~D10)に加えて、終端部(e1,e2,e3)に対向するように配置された、ゲートパターン(G4,G5,G6)からなる複数の対向終端部(eo1,eo2,eo3)を備えている。

Description

半導体装置
 本発明は、半導体装置のレイアウトに関するものであり、特に、光近接効果の抑制に対して有効な技術に関するものである。
 半導体集積回路の製造プロセスでは、一般に、レジスト塗布、露光、現像を含むフォトリソグラフィ工程と、レジストマスクを用いて要素のパターニングを行うためのエッチング工程と、レジスト除去工程とを繰り返すことにより、半導体基板上に集積回路を形成する。フォトリソグラフィ工程の露光の際に、パターン寸法が露光波長以下になると、回折光の影響による光近接効果によって、設計時のレイアウト寸法と半導体基板上のパターン寸法との誤差が大きくなる。
 また、半導体集積回路において、トランジスタのゲート長は、その性能を決める重要な要素である。このため、製造プロセスでゲート寸法のずれが生じると、半導体集積回路の動作性能に大きな影響を与える。
 このため、微細化の進展とともに、半導体集積回路の製造プロセスにおいて、配線などのパターンを描画・露光する際に、光近接効果によって生じるパターンの寸法ずれを補正することが不可欠になっている。光近接効果を補正する技術として、OPC(Optical Proximity effect Correction)がある。OPCとは、ゲートとそれに近接する他のゲートパターンまでの距離から光近接効果によるゲート長変動量を予測し、ゲートを形成するためのフォトレジストのマスク値を、予測した変動量を打ち消すように予め補正することによって、露光後のゲート長の仕上がり値を一定値に保つ技術である。
 ところが従来は、ゲートパターンは規格化されておらず、ゲート長やゲート間隔はチップ全体でまちまちであったため、OPCによるゲートマスクの補正は、TAT(Turn Around Time)の増加や処理量の増大といった問題を招いていた。
特開2000-106419号公報
 例えば特許文献1において、アンテナルール対策用に保護ダイオードを用いているが、ダイオードセルは通常、ゲートが配置されないため、ゲート長やゲート間隔の規定はない。このため、ゲート寸法を限定することができない。なお、ダイオードセルとは、アンテナ効果と呼ばれる、プラズマの照射によりトランジスタのゲートまたはゲートに接続される金属配線に電荷がチャージされることによりESD(Electro Static Discharge)が発生する現象から、トランジスタを保護するためのダイオードを構成するセルである。
 図14は従来のダイオードセルが配置された半導体装置のレイアウトパターンの一例である。図14において、標準セルC1にはゲートパターンG1,G2,G3が配置されており、ダイオードセルC2は、順方向に相互に直列接続された第1のダイオードA1および第2のダイオードA2を備える。第1のダイオードA1と第2のダイオードA2との間には、拡散領域と上層のメタル配線を接続するコンタクトと、上層のメタル配線上に配置する入力接続端子INが設けられている。これにより、ダイオードセルC2はMOSトランジスタのゲート酸化膜を経るチャージ電流路に対するバイパス路として機能し、アンテナルール対策用保護ダイオードセルとして機能する。
 ここで、領域R1では、ゲートパターンG1,G2,G3の終端部に対向するゲートパターンが存在しない。このため、ゲートパターンG1,G2,G3の終端部に形状規則性がなく、光近接効果によるゲート長のばらつきを招いてしまう。
 本発明は、ダイオードセルを有する半導体装置において、ダイオードセルに隣り合う標準セルについて、光近接効果によるゲート長のばらつきを確実に抑制できるレイアウトを提供することを目的とする。
 本発明の一態様では、半導体装置は、
 第1の方向に延びており、かつ、前記第1の方向に直交する第2の方向において同一ピッチで配置された3個以上のゲートパターンを有する、標準セルと、
 前記標準セルに、前記第1の方向において隣り合うダイオードセルとを備え、
 前記標準セルが有する前記各ゲートパターンは、前記ダイオードセルとの間のセル境界近傍で終端しており、各終端部が、前記第1方向において互いに同じ位置にあり、かつ、前記第2の方向における幅が互いに同一であり、
 前記ダイオードセルは、
 ダイオードとして機能する少なくとも1つの拡散層と、
 前記セル境界近傍において、前記標準セルが有する前記各ゲートパターンの終端部に対向するように配置された、ゲートパターンからなる複数の対向終端部とを備えている。
 この態様によると、標準セルは、同一ピッチで配置された3個以上のゲートパターンを有しており、この標準セルに、ダイオードセルが第1の方向において隣り合っている。標準セルが有するゲートパターンのセル境界近傍における終端部は、第1の方向の位置および第2の方向の幅が互いに同一である。そして、ダイオードセルは、ダイオードとして機能する少なくとも1つの拡散層に加えて、セル境界近傍において、標準セルが有する各ゲートパターンの終端部に対向するように配置された、ゲートパターンからなる複数の対向終端部を備えている。これにより、標準セルのゲートパターンの終端部について、ダイオードセルのゲートパターンからなる対向終端部の存在によって、形状規則性を持たせることができるので、光近接効果によるゲート長のばらつきを確実に抑制することができる。
 本発明の半導体装置によると、ダイオードセルに隣り合う標準セルについて、光近接効果によるゲート長のばらつきを確実に抑制することができる。
第1の実施形態に係る半導体装置のレイアウトパターンの簡略図である。 第1の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第2の実施形態に係る半導体装置のレイアウトパターンの簡略図である。 第2の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第3の実施形態に係る半導体装置のレイアウトパターンの簡略図である。 第3の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第3の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第3の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第4の実施形態に係る半導体装置のレイアウトパターンの簡略図である。 第4の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第4の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第4の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 第4の実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。 従来のダイオードセルを有する半導体装置のレイアウトパターンの簡略図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 (第1の実施形態)
 図1は第1の実施形態に係る半導体装置のレイアウトパターンの簡略図である。図1では、ゲートパターン、拡散領域、コンタクトとメタル配線のレイアウトを示しており、セル境界を実線で示している(他の図も同様)。なお、ゲートパターンとは、トランジスタのゲート電極に使われる層に形成されたパターンを指し、ポリシリコンなどの材料を用いて製造される。トランジスタはゲートパターンと拡散領域によって構成され、ゲートパターンの拡散領域に挟まれた部分がトランジスタのゲートとして機能する。図1に示すように、標準セルC1は、第1の方向としてのY方向(図の上下方向)に延びており、かつ、第2の方向としてのX方向(図の左右方向)において同一ピッチで配置されたゲートパターンG1,G2,G3を有している。ゲートパターンG1,G2,G3の幅はL1,間隔はS1であり、ゲートパターンG2はトランジスタT1を形成している。トランジスタを面積効率良く配置するため、ゲートパターンG1,G2,G3の幅L1と間隔S1は、通常、最小寸法で設定される。なお、標準セルC1については、ゲートパターンと拡散領域のみのレイアウトを示しており、コンタクトとメタル配線は省略している(他の図も同様)。
 そして、ダイオードセルC2は、標準セルC1にY方向において隣り合っている。ダイオードセルC2は、ダイオードとして機能する拡散領域を形成するための、拡散領域のパターンD1~D8を有している。この拡散領域D1~D8は上層のメタル配線で互いに接続されており、入力接続端子INを備えることによって、ダイオードセルC2は保護ダイオードとしての機能を実現する。拡散領域D1~D4および拡散領域D5~D8はそれぞれ、Y方向の長さが同一に設定されている。またダイオードセルC2は、Y方向に延びる複数のゲートパターンG4,G5,G6を有している。ゲートパターンG4,G5,G6はダミーパターンであり、また、Y方向の長さは同一に設定されている。拡散領域D1~D8は、ゲートパターンG4,G5,G6を含むゲートパターン同士の間にそれぞれ配置されている。
 ここで、標準セルC1が有するゲートパターンG1,G2,G3とダイオードセルC2が有するゲートパターンG4,G5,G6とが対向している領域である終端部領域R1に注目する。ゲートパターンG1,G2,G3は、ダイオードセルC2とのセル境界近傍で終端しており、その各終端部e1,e2,e3は、Y方向において互いに同じ位置にあり、かつ、X方向における幅が互いに同一(すなわち幅L1)である。ゲートパターンG4,G5,G6は、ゲートパターンG1,G2,G3の終端部e1,e2,e3に対向するように配置された複数の対向終端部eo1,eo2,eo3を有している。この対向終端部eo1,eo2,eo3は、Y方向において互いに同じ位置に配置されている。すなわち、標準セルC1が有するゲートパターンG1,G2,G3とダイオードセルC2が有するゲートパターンG4,G5,G6とが、Y方向に同一の間隔で配置されることによって、ゲートパターンG1,G2,G3は形状規則性を持つので、光近接効果によるゲート長のばらつきを抑制することができる。
 図2は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図2の構成は図1とほぼ同様であるが、ダイオードセルC2内のゲートパターン形状が少し異なっている。すなわち、Y方向に延びるゲートパターンG4,G5,G6に加えて、X方向に延びる第2のゲートパターンとしてのゲートパターンG7が設けられており、ゲートパターンG7は、ダイオードセルC2内に格子型のゲートパターンが形成されるように、ゲートパターンG4,G5,G6とそれぞれ接続されている。このように、ゲートパターンを格子型にすることにより、ゲートパターンの最小面積を増やすことができ、ポリシリコンの製造過程で発生するパターン飛びを防ぐことが可能になる。
 (第2の実施形態)
 図3は第2の実施形態に係る半導体装置のレイアウトパターンの簡略図である。図3の構成は図1とほぼ同様であるが、ダイオードセルC2内のゲートパターン形状および拡散領域形状が少し異なっている。すなわち、図3では、ダイオードセルC2が有するゲートパターンG4,G5,G6は、標準セルC1が有するゲートパターンG1,G2,G3とX方向において同一ピッチで配置されており、それぞれが有する対向終端部eo1,eo2,eo3がY方向において互いに同じ位置にあり、かつ、X方向における幅が互いに同一である。また、ゲートパターン同士の間に、拡散領域D1~D5がX方向において同一ピッチで配置されており、その終端部のY方向における位置およびX方向の幅が互いに同一である。同様に、拡散領域D6~D10が、ゲートパターン同士の間に、X方向において同一ピッチで配置されており、その終端部のY方向における位置およびX方向の幅が互いに同一である。そして、拡散領域D1~D10は上層のメタル配線で互いに接続されており、入力接続端子INを備えることによって、ダイオードセルC2は保護ダイオードとしての機能を実現する。
 本実施形態では、標準セルC1が有するゲートパターンG1,G2,G3とダイオードセルC2が有するゲートパターンG4,G5,G6とが対向している領域である終端部領域R1において、標準セルC1のゲートパターンG1,G2,G3の終端部e1,e2,e3と、ダイオードセルC2のゲートパターンの対向終端部eo1,eo2,eo3とが、同じ形状規則性を持っているので、光近接効果によるゲート長のばらつきをさらに確実に抑制することができる。
 図4は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図4の構成は図3とほぼ同様であるが、ダイオードセルC2内のゲートパターン形状が少し異なっている。すなわち、Y方向に延びるゲートパターンG4,G5,G6に加えて、X方向に延びるゲートパターンG7が設けられており、ゲートパターンG7は、ダイオードセルC2内に格子型のゲートパターンが形成されるように、ゲートパターンG4,G5,G6とそれぞれ接続されている。このように、ゲートパターンを格子型にすることにより、ゲートパターンの最小面積を増やすことができ、ポリシリコンの製造過程で発生するパターン飛びを防ぐことが可能である。
 本実施形態のように、各セル単位でゲートパターン形状と配置間隔を同一に設定することで、光近接効果によるゲートパターンの変動量を予め予測することができ、標準セルの状態でOPCによる補正を掛けておくことができる。そのためセル配置後のOPCによる補正が不要となる。
 (第3の実施形態)
 図5は第3の実施形態に係る半導体装置のレイアウトパターンの簡略図である。図5の構成は図1とほぼ同様であるが、ダイオードセルC2内の拡散領域形状が少し異なっている。すなわち、図5では、図1の拡散領域D1~D4が互いに接続された形の、ゲートパターンG4,G5,G6を挟んだ連続した拡散領域D11が形成されている。同様に、図1の拡散領域D5~D8が互いに接続された形の、ゲートパターンG4,G5,G6を挟んだ連続した拡散領域D12が形成されている。拡散領域D11,D12に挟まれたゲートパターンG4,G5,G6はトランジスタのゲートとして機能する。そして、ゲートG4,G5,G6上に配置されるコンタクトと拡散領域D11,D12上に配置されるコンタクトとを上層のメタル配線で接続して同一ノードとし、入力接続端子INを設けることによって、ダイオードセルC2は保護ダイオードとしての機能を実現する。
 図5の構成では、図1の構成と同様の効果が得られる。加えて、ダイオードセルC2の拡散領域D11,D12は連続した拡散領域であるため、製造上の形成を容易に行うことができ、拡散領域が小さいことによるコンタクトの踏み外しを防止することができる。また、拡散領域の面積が大きくなることによって、ダイオードの接合容量を増大することができる。さらに、ダイオードセルC2は、X方向に同じサイズのセルサイズでダイオードの接合容量を複数種類設けることが可能になり、無駄なダイオードの接合容量の増大を防ぐことができる。
 図6は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図6の構成は、図2の構成において、拡散領域D1~D4に代えて、連続した拡散領域D11を形成し、拡散領域D5~D8に代えて、連続した拡散領域D12を形成したものである。これにより、図2の構成と同様の効果に加えて、上述の図5と同様の効果が得られる。
 図7は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図7の構成は、図3の構成において、拡散領域D1~D5に代えて、連続した拡散領域D11を形成し、拡散領域D6~D10に代えて、連続した拡散領域D12を形成したものである。これにより、図3の構成と同様の効果に加えて、上述の図5と同様の効果が得られる。
 図8は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図8の構成は、図4の構成において、拡散領域D1~D5に代えて、連続した拡散領域D11を形成し、拡散領域D6~D10に代えて、連続した拡散領域D12を形成したものである。これにより、図4の構成と同様の効果に加えて、上述の図5と同様の効果が得られる。
 (第4の実施形態)
 図9は第4の実施形態に係る半導体装置のレイアウトパターンの簡略図である。図9の構成は、図7とほぼ同様であり、終端部領域R1において、終端部e1,e2,e3と対向終端部eo1,eo2,eo3とに関して同じ形状規則性が保たれている。ただし、ダイオードC2の内部構成が、図7とは異なっている。
 図9において、ダイオードセルC2は、ダミーパターンであるゲートパターンG8を有している。ゲートパターンG8は、X方向に延びるパターン本体8aと、パターン本体8aからY方向において標準セルC1に向けて突出した複数の突出部8bとを備えている。そして、この突出部8bが対向終端部eo1,eo2,eo3を構成している。すなわち、ゲートパターンG8はいわゆる冠型あるいはくし形の形状を有している。そして、領域R2では、拡散領域D11,D12上に配置されるコンタクトが上層のメタル配線で接続され、入力接続端子INを設けることによって、ダイオードセルC2は保護ダイオードとしての機能を実現している。
 図9の構成によると、ダミーパターンであるゲートパターンG8を配置することによって、標準セルC1とダイオードセルC2のセル境界における終端部領域R1において、対向するゲートパターンに関して同じ形状規則性が保たれている。したがって、光近接効果によるゲート長のばらつきを確実に抑制することができる。
 図10~図13は本実施形態の変形例に係る半導体装置のレイアウトパターンの簡略図である。図10では、ダイオードセルC2において、ゲートパターンG8と拡散領域D11とをオーバーラップさせ、ダイオード面積を確保している。図11では、ダイオードセルC2において、コンタクトを囲うように、ゲートパターンを形成している。図12では、ダイオードセルC2において、2つの対向終端部eo2,eo3を有するダミーパターンであるゲートパターンG9が形成されている。図13では、ダイオードセルC2において、ゲートパターンG8を他のゲートパターンと接続してゲートパターン面積を確保している。
 本発明に係る半導体装置では、ダイオードセルに隣り合う標準セルについて、光近接効果によるゲート長のばらつきを確実に抑制できるため、標準セル配置後にOPCの再補正を行う必要がなくなり、開発工数を短縮することができる。このため例えば、各種電子機器に搭載される半導体集積回路等に有用である。
C1 標準セル
C2 ダイオードセル
G1,G2,G3 ゲートパターン
G4,G5,G6 ゲートパターン
G7 ゲートパターン(第2のゲートパターン)
G8,G9 ダミーパターン
8a パターン本体
8b 突出部
e1,e2,e3 終端部
eo1,eo2,eo3 対向終端部
D1~D12 拡散層

Claims (8)

  1.  第1の方向に延びており、かつ、前記第1の方向に直交する第2の方向において同一ピッチで配置された3個以上のゲートパターンを有する、標準セルと、
     前記標準セルに、前記第1の方向において隣り合うダイオードセルとを備え、
     前記標準セルが有する前記各ゲートパターンは、前記ダイオードセルとの間のセル境界近傍で終端しており、各終端部が、前記第1方向において互いに同じ位置にあり、かつ、前記第2の方向における幅が互いに同一であり、
     前記ダイオードセルは、
     ダイオードとして機能する少なくとも1つの拡散層と、
     前記セル境界近傍において、前記標準セルが有する前記各ゲートパターンの終端部に対向するように配置された、ゲートパターンからなる複数の対向終端部とを備えている
    ことを特徴とする半導体装置。
  2.  請求項1において、
     前記ダイオードセルは、
     前記第1の方向に延びており、かつ、前記複数の対向終端部をそれぞれ有する複数のゲートパターンを備えている
    ことを特徴とする半導体装置。
  3.  請求項2において、
     前記ダイオードセルは、
     前記第2の方向に延びており、かつ、当該ダイオードセル内に格子型のゲートパターンが形成されるように、前記複数のゲートパターンとそれぞれ接続された第2のゲートパターンを備えている
    ことを特徴とする半導体装置。
  4.  請求項2において、
     前記ダイオードセルが有する前記複数のゲートパターンは、
     前記標準セルが有する前記各ゲートパターンと前記第2の方向において同一ピッチで配置されており、前記複数の対向終端部が前記第1の方向において互いに同じ位置にあり、かつ、前記第2の方向における幅が互いに同一である
    ことを特徴とする半導体装置。
  5.  請求項4において、
     前記ダイオードセルが有する拡散層は、
     前記複数のゲートパターン同士の間に、前記第2の方向において同一ピッチで配置されており、かつ、前記第2の方向における幅が互いに同一である
    ことを特徴とする半導体装置。
  6.  請求項1~5のうちいずれか1項において、
     前記ダイオードセルが有するゲートパターンは、ダミーパターンである
    ことを特徴とする半導体装置。
  7.  請求項2において、
     前記ダイオードセルは、前記複数のゲートパターンのうちの少なくとも1つを挟むように、前記拡散層が配置されており、この前記拡散層に挟まれたゲートパターンが、トランジスタのゲートとして機能する
    ことを特徴とする半導体装置。
  8.  請求項1において、
     前記ダイオードセルは、
     前記複数の対向終端部のうち少なくとも一部を構成するダミーパターンを備え、
     前記ダミーパターンは、前記第2の方向に延びるパターン本体と、前記パターン本体から前記第1の方向において前記標準セルに向けて突出した2個以上の突出部とを備えたものであり、
     前記各突出部が、前記対向終端部を構成している
    ことを特徴とする半導体装置。
PCT/JP2011/000927 2010-05-18 2011-02-18 半導体装置 WO2011145240A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180000675.0A CN102334183B (zh) 2010-05-18 2011-02-18 半导体装置
US13/179,214 US8399928B2 (en) 2010-05-18 2011-07-08 Semiconductor device
US13/767,396 US8598668B2 (en) 2010-05-18 2013-02-14 Semiconductor device
US14/062,450 US8748987B2 (en) 2010-05-18 2013-10-24 Semiconductor device
US14/253,551 US8946824B2 (en) 2010-05-18 2014-04-15 Semiconductor device
US14/574,330 US9142539B2 (en) 2010-05-18 2014-12-17 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-114517 2010-05-18
JP2010114517A JP5325162B2 (ja) 2010-05-18 2010-05-18 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/179,214 Continuation US8399928B2 (en) 2010-05-18 2011-07-08 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2011145240A1 true WO2011145240A1 (ja) 2011-11-24

Family

ID=44991363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000927 WO2011145240A1 (ja) 2010-05-18 2011-02-18 半導体装置

Country Status (3)

Country Link
JP (1) JP5325162B2 (ja)
CN (1) CN102334183B (ja)
WO (1) WO2011145240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701653A (zh) * 2016-02-25 2018-10-23 株式会社索思未来 半导体集成电路装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075859A1 (ja) * 2014-11-12 2016-05-19 株式会社ソシオネクスト 半導体集積回路のレイアウト構造
WO2016075860A1 (ja) * 2014-11-14 2016-05-19 株式会社ソシオネクスト 半導体集積回路のレイアウト構造
US9977854B2 (en) * 2016-07-12 2018-05-22 Ati Technologies Ulc Integrated circuit implementing standard cells with metal layer segments extending out of cell boundary
JP7173662B2 (ja) * 2018-11-16 2022-11-16 ミネベアミツミ株式会社 検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245390A (ja) * 2005-03-04 2006-09-14 Toshiba Corp 半導体集積回路装置およびその製造方法
WO2006118098A1 (ja) * 2005-04-26 2006-11-09 Renesas Technology Corp. 半導体装置およびその製造方法ならびに半導体製造用マスク、光近接処理方法
JP2007042718A (ja) * 2005-08-01 2007-02-15 Renesas Technology Corp 半導体装置
JP2008235350A (ja) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd 半導体集積回路
JP2010021469A (ja) * 2008-07-14 2010-01-28 Nec Electronics Corp 半導体集積回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258424A (ja) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd 半導体集積回路装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245390A (ja) * 2005-03-04 2006-09-14 Toshiba Corp 半導体集積回路装置およびその製造方法
WO2006118098A1 (ja) * 2005-04-26 2006-11-09 Renesas Technology Corp. 半導体装置およびその製造方法ならびに半導体製造用マスク、光近接処理方法
JP2007042718A (ja) * 2005-08-01 2007-02-15 Renesas Technology Corp 半導体装置
JP2008235350A (ja) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd 半導体集積回路
JP2010021469A (ja) * 2008-07-14 2010-01-28 Nec Electronics Corp 半導体集積回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108701653A (zh) * 2016-02-25 2018-10-23 株式会社索思未来 半导体集成电路装置
CN108701653B (zh) * 2016-02-25 2022-07-29 株式会社索思未来 半导体集成电路装置

Also Published As

Publication number Publication date
JP5325162B2 (ja) 2013-10-23
CN102334183B (zh) 2014-09-24
CN102334183A (zh) 2012-01-25
JP2011243742A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
US9142539B2 (en) Semiconductor device
JP5235936B2 (ja) 半導体装置及びそのレイアウト作成方法
US20060113533A1 (en) Semiconductor device and layout design method for the same
JP5331195B2 (ja) 半導体装置
JP2008235350A (ja) 半導体集積回路
JP5325162B2 (ja) 半導体装置
JP2011187538A (ja) 半導体装置
JP2011242505A (ja) 半導体装置、半導体装置製造用マスク及び光近接効果補正方法
US8383300B2 (en) Exposure mask with double patterning technology and method for fabricating semiconductor device using the same
JP2009152437A (ja) 半導体装置
TW201944168A (zh) 光罩以及形成圖案的方法
JP4891962B2 (ja) 半導体装置の製造方法
JP2011238713A (ja) 半導体集積回路の設計方法
TWI573249B (zh) 半導體佈局圖案之製作方法、半導體元件之製作方法以及半導體元件
US9054103B2 (en) Semiconductor device
US8765495B1 (en) Method of forming pattern of doped region
KR100865550B1 (ko) 리세스 게이트를 갖는 반도체 소자의 제조방법
US20130109163A1 (en) Fabricating method of semiconductor element
KR20070074241A (ko) 반도체 소자의 레이아웃
JP2006059845A (ja) 半導体装置の製造方法及びフォトマスク
TW201318074A (zh) 半導體元件製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000675.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783179

Country of ref document: EP

Kind code of ref document: A1