WO2016075859A1 - 半導体集積回路のレイアウト構造 - Google Patents

半導体集積回路のレイアウト構造 Download PDF

Info

Publication number
WO2016075859A1
WO2016075859A1 PCT/JP2015/005003 JP2015005003W WO2016075859A1 WO 2016075859 A1 WO2016075859 A1 WO 2016075859A1 JP 2015005003 W JP2015005003 W JP 2015005003W WO 2016075859 A1 WO2016075859 A1 WO 2016075859A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
cell
semiconductor integrated
integrated circuit
layout structure
Prior art date
Application number
PCT/JP2015/005003
Other languages
English (en)
French (fr)
Inventor
新保 宏幸
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Publication of WO2016075859A1 publication Critical patent/WO2016075859A1/ja
Priority to US15/591,923 priority Critical patent/US20170243888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors

Definitions

  • the present disclosure relates to a layout structure of a semiconductor integrated circuit having a transistor having an SOI (Silicon On Insulator) structure.
  • SOI Silicon On Insulator
  • FIG. 7 is a cross-sectional view showing a configuration of a transistor having an SOI (Silicon On On Insulator) structure.
  • SOI Silicon On On Insulator
  • a buried insulating film (oxide film) 41 is formed in a substrate or well, and devices (gate G, source S, drain D) are formed on the silicon thin film 42 on the buried insulating film 41.
  • devices gate G, source S, drain D
  • Antenna error means that the metal wiring is charged by plasma or the like during manufacturing, and the charged charge flows into the gate electrode electrically connected to the metal wiring, and the gate insulating film formed under the gate electrode is destroyed. Or damage.
  • an SOI structure transistor it is necessary to consider this antenna error not only for the gate insulating film but also for the buried insulating film under the source or drain. This is because the charge charged to the metal wiring during manufacturing flows into the source or drain electrically connected to the metal wiring, and destroys or damages the buried insulating film formed under the diffusion layer that forms the source or drain. This is to make it happen.
  • Patent Document 1 discloses a technique of inserting an antenna diode for releasing charged charges to a substrate in order to avoid an antenna error in an SOI structure transistor.
  • Patent Document 1 does not disclose a specific method for actually inserting an antenna diode in a semiconductor integrated circuit having an SOI structure transistor.
  • a layout structure of a semiconductor integrated circuit having an SOI (SiliconSOn Insulator) transistor includes a plurality of standard cells arranged side by side in a first direction.
  • a circuit block that is arranged side by side in a second direction that is perpendicular to the direction and in which a circuit using the transistor having the SOI structure is formed.
  • a power supply wiring that supplies power to the circuit block and a substrate or
  • An antenna cell including an antenna diode formed between the well and the well is disposed, and the antenna cell is at least one of the first direction and the second direction in at least a part of the circuit block.
  • they are arranged at predetermined intervals.
  • the antenna cell including the antenna diode formed between the power supply wiring and the substrate or the well is arranged in the circuit block in which the cell rows are arranged side by side.
  • the antenna cells are arranged at a predetermined interval in at least one of a first direction in which standard cells are arranged in a cell row and a second direction in which cell rows are arranged.
  • Such a layout structure is realized by regularly arranging antenna cells in the circuit block design. As a result, it is possible to avoid an antenna error in advance without causing deterioration of the design TAT (Turn Around) Time), regardless of the circuit area and shape of the circuit block.
  • (A) is a top view which shows the example of the layout structure of the semiconductor integrated circuit which concerns on embodiment
  • (b) is a top view which shows the structural example of the antenna cell arrange
  • the top view which shows the other example of the layout structure of the semiconductor integrated circuit which concerns on embodiment (A) is a top view which shows the other example of the layout structure of the semiconductor integrated circuit which concerns on embodiment
  • (b) is a top view which shows the structural example of the antenna cell with a TAP function arrange
  • (A) is a top view which shows the example of the example of the layout structure of the semiconductor integrated circuit which concerns on embodiment
  • (b) is a top view which shows the structural example of the antenna cell arrange
  • FIG. 1A is a plan view showing an example of a layout structure of a semiconductor integrated circuit according to the embodiment.
  • FIG. 1A schematically shows one circuit block 51 in a semiconductor integrated circuit.
  • cell rows 10A, 10B, 10C, 10D, and 10E composed of a plurality of standard cells 10 arranged side by side in the drawing horizontal direction (corresponding to the first direction) are arranged in the drawing vertical direction (second direction). They are arranged side by side.
  • illustration of the internal configuration and wiring of the standard cell 10 is omitted.
  • the transistor included in the standard cell 10 has the above-described SOI structure, and the circuit block 51 is formed with a circuit having an SOI structure transistor.
  • the power supply wiring 11 for supplying the power supply potential VDD or the ground potential VSS to the circuit block 51 is arranged so as to extend in the horizontal direction in the drawing between the cell rows.
  • the P-type region in which the N-type transistor is arranged and the N-type region in which the P-type transistor is arranged are inverted every other row, and the power supply wiring 11 depends on the upper and lower cell rows. Shared.
  • an N-type well serving as an N-type region is formed on a P-type substrate serving as a P-type region.
  • the antenna cell 20 is arranged in the circuit block 51 in FIG.
  • An antenna cell refers to a cell provided with an antenna diode for releasing charges accumulated in metal wiring to a substrate or a well.
  • FIG. 1B is a plan view showing a configuration example of the antenna cell 20.
  • the antenna cell 20 shown in FIG. 1B includes diffusion regions 21A and 21B, and these diffusion regions 21A and 21B are provided directly on the substrate or well without using a buried insulating film.
  • the diffusion region 21A is P-type and is formed on an N-type well
  • the diffusion region 21B is N-type and is formed on a P-type substrate.
  • the diffusion regions 21 ⁇ / b> A and 21 ⁇ / b> B are connected to the lead-in wiring 22 led out from the power supply wiring 11 through contacts 23. That is, in the antenna cell 20 of FIG. 1A, an antenna diode is formed between the power supply wiring 11 and the substrate or well.
  • FIG. 2 and 3 are diagrams showing a detailed structure of the circuit block including the antenna cell
  • FIG. 2 is a plan view showing details of the layout
  • FIG. 3 is a cross-sectional view taken along line AA ′ of FIG.
  • cell rows 10F, 10G, and 10H extending in the horizontal direction of the drawing are arranged side by side in the vertical direction of the drawing
  • FIG. 3 shows a cross section of the P-type region in the cell row 10F.
  • a buried oxide film 12 as an example of a buried insulating film is formed in the P-type substrate 1, and the source or drain of the N-type transistor is formed on the buried oxide film 12.
  • An N type diffusion layer 4B is formed.
  • a buried oxide film is formed in the N-type well 2, and a P-type diffusion layer serving as a source or drain of a P-type transistor is formed on the buried oxide film.
  • 4A is formed.
  • Reference numeral 3 denotes a gate, which is formed of, for example, polysilicon.
  • the gate 3 includes a gate 3A that forms a transistor or a dummy gate 3B that does not form a transistor.
  • a gate oxide film 5 as an example of a gate insulating film is formed under the transistor gate 3A, and a channel region 6 is formed thereunder.
  • a part of the diffusion layers 4A and 4B which become the source or drain of the transistor is connected to the lead-in line 8 of the power supply wiring through the contact 7.
  • 9 is STI (Shallow Trench Isolation).
  • the antenna cell 20 is inserted in the cell row 10F. As shown in FIG. 3, the buried oxide film 12 is not formed in the antenna cell 20, and the N-type diffusion layer 4 ⁇ / b> B is in direct contact with the P-type substrate 1.
  • a TAP cell 25 having a TAP function for applying substrate potentials VBP and VBN is inserted in the cell row 10F.
  • the buried oxide film 12 is not formed in the TAP cell 25, and the P-type diffusion layer 4A is in direct contact with the P-type substrate 1.
  • the antenna cells 20 are regularly arranged in the circuit block 51. Specifically, the antenna cells 20 are arranged at regular intervals P in the horizontal direction of the drawing in which the standard cells 10 are arranged.
  • the antenna cells 20 are arranged in the cell rows 10A, 10C, and 10E, and are arranged every other row in the vertical direction of the drawing. That is, the antenna cells 20 are arranged at predetermined intervals in the first direction in which the standard cells 10 are arranged and in the second direction in which the cell rows 10A to 10E are arranged.
  • the antenna error check that is, the antenna verification
  • the antenna error check is usually performed in a circuit block in which the timing after the layout of the standard cell and the wiring is determined is converged. Then, a portion where an antenna error may occur is detected using the antenna ratio, an antenna cell is inserted in the vicinity thereof, and the wiring and the antenna diode are connected.
  • the number of antenna cells to be inserted increases in proportion to the total area of the charged M1 power supply wiring. Since the total area of the M1 power supply wiring increases according to the area of the circuit block, it is necessary to insert as many antenna cells as the circuit block becomes larger. As a result, for example, the case where a standard cell that is already arranged at the insertion destination of the antenna cell is moved increases, and this causes deterioration of circuit operation timing and design TAT (Turn Around Time). . In an extreme case, there is a possibility that the antenna cell cannot be inserted and the design of the circuit block becomes impossible.
  • the power supply wiring includes not only power supply wiring in the circuit block but also chip level power supply wiring that is wired in the upper layer.
  • the chip level power supply wiring is an upper power supply structure for connecting the power supplies of the circuit blocks in common.
  • the chip level power supply wiring needs to have a low resistance in order to suppress a voltage drop, and thus has a wide wiring width and a high wiring density, and its wiring area is extremely large. For this reason, the charge amount becomes very large.
  • the antenna error of the buried insulating film due to the charging of the large-scale wiring is detected after the chip level design. Therefore, in the conventional method of correcting after finding an antenna error, a reversion from the chip level design to the block design occurs, thereby causing a problem that the design TAT is greatly extended.
  • the antenna error is determined by the antenna ratio, that is, the ratio of the area of the metal wiring and the area of the diffusion layer of the antenna diode connected to the metal wiring. Therefore, at the design stage of the circuit block, the arrangement density based on the antenna rule is obtained for the antenna cell including the antenna diode, and the antenna cells are regularly arranged so as to satisfy this arrangement density. As a result, a power supply wiring having a predetermined area or less is connected to each antenna cell, and the antenna ratio can always be suppressed to a predetermined value or less.
  • This method is applicable not only to the power supply wiring in the circuit block but also to the chip level power supply wiring.
  • specific application examples will be shown.
  • the power supply mesh wiring is regularly arranged in a grid pattern at regular intervals on the circuit block.
  • the power mesh wiring is connected to the diffusion layer on the buried oxide film in the SOI structure via the power wiring in the circuit block.
  • S0 the wiring area of the power mesh wiring per unit area
  • S1 the area of the diffusion layer of the antenna diode per unit area
  • A S0 / S1
  • the upper limit of the antenna ratio R is defined in the antenna rule.
  • the antenna cell including the antenna diode may be arranged in the circuit block so that the diffusion layer area S1 becomes a lower limit value determined from the antenna rule and the wiring area S0 or more.
  • the antenna cells 20 may be arranged at regular intervals P in the arrangement direction of the standard cells 10 every certain number of cell rows.
  • the layout in which the antenna cells 20 are regularly arranged is not limited to that shown in FIG.
  • the antenna cells 20 may be arranged in a staggered manner.
  • the arrangement as shown in FIG. 4 for example, when the number of required antenna cells 20 is small, there is an effect that the arrangement density of the antenna cells 20 can be easily made uniform.
  • the antenna cells 20 are regularly arranged in the same manner in a part of the circuit block, and the antennas are differently arranged in other portions.
  • the cell 20 may be arranged.
  • the arrangement interval of the antenna cells 20 in the arrangement direction of the standard cells 10 may be changed depending on the area in the circuit block.
  • the interval between the cell rows in which the antenna cells 20 are arranged may be changed depending on the area in the circuit block.
  • antenna cells are arranged at regular intervals in a certain cell row, it can be said that the antenna cells are regularly arranged by the method of the present disclosure.
  • all antenna cells may be arranged at regular intervals.
  • antenna cells may be arranged every certain number of rows in all the cell rows of the circuit block.
  • FIG. 5A is a plan view showing another example of the layout structure of the semiconductor integrated circuit according to the embodiment.
  • FIG. 5A shows one circuit block 52 in the semiconductor integrated circuit. Similar to the circuit block 51 of FIG. 1A, in the circuit block 52, cell rows 10A, 10B, 10C, 10D, which are composed of a plurality of standard cells 10 arranged in the horizontal direction (corresponding to the first direction) in the drawing. 10E are arranged side by side in the vertical direction of the drawing (second direction). Also in FIG. 5A, illustration of the internal configuration and wiring of the standard cell 10 is omitted.
  • the transistor included in the standard cell 10 has the above-described SOI structure, and the circuit block 52 is formed with a circuit having an SOI structure transistor.
  • the power supply wiring 11 for supplying the power supply potential VDD or the ground potential VSS to the circuit block 52 is disposed so as to extend in the horizontal direction between the cell rows.
  • the P-type region and the N-type region are inverted every other row, and the power supply wiring 11 is shared by the upper and lower cell rows.
  • an N-type well serving as an N-type region is formed on a P-type substrate serving as a P-type region.
  • the antenna cells 20 are regularly arranged as in FIG. Specifically, the antenna cells 20 are arranged at regular intervals P in the horizontal direction of the drawing in which the standard cells 10 are arranged.
  • the antenna cells 20 are arranged in the cell rows 10A, 10C, and 10E, and are arranged every other row in the vertical direction of the drawing. That is, the antenna cells 20 are arranged at predetermined intervals in the first direction in which the standard cells 10 are arranged and in the second direction in which the cell rows 10A to 10E are arranged.
  • the significance of regularly arranging the antenna cells 20 is as described above.
  • a TAP cell 25 having a TAP function for supplying substrate potentials VBP and VBN is arranged adjacent to the antenna cell 20. That is, the TAP cells 25 are also arranged at regular intervals T in the horizontal direction of the drawing in every other cell row 10A, 10C, 10E.
  • the antenna cell 30 with a TAP function as shown in FIG. 5B is used.
  • an antenna diode is formed between the power supply wiring 11 and the substrate or well by the diffusion regions 21A and 21B, the lead-in wiring 22 and the contact 23, as in FIG. 1B.
  • the antenna cell 30 further includes diffusion regions 26A and 26B and wirings 27A and 27B.
  • the diffusion region 26A is N-type, is formed on the N-type well, and is supplied with the substrate potential VBP from the wiring 27A.
  • Diffusion region 26B is P-type and is formed on a P-type substrate, and substrate potential VBN is supplied from wiring 27B.
  • the antenna cell 30 with a TAP function as shown in FIG. 5B is regularly arranged in the circuit block 52, so that the antenna cell 20 and the TAP cell 25 as shown in FIG. Can be generated.
  • the interval T between the TAP cells 25 is mainly determined by a latch-up rule. If the interval T and the interval P mainly determined by the antenna rule are about the same, the arrangement of the TAP cell 25 and the antenna cell 20 can be achieved by using the antenna cell 30 as shown in FIG. Since it can be realized in one process, the design becomes simpler. Further, for example, when more antenna cells 20 are required than the TAP cells 25, first, after arranging the antenna cells 30 with a TAP function as shown in FIG. 20 may be additionally arranged. In this case, in the circuit block 52, the antenna cell 20 adjacent to the TAP cell 25 and the antenna cell 20 not adjacent to the TAP cell 25 are mixed.
  • the antenna cell 20 and the TAP cell 25 may be arranged adjacent to each other at a predetermined position instead of using the antenna cell 30 with a TAP function as shown in FIG.
  • FIG. 6A is a plan view showing another example of the layout structure of the semiconductor integrated circuit according to the embodiment.
  • FIG. 6A shows one circuit block 53 in the semiconductor integrated circuit. Similar to the circuit block 51 of FIG. 1A, in the circuit block 53, cell rows 10A, 10B, 10C, 10D, which are composed of a plurality of standard cells 10 arranged in the horizontal direction (corresponding to the first direction) in the drawing. 10E are arranged side by side in the vertical direction of the drawing (second direction). Also in FIG. 6A, illustration of the internal configuration and wiring of the standard cell 10 is omitted.
  • the transistor included in the standard cell 10 has the above-described SOI structure, and the circuit block 53 is formed with a circuit having an SOI structure transistor.
  • the power supply wiring 11 for supplying the power supply potential VDD or the ground potential VSS to the circuit block 53 is arranged so as to extend in the horizontal direction between the cell rows.
  • the P-type region and the N-type region are inverted every other row, and the power supply wiring 11 is shared by the upper and lower cell rows.
  • an N-type well serving as an N-type region is formed on a P-type substrate serving as a P-type region.
  • FIG. 6B is a plan view showing a configuration example of the antenna cell 35.
  • the antenna diode is formed by the diffusion regions 21A and 21B, the lead-in wiring 22 and the contact 23, as in FIG. 1B.
  • a dummy cell having no logic function may be arranged at the end of the cell row.
  • the antenna cell 35 is used as a dummy cell. It is arranged at the end.
  • the antenna cell arrangement interval P determined based on the antenna rule may be sufficiently larger than the cell row length. Further, even when there is no problem in the antenna rule at the circuit block level, an antenna error may occur at the chip level by arranging the antenna cell 35 as in the structure of FIG. 6A. Can be avoided, and rework of the design can be prevented.
  • the antenna cells 35 are arranged at both ends of each cell row 10A to 10E.
  • the configuration is not limited to this.
  • the antenna cells 35 may be arranged every certain number of rows such as every other row, or may be arranged at either one end instead of at both ends of the cell row.
  • the antenna cell 40 may be arranged at one end or both ends of the cell row in a part of the circuit block instead of the whole circuit block. That is, in the case where at least three cell rows arranged consecutively or arranged every certain number of rows have antenna cells arranged at one or both ends of the cell row, the method of the present disclosure It can be said that the antenna cells are regularly arranged.
  • the antenna cells 20 are arranged at predetermined intervals in the first direction in which standard cells are arranged and in the second direction in which cell rows are arranged, and as shown in FIG. 6 (a).
  • the antenna cells 35 may be arranged at both ends of the cell row.
  • the antenna cell is a VDD / VSS antenna cell including both the VDD antenna diode and the VSS antenna diode, but the present disclosure is not limited to this.
  • the VDD antenna cell including the VDD antenna diode and the VSS antenna cell including the VSS antenna diode may be separately disposed.
  • both the VDD antenna diode and the VSS antenna diode may be formed in either the P-type region or the N-type region, or may be formed on either the well or the substrate.
  • an antenna error can be avoided in a semiconductor integrated circuit having an SOI structure transistor, it is effective in improving the yield of a large-scale LSI, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

 回路ブロック(51)は、第1方向に並べて配置された複数の標準セル(10)からなるセル行(10A~10E)が、第1方向と垂直をなす第2方向に並べて配置されており、SOI構造のトランジスタによる回路が形成されている。回路ブロック(51)において、電源配線(11)と基板またはウェルとの間に形成されたアンテナダイオードを含むアンテナセル(20)が、配置されている。アンテナセル(20)は、回路ブロック(51)の少なくとも一部において、第1および第2方向のうち少なくともいずれか一方において、所定の間隔で配置されている。

Description

半導体集積回路のレイアウト構造
 本開示は、SOI(Silicon On Insulator)構造のトランジスタを有する半導体集積回路のレイアウト構造に関する。
 図7はSOI(Silicon On Insulator)構造のトランジスタの構成を示す断面図である。図7に示すように、SOI構造では、基板またはウェル内に埋め込み絶縁膜(酸化膜)41を形成し、埋め込み絶縁膜41上のシリコン薄膜42にデバイス(ゲートG、ソースS、ドレインD)を構成する。ソース/ドレイン間の電界が集中しやすくなるため、特性に優れたトランジスタを形成することができる。なお、シリコン薄膜42が薄く、チャネル領域が全て空乏化している構造を完全空乏型SOI(FD-SOI: Fully Depleted Silicon On Insulator)と呼ぶ。
 また、半導体製造プロセスでは、いわゆるアンテナエラーが生じる場合がある。アンテナエラーとは、メタル配線が製造中のプラズマ等により帯電し、帯電した電荷がこのメタル配線に電気的に接続されたゲート電極に流れ込み、ゲート電極の下に形成されたゲート絶縁膜が破壊されたり損傷を受けたりする現象である。そして、SOI構造のトランジスタでは、ゲート絶縁膜だけでなく、ソースまたはドレイン下の埋め込み絶縁膜についても、このアンテナエラーを考慮する必要がある。これは、製造中にメタル配線に帯電した電荷が、メタル配線に電気的に接続されたソースまたはドレインに流れ込み、ソースまたはドレインを形成する拡散層の下に形成された埋め込み絶縁膜を破壊または損傷させるためである。
 特許文献1では、SOI構造のトランジスタについて、アンテナエラーを未然に回避するために、帯電した電荷を基板へ逃がすためのアンテナダイオードを挿入する技術が開示されている。
特開2003-133559号公報
 ところが、特許文献1では、SOI構造のトランジスタを有する半導体集積回路において、アンテナダイオードの挿入を実際にどのように行うか、その具体的な手法については開示されていない。
 本開示は、SOI構造のトランジスタを有する半導体集積回路について、ソースまたはドレイン下の埋め込み絶縁膜に対するアンテナエラーを考慮したレイアウト構造を提供することを目的とする。
 本発明の一態様では、SOI(Silicon On Insulator)構造のトランジスタを有する半導体集積回路のレイアウト構造は、第1方向に並べて配置された複数の標準セルからなるセル行が、複数行、前記第1方向と垂直をなす第2方向に並べて配置されており、前記SOI構造のトランジスタによる回路が形成された、回路ブロックを備え、前記回路ブロックにおいて、前記回路ブロックに電源を供給する電源配線と基板またはウェルとの間に形成されたアンテナダイオードを含む、アンテナセルが、配置されており、前記アンテナセルは、前記回路ブロックの少なくとも一部において、前記第1方向および前記第2方向のうち少なくともいずれか一方において、所定の間隔で、配置されている。
 この態様によると、セル行が並べて配置された回路ブロックにおいて、電源配線と基板またはウェルとの間に形成されたアンテナダイオードを含む、アンテナセルが配置されている。アンテナセルは、セル行において標準セルが並ぶ第1方向、および、セル行が並ぶ第2方向のうち少なくともいずれか一方において、所定の間隔で、配置されている。このようなレイアウト構造は、回路ブロックの設計においてアンテナセルを規則的に配置することによって、実現される。これにより、設計TAT(Turn Around Time)の悪化を招くことなく、回路ブロックの回路面積や形状によらず、アンテナエラーを未然に回避することができる。
 本開示によると、SOI構造のトランジスタを有する半導体集積回路について、設計TATの悪化を招くことなく、アンテナエラーを未然に回避することができる。
(a)は実施形態に係る半導体集積回路のレイアウト構造の例を示す平面図、(b)は(a)のレイアウト構造に配置されたアンテナセルの構成例を示す平面図 アンテナセルを含む回路ブロックの詳細な構造を示す平面図 アンテナセルを含む回路ブロックの詳細な構造を示す断面図 実施形態に係る半導体集積回路のレイアウト構造の他の例を示す平面図 (a)は実施形態に係る半導体集積回路のレイアウト構造の他の例を示す平面図、(b)は(a)のレイアウト構造に配置されたTAP機能付きアンテナセルの構成例を示す平面図 (a)は実施形態に係る半導体集積回路のレイアウト構造の例の例を示す平面図、(b)は(a)のレイアウト構造に配置されたアンテナセルの構成例を示す平面図 SOI構造のトランジスタを示す断面図
 以下、実施の形態について、図面を参照して説明する。
 図1(a)は実施形態に係る半導体集積回路のレイアウト構造の例を示す平面図である。図1(a)では半導体集積回路における1個の回路ブロック51を模式的に示している。この回路ブロック51では、図面横方向(第1方向に相当)に並べて配置された複数の標準セル10からなるセル行10A,10B,10C,10D,10Eが、図面縦方向(第2方向)に並べて配置されている。図1(a)では、標準セル10内部の構成や配線については図示を省略している。標準セル10に含まれるトランジスタは上述のSOI構造を有しており、回路ブロック51には、SOI構造のトランジスタによる回路が形成されている。回路ブロック51に電源電位VDDまたは接地電位VSSを供給する電源配線11は、セル行間において、図面横方向に延びるように配置されている。セル行10A~10Eにおいて、N型トランジスタが配置されるP型領域と、P型トランジスタが配置されるN型領域とが1行おきに反転されており、電源配線11はその上下のセル行によって共有されている。ここでは、P型領域となるP型基板の上に、N型領域となるN型ウェルが形成されているものとする。
 図1(a)の回路ブロック51において、アンテナセル20が配置されている。アンテナセルとは、メタル配線に溜まった電荷を基板またはウェルへ逃がすためのアンテナダイオードを備えたセルのことをいう。図1(b)はアンテナセル20の構成例を示す平面図である。図1(b)に示すアンテナセル20は拡散領域21A,21Bを備えており、この拡散領域21A,21Bは、埋め込み絶縁膜を介さず、直接基板またはウェル上に設けられている。ここでは、拡散領域21AはP型であり、N型ウェル上に形成されており、拡散領域21BはN型であり、P型基板上に形成されている。拡散領域21A,21Bはそれぞれ、電源配線11から引き出された引き込み配線22と、コンタクト23を介して接続されている。すなわち、図1(a)のアンテナセル20では、電源配線11と基板またはウェルとの間にアンテナダイオードが形成されている。
 図2および図3はアンテナセルを含む回路ブロックの詳細な構造を示す図であり、図2はレイアウトの詳細を示す平面図、図3は図2の線A-A‘における断面図である。図2では、図面横方向に延びるセル行10F,10G,10Hが図面縦方向に並べて配置されており、図3ではセル行10FにおけるP型領域の断面が示されている。図3に示すように、P型領域では、P型基板1内に埋め込み絶縁膜の一例としての埋め込み酸化膜12が形成されており、埋め込み酸化膜12の上に、N型トランジスタのソースまたはドレインとなるN型拡散層4Bが形成されている。またN型領域では、断面は図示していないが、N型ウェル2内に埋め込み酸化膜が形成されており、この埋め込み酸化膜の上に、P型トランジスタのソースまたはドレインとなるP型拡散層4Aが形成されている。3はゲートであり、例えばポリシリコンで形成されている。ゲート3は、トランジスタを形成するゲート3A、または、トランジスタを形成しないダミーゲート3Bを含む。トランジスタのゲート3Aの下にゲート絶縁膜の一例としてのゲート酸化膜5が形成されており、その下にチャネル領域6が形成されている。トランジスタのソースまたはドレイン等となる拡散層4A,4Bの一部は、コンタクト7を介して電源配線の引き込み線8に接続されている。9はSTI(Shallow Trench Isolation)である。
 セル行10Fに、アンテナセル20が挿入されている。図3に示すように、アンテナセル20には埋め込み酸化膜12が形成されておらず、N型拡散層4BがP型基板1と直接接触している。また、セル行10Fには、基板電位VBP,VBNを与えるTAP機能を有するTAPセル25が挿入されている。TAPセル25にも埋め込み酸化膜12が形成されておらず、P型拡散層4AがP型基板1と直接接触している。
 図1(a)の構成では、回路ブロック51において、アンテナセル20が規則的に配置されている。具体的には、アンテナセル20は、標準セル10が並ぶ図面横方向において一定間隔Pで配置されている。また、アンテナセル20は、セル行10A,10C,10Eに配置されており、図面縦方向において一行おきに配置されている。すなわち、アンテナセル20は、標準セル10が並ぶ第1方向、および、セル行10A~10Eが並ぶ第2方向において、所定の間隔で、配置されている。
 ここで、本開示において、アンテナセル20を規則的に配置する意義について説明する。
 半導体集積回路をいわゆるバルク構造のトランジスタによって構成する場合は、アンテナエラーに関しては、ゲート絶縁膜について考慮するだけでよかった。このため、アンテナエラーのチェックすなわちアンテナ検証は、通常、標準セルと配線のレイアウトが決まった後のタイミングが収束した回路ブロックにおいて行っていた。そして、アンテナ比を用いてアンテナエラーが発生する可能性のある箇所を検出し、その近傍にアンテナセルを挿入し、配線とアンテナダイオードとを接続していた。
 一方、SOI構造のトランジスタを用いる場合には、ゲート絶縁膜だけでなく、拡散層の下に形成された埋め込み絶縁膜についても、アンテナエラーを回避する必要がある。例えば、回路ブロック内にM1(最下メタル配線層)の電源配線が製造されたとき、この電源配線に帯電した電荷は、ソースとなる拡散層に流れ込む。このとき、ソースとなる拡散層の下に形成された埋め込み絶縁膜においてアンテナエラーが生じる可能性がある。
 この場合、従来のように、アンテナエラーの生じる可能性のある箇所にアンテナセルを挿入して修正しようとすると、次のような問題が生じる。挿入すべきアンテナセルの個数は、帯電するM1電源配線の総面積に比例して増大する。M1電源配線の総面積は、回路ブロックの面積に応じて増加するため、回路ブロックが大きくなると、それだけ多量のアンテナセルを挿入する必要がある。この結果、例えば、アンテナセルの挿入先においてすでに配置されている標準セルを動かす場合が増加するため、これにより、回路の動作タイミングの悪化や、設計TAT(Turn Around Time)の悪化を招いてしまう。極端な場合には、アンテナセルの挿入ができず、回路ブロックの設計が不能になる可能性も生じ得る。
 また、電源配線には、回路ブロック内電源配線だけでなく、その上層に配線されるチップレベル電源配線もある。チップレベル電源配線は、回路ブロック同士の電源を共通に接続するための上位の電源構造である。チップレベル電源配線は、電圧降下抑制のために抵抗を低くする必要があるため、広い配線幅や高い配線密度を有しており、その配線面積はきわめて大きい。このため、その帯電量も非常に大きくなる。しかしながら、こうした大規模配線の帯電に起因する埋め込み絶縁膜のアンテナエラーは、チップレベルの設計後に発覚する。したがって、従来のように、アンテナエラーを見つけてから修正する手法では、チップレベル設計からブロック設計への手戻りが発生してしまい、これにより設計TATが大幅に延びてしまうという問題が起こる。
 そこで本開示では、次のような手法をとる。アンテナエラーは、アンテナ比、すなわち、メタル配線の面積と、このメタル配線に接続されたアンテナダイオードの拡散層の面積との比によって決まる。そこで、回路ブロックの設計段階において、アンテナダイオードを含むアンテナセルについて、アンテナルールに基づいた配置密度を求め、この配置密度を満たすようにアンテナセルを規則的に配置する。これにより、各アンテナセルには、所定の面積以下の電源配線が接続されることになり、アンテナ比を必ず所定値以下に抑制することができる。この手法により、回路面積やブロック形状によらず、必ずアンテナエラーを回避できるので、回路の動作タイミングの悪化や、設計TAT(Turn Around Time)の悪化を招くことがない。また、必要以上にアンテナセルを挿入する必要がないので、チップ面積の削減にも有効である。
 また、この手法は、回路ブロック内電源配線だけでなく、チップレベル電源配線に関しても適用可能である。以下、具体的な適用例を示す。
 いま、回路ブロック上において、電源メッシュ配線が一定間隔で規則的に格子状に配線されるものとする。電源メッシュ配線は、回路ブロック内電源配線を介して、SOI構造における埋め込み酸化膜上の拡散層に接続されている。ここで、単位面積当たりの電源メッシュ配線の配線面積をS0とすると、電源メッシュ配線は回路ブロック上に規則的に配置されているため、S0は回路ブロック上において一定になる。単位面積当たりのアンテナダイオードの拡散層面積をS1とし、回路ブロック面積をAとすると、アンテナ比Rは次式で表される。
 R=S0×A/S1×A=S0/S1
アンテナ比Rの上限はアンテナルールに既定されている。このため、単位面積当たりのアンテナダイオードの拡散層面積S1の下限値は、単位面積当たりの電源メッシュ配線面積S0から自ずと定まる。後は、拡散層面積S1が、アンテナルールと配線面積S0から定まった下限値またはこれ以上になるように、アンテナダイオードを含むアンテナセルを回路ブロック内に配置すればよい。例えば、図1(a)に示すように、アンテナセル20を、一定数のセル行おきに、標準セル10の並び方向において一定間隔Pで配置すればよい。
 なお、アンテナセル20を規則的に配置するレイアウトとしては、図1(a)に示すものに限られるものではない。例えば、図4に示すように、アンテナセル20を千鳥状に配置してもよい。図4のような配置により、例えば必要とするアンテナセル20の個数が少ない場合には、アンテナセル20の配置密度を均一にしやすい、という効果が得られる。
 また、回路ブロック全体にわたって、アンテナセル20を同じ態様で規則的に配置する必要はなく、回路ブロックの一部においてアンテナセル20を同じ態様で規則的に配置し、他の部分では異なる態様でアンテナセル20を配置してもかまわない。例えば、回路ブロック内の領域によって、標準セル10の並び方向におけるアンテナセル20の配置間隔を変えてもよい。また、回路ブロック内の領域によって、アンテナセル20を配置するセル行の間隔を変えてもよい。
 すなわち、あるセル行において、少なくとも3つのアンテナセルが一定間隔で配置されている場合は、本開示の手法によってアンテナセルが規則的に配置されたものといえる。もちろん、このセル行において、全てのアンテナセルが一定間隔で配置されていてもよい。また、アンテナセルが一定数行おき、例えば1行おきに配置されている少なくとも3行のセル行がある場合は、本開示の手法によってアンテナセルが規則的に配置されたものといえる。もちろん、回路ブロックの全てのセル行において、一定数行おきに、アンテナセルが配置されていてもよい。
 (レイアウト構造の他の例その1)
 図5(a)は実施形態に係る半導体集積回路のレイアウト構造の他の例を示す平面図である。図5(a)では半導体集積回路における1個の回路ブロック52を示している。図1(a)の回路ブロック51と同様に、回路ブロック52では、図面横方向(第1方向に相当)に並べて配置された複数の標準セル10からなるセル行10A,10B,10C,10D,10Eが、図面縦方向(第2方向)に並べて配置されている。また図5(a)でも、標準セル10内部の構成や配線については図示を省略している。標準セル10に含まれるトランジスタは上述のSOI構造を有しており、回路ブロック52には、SOI構造のトランジスタによる回路が形成されている。回路ブロック52に電源電位VDDまたは接地電位VSSを供給する電源配線11は、セル行間において、図面横方向に延びるように配置されている。セル行10A~10Eにおいて、P型領域とN型領域とが1行おきに反転されており、電源配線11はその上下のセル行によって共有されている。ここでは、P型領域となるP型基板の上に、N型領域となるN型ウェルが形成されているものとする。
 図5(a)の回路ブロック52では、図1(a)と同様に、アンテナセル20が規則的に配置されている。具体的には、アンテナセル20は、標準セル10が並ぶ図面横方向において一定間隔Pで配置されている。また、アンテナセル20は、セル行10A,10C,10Eに配置されており、図面縦方向において一行おきに配置されている。すなわち、アンテナセル20は、標準セル10が並ぶ第1方向、および、セル行10A~10Eが並ぶ第2方向において、所定の間隔で、配置されている。アンテナセル20を規則的に配置する意義については、上述したとおりである。
 図5(a)の回路ブロック52では、さらに、基板電位VBP,VBNを与えるTAP機能を有するTAPセル25が、アンテナセル20に隣接して配置されている。すなわち、TAPセル25もまた、一行おきのセル行10A,10C,10Eにおいて、図面横方向において一定間隔Tで配置されている。
 図5(a)のようなアンテナセル20およびTAPセル25の配置を実現するために、ここでは、図5(b)に示すようなTAP機能付きアンテナセル30を用いるものとする。図5(b)の構成では、図1(b)と同様に、拡散領域21A,21B、引き込み配線22およびコンタクト23によって、電源配線11と基板またはウェルとの間にアンテナダイオードが形成されている。アンテナセル30はさらに、拡散領域26A,26Bと、配線27A,27Bとを備えている。ここでは、拡散領域26AはN型であり、N型ウェル上に形成されており、配線27Aから基板電位VBPが供給される。拡散領域26BはP型であり、P型基板上に形成されており、配線27Bから基板電位VBNが供給される。図5(b)のようなTAP機能付きアンテナセル30を回路ブロック52に規則的に配置することによって、図5(a)のようなアンテナセル20とTAPセル25とが隣接配置されたレイアウトを生成することができる。
 TAPセル25の間隔Tは、主にラッチアップルールで決定される。もし、間隔Tと、主にアンテナルールで決定される間隔Pとが同程度であるとき、図5(b)のようなアンテナセル30を用いることによって、TAPセル25とアンテナセル20の配置が一つの工程において実現可能になるので、設計がより簡便になる。また例えば、TAPセル25と比べてアンテナセル20の方がより多く必要になる場合は、まず、図5(b)のようなTAP機能付きアンテナセル30を一通り配置した後に、通常のアンテナセル20を追加配置すればよい。この場合は、回路ブロック52において、TAPセル25が隣接するアンテナセル20と、TAPセル25が隣接しないアンテナセル20とが混在することになる。
 なお、レイアウト設計において、図5(b)のようなTAP機能付きアンテナセル30を用いる代わりに、所定位置に、アンテナセル20とTAPセル25とを隣接配置するようにしてもかまわない。
 (レイアウト構造の他の例その2)
 図6(a)は実施形態に係る半導体集積回路のレイアウト構造の他の例を示す平面図である。図6(a)では半導体集積回路における1個の回路ブロック53を示している。図1(a)の回路ブロック51と同様に、回路ブロック53では、図面横方向(第1方向に相当)に並べて配置された複数の標準セル10からなるセル行10A,10B,10C,10D,10Eが、図面縦方向(第2方向)に並べて配置されている。また図6(a)でも、標準セル10内部の構成や配線については図示を省略している。標準セル10に含まれるトランジスタは上述のSOI構造を有しており、回路ブロック53には、SOI構造のトランジスタによる回路が形成されている。回路ブロック53に電源電位VDDまたは接地電位VSSを供給する電源配線11は、セル行間において、図面横方向に延びるように配置されている。セル行10A~10Eにおいて、P型領域とN型領域とが1行おきに反転されており、電源配線11はその上下のセル行によって共有されている。ここでは、P型領域となるP型基板の上に、N型領域となるN型ウェルが形成されているものとする。
 図6(a)の回路ブロック53では、アンテナセル35が、規則的に、各セル行10A~10Eの両端に配置されている。図6(b)はアンテナセル35の構成例を示す平面図である。図6(b)に示すアンテナセル35も、図1(b)と同様に、拡散領域21A,21B、引き込み配線22およびコンタクト23によって、アンテナダイオードが形成されている。標準セルを用いてレイアウト設計を行う場合、セル行の端に論理機能を持たないダミーセルを配置することがあるが、図6(a)の構成では、このダミーセルとして、アンテナセル35をセル行の端に配置している。
 図6(a)の構造は、アンテナルールに基づいて決めたアンテナセルの配置間隔Pが、セル行長さに比べて十分大きい場合等に用いればよい。また、回路ブロックのレベルではアンテナルールに問題がない場合であっても、図6(a)の構造のようにアンテナセル35を配置しておくことによって、チップレベルでアンテナエラーが発生する可能性を未然に回避し、設計の手戻りを防ぐことが可能になる。
 なお、図6(a)の構成例では、アンテナセル35は、各セル行10A~10Eの両端に配置されているものとしたが、これに限られるものではない。例えば、アンテナセル35を、1行おきなど一定数行おきに配置してもよいし、あるいは、セル行の両端ではなくいずれか一端に配置してもかまわない。また、回路ブロックの全体でなく、その一部において、セル行の一端または両端にアンテナセル40を配置してもかまわない。すなわち、連続して配置された、または、一定数行おきに配置された少なくとも3行のセル行において、当該セル行の一端または両端にアンテナセルが配置されている場合は、本開示の手法によってアンテナセルが規則的に配置されたものといえる。
 なお、上述のレイアウト構造の例は、組み合わせて実施してもかまわない。例えば、図1(a)のように、アンテナセル20を、標準セルが並ぶ第1方向、および、セル行が並ぶ第2方向において、所定の間隔で配置するとともに、図6(a)のように、セル行の両端にアンテナセル35を配置してもよい。
 また、上述のレイアウト構造の例では、アンテナセルは、VDD用アンテナダイオードとVSS用アンテナダイオードの両方を備えたVDD/VSS両用のアンテナセルとしたが、本開示はこれに限られるものではなく、VDD用アンテナダイオードを備えたVDD用アンテナセルと、VSS用アンテナダイオードを備えたVSS用アンテナセルとを、別個に配置してもよい。また、VDD用アンテナダイオードおよびVSS用アンテナダイオードはいずれも、P型領域またはN型領域のいずれに形成してもよいし、また、ウェル上または基板上のいずれに形成してもよい。
 本開示では、SOI構造のトランジスタを有する半導体集積回路について、アンテナエラーを未然に回避できるので、例えば、大規模LSIの歩留まりを改善するのに有効である。
10 標準セル
10A~10E,10F~10H セル行
20 アンテナセル
25 TAPセル
30 TAP機能付きアンテナセル
35 アンテナセル
51,52,53 回路ブロック

Claims (9)

  1.  SOI(Silicon On Insulator)構造のトランジスタを有する半導体集積回路のレイアウト構造であって、
     第1方向に並べて配置された複数の標準セルからなるセル行が、複数行、前記第1方向と垂直をなす第2方向に並べて配置されており、前記SOI構造のトランジスタによる回路が形成された、回路ブロックを備え、
     前記回路ブロックにおいて、前記回路ブロックに電源を供給する電源配線と基板またはウェルとの間に形成されたアンテナダイオードを含む、アンテナセルが、配置されており、
     前記アンテナセルは、前記回路ブロックの少なくとも一部において、前記第1方向および前記第2方向のうち少なくともいずれか一方において、所定の間隔で、配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  2.  請求項1記載の半導体集積回路のレイアウト構造において、
     前記複数のセル行のうちの1つである第1セル行において、少なくとも3つのアンテナセルが、一定間隔で配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  3.  請求項2記載の半導体集積回路のレイアウト構造において、
     前記第1セル行において、全てのアンテナセルが、一定間隔で配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  4.  請求項1~3のうちいずれか1項記載の半導体集積回路のレイアウト構造において、
     前記複数のセル行は、アンテナセルが配置されている少なくとも3行のセル行を含み、
     前記少なくとも3行のセル行は、一定数行おきに、配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  5.  請求項4記載の半導体集積回路のレイアウト構造において、
     前記少なくとも3行のセル行は、1行おきに配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  6.  請求項4記載の半導体集積回路のレイアウト構造において、
     前記複数のセル行は、全セル行において、一定数行おきに、アンテナセルが配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  7.  請求項1~6のうちいずれか1項記載の半導体集積回路のレイアウト構造において、
     前記回路ブロックに配置されたアンテナセルのうち少なくともいずれか1つは、基板電位を与えるTAP機能を有するTAPセルが隣接して配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  8.  請求項1記載の半導体集積回路のレイアウト構造において、
     前記複数のセル行は、当該セル行の一端にアンテナセルが配置されている少なくとも3行のセル行を含み、
     前記少なくとも3行のセル行は、連続して配置されている、または、一定数行おきに配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
  9.  請求項8記載の半導体集積回路のレイアウト構造において、
     前記少なくとも3行のセル行は、当該セル行の両端に、アンテナセルが配置されている
    ことを特徴とする半導体集積回路のレイアウト構造。
PCT/JP2015/005003 2014-11-12 2015-10-01 半導体集積回路のレイアウト構造 WO2016075859A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/591,923 US20170243888A1 (en) 2014-11-12 2017-05-10 Layout structure for semiconductor integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-229804 2014-11-12
JP2014229804 2014-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/591,923 Continuation US20170243888A1 (en) 2014-11-12 2017-05-10 Layout structure for semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2016075859A1 true WO2016075859A1 (ja) 2016-05-19

Family

ID=55953966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005003 WO2016075859A1 (ja) 2014-11-12 2015-10-01 半導体集積回路のレイアウト構造

Country Status (2)

Country Link
US (1) US20170243888A1 (ja)
WO (1) WO2016075859A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116883A1 (ja) * 2017-12-12 2019-06-20 株式会社ソシオネクスト 半導体集積回路装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127276A1 (de) * 2017-08-30 2019-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Standardzellen und abwandlungen davon innerhalb einer standardzellenbibliothek
US10790273B2 (en) 2017-12-07 2020-09-29 Samsung Electronics Co., Ltd. Integrated circuits including standard cells and method of manufacturing the integrated circuits
KR102439700B1 (ko) 2018-01-11 2022-09-02 삼성전자주식회사 반도체 장치, 반도체 장치의 레이아웃 설계 방법 및 반도체 장치의 제조 방법
US11562994B2 (en) * 2021-06-29 2023-01-24 Qualcomm Incorporated Dummy cell and tap cell layout structure
FR3127328B1 (fr) * 2021-09-17 2023-10-06 St Microelectronics Rousset Circuit intégré comportant des cellules pré-caractérisées et au moins une structure capacitive de remplissage.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294719A (ja) * 2005-04-07 2006-10-26 Oki Electric Ind Co Ltd 半導体装置
JP2007073885A (ja) * 2005-09-09 2007-03-22 Renesas Technology Corp 半導体集積回路
JP2007201414A (ja) * 2005-12-27 2007-08-09 Renesas Technology Corp 半導体集積回路
JP2007299898A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置のレイアウト設計方法
JP2007317814A (ja) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd スタンダードセルを用いた半導体集積回路とその設計方法
JP2009065069A (ja) * 2007-09-10 2009-03-26 Panasonic Corp 半導体集積回路装置
JP2011243742A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594809B2 (en) * 2000-11-29 2003-07-15 Taiwan Semiconductor Manufacturing Co., Ltd. Low leakage antenna diode insertion for integrated circuits
KR101281440B1 (ko) * 2005-05-13 2013-07-02 모사이드 테크놀로지스 인코퍼레이티드 로직 셀들의 셀 접합부에 의해 형성된 신호 버스를 구비한집적 회로
KR100827665B1 (ko) * 2007-02-23 2008-05-07 삼성전자주식회사 반도체 장치 및 이 장치의 디커플링 커패시터의 레이아웃방법
US8324668B2 (en) * 2009-12-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy structure for isolating devices in integrated circuits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294719A (ja) * 2005-04-07 2006-10-26 Oki Electric Ind Co Ltd 半導体装置
JP2007073885A (ja) * 2005-09-09 2007-03-22 Renesas Technology Corp 半導体集積回路
JP2007201414A (ja) * 2005-12-27 2007-08-09 Renesas Technology Corp 半導体集積回路
JP2007299898A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置のレイアウト設計方法
JP2007317814A (ja) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd スタンダードセルを用いた半導体集積回路とその設計方法
JP2009065069A (ja) * 2007-09-10 2009-03-26 Panasonic Corp 半導体集積回路装置
JP2011243742A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116883A1 (ja) * 2017-12-12 2019-06-20 株式会社ソシオネクスト 半導体集積回路装置
JPWO2019116883A1 (ja) * 2017-12-12 2020-12-03 株式会社ソシオネクスト 半導体集積回路装置
US11342412B2 (en) 2017-12-12 2022-05-24 Socionext Inc. Semiconductor integrated circuit device
JP7174263B2 (ja) 2017-12-12 2022-11-17 株式会社ソシオネクスト 半導体集積回路装置

Also Published As

Publication number Publication date
US20170243888A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2016075859A1 (ja) 半導体集積回路のレイアウト構造
JP6428956B2 (ja) 半導体集積回路装置
US10680015B2 (en) Power gate switching system
JP2008193070A (ja) 半導体装置のレイアウト構造
TWI689080B (zh) 記憶體裝置
JP6065190B2 (ja) 半導体装置
US10916543B2 (en) Semiconductor device
JP6080544B2 (ja) 半導体装置
US9142611B2 (en) Semiconductor integrated circuit device
US20140176228A1 (en) Integrated circuit comprising a clock tree cell
KR102420539B1 (ko) 반도체 장치
WO2016075860A1 (ja) 半導体集積回路のレイアウト構造
US20180122794A1 (en) Electrostatic protection device of ldmos silicon controlled structure
WO2016079918A1 (ja) 半導体集積回路のレイアウト構造
CN106601736B (zh) 电源栅极开关系统
JP2014022390A (ja) 半導体装置、ピラートランジスタのレイアウト方法及びそのレイアウト方法を用いて製造した半導体装置
JP2006310625A (ja) 半導体記憶装置
JP2016040803A (ja) 半導体装置
KR102533244B1 (ko) 파워 게이트 스위칭 시스템
US8592913B2 (en) Semiconductor device for preventing plasma induced damage and layout thereof
JP2010027921A (ja) 半導体装置
CN106558571A (zh) 一种esd布局结构、电子装置
KR20120103164A (ko) 반도체 소자
WO2014203813A1 (ja) 半導体装置
KR20120045351A (ko) Mos 트랜지스터를 포함하는 반도체 소자의 레이아웃 구조 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP