WO2011142198A1 - 金属ベース基板の製造方法及び回路基板の製造方法 - Google Patents

金属ベース基板の製造方法及び回路基板の製造方法 Download PDF

Info

Publication number
WO2011142198A1
WO2011142198A1 PCT/JP2011/058735 JP2011058735W WO2011142198A1 WO 2011142198 A1 WO2011142198 A1 WO 2011142198A1 JP 2011058735 W JP2011058735 W JP 2011058735W WO 2011142198 A1 WO2011142198 A1 WO 2011142198A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal base
insulating adhesive
adhesive layer
manufacturing
base substrate
Prior art date
Application number
PCT/JP2011/058735
Other languages
English (en)
French (fr)
Inventor
太樹 西
宮川 健志
八島 克憲
健介 大越
秀則 石倉
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201180023190.3A priority Critical patent/CN102907186B/zh
Priority to EP11780455.9A priority patent/EP2571342B1/en
Priority to KR1020127030315A priority patent/KR101829195B1/ko
Priority to ES11780455.9T priority patent/ES2628860T3/es
Priority to US13/696,890 priority patent/US8796145B2/en
Publication of WO2011142198A1 publication Critical patent/WO2011142198A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly

Definitions

  • the present invention relates to a method for manufacturing a metal base substrate and a method for manufacturing a circuit board using the metal base substrate manufactured by this method. More specifically, the present invention relates to a method for manufacturing a metal base substrate for mounting a heat generating electronic component such as an LED (Light Emitting Diode) and a method for manufacturing a circuit board.
  • a heat generating electronic component such as an LED (Light Emitting Diode)
  • a metal base circuit board manufacturing method has been proposed in which a crosslinkable silicone is applied to a metal base made of aluminum or an aluminum alloy to form an insulating layer made of a transparent silicone cross-linked product, and a circuit is directly formed thereon.
  • a method of manufacturing a metal base circuit board by laminating an adhesive sheet made of an insulating resin and an inorganic filler and a metal foil in this order on a metal substrate and integrating them for example, a patent) Reference 2.
  • the above-described conventional method for manufacturing a metal base circuit board has the following problems. That is, the method of applying the resin composition that constitutes the insulating layer to the metal base as described in Patent Document 1 is difficult to continuously apply with a roll when the metal base is thick, and the productivity is improved. There is a problem of not.
  • Patent Document 2 Although the manufacturing method described in Patent Document 2 can be stably manufactured by a simple process, since the metal substrate, the adhesive sheet, and the metal foil are all sheet-like sheets, they are inferior in handleability. It was disadvantageous in terms of productivity. Furthermore, in the conventional manufacturing method, when a large amount of an inorganic filler is added to the resin composition (insulating adhesive) constituting the insulating layer in order to improve heat dissipation, voids remain in the insulating adhesive layer after curing. There is a problem that the withstand voltage and heat dissipation are reduced.
  • the method for producing a metal base substrate according to the present invention is a method for producing a metal base substrate in which an insulating adhesive layer and a conductor layer are laminated in this order on a metal base material, and includes a wetting and dispersing agent.
  • a dispersion step of dispersing a dispersed phase in a dispersion medium of an insulating adhesive constituting the insulating adhesive layer, a laminating step of laminating the insulating adhesive on the conductor foil while feeding a roll-shaped conductor foil, and a conductor A first curing step of heating the insulating adhesive on the foil to cure to the B stage state to form a composite of the conductive foil and the insulating adhesive layer in the B stage state; and on the insulating adhesive layer in the B stage state A metal base material laminating step of laminating a metal base material to obtain a laminate, and heating and pressurizing the laminate under conditions of 70 to 260 ° C.
  • a sheet-like cutting step of cutting the composite after the first curing step or the laminate after the metal base agent laminating step into a sheet can be performed.
  • the insulating adhesive may contain an epoxy resin and an inorganic filler.
  • the reaction start temperature of the B-stage insulating adhesive layer can be set to 60 to 250 ° C.
  • the thermal conductivity of the insulating adhesive layer in the C stage state can be set to 1.0 to 15.0 W / (m ⁇ K).
  • the metal base circuit board manufacturing method includes a pattern forming step of forming a conductor pattern on a conductor foil of a substrate manufactured by the above-described metal base substrate manufacturing method, and an organic insulating film on the conductor pattern. Forming a film.
  • the “B stage state” is a state in which the insulating adhesive is semi-cured, is in a solid state at room temperature (25 ° C.), and remelts when heated at a high temperature (60 ° C. or higher). Specifically, it means a state where the curing rate is 5 to 80%.
  • the “C stage state” refers to a state where the curing reaction of the insulating adhesive is almost completed and is insoluble and infusible, and quantitatively indicates a state where the curing rate is 80% or more.
  • voids do not remain in the insulating adhesive layer, and it is possible to efficiently produce a high-quality and heat-dissipating metal base board and metal base circuit board for mounting heat-generating electronic components.
  • FIG. 3 is a cross-sectional view schematically showing a lamination step S2 to a metal base material lamination step S5 shown in FIG.
  • FIG. 6 is sectional drawing which shows typically 2nd hardening process S6 shown in FIG.
  • FIG. 6 is a diagram schematically showing a lamination step S12 to a cutting step S15 shown in FIG.
  • FIG. 6 is sectional drawing which shows typically the structure of the metal base circuit board which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the metal base substrate of the present embodiment.
  • the metal base substrate 14 of the present embodiment has a C-stage insulating adhesive layer 2 b formed on a metal base material 6, and the conductor foil 1 is laminated thereon.
  • Metal base material 6 The material of the metal base material 6 is not particularly limited, but aluminum, iron, copper, stainless steel or an alloy thereof is preferable, and in particular, there is a balance in terms of heat dissipation, price, lightness, and workability. In view of this, aluminum is preferable.
  • the metal base material 6 is provided with an alumite treatment, a degreasing treatment, a sand blasting, an etching, various plating treatments, a coupling agent, etc. on the adhesive surface with the insulating adhesive layer 2b in order to improve the adhesion with the insulating adhesive layer 2b. It is desirable that various surface treatments such as the primer treatment used are applied.
  • the thickness of the metal base material 4 can be appropriately set according to the required characteristics for the metal base substrate and the metal base circuit board to be manufactured, but is preferably 0.15 mm or more, preferably 0.2 mm or more. Is particularly preferred. If the thickness of the metal base material 4 is too thin, wrinkles or breakage of the intermediate material is likely to occur during handling in the manufacturing process, and if the thickness of the metal base material 4 is too thick, the mass of the substrate is more than necessary. This is because it increases.
  • the surface roughness of the adhesion surface of the metal base material 6 to the insulating adhesive layer 2b is preferably 0.1 to 15 ⁇ m in terms of 10-point average roughness (Rz). If the surface roughness of the adhesive surface is large and Rz exceeds 15 ⁇ m, sufficient adhesion to the insulating adhesive layer 2b may not be obtained. On the other hand, when the surface roughness of the adhesive surface is small and Rz is less than 0.1 ⁇ m, microphone voids are likely to occur at the interface with the insulating adhesive layer 2b, and the withstand voltage may be reduced.
  • the insulating adhesive layer 2b is formed of an insulating adhesive made of an epoxy resin or the like in which an inorganic filler is dispersed, and is in a C stage state.
  • the “C stage state” refers to a state in which the reaction between the epoxy resin in the insulating adhesive, the curing agent, and the curing catalyst is almost finished, and is insoluble and infusible. Specifically, when heat curing is performed by DSC (Differential Scanning Calorimeter), almost no heat generation can be observed, and the curing rate is 80% or more.
  • the “curing rate” is the ratio of the amount of heat generated when the insulating adhesive after heat treatment is heat-cured when the amount of heat generated when the unreacted insulating adhesive is heat-cured is 100.
  • the amount can be measured by DSC.
  • the thickness of the insulating adhesive layer 2b in the C stage state is preferably 40 to 250 ⁇ m from the viewpoint of withstand voltage and heat dissipation characteristics.
  • the thickness of the insulating adhesive layer 2b is less than 40 ⁇ m, it may be difficult to obtain a desired withstand voltage value, and when the thickness of the insulating adhesive layer 2b exceeds 250 ⁇ m, the thermal resistance increases and heat dissipation. The characteristics may deteriorate.
  • the thermal conductivity of the insulating adhesive layer 2b in the C-stage state is preferably 1.0 W / (m ⁇ K) or more, and more preferably 2.0 W / (m ⁇ K).
  • the withstand voltage of the insulating adhesive layer 2b in the C-stage state is preferably 1.0 kV or more, more preferably 2.0 kV or more.
  • Conductor foil 1 for the conductor foil 1, for example, a foil material or a clad foil made of aluminum, iron, copper, stainless steel or an alloy thereof can be used, and in particular, a copper foil is used from the viewpoint of electrical conductivity and heat dissipation. Is preferred.
  • Various surfaces such as primer treatment using a degreasing treatment, sand blasting, etching, various plating treatments, a coupling agent, etc. are provided on the adhesion surface with the insulating adhesive layer 2b in order to improve adhesion to the insulating adhesive layer 2b. It is desirable that processing has been performed.
  • the surface roughness of the contact surface of the conductor foil 1 with the insulating adhesive layer 2b is preferably 0.1 to 15 ⁇ m in terms of 10-point average roughness (Rz). If the surface of the adhesive surface is rough, specifically, if the ten-point average roughness (Rz) exceeds 15 ⁇ m, it may be difficult to ensure sufficient adhesion with the insulating adhesive layer 2b. is there. On the other hand, when the surface of the adhesive surface is dense, specifically, when the surface roughness is less than 0.1 ⁇ m, microphone voids are likely to occur at the interface with the insulating adhesive layer 2b, and the withstand voltage may decrease. is there.
  • the thickness of the conductor foil 1 is not particularly limited, and can be set as appropriate depending on the required characteristics of the metal base substrate and the metal base circuit board to be manufactured, but is 0.018 to 0.5 mm. It is preferably 0.035 to 0.14 mm. If the thickness of the conductive foil 1 is too thin, the intermediate material is liable to be wrinkled or broken during handling in the manufacturing process, which causes a defect. Moreover, when the thickness of the conductor foil 1 is too thick, the productivity will be reduced.
  • FIG. 2 is a flowchart showing a method for manufacturing a metal base substrate according to this embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the lamination step S2 to the metal base material lamination step S5, and
  • FIG. 4 is a cross-sectional view schematically showing the second curing step S6.
  • the step of dispersing each component of the insulating adhesive 2 (dispersing step S ⁇ b> 1) and the insulating adhesive 2 are laminated on the conductor foil 1.
  • the step (second curing step S6) of changing the B-stage insulating adhesive layer 2a to the C-stage insulating adhesive layer 2b is performed in this order.
  • the dispersion step S1 is a step of uniformly dispersing each component of the insulating adhesive 2, and the insulating adhesive 2 is blended with a wetting dispersant in order to obtain a good dispersion state.
  • the dispersion step S1 is a step of uniformly dispersing the dispersion phase in the dispersion medium, and the shearing force is mainly used.
  • the dispersion step S1 has a process in which the dispersion medium wets the dispersion phase, a process in which the dispersion phase in the dispersion medium is stabilized without re-aggregation and settling, specifically, a process in which the filler does not re-aggregate and settle. It is preferable.
  • the wetting and dispersing agent has the effect of improving the wettability and stability on the surface of the dispersed phase and suppressing the generation of voids.
  • the wetting and dispersing agent used in the present embodiment is not particularly limited as long as it is oriented on the surface of the dispersed phase and can obtain sufficient wettability and stability in the dispersion medium.
  • a copolymer compound having an acid group or base such as a group, aminoamide group, phosphoric acid or carboxyl group can be used.
  • the “dispersion medium” in the insulating adhesive 2 includes, for example, an epoxy resin, a curing agent, a curing catalyst, a solvent, and the like.
  • Epoxy resin provides electrical properties necessary for a printed wiring board for mounting a heat generating electronic component, adhesion to a conductor foil or a metal base material, heat resistance, and the like.
  • Specific examples thereof include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional epoxy resin (cresol borac epoxy resin, dicyclopentadiene type epoxy resin, etc.), cyclic aliphatic epoxy resin, glycidyl ester.
  • Type epoxy resin, glycidylamine type epoxy resin and the like Among them, a bisphenol A or F type epoxy resin having a balanced property including adhesion, heat resistance, electrical properties, flexibility, and cost is preferable, and a resin having an epoxy equivalent of 400 or less is particularly preferable.
  • the insulating adhesive 2 has a high molecular weight bisphenol A type in addition to the epoxy resin described above.
  • An epoxy resin or a bisphenol F-type epoxy resin can also be added.
  • the epoxy equivalent is preferably 800 or more.
  • the curing agent blended in the curing catalyst insulating adhesive 2 promotes an epoxy group self-polymerization reaction, an addition reaction between an epoxy group and an active hydrogen compound, and a copolycondensation reaction between an epoxy group and an acid anhydride group.
  • those capable of controlling the reaction start temperature to about 60 ° C. are preferable.
  • Specific examples thereof include tertiary amines, imidazoles, and boron salts of onium compounds.
  • reaction start temperature refers to the temperature obtained from the intersection of the base line and the extrapolated line drawn from the rise of the curve in the exothermic curve obtained when the insulating adhesive 2 is heated and cured by DSC. .
  • the curing agent epoxy resin can be cured using only the above-described curing catalyst, but a curing agent may be used in combination.
  • a curing agent may be used in combination.
  • mix the active hydrogen equivalent (or acid anhydride equivalent) of the curing agent to 0.01 to 3.0 with respect to the epoxy equivalent 1 of the epoxy resin. Is desirable.
  • Examples of the curing agent constituting the “dispersion medium” include active hydrogen compounds that react with epoxy groups (compounds having amino groups, carboxyl groups, hydroxyl groups, thiol groups, etc.) and compounds having acid anhydride groups. Among these, a compound having a hydroxyl group and / or a carboxyl group having a high reaction initiation temperature with an epoxy group, an acid anhydride, or a compound containing one or more of these is preferable.
  • the curing agent has an aliphatic ring, an aliphatic chain, polyalkylene glycol, etc. having excellent flexibility in the main chain.
  • Specific examples include 3-dodecyl succinic anhydride, aliphatic dibasic acid polyanhydride, and the like.
  • the solvent constituting the solvent “dispersion medium” may be any one that is compatible with the epoxy resin and the curing agent, and for example, ethylene glycol monobutyl ether or the like can be used. It is preferable that the compounding quantity of this solvent is 10 mass parts or less with respect to the total amount of an epoxy resin, a hardening
  • the dispersed phase is preferably an inorganic filler having electrical insulation and good thermal conductivity.
  • examples of such inorganic filler include silica, alumina, aluminum nitride, silicon nitride, boron nitride, boron nitride, magnesium oxide, and beryllium oxide. Etc.
  • the amount of the inorganic filler in the insulating adhesive layer 2 is desirably 35 to 80% by volume with respect to the total volume of the formed insulating adhesive layer 2b. If the inorganic filler content in the insulating adhesive layer 2b is less than 35% by volume, it will be difficult to obtain the necessary thermal conductivity. On the other hand, when the inorganic filler content exceeds 80% by volume, the viscosity becomes high, and microvoids are easily generated when the insulating adhesive layers 2a and 2b are formed, which may adversely affect the withstand voltage and the adhesiveness. Furthermore, in order to avoid thickening due to the inorganic filler and suppress the generation of microvoids, it is desirable to mix two or more kinds of inorganic fillers having different particle diameters.
  • the dispersing device used in the dispersion step S1 may be any dispersing device that gives sufficient shearing force to disintegrate the dispersed phase and knead it into the dispersion medium.
  • a bead mill, a kneader, a three-roll mill, a uniaxial kneading Dispersing devices such as an extruder, a twin-screw kneading extruder, and a planetary stirrer can be used.
  • voids are further reduced by combining a single method or a plurality of methods such as vacuum, ultrasonic wave, centrifugal force, vibration, and heating. Is preferred.
  • the insulating adhesive laminating step S ⁇ b> 2 is a step of laminating the insulating adhesive 2 produced in the dispersion step S ⁇ b> 1 described above on the conductor foil 1 while feeding the roll-shaped conductor foil 1.
  • a method of the insulating adhesive layer continuous forming section 8 for performing the insulating adhesive laminating step S2 for example, a die coater, comma coater, roll coater, bar coater, gravure coater, simultaneous die coater, curtain coater, doctor blade coater, spray Methods such as coater and screen printing can be applied.
  • the insulating adhesive 2 when the insulating adhesive 2 is laminated by improving the wettability with respect to the insulating adhesive 2 on the insulating adhesive lamination surface of the conductor foil 1, voids are formed at the interface between the insulating adhesive 2 and the conductor foil 1. The occurrence of entrainment can be reduced.
  • Examples of the method for improving the wettability with respect to the insulating adhesive 2 include the following two methods, which may be performed alone or in combination.
  • wettability to the insulating adhesive 2 is achieved by continuously performing plasma treatment, corona treatment or excimer light cleaning treatment on the coated surface of the roll-shaped conductor foil 1. How to improve.
  • First curing step S3 In the first curing step S3, as shown in FIG. 3, the insulating adhesive 2 laminated on the continuously supplied conductor foil 1 is heated and cured to the B stage state to form the insulating adhesive layer 2a. It is a process.
  • the heating furnace 9 which heats the insulating adhesive for example, a hot air type, a far-infrared type, or a combination type thereof can be used.
  • the “B stage state” refers to a semi-cured state in which the reaction of the epoxy resin, the curing agent, and the curing catalyst in the insulating adhesive 2 advanced by the heat treatment is stopped halfway. Specifically, it is in a solid state at room temperature (25 ° C.) and is in a state of being remelted when heated at a high temperature (60 ° C. or higher). Quantitatively, the cure rate described in the cure rate section is 5 to 80%.
  • productivity at the time of manufacturing can be improved.
  • productivity at the time of manufacturing can be improved.
  • the curing reaction rate to 50 to 70%, a tack-free B-stage insulating adhesive layer surface can be obtained. If tack-free, it is not necessary to use a protective film, which is desirable in terms of work and cost.
  • the reaction start temperature of the insulating adhesive layer 2a in the B stage state is desirably 60 ° C. or higher. If the reaction start temperature at this stage is less than 60 ° C., depending on the work environment, the curing reaction proceeds between the metal base material lamination step S5 and the second curing step S6, which will be described later, and in the second curing step S6
  • the melted B-stage insulating adhesive layer 2a cannot sufficiently wet the surface of the metal base material 6. If it does so, a void and peeling will generate
  • the cutting step S4 the composite 5 of the conductor foil 1 and the B-stage insulating adhesive layer 2a after the first curing step S3 is cut into a predetermined length and processed into a sheet shape.
  • a method of the cutting unit 11 for cutting the composite body 5 for example, a method of cutting using a rotary saw blade, a knife blade, a shear blade, or the like can be applied.
  • the nip roll 10 etc. may be arrange
  • Metal base material lamination step S5 As shown in FIG. 3, in the metal base material lamination step S ⁇ b> 5, the metal base material 6 is laminated on the insulating adhesive layer 2 a to obtain a laminated body 7.
  • the second curing step S6 is a step of forming the insulating adhesive layer 2b by heating and pressurizing the laminated body 7 to cure the B-stage insulating adhesive layer 2a to the C-stage state.
  • the method is not particularly limited, but as shown in FIG. 4, it is preferable to sandwich the laminate 7 with a pair of heating and pressing plates 13a and 13b and to heat them while applying pressure.
  • the conditions at that time are a heating temperature range of 70 to 260 ° C. and a pressure range of 0.1 to 10 MPa. Thereby, while suppressing generation
  • the pressure it is more preferable to reduce the pressure to about 40 kPa (30 mmHg) or less.
  • the laminated body 7 in a reduced pressure atmosphere of about 40 kPa (30 mmHg) or less, the air at the interface between the surface of the insulating adhesive layer 2a in the B stage state and the metal base material 6 can be deaerated. As a result, after completion of the curing reaction of the insulating adhesive layer 2a, the metal base substrate 14 having no voids and good adhesion at the interface between the C-stage insulating adhesive layer 2b and the metal base material 6 can be obtained.
  • an insulating adhesive that is uniformly dispersed by blending a wetting and dispersing agent is laminated on a conductive foil to form an insulating adhesive layer in a B-stage state.
  • a metal base material is laminated thereon, and the insulating adhesive layer is cured in a C-stage state under predetermined conditions. Therefore, no voids remain in the insulating adhesive layer, and high quality and high heat dissipation are achieved.
  • a metal base substrate can be manufactured.
  • FIG. 5 is a flowchart showing a method for manufacturing a metal base substrate according to a modification of the first embodiment of the present invention
  • FIG. 6 is a diagram schematically showing the stacking step S12 to the cutting step S15.
  • the same components as those of the manufacturing method shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the step of dispersing each component of the insulating adhesive 2 (dispersing step S ⁇ b> 11), and the insulating adhesive 2 on the conductor foil 1 are performed.
  • the cutting can be performed to improve productivity.
  • the configuration and curing other than those described above in the present modification are the same as those in the first embodiment described above.
  • FIG. 7 is a cross-sectional view schematically showing the configuration of the metal base circuit board of the present embodiment.
  • the metal base circuit board 17 of this embodiment is formed on the insulating adhesive layer 2b by using the metal base board 14 manufactured by the method of the first embodiment or its modification.
  • a conductor pattern (not shown) and an organic insulating film 19 are formed.
  • FIG. 8 is a flowchart showing the method for manufacturing the metal base circuit board according to this embodiment.
  • a conductor pattern is applied to the conductive foil 1 of the metal base board 14 manufactured by the method of the first embodiment or its modification described above.
  • a metal base circuit board 17 shown in FIG. 7 is manufactured by performing a step of forming (pattern forming step S7) and a step of forming a film on the pattern (film forming step S8).
  • Pattern forming step S7 In the pattern forming step S7, first, an etching resist is formed on the conductive foil 1 of the metal base substrate 14 by screen printing or photographic development, and a predetermined position on the surface of the conductive foil 1 is masked. In this state, a part of the conductor foil 1 is corroded and dissolved with ferric chloride etching solution, cupric chloride etching, hydrogen peroxide / sulfuric acid etching solution, alkaline etchant, etc., and then the etching resist is peeled off. As a result, a conductor pattern (not shown) is formed on the insulating adhesive layer 2b.
  • the organic insulating film 19 is desirably provided with an opening for connecting an electronic component at a predetermined position.
  • the material of the organic insulating coating 19 is not particularly limited as long as it satisfies the requirements of the metal base circuit board such as protection of the substrate surface from the solder used when mounting the components.
  • a white pigment such as titanium oxide or barium sulfate can be added to the organic insulating coating 19 in order to improve the luminance of light emitting components such as LEDs.
  • an inorganic filler having excellent thermal conductivity such as silica, alumina, aluminum nitride, silicon nitride, boron nitride, boron nitride, magnesium oxide, and beryllium oxide may be added.
  • the metal base circuit board manufacturing method of the present embodiment uses the metal base substrate 14 manufactured by the method of the first embodiment or its modification described above. It is possible to manufacture a metal base circuit board with high quality and high heat dissipation without voids remaining in 2b.
  • Example 1 Dispersion process S1 Equivalent ratio of phenol novolak (HF-4M manufactured by Meiwa Kasei Co., Ltd.) as curing agent to bisphenol A type epoxy resin (EPICLON-828 manufactured by Dainippon Ink & Chemicals, Inc.) as raw material for A-stage insulating adhesive .9 was added. Further, crushed coarse particles of silicon oxide having an average particle size of 1.2 ⁇ m (A-1 manufactured by Tatsumori) and crushed coarse particles of silicon oxide having an average particle size of 10 ⁇ m (SQ-10 manufactured by Hayashi Kasei) Were combined so as to be 59% by volume in the insulating adhesive (rough particles and fine particles had a mass ratio of 9: 1).
  • Disparon 1850 7 parts by weight of ethylene glycol monobutyl ether as solvent (Butyl cellosolve from Sankyo Chemical Co., Ltd.), and 2 parts by weight of 3- (2-aminoethyl) aminopropyltrimethoxysila as silane coupling agent (Toray Dow Corning Z-6020) was added. And these components were disperse
  • Lamination process S2 A copper foil having a width of 500 mm / thickness of 70 ⁇ m is used as the roll-shaped conductor foil 14, and the A-stage insulating adhesive 2 is applied to the copper foil by a doctor blade coater while continuously feeding out the copper foil having a width of 480 mm. / Continuous molding was performed at a thickness of 100 ⁇ m.
  • the insulating adhesive 2 was continuously cured in the B-stage state in the heat curing furnace 9 to form the insulating adhesive layer 2a. Subsequently, the composite 5 of the copper foil and the B-stage insulating adhesive layer 2a was cut into a sheet having a width of 500 mm / a length of 500 mm. At this time, the reaction start temperature of the insulating adhesive layer 2a in the B stage state was 95 ° C., and the curing rate was 64%.
  • Metal base material lamination step S5 to second curing step S6 An aluminum plate (thickness 1.0 mm / width 500 mm / length) as a metal base material 6 on a composite 5 of a conductive foil (copper foil) 1 cut into a sheet and an insulating adhesive layer 2a in a B-stage state 500 mm) was laminated. Thereafter, a heat and pressure treatment was carried out at 190 ° C./3 MPa for 3 hours under reduced pressure at 25 mmHg to obtain a metal base substrate of Example 1.
  • Pattern forming step S7 An etching resist is formed by screen printing on the conductor foil (copper foil) 1 of the metal base circuit board of Example 1 manufactured by the method described above, and then the conductor foil is corroded and dissolved with a ferric chloride etching solution. The etching resist was peeled off with an alkaline aqueous solution to form a conductor pattern.
  • Film forming step S8 After forming the organic insulating film 19 by photographic development, it was processed into a desired size (10 mm ⁇ 460 mm) with a mold to obtain a metal base circuit board of Example 1.
  • Example 2 Before cutting the composite 5 of the conductor foil (copper foil) 1 and the B-stage insulating adhesive layer 2a into a sheet, an aluminum plate (thickness 1.0 mm / width 500 mm / length 500 mm) as the metal base material 6
  • the metal base substrate and the metal base circuit board of Example 2 were manufactured by the same method and conditions as in Example 1 except that the above was laminated.
  • Example 3 In the second curing step S6, the metal base of Example 3 was subjected to the same method and conditions as in Example 1 except that the heat and pressure treatment was performed at 190 ° C./3 MPa for 3 hours at atmospheric pressure (760 mmHg). A substrate and a metal base circuit board were prepared.
  • Example 4 Example 1 except that 70 parts by mass of phenoxy resin (FX316 manufactured by Tohto Kasei) was added to 100 parts by mass of bisphenol A type epoxy resin (EPICLON-828 manufactured by Dainippon Ink & Chemicals, Inc.) to the insulating adhesive 2
  • phenoxy resin FX316 manufactured by Tohto Kasei
  • bisphenol A type epoxy resin EPICLON-828 manufactured by Dainippon Ink & Chemicals, Inc.
  • Example 5 Except for adding 40 parts by mass of 3-dodecyl succinic anhydride to 100 parts by mass of phenol novolak (HF-4M manufactured by Meiwa Kasei Co., Ltd.) in the insulating adhesive 2, the same method and conditions as in Example 1 were used. A metal base substrate and a metal base circuit board of Example 5 were produced. At that time, the reaction start temperature of the B-stage insulating adhesive layer 2a was 90 ° C., and the reaction rate was 64%.
  • phenol novolak phenol novolak
  • Comparative Example 1 In the first curing step S3, the insulating adhesive 2 on the conductor foil (copper foil) 1 was the same as in Example 1 except that the curing rate after curing in the heat curing furnace 9 was 3%.
  • a metal base substrate and a metal base circuit board of Comparative Example 1 were produced by the method and conditions.
  • Comparative Example 2 In the first curing step S3, the insulating adhesive 2 on the conductor foil (copper foil) 1 was the same as in Example 1 except that the curing rate after curing in the heat curing furnace 9 was 83%.
  • a metal base substrate and a metal base circuit board of Comparative Example 2 were produced by the method and conditions.
  • the applied start voltage between the conductor foil and the metal base material is set to 0.50 kV, and the voltage is increased by 0.20 kV every 20 seconds so that the insulating adhesive layer does not break down. The maximum voltage was measured.
  • the metal base material 6 and the conductor foil 1 were removed from each metal base substrate of Examples and Comparative Examples by corrosion and dissolution, and the insulating adhesive layer was taken out. Then, the thermal conductivity of the insulating adhesive layer was measured by a xenon flash method (LFA 447 Nanoflash manufactured by NETZSCH).
  • the porosity was calculated based on the following formula 1. Specifically, the metal base material 6 and the conductor foil 1 were removed from each metal base substrate of Examples and Comparative Examples by corrosion and dissolution, and the insulating adhesive layer was taken out. Then, the C-stage insulating adhesive layer was cut into a 1 cm square, the surface was observed with an optical microscope (100 times), the volume of the void was obtained from the number and diameter of the voids, and the porosity was calculated by the following formula 1. .
  • the metal base substrate of Comparative Example 1 in which the insulating adhesive layer after the first curing step was not in the B stage state, and the insulating adhesive layer after the first curing step was in the C stage state.
  • the metal base substrate of Comparative Example 2 had a high porosity of 1.2% or more.
  • the metal base substrates of Comparative Examples 1 and 2 were inferior in withstand voltage and thermal conductivity, and had insufficient heat dissipation.
  • the metal base substrates and metal base circuit boards of Examples 1 to 5 showed good values for both withstand voltage and copper foil peeling strength. Further, the void ratio representing the void ratio was 0.01% or less, the maximum temperature was low, and the heat dissipation was good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

 絶縁接着層中にボイドが残存せず、高品質でかつ高放熱な発熱電子部品実装用の金属ベース基板の製造方法及び回路基板の製造方法を提供する。 湿潤分散剤を含有する絶縁接着剤の分散媒中に分散相を分散させる分散工程S1と、ロール状の導体箔1を繰り出しながら、導体箔1上に絶縁接着剤2を積層する絶縁接着剤積層工程S2と、導体箔1上の絶縁接着剤2を加熱して導体箔1とBステージ状態の絶縁接着層2aとの複合体5を形成する第1硬化工程S3と、Bステージ状態の絶縁接着層2aの上に金属ベース材6を積層して積層体7を得る金属ベース材積層工程S5と、積層体7を所定の条件で加熱加圧してBステージ状態の絶縁接着層2aをCステージ状態の絶縁接着層2bにする第2硬化工程S6を行い、金属ベース基板14とする。また、必要に応じて、複合体5又は積層体7をシート状に裁断するシート状裁断工程S4,S15を行う。

Description

金属ベース基板の製造方法及び回路基板の製造方法
 本発明は、金属ベース基板の製造方法及びこの方法で製造された金属ベース基板を使用した回路基板の製造方法に関する。より詳しくは、LED(Light Emitting Diode)等の発熱電子部品実装用の金属ベース基板の製造方法及び回路基板の製造方法に関する。
 近年、半導体素子等の電子部品の高密化、高集積化及び高出力化等に伴い、これら電子部品からの発熱対策が重要となっており、放熱性に優れた金属ベース基板が注目されている。特に、照明用途で使用されるLEDは、発熱量が多いことから、信頼性向上及び長寿命化の実現を目的として、金属ベース回路基板が使用されている。そこで、品質に優れ安価な金属ベース基板及び回路基板を、効率よく製造する方法が求められている。
 従来、アルミニウム又はアルミニウム合金からなる金属ベースに、架橋性シリコーンを塗布して透明シリコーン架橋物からなる絶縁層を形成し、その上に回路を直接形成する金属ベース回路基板の製造方法が提案されている(例えば、特許文献1参照。)。また、金属基板上に、絶縁性樹脂と無機フィラーからなる接着シートと、金属箔とをこの順に積層し、一体化することで金属ベース回路基板を製造する方法も提案されている(例えば、特許文献2参照。)。
特開2005-268405号公報 特開2009-49062号公報
 しかしながら、前述した従来の金属ベース回路基板の製造方法には、以下に示す問題点がある。即ち、特許文献1に記載されているような金属ベースに絶縁層を構成する樹脂組成物を塗布する方法は、金属ベースの厚さが厚い場合、ロールでの連続塗布が難しく、生産性が向上しないという問題点がある。
 一方、特許文献2に記載の製造方法は、簡便な工程で安定して製造することができるが、金属基板、接着シート及び金属箔の何れもが枚葉状のシートであるため、取り扱い性に劣り、生産性の面から不利であった。更に、従来の製造方法では、放熱性を向上させるために、絶縁層を構成する樹脂組成物(絶縁性接着剤)に無機フィラーを多量に添加すると、硬化後の絶縁接着層にボイドが残存し、耐電圧や放熱性が低下するという問題点がある。
 そこで、本発明は、絶縁接着層中にボイドが残存せず、高品質でかつ高放熱な発熱電子部品実装用の金属ベース基板の製造方法及び回路基板の製造方法を提供することを主目的とする。
 本発明に係る金属ベース基板の製造方法は、金属ベース材上に、絶縁接着剤層と導体層とがこの順に積層された金属ベース基板を製造する方法であって、湿潤分散剤を含有し、前記絶縁接着層を構成する絶縁接着剤の分散媒中に分散相を分散させる分散工程と、ロール状の導体箔を繰り出しながら、前記導体箔上に前記絶縁接着剤を積層する積層工程と、導体箔上の絶縁接着剤を加熱してBステージ状態まで硬化させ、導体箔とBステージ状態の絶縁接着層との複合体を形成する第1硬化工程と、前記Bステージ状態の絶縁接着層上に、金属ベース材を積層して積層体を得る金属ベース材積層工程と、前記積層体を、70~260℃、0.1~10MPaの条件下で加熱加圧し、Bステージ状態の絶縁接着層をCステージ状態にまで硬化させる第2硬化工程と、を有する。
 この金属ベース基板の製造方法では、更に、前記第1硬化工程後の複合体、又は、前記金属ベース剤積層工程後の積層体を、シート状に裁断するシート状裁断工程を行うことができる。
 また、絶縁接着剤はエポキシ樹脂及び無機フィラーを含有していてもよい。
 更に、前記第1硬化工程により得られる複合体は、Bステージ状態の絶縁接着層の反応開始温度を60~250℃とすることができる。
 更にまた、前記第2硬化工程により得られる積層体は、Cステージ状態の絶縁接着層の熱伝導率を1.0~15.0W/(m・K)とすることができる。
 本発明に係る金属ベース回路基板の製造方法は、前述した金属ベース基板の製造方法により製造された基板の導体箔に、導体パターンを形成するパターン形成工程と、前記導体パターン上に有機絶縁被膜を形成する被膜形成工程と、を有する。
 本発明において、「Bステージ状態」とは、絶縁接着剤が半硬化の状態であり、常温(25℃)では固体状態で、高温(60℃以上)で加熱すると再溶融する状態をいい、定量的には硬化率が5~80%の状態を指す。
 また、「Cステージ状態」とは、絶縁接着剤の硬化反応がほぼ終了し、不溶及び不融となっている状態をいう、定量的には硬化率が80%の以上の状態を指す。
 本発明によれば、絶縁接着層中にボイドが残存せず、高品質でかつ高放熱な発熱電子部品実装用の金属ベース基板及び金属ベース回路基板を、効率よく生産することができる。
本発明の第1の実施形態に係る金属ベース基板の構成を模式的に示す断面図である。 本発明の第1の実施形態の金属ベース基板の製造方法を示すフローチャート図である。 図2に示す積層工程S2~金属ベース材積層工程S5を模式的に示す断面図である。 図2に示す第2硬化工程S6を模式的に示す断面図である。 本発明の第1の実施形態の変形例の金属ベース基板の製造方法を示すフローチャート図である。 図5に示す積層工程S12~裁断工程S15を模式的に示す図である。 本発明の第2の実施形態に係る金属ベース回路基板の構成を模式的に示す断面図である。 本発明の第2の実施形態の金属ベース基板の製造方法を示すフローチャート図である。
 以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
(第1の実施形態)
 先ず、本発明の第1の実施形態に係る金属ベース基板の製造方法について説明する。図1は本実施形態の金属ベース基板の構成を模式的に示す断面図である。図1に示すように、本実施形態の金属ベース基板14は、金属ベース材6上に、Cステージ状態の絶縁接着層2bが形成されており、その上に導体箔1が積層されている。
[金属ベース材6]
 金属ベース材6の材質は、特に限定されるものではないが、アルミニウム、鉄、銅、ステンレス又はこれらの合金が好ましく、特に、放熱性、価格、軽量性及び加工性の面でバランスが取れているという点で、アルミニウムが好ましい。また、金属ベース材6は、絶縁接着層2bとの密着性を向上させるため、絶縁接着層2bとの接着面に、アルマイト処理、脱脂処理、サンドブラスト、エッチング、各種メッキ処理、カップリング剤等を使用したプライマー処理等の各種表面処理が施されていることが望ましい。
<金属ベース材6の厚さ>
 一方、金属ベース材4の厚さは、製造される金属ベース基板及び金属ベース回路基板に対する要求特性に応じて適宜設定することができるが、0.15mm以上であることが好ましく、0.2mm以上が特に好ましい。金属ベース材4の厚さが薄すぎると、製造工程において、ハンドリング時に中間材料の皺や折れが発生しやすくなり、また、金属ベース材4の厚さが厚すぎると、基板の質量が必要以上に増えてしまうためである。
<金属ベース材6の表面粗さ>
 金属ベース材6における絶縁接着層2bとの接着面の表面粗さは、十点平均粗さ(Rz)で0.1~15μmであることが好ましい。この接着面の表面粗さが大きく、Rzが15μmを超えていると、絶縁接着層2bとの間に十分な密着性が得られないことがある。一方、接着面の表面粗さが小さく、Rzが0.1μm未満である場合、絶縁接着層2bとの界面でマイクボイドが発生し易くなり、耐電圧が低下する可能性がある。
[絶縁接着層2b]
 絶縁接着層2bは、無機フィラーが分散されたエポキシ樹脂等からなる絶縁接着剤によって形成されており、Cステージ状態となっている。ここで、「Cステージ状態」とは、絶縁接着剤中のエポキシ樹脂と硬化剤及び硬化触媒の反応がほぼ終了し、不溶及び不融の状態をいう。具体的には、DSC(Differential Scanning Calorimeter:示差走査熱量測定)にて加熱硬化した場合に、発熱がほとんど観察できない場合であり、硬化率が80%の以上の状態を示す。
 また、「硬化率」は、未反応の絶縁接着剤が加熱硬化する時の発熱量を100としたとき、加熱処理後の絶縁接着剤が加熱硬化する時の発熱量の割合であり、その発熱量はDSCによって測定することができる。
<絶縁接着層2bの厚さ>
 Cステージ状態の絶縁接着層2bの厚さは、耐電圧及び放熱性特性の観点から、40~250μmであることが好ましい。絶縁接着層2bの厚さが40μm未満の場合、所望の耐電圧値を得ることが難しくなることがあり、また、絶縁接着層2bの厚さが250μmを超えると、熱抵抗が大きくなり、放熱特性が低下することがある。
<絶縁接着層2bの熱伝導率・耐電圧>
 Cステージ状態の絶縁接着層2bの熱伝導率は、1.0W/(m・K)以上であることが好ましく、2.0W/(m・K)であることがより好ましい。また、Cステージ状態の絶縁接着層2bの耐電圧は、1.0kV以上であることが好ましく、より好ましくは2.0kV以上である。これにより、より高品質で高放熱の金属ベース回路基板を実現することができる。
[導体箔1]
 導体箔1には、例えば、アルミニウム、鉄、銅、ステンレス若しくはこれらの合金からなる箔材又はクラッド箔を使用することができ、特に、電気伝導度及び放熱性の観点から銅箔を使用することが好ましい。また、絶縁接着層2bとの密着性を向上させるために、絶縁接着層2bとの接着面に、脱脂処理、サンドブラスト、エッチング、各種メッキ処理、カップリング剤等を使用したプライマー処理等の各種表面処理が施されていることが望ましい。
<導体箔1の表面粗さ>
 導体箔1における絶縁接着層2bとの接着面の表面粗さは、十点平均粗さ(Rz)で0.1~15μmであることが好ましい。この接着面の表面が粗く、具体的には十点平均粗さ(Rz)が15μmを超えていると、絶縁接着層2bとの間に十分な密着性を確保することが困難になることがある。一方、接着面の表面が密で、具体的には表面粗さが0.1μm未満である場合、絶縁接着層2bとの界面でマイクボイドが発生し易くなり、耐電圧が低下する可能性がある。
<導体箔1の厚さ>
 導体箔1の厚さは、特に限定されるものではなく、製造される金属ベース基板及び金属ベース回路基板に対する要求特性により適宜設定することができるが、0.018~0.5mmであることが好ましく、特に好ましくは0.035~0.14mmである。導体箔1の厚さが薄すぎると、製造工程において、ハンドリング時に中間材料の皺や折れが発生しやすくなり不良発生の原因となる。また、導体箔1の厚さが厚すぎると、生産性の低下を招くこととなる。
 次に、本実施形態の金属ベース基板14の製造方法について説明する。図2は本実施形態の金属ベース基板の製造方法を示すフローチャート図である。また、図3はその積層工程S2~金属ベース材積層工程S5を模式的に示す断面図であり、図4は第2硬化工程S6を模式的に示す断面図である。
 図2に示すように、本実施形態の金属ベース基板14の製造方法では、絶縁接着剤2の各成分を分散する工程(分散工程S1)と、導体箔1の上に絶縁接着剤2を積層する工程(絶縁接着剤積層工程S2)と、絶縁接着剤2を加熱してBステージ状態の絶縁接着層2aを形成する工程(第1硬化工程S3)と、導体箔1と絶縁接着層2aとの複合体5を所定の長さに裁断する工程(裁断工程S4)と、絶縁接着層2a上に金属ベース材6を積層する工程(金属ベース材積層工程S5)と、所定の条件で加熱加圧することにより、Bステージ状態の絶縁接着層2aをCステージ状態の絶縁接着層2bにする工程(第2硬化工程S6)を、この順に行う。
[分散工程S1]
 分散工程S1は、絶縁接着剤2の各成分を均一に分散する工程であり、この絶縁接着剤2には、良好な分散状態を得るため、湿潤分散剤が配合されている。ここで、絶縁接着剤2を、「分散媒」と「分散層」とに分けて考えると、分散工程S1は、分散媒中に分散相を均一に分散させる工程であり、剪断力を主とする機械的な力によって、分散相を解砕しつつ分散媒中に練り込む過程と、分散相表面を分散媒が濡らす過程を有する。また、分散工程S1は、分散相を分散媒が濡らす過程と、分散媒中の分散相が再凝集及び沈降せずに安定化する過程、具体的にはフィラーが再凝集、沈降しない過程を有することが好ましい。
<湿潤分散剤>
 湿潤分散剤は、分散相表面における濡れ性及び安定性を向上させて、ボイドの発生を抑制する効果がある。本実施形態で使用する湿潤分散剤は、分散相表面に配向し、分散媒中での十分な濡れ性及び安定性を得ることができるものであればよく、例えば、吸着基としてアミノ基、アマイド基、アミノアマイド基、リン酸又はカルボキシル基等の酸基や塩基を持つ共重合体化合物を使用することができる。なお、分散工程S1においては、湿潤分散剤と、表面調整剤、消泡剤及びシランカップリング剤等とを併用することが好ましい。
<分散媒>
 絶縁接着剤2における「分散媒」は、例えば、エポキシ樹脂、硬化剤、硬化触媒及び溶媒等によって構成される。
エポキシ樹脂
 エポキシ樹脂は、発熱電子部品実装用のプリント配線板として必要な電気特性、導体箔や金属ベース材との密着性、耐熱性等を与えるものである。その具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂(クレゾールのボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等)、環式脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。その中でも、密着性、耐熱性、電気特性、柔軟性、コストを含めて特性のバランスが取れているビスフェノールA又はF型エポキシ樹脂が好ましく、特に、エポキシ当量が400以下の樹脂がより好ましい。
 また、絶縁接着剤2には、Bステージ状態の絶縁接着層2aの保存安定性及び加熱加圧工程での成形性を向上させるために、上述のエポキシ樹脂に加えて、高分子量のビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂を添加することもできる。この場合のエポキシ当量は、800以上であることが好ましい。
硬化触媒
 絶縁接着剤2に配合される硬化剤は、エポキシ基の自己重合反応、エポキシ基と活性水素化合物の付加反応、エポキシ基と酸無水物基との共重縮合反応を促進するものであり、反応開始温度を60℃程度に制御できるものが好ましい。その具体的例としては、3級アミン、イミダゾール類、オニウム化合物のボロン塩等が挙げられる。
 ここで、「反応開始温度」とは、絶縁接着剤2をDSCにて加熱硬化した場合に得られる発熱曲線において、ベースラインと曲線の立ち上がりから引いた外挿線の交点から求めた温度をいう。
硬化剤
 エポキシ樹脂は、前述した硬化触媒のみを用いて硬化反応させることもできるが、更に、硬化剤を併用してもよい。絶縁接着剤2に硬化剤を加える場合は、エポキシ樹脂のエポキシ当量1に対して、硬化剤の活性水素当量(又は酸無水物当量)が0.01~3.0になるように配合することが望ましい。
 「分散媒」を構成する硬化剤は、エポキシ基と反応する活性水素化合物(アミノ基、カルボキシル基、水酸基、チオール基等を有する化合物)や酸無水物基を有する化合物等が挙げられる。その中でも、エポキシ基との反応開始温度が高い水酸基及び/又はカルボキシル基を有する化合物、酸無水物、若しくはこれらのうち1種又は2種以上を含有するものが好ましい。
 また、Bステージ状態の絶縁接着層2aにハンドリング性を付与させる場合は、硬化剤には、主鎖中に柔軟性に優れる脂肪族環、脂肪族鎖、ポリアルキレングリコール等を有するものが好ましい。具体的には、3-ドデシル無水コハク酸、脂肪族二塩基酸ポリ無水物等が挙げられる。
溶剤
 「分散媒」を構成する溶剤は、エポキシ樹脂及び硬化剤と相溶するものであればよく、例えばエチレングリコールモノブチルエーテル等を使用することができる。この溶剤の配合量は、エポキシ樹脂、硬化剤及び無機フィラーの総量に対して10質量部以下であることが好ましい。溶剤の量が多すぎると、後述する絶縁接着剤積層工程S2において、減圧下でのマイクロボイドの除去が困難になることがある。
<分散相>
 分散相は、電気絶縁性で熱伝導性の良好な無機フィラーが好ましく、このような無機フィラーとしては、例えば、シリカ、アルミナ、窒化アルミニウム、窒化珪素、窒化硼素、窒化ホウ素、酸化マグネシウム、酸化ベリリウム等が挙げられる。
 また、絶縁接着剤層2における無機フィラーの配合量は、形成される絶縁接着層2bの総体積に対して、無機フィラー含有率が35~80体積%になるようにすることが望ましい。絶縁接着層2bにおける無機フィラー含有率が35体積%未満であると、必要な熱伝導率を得ることが困難となる。また、無機フィラー含有率が80体積%を超えると、高粘度になり、絶縁接着層2a,2b形成時にマイクロボイドが発生し易くなり、耐電圧や密着性に悪影響を及ぼす可能性がある。更に、無機フィラーによる増粘を避け、マイクロボイドの発生を抑制するためには、2種以上の粒径の異なる無機フィラーを混合することが望ましい。
<装置>
 分散工程S1で用いる分散装置としては、分散相が解砕され分散媒中に練り込まれるのに十分な剪断力を与えるものであればよく、例えば、ビーズミル、ニーダー、三本ロール、単軸混練押し出し機、二軸混練押し出し機、遊星式撹拌機等の分散装置を使用することができる。
 更に、本実施形態の金属ベース基板の製造方法においては、分散工程S1の最後に、真空、超音波、遠心力、振動、加熱等の手法を単一又は複数組み合わせて、更にボイドを低減することが好ましい。
[絶縁接着剤積層工程S2]
 絶縁接着剤積層工程S2は、図3に示すように、ロール状の導体箔1を繰り出しながら、導体箔1上に、前述した分散工程S1で作製した絶縁接着剤2を積層する工程である。この絶縁接着剤積層工程S2を行う絶縁接着層連続成形部8の方式としては、例えば、ダイコーター、コンマコーター、ロールコーター、バーコーター、グラビヤコーター、同時ダイコーター、カーテンコーター、ドクターブレードコーター、スプレーコーター及びスクリーン印刷等の方法を適用することができる。
 また、導体箔1の絶縁接着剤積層面における絶縁接着剤2に対する濡れ性を向上させることで、絶縁接着剤2を積層する際に、絶縁接着剤2と導体箔1との界面において、ボイドの巻き込み発生を低減することができる。絶縁接着剤2に対する濡れ性を向上させる方法としては、例えば、次の2つの方法が挙げられ、これらは単独で行っても、組み合わせて行ってもよい。
(1)絶縁接着剤2を積層する前に、ロール状の導体箔1の塗工面に、プラズマ処理、コロナ処理又はエキシマ光洗浄処理を連続的に行うことで、絶縁接着剤2に対する濡れ性を向上させる方法。
(2)絶縁接着層連続成形部8を加熱することで、絶縁接着剤2を低粘度化し、導体箔1の塗工面への濡れ性を向上させる方法。
[第1硬化工程S3]
 第1硬化工程S3は、図3に示すように、連続的に供給される導体箔1上に積層された絶縁接着剤2を加熱し、Bステージ状態まで硬化させて絶縁接着層2aを形成する工程である。なお、絶縁接着剤2を加熱する加熱炉9としては、例えば、熱風式、遠赤外線式又はこれらの併用式等を使用することができる。
 ここで、「Bステージ状態」とは、加熱処理によって進行させた絶縁接着剤2中のエポキシ樹脂と硬化剤及び硬化触媒の反応を、途中で停止させた半硬化状態をいう。具体的には、常温(25℃)で固体状態であり、高温(60℃以上)で加熱すると再溶融する状態である。定量的には、硬化率の項で記述した硬化率が5~80%の状態である。
 また、Bステージ状態の反応率を調整することで、製造時の生産性を改善することができる。具体的には、硬化反応率を50~70%にすることで、タックフリーなBステージ状態の絶縁接着層表面を得ることができる。タックフリーであれば、保護フィルムを使用しなくても良く作業、コスト面から望ましい。
 更に、Bステージ状態の絶縁接着層2aの反応開始温度は、60℃以上であることが望ましい。この段階での反応開始温度が60℃未満であると、作業環境によっては、後述する金属ベース材積層工程S5と第2硬化工程S6との間で硬化反応が進行し、第2硬化工程S6において、溶融したBステージ状態の絶縁接着層2aが金属ベース材6の表面を、十分に濡らすことができなくなる。そうすると、硬化反応終了後にCステージ状態の絶縁接着層2bと金属ベース材6との界面に、ボイドや剥離が発生し、耐電圧特性や密着性が低下する。
[裁断工程S4]
 裁断工程S4では、第1硬化工程S3後の導体箔1とBステージ状態の絶縁接着層2aとの複合体5を、所定の長さに裁断して、シート状に加工する。この複合体5を裁断する裁断部11の方式としては、例えば、回転鋸刃、ナイフ刃及びシャー刃等を用いて裁断する方法を適用することができる。なお、裁断部11の前にニップロール10等を配置し、Bステージ状態の絶縁接着層2aの上に、ポリエチレンテレフタラート又はポリエチレン等の表面保護フィルムをラミネートしても良い。
[金属ベース材積層工程S5]
 図3に示すように、金属ベース材積層工程S5では、絶縁接着層2a上に金属ベース材6を積層し、積層体7とする。
[第2硬化工程S6]
 第2硬化工程S6は、積層体7を加熱加圧することで、Bステージ状態の絶縁接着層2aをCステージ状態にまで硬化させて、絶縁接着層2bを形成する工程である。その方法は、特に限定されるものではないが、図4に示すように、1対の加熱加圧板13a,13bで積層体7を挟持し、加圧しながら加熱することが好ましい。
<加熱加圧条件>
 その際の条件は、加熱温度範囲を70~260℃、圧力範囲を0.1~10MPaとする。これにより、ボイドの発生を抑制すると共に、密着性を向上させることができる。また、第2硬化工程S6では、雰囲気を約40kPa(30mmHg)以下に減圧することがより好ましい。積層体7の加熱と加圧とを同時に行うことで、溶融したBステージ状態の絶縁接着層2aが、金属ベース材6表面を十分に濡らすことができる。また、積層体7を約40kPa(30mmHg)以下の減圧雰囲気下に置くことで、Bステージ状態の絶縁接着層2aの表面と金属ベース材6の界面の空気を、脱気することができる。その結果、絶縁接着層2aの硬化反応終了後、Cステージ状態の絶縁接着層2bと金属ベース材6との界面に、ボイドが無く、密着性が良好な金属ベース基板14を得ることができる。
 以上詳述したように、本実施形態の金属ベース基板の製造方法では、湿潤分散剤を配合して均一分散した絶縁接着剤を、導体箔上に積層してBステージ状態の絶縁接着剤層を形成した後、その上に金属ベース材を積層し、絶縁接着層を所定の条件でCステージ状態に硬化させているため、絶縁接着層中にボイドが残存せず、高品質でかつ高放熱な金属ベース基板を製造することができる。
(第1の実施形態の変形例)
 前述した第1の実施形態の金属ベース基板の製造方法では、裁断工程S4の後で、金属ベース材積層工程S5を行っているが、本発明はこれに限定されるものではなく、金属ベース材6を積層した後、裁断を行ってもよい。図5は本発明の第1の実施形態の変形例に係る金属ベース基板の製造方法を示すフローチャート図であり、図6はその積層工程S12~裁断工程S15を模式的に示す図である。なお、図6においては、図3に示す製造方法の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。
 図5及び図6に示すように、本変形例の金属ベース基板の製造方法では、絶縁接着剤2の各成分を分散する工程(分散工程S11)と、導体箔1の上に絶縁接着剤2を積層する工程(絶縁接着剤積層工程S12)と、絶縁接着剤2を加熱してBステージ状態の絶縁接着層2aを形成する工程(第1硬化工程S13)と、絶縁接着層2a上に金属ベース材6を積層する工程(金属ベース材積層工程S14)と、導体箔1と絶縁接着層2aとの複合体5を所定の長さに裁断する工程(裁断工程S15)と、所定の条件で加熱加圧することにより、Bステージ状態の絶縁接着層2aをCステージ状態の絶縁接着層2bにする工程(第2硬化工程S16)を、この順に行う。
 このように、絶縁接着層2a上に金属ベース材6を積層した後で、裁断を行うことにより、生産性を向上させることができる。なお、本変形例における上記以外の構成及び硬化は、前述した第1の実施形態と同様である。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る金属ベース回路基板の製造方法について説明する。図7は本実施形態の金属ベース回路基板の構成を模式的に示す断面図である。図7に示すように、本実施形態の金属ベース回路基板17は、前述した第1の実施形態又はその変形例の方法で製造された金属ベース基板14を使用して、絶縁接着層2b上に、導体パターン(図示せず)と有機絶縁被膜19とを形成したものである。
 次に、本発明の第2の実施形態に係る金属ベース回路基板17の製造方法について説明する。図8は本実施形態の金属ベース回路基板の製造方法を示すフローチャート図である。図8に示すように、本実施形態の金属ベース回路基板の製造方法では、前述した第1の実施形態又はその変形例の方法によって製造された金属ベース基板14の導体箔1に、導体パターンを形成する工程(パターン形成工程S7)と、パターン上に被膜を形成する工程(被膜形成工程S8)とを行い、図7に示す金属ベース回路基板17を製造する。
[パターン形成工程S7]
 パターン形成工程S7では、先ず、スクリーン印刷法又は写真現像法により、金属ベース基板14の導体箔1上にエッチングレジストを形成し、導体箔1の表面の所定位置をマスクする。その状態で、導体箔1の一部を、塩化第二鉄エッチング液、塩化第二銅エッチング、過酸化水素/硫酸エッチング液、アルカリエッチャント等で腐食溶解した後、エッチングレジストを剥離する。これにより、絶縁接着層2b上に導体パターン(図示せず)が形成される。
[被膜形成工程S8]
 被膜形成工程S8では、スクリーン印刷法又は写真現像法などにより、絶縁接着層2b及び導体パターン(図示せず)上に、有機絶縁被膜19を形成する。
<有機絶縁被膜>
 有機絶縁被膜19は、所定の位置に、電子部品接続用の開口部が設けられていることが望ましい。また、有機絶縁被膜19の材質は、部品実装時に使用する半田からの基板表面の保護等金属ベース回路基板の要求を満たすものであればよく、特に限定されるものではない。更に、有機絶縁被膜19には、LED等発光部品の輝度向上のために、酸化チタンや硫酸バリウム等の白色顔料を添加することができる。また、放熱性を向上させるために、シリカ、アルミナ、窒化アルミニウム、窒化珪素、窒化硼素、窒化ホウ素、酸化マグネシウム、酸化ベリリウム等の熱伝導率に優れた無機フィラーを添加してもよい。
 以上詳述したように、本実施形態の金属ベース回路基板の製造方法では、前述した第1の実施形態又はその変形例の方法で製造した金属ベース基板14を使用しているため、絶縁接着層2b中にボイドが残存せず、高品質でかつ高放熱な金属ベース回路基板を製造することができる。
 以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、本発明の範囲内で実施例1~5の金属ベース基板及び金属ベース回路基板を作製し、その性能を評価した。また、併せて、本発明の範囲から外れる比較例1,2の金属ベース基板及び金属ベース回路基板を作製し、同様の評価を行った。
(実施例1)
分散工程S1
 Aステージ状態の絶縁接着剤原料として、ビスフェノールA型エポキシ樹脂(大日本インキ化学工業社製EPICLON-828)に対して、硬化剤としてフェノールノボラック(明和化成社製HF-4M)を等量比0.9になるように加えた。また、平均粒子径が1.2μmの破砕状粗粒子の酸化珪素(龍森社製A-1)と平均粒子径が10μmである破砕状粗粒子の酸化珪素(林化成社製SQ-10)を合わせて絶縁接着剤中59体積%(粗粒子と微粒子は質量比が9:1)となるように配合した。
 更に、エポキシ樹脂と硬化剤と無機フィラーの合計100重量部に対して、イミダゾール系の硬化触媒を0.1重量部(四国化成社製 2PZ)、湿潤分散剤を0.05重量部(楠本化成社製ディスパロン1850)、溶剤としてエチレングリコールモノブチルエーテルを7重量部(三協化学社製ブチルセロソルブ)、シランカップリング剤として3-(2-アミノエチル)アミノプロピルトリメトキシシラを2重量部(東レ・ダウコーニング社製Z-6020)加えた。そしてこれらの成分を均一に分散して、絶縁接着剤2とした。
積層工程S2
 ロール状の導体箔14として、幅500mm/厚さ70μmの銅箔を使用し、これを連続的に繰り出しながら、ドクターブレードコーターにより、銅箔上にAステージ状態の絶縁接着剤2を、幅480mm/厚さ100μmで連続成形した。
第1硬化工程S3~裁断工程S4
 その後、加熱硬化炉9にて、絶縁接着剤2を連続的にBステージ状態に硬化させて、絶縁接着層2aを形成した。引き続き、銅箔とBステージ状態の絶縁接着層2aとの複合体5を、幅500mm/長さ500mmのシート状に裁断した。この時、Bステージ状態の絶縁接着層2aの反応開始温度は95℃であり、硬化率は64%であった。
金属ベース材積層工程S5~第2硬化工程S6
 シート状に裁断した導体箔(銅箔)1とBステージ状態の絶縁接着層2aとの複合体5上に、金属ベース材6として脱脂処理したアルミニウム板(厚さ1.0mm/幅500mm/長さ500mm)を積層した。その後、減圧下25mmHgにて、190℃/3MPaで3時間加熱加圧処理を行い、実施例1の金属ベース基板を得た。
パターン形成工程S7
 前述した方法で製造した実施例1の金属ベース回路基板の導体箔(銅箔)1上に、スクリーン印刷によりエッチングレジストを形成した後、塩化第二鉄エッチング液で導体箔を腐食溶解し、更に、アルカリ水溶液でエッチングレジストを剥離して、導体パターンを形成した。
被膜形成工程S8
 写真現像法によって有機絶縁被膜19を形成した後、金型により所望の大きさ(10mm×460mm)に加工して実施例1の金属ベース回路基板とした。
(実施例2)
 導体箔(銅箔)1とBステージ状態の絶縁接着層2aとの複合体5をシート状に裁断する前に、金属ベース材6であるアルミニウム板(厚み1.0mm/幅500mm/長さ500mm)を積層した以外は、実施例1と同様の方法及び条件で、実施例2の金属ベース基板及び金属ベース回路基板を作製した。
(実施例3)
 第2硬化工程S6の際、大気圧(760mmHg)にて190℃/3MPaで3時間の加熱加圧処理を行った以外は、実施例1と同様の方法及び条件で、実施例3の金属ベース基板及び金属ベース回路基板を作製した。
(実施例4)
 絶縁接着剤2に、ビスフェノールA型エポキシ樹脂(大日本インキ化学工業社製EPICLON-828)100質量部に対して、フェノキシ樹脂(東都化成製FX316)を70質量部加えた以外は、実施例1と同様の方法及び条件で、実施例4の金属ベース基板及び金属ベース回路基板を作製した。その際、Bステージ状態の絶縁接着層2aの反応開始温度は110℃、反応率は63%であった。
(実施例5)
 絶縁接着剤2に、フェノールノボラック(明和化成社製HF-4M)100質量部に対して、3-ドデシル無水コハク酸40質量部を加えた以外は、実施例1と同様の方法及び条件で、実施例5の金属ベース基板及び金属ベース回路基板を作製した。その際、Bステージ状態の絶縁接着層2aの反応開始温度は90℃、反応率は64%であった。
(比較例1)
 第1硬化工程S3において、導体箔(銅箔)1上の絶縁接着剤2を、加熱硬化炉9にて硬化させた後の硬化率が3%であった以外は、実施例1と同様の方法及び条件で、比較例1の金属ベース基板及び金属ベース回路基板を作製した。
(比較例2)
 第1硬化工程S3において、導体箔(銅箔)1上の絶縁接着剤2を、加熱硬化炉9にて硬化させた後の硬化率が83%であった以外は、実施例1と同様の方法及び条件で、比較例2の金属ベース基板及び金属ベース回路基板を作製した。
 次に、前述した方法で作製した実施例1~5及び比較例1,2の金属ベース基板及び金属ベース回路基板を、以下に示す方法で評価した。
<耐電圧>
 実施例及び比較例の各金属ベース基板について、導体箔と金属ベース材との間の印可開始電圧を0.50kVとし、20秒ごとに0.20kVずつ昇圧して、絶縁接着層が絶縁破壊しない最大の電圧を測定した。
<銅箔引き剥がし強さ>
 実施例及び比較例の各金属ベース基板について、幅10mmの導体箔を、50mm/分で50mm剥がした時の荷重の最低値を測定した。
<熱伝導率>
 実施例及び比較例の各金属ベース基板から、腐食溶解によって金属ベース材6と導体箔1を除去し、絶縁接着層を取り出した。そして、この絶縁接着層の熱伝導率を、キセノンフラッシュ法(NETZSCH社製LFA 447 Nanoflash)で測定した。
<空隙率>
 空隙率は、下記数式1に基づいて算出した。具体的には、実施例及び比較例の各金属ベース基板から、腐食溶解によって金属ベース材6と導体箔1を除去し、絶縁接着層を取り出した。そして、Cステージ状態の絶縁接着層を1cm角に切り出し、光学顕微鏡(100倍)によって、その表面観察を行い、ボイドの数と直径からボイドの体積を求め、下記数式1によって空隙率を算出した。
Figure JPOXMLDOC01-appb-M000001
<最高温度>
 スクリーン印刷によって、実施例及び比較例の各金属ベース回路基板の導体パターン上の電子部品実装部に半田ペーストを印刷した後、LED(日亜化学社製 NESW425C)を実装し、リフロー加熱を行った。そして、LEDを実装した金属ベース回路基板に、電圧を印可した場合のLED及び回路基板の最高温度を測定した。なお、LED及び回路基板の温度は、赤外線サーモグラフィ(山武商会 FLIR SC600)にて測定した。
 以上の結果を、下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 上記表1に示すように、第1硬化工程後の絶縁接着層がBステージ状態になっていなかった比較例1の金属ベース基板、第1硬化工程後の絶縁接着層がCステージ状態になっていた比較例2の金属ベース基板は、空隙率が1.2%以上と高かった。また、これら比較例1,2の金属ベース基板は、耐電圧及び熱伝導率も劣っており、放熱性も不十分であった。
 これに対して、実施例1~5の金属ベース基板及び金属ベース回路基板では、耐電圧、銅箔引き剥がし強さとも良好な値を示した。また、ボイドの割合を表す空隙率も0.01%以下であり、最高温度も低く放熱性は良好であった。
 以上の結果から、本発明によれば、絶縁接着層中にボイドが残存せず、高品質且つ高放熱である金属ベース基板及び金属ベース回路基板を製造できることが確認された。
1 導体箔
2 絶縁接着剤
2a Bステージ状態の絶縁接着層
2b Cステージ状態の絶縁接着層
5 複合体
6 金属ベース材
7 積層体
8 絶縁接着層連続成形部
9 加熱炉
10 ニップロール
11 裁断部
13a、13b 加熱加圧板
14 基板
17 金属ベース回路基板
19 有機絶縁被膜
S1、S11 分散工程
S2、S12 絶縁接着剤積層工程
S3、S13 第1硬化工程
S4、S15 裁断工程
S5、S14 金属ベース材積層工程
S6、S16 第2硬化工程
S7 パターン形成工程
S8 被膜形成工程

Claims (6)

  1.  金属ベース材上に、絶縁接着剤層と導体層とがこの順に積層された金属ベース基板を製造する方法であって、
     湿潤分散剤を含有し、前記絶縁接着層を構成する絶縁接着剤の分散媒中に分散相を分散させる分散工程と、
     ロール状の導体箔を繰り出しながら、前記導体箔上に前記絶縁接着剤を積層する積層工程と、
     導体箔上の絶縁接着剤を加熱してBステージ状態まで硬化させ、導体箔とBステージ状態の絶縁接着層との複合体を形成する第1硬化工程と、
     前記Bステージ状態の絶縁接着層上に、金属ベース材を積層して積層体を得る金属ベース材積層工程と、
     前記積層体を、70~260℃、0.1~10MPaの条件下で加熱加圧し、Bステージ状態の絶縁接着層をCステージ状態にまで硬化させる第2硬化工程と、
    を有する金属ベース基板の製造方法。
  2.  更に、前記第1硬化工程後の複合体、又は、前記金属ベース剤積層工程後の積層体を、シート状に裁断するシート状裁断工程を有する請求項1に記載の金属ベース基板の製造方法。
  3.  絶縁接着剤がエポキシ樹脂及び無機フィラーを含有することを特徴とする請求項1又は2に記載の金属ベース基板の製造方法。
  4.  前記第1硬化工程により得られる複合体におけるBステージ状態の絶縁接着層は、反応開始温度が60~250℃であることを特徴とする請求項1乃至3のいずれか1項に記載の金属ベース基板の製造方法。
  5.  前記第2硬化工程により得られる積層体におけるCステージ状態の絶縁接着層は、熱伝導率が1.0~15.0W/(m・K)であることを特徴とする請求項1乃至4のいずれか1項に記載の金属ベース基板の製造方法。
  6.  請求項1乃至5のいずれか1項に記載の金属ベース基板の製造方法により製造された基板の導体箔に、導体パターンを形成するパターン形成工程と、
     前記導体パターン上に有機絶縁被膜を形成する被膜形成工程と、
    を有する金属ベース回路基板の製造方法。
PCT/JP2011/058735 2010-05-10 2011-04-06 金属ベース基板の製造方法及び回路基板の製造方法 WO2011142198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180023190.3A CN102907186B (zh) 2010-05-10 2011-04-06 金属基底基板的制造方法及电路基板的制造方法
EP11780455.9A EP2571342B1 (en) 2010-05-10 2011-04-06 Method of manufacturing metal-base substrate and method of manufacturing circuit board
KR1020127030315A KR101829195B1 (ko) 2010-05-10 2011-04-06 금속 베이스 기판의 제조방법 및 회로기판의 제조방법
ES11780455.9T ES2628860T3 (es) 2010-05-10 2011-04-06 Método de fabricación de substrato base metálico y método de placa de circuito de fabricación
US13/696,890 US8796145B2 (en) 2010-05-10 2011-04-06 Method of manufacturing metal-base substrate and method of manufacturing circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-108051 2010-05-10
JP2010108051A JP5545983B2 (ja) 2010-05-10 2010-05-10 基板の製造方法及び回路基板の製造方法

Publications (1)

Publication Number Publication Date
WO2011142198A1 true WO2011142198A1 (ja) 2011-11-17

Family

ID=44914254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058735 WO2011142198A1 (ja) 2010-05-10 2011-04-06 金属ベース基板の製造方法及び回路基板の製造方法

Country Status (8)

Country Link
US (1) US8796145B2 (ja)
EP (1) EP2571342B1 (ja)
JP (1) JP5545983B2 (ja)
KR (1) KR101829195B1 (ja)
CN (1) CN102907186B (ja)
ES (1) ES2628860T3 (ja)
TW (1) TWI504327B (ja)
WO (1) WO2011142198A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165485A (ja) * 2013-02-28 2014-09-08 Sumitomo Chemical Co Ltd 積層板及び金属ベース回路基板
JP5617985B1 (ja) * 2013-09-27 2014-11-05 富士ゼロックス株式会社 発光基板の製造方法及び露光装置の製造方法並びに発光基板、露光装置及び画像形成装置
JP6479382B2 (ja) * 2014-09-22 2019-03-06 株式会社愛工機器製作所 金属ベース基板
JP7034578B2 (ja) * 2016-03-08 2022-03-14 旭化成株式会社 エポキシ樹脂組成物、エポキシ樹脂半硬化組成物、半導体装置、及び複合材
JP6717245B2 (ja) * 2017-03-17 2020-07-01 三菱マテリアル株式会社 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2018029187A (ja) * 2017-09-04 2018-02-22 住友化学株式会社 積層板及び金属ベース回路基板
CN113758769B (zh) 2020-06-05 2022-12-27 中国航发商用航空发动机有限责任公司 胶接结构缺陷试块的制造方法
WO2021256798A1 (ko) * 2020-06-18 2021-12-23 동우 화인켐 주식회사 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936999A (ja) * 1982-08-25 1984-02-29 松下電器産業株式会社 金属芯入り印刷配線板の製造方法
JPH08288646A (ja) * 1995-04-11 1996-11-01 Shinko Kagaku Kogyo Kk 金属ベース基板の製造方法
JPH10242635A (ja) * 1997-02-25 1998-09-11 Hitachi Chem Co Ltd 金属ベース基板の製造方法
JP2002322372A (ja) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk 樹脂組成物およびそれを用いた金属ベース回路基板
JP2004134781A (ja) * 2002-09-18 2004-04-30 Denki Kagaku Kogyo Kk 金属ベース回路基板の製造方法
JP2005268405A (ja) 2004-03-17 2005-09-29 Dow Corning Toray Co Ltd 光学装置用金属ベース回路基板およびその製造方法
JP2009049062A (ja) 2007-08-14 2009-03-05 Denki Kagaku Kogyo Kk 金属ベース回路用基板の製造方法及び金属ベース回路用基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797508A (en) * 1986-09-19 1989-01-10 Firan Corporation Method for producing circuit boards with deposited metal patterns and circuit boards produced thereby
JPH0883963A (ja) * 1994-09-12 1996-03-26 Hitachi Chem Co Ltd 金属ベース基板
JPH08323916A (ja) * 1995-05-30 1996-12-10 Tonen Corp 銅張樹脂複合材料
JPH08323918A (ja) * 1995-05-30 1996-12-10 Tonen Corp 銅張樹脂複合材料の製造方法
US5761801A (en) * 1995-06-07 1998-06-09 The Dexter Corporation Method for making a conductive film composite
DE10313555A1 (de) * 2003-03-26 2004-10-14 Atotech Deutschland Gmbh Pulverlack und Verfahren für die Erzeugung dünner Schichten im Leiterplattenbau
US6855738B2 (en) * 2003-06-06 2005-02-15 Dow Global Technologies Inc. Nanoporous laminates
JP5353241B2 (ja) * 2006-10-06 2013-11-27 住友ベークライト株式会社 多層プリント配線板および半導体装置
CA2726173C (en) * 2008-05-29 2016-02-23 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936999A (ja) * 1982-08-25 1984-02-29 松下電器産業株式会社 金属芯入り印刷配線板の製造方法
JPH08288646A (ja) * 1995-04-11 1996-11-01 Shinko Kagaku Kogyo Kk 金属ベース基板の製造方法
JPH10242635A (ja) * 1997-02-25 1998-09-11 Hitachi Chem Co Ltd 金属ベース基板の製造方法
JP2002322372A (ja) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk 樹脂組成物およびそれを用いた金属ベース回路基板
JP2004134781A (ja) * 2002-09-18 2004-04-30 Denki Kagaku Kogyo Kk 金属ベース回路基板の製造方法
JP2005268405A (ja) 2004-03-17 2005-09-29 Dow Corning Toray Co Ltd 光学装置用金属ベース回路基板およびその製造方法
JP2009049062A (ja) 2007-08-14 2009-03-05 Denki Kagaku Kogyo Kk 金属ベース回路用基板の製造方法及び金属ベース回路用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2571342A4 *

Also Published As

Publication number Publication date
TW201212765A (en) 2012-03-16
JP2011238729A (ja) 2011-11-24
CN102907186A (zh) 2013-01-30
US8796145B2 (en) 2014-08-05
US20130056439A1 (en) 2013-03-07
EP2571342B1 (en) 2017-04-05
JP5545983B2 (ja) 2014-07-09
EP2571342A1 (en) 2013-03-20
EP2571342A4 (en) 2015-05-06
CN102907186B (zh) 2015-10-07
KR101829195B1 (ko) 2018-02-14
TWI504327B (zh) 2015-10-11
KR20130081655A (ko) 2013-07-17
ES2628860T3 (es) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2011142198A1 (ja) 金属ベース基板の製造方法及び回路基板の製造方法
JP5446866B2 (ja) エポキシ樹脂組成物
JP2009049062A (ja) 金属ベース回路用基板の製造方法及び金属ベース回路用基板
JP7311968B2 (ja) 層間絶縁フィルム及びその製造方法
WO2012090360A1 (ja) 金属ベース回路基板、金属ベース回路基板の製造方法
JP5716522B2 (ja) 接着補助層用樹脂組成物
JP2009148962A (ja) フィラー粒子含有樹脂層付銅箔及びそのフィラー粒子含有樹脂層付銅箔を用いた銅張積層板
TWI650235B (zh) 附有黏著層的聚醯亞胺脫模薄膜、配置了附有黏著層的聚醯亞胺脫模薄膜之積層板、積層板、配置了附有黏著層的聚醯亞胺脫模薄膜之單層或多層線路板、以及多層線路板的製造方法
JP2008277384A (ja) ビルドアップ型多層基板用接着シート及びそれを用いた回路基板の製造方法
JP6291742B2 (ja) 樹脂組成物、めっきプロセス用接着補助層、支持体付きめっきプロセス用接着補助層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2013082873A (ja) Bステージフィルム及び多層基板
JP2010087013A (ja) 層間絶縁シート、ビルドアップ型多層基板および回路基板の製造方法
JP2014185330A (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2012251045A (ja) エポキシ樹脂材料及び多層基板
JP5821845B2 (ja) 金属ベース基板を構成する樹脂層の形成に用いる樹脂組成物、金属ベース基板、及び金属ベース基板の製造方法
JP2017183376A (ja) フレキシブル基板、フレキシブル回路基板および支持体レスフレキシブル回路基板の製造方法
JP6295708B2 (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP6269506B2 (ja) 積層体、積層板、プリント配線板、積層体の製造方法、及び積層板の製造方法
JP6716781B2 (ja) 積層フィルム及びプリント配線板用組み合わせ部材
JP2012140570A (ja) エポキシ樹脂材料及び多層基板
JP6699148B2 (ja) 積層体及びその製造方法、並びに、プリント配線板の製造方法
JP6798140B2 (ja) プリント配線板の製造方法
JP6459182B2 (ja) 樹脂組成物、めっきプロセス用プライマー層、支持体付きめっきプロセス用プライマー層、硬化後めっきプロセス用プライマー層、配線板用積層板、配線板用積層板の製造方法、多層配線板、及び多層配線板の製造方法
JP2008130824A (ja) ビルドアップ型多層プリント配線板用接着シート及びビルドアップ型多層プリント配線板
JP6507668B2 (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023190.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030315

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10132/DELNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011780455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011780455

Country of ref document: EP