WO2011142096A1 - 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池 - Google Patents

密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池 Download PDF

Info

Publication number
WO2011142096A1
WO2011142096A1 PCT/JP2011/002473 JP2011002473W WO2011142096A1 WO 2011142096 A1 WO2011142096 A1 WO 2011142096A1 JP 2011002473 W JP2011002473 W JP 2011002473W WO 2011142096 A1 WO2011142096 A1 WO 2011142096A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fine
separator
layer
fiber layer
Prior art date
Application number
PCT/JP2011/002473
Other languages
English (en)
French (fr)
Inventor
昌司 杉山
圭太 森
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US13/696,883 priority Critical patent/US20130101887A1/en
Priority to CN201180023218.3A priority patent/CN102884654B/zh
Priority to BR112012028779A priority patent/BR112012028779A2/pt
Priority to EP11780356A priority patent/EP2571079A1/en
Publication of WO2011142096A1 publication Critical patent/WO2011142096A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealed lead-acid battery (JIS C 8707 (cathode absorption sealed stationary lead-acid battery) or JIS C 8704-2 (control valve-type stationary lead-acid battery) formed by forming an electrode plate group in which separators are laminated together with electrode plates. )
  • JIS C 8707 cathode absorption sealed stationary lead-acid battery
  • JIS C 8704-2 control valve-type stationary lead-acid battery
  • such a sealed lead-acid battery separator has an average pore diameter of 3 mainly composed of fine glass fibers, particularly glass fibers having an average fiber diameter of about 1 ⁇ m, in order to have both functions of a retainer and a separator.
  • a single-layer / single-structure nonwoven fabric sheet (wet papermaking sheet) having a thickness of about 7 ⁇ m and not having a laminated or composite structure is mainly used.
  • Sealed lead-acid batteries are mainly used as backup power supplies for computer equipment and communication equipment, power sources for electric vehicles, emergency power supplies for buildings and hospitals, etc.
  • an idling stop-and-start system has been adopted, and it has better cycle life characteristics than liquid lead-acid batteries, and is safe and easy to handle.
  • a storage battery is installed. Therefore, a sealed lead-acid battery for such applications is required to have a long life and to improve high rate discharge characteristics for improving engine startability.
  • the present invention provides a sealed lead-acid battery separator made of a fine glass fiber sheet having both functions of a retainer and a separator, and two life deteriorations of a sealed lead-acid battery that cannot be achieved in the past. Improve the effect against pressure (decrease in compression force and electrolyte stratification) and improve the effect of preventing pressure reduction and electrolyte stratification at the same time. It is an object of the present invention to provide a separator capable of promoting the movement of the electrolyte solution and a sealed lead-acid battery using the separator.
  • Electrolyte stratification is a phenomenon that occurs when sulfuric acid with a high specific gravity released from the electrode plate moves downward mainly through the separator, so that the separator that contacts the electrode plate with sulfuric acid released from the electrode plate. It has been noted that if the layer can be improved so that it can be held as much as possible without being moved downward, an electrolyte solution stratification preventing effect can be brought about. In particular, as a technical point that brings about the effect of preventing electrolyte stratification, how to increase the electrolyte retention ability (electrolyte downward movement prevention ability) of the separator surface layer portion in contact with the electrode plate surface among all separator layers. Focused on the point.
  • the idea of obtaining a separator that simultaneously brings about the effect of preventing the reduction of compression force and the effect of preventing the formation of electrolyte stratification is a single layer / single structure in which the average fiber diameter of the mainstream glass fiber is about 1 ⁇ m and the average pore diameter is about 3.7 ⁇ m.
  • the glass fiber average fiber diameter (average hole diameter level) is provided in the thickness direction, and only the separator surface layer portion in contact with the electrode plate surface has a glass fiber average fiber diameter lower than 1 ⁇ m (average pore diameter from 3.7 ⁇ m). It was also found that the electrolyte holding capacity (electrolytic solution downward movement preventing ability) was locally increased.
  • the point is to quickly supply the electrolyte held in the separator to the electrode plate side.
  • the idea of promoting the movement of the electrolyte at the interface (a method for increasing the adhesion between the electrode plate and the separator, a method for increasing the amount of electrolyte retained on the separator surface, etc.) has been proposed.
  • the inventors have also found that the movement of the electrolytic solution inside the separator, which has not been considered before, can be controlled by providing the average pore diameter of the fiber layer in the thickness direction of the separator.
  • the electrolyte layers in the thickness direction of the separator can be formed by forming fiber layers having different average pore sizes in the thickness direction of the separator in a laminated state and changing the electrolyte absorption capacity in each layer in the thickness direction of the separator. It was found that the movement of the electrolyte solution can be promoted, and as a result, the supply amount of the electrolyte can be increased.
  • the present invention is an invention based on the above knowledge, and the separator for a sealed lead-acid battery according to the first embodiment of the present invention is a wet papermaking sheet mainly composed of fine glass fibers in order to achieve the above object.
  • a sealed lead-acid battery separator comprising: a fine fiber layer composed of glass fibers having an average fiber diameter of 0.4 to 1.0 ⁇ m as the fine glass fibers, and an average pore diameter of 3.5 ⁇ m or less; and the fine glass fibers as A thick fiber layer composed of glass fibers having an average fiber diameter of 1.3 to 4.0 ⁇ m and having an average pore diameter of 4.0 ⁇ m or more and 1.5 times or more of the fine fiber layer in the thickness direction of the separator.
  • the thickness ratio between the fine fiber layer and the thick fiber layer is 10/90 to 50/50.
  • the glass fiber average fiber diameter in all layers of the separator is set to 1.2 ⁇ m or more so as to improve the effect of preventing the reduction of the compression force.
  • a fine fiber layer having an average fiber diameter of 0.9 ⁇ m or less (average pore diameter of 3.5 ⁇ m or less) is provided on the surface layer portions on both sides of the separator in contact with the electrode plate surface, and an electrolyte solution holding ability (electrolyte downward movement preventing ability) ) Is locally increased to improve the effect of preventing electrolyte stratification.
  • the glass fiber average fiber diameter level (average hole diameter level) in the thickness direction of the separator with respect to all the separator layers, while increasing the glass fiber average fiber diameter in all layers to 1.2 ⁇ m or more, Improvement of the electrolyte solution holding ability (electrolyte downward movement preventing ability) of the separator surface layer portion in contact with the plate surface was attempted.
  • the separator intermediate layer portion not in contact with the electrode plate surface is a thick fiber layer having a glass fiber average fiber diameter of 1.3 ⁇ m or more, so that the electrolyte solution holding capacity of the separator surface layer portion in contact with the electrode plate surface (below the electrolyte solution) While improving the movement prevention ability), the average fiber diameter of the glass fibers in all layers was set to 1.2 ⁇ m or more so as to improve the effect of preventing the reduction of the compression force.
  • the liquid from the thick fiber layer (large pore diameter) as the separator intermediate layer to the fine fiber layer (small pore diameter) as the separator surface layer was increased to improve the electrolyte supply capacity during high rate discharge.
  • the electrolyte holding power provided in the separator surface layer portion in contact with the electrode plate surface is locally The electrolyte retention capacity of the layer is increased, the electrolyte retention capacity and the electrolyte retention capacity of the layer are ensured, and the improvement of the electrolyte stratification prevention effect is ensured and the electrolyte supply capacity during high-rate discharge is improved. I tried to improve.
  • the sealed lead-acid battery separator according to the second embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, wherein the two fine fiber layers have substantially the same thickness.
  • the sealed lead-acid battery separator according to the third embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, wherein the two fine fiber layers have substantially the same average pore diameter.
  • the sealed lead-acid battery separator according to the fourth embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, wherein the separator is substantially composed only of the fine glass fiber.
  • the fine glass fiber constituting the layer has an average fiber diameter of 0.4 to 0.9 ⁇ m.
  • the sealed lead-acid battery separator according to the fifth embodiment is the thickness ratio between the fine fiber layer and the thick fiber layer in the entire layer in the sealed lead-acid battery separator according to the first embodiment. Is 10/90 or more and less than 25/75.
  • the sealed lead-acid battery separator according to the sixth embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, in which the fine fiber layer contains 50% by mass or more of the fine glass fiber and is acid resistant. And 0-30% by mass of organic fiber having heat-fusibility and 0-30% by mass of inorganic fine powder.
  • the sealed lead-acid battery separator according to the seventh embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, in which the thick fiber layer is 70% by mass or more of the fine glass fiber and has acid resistance. And 0-30 mass% of organic fibers having heat-fusibility.
  • the sealed lead-acid battery separator according to the eighth embodiment is the same as the sealed lead-acid battery separator according to the first embodiment, wherein the fine fiber layer and the thick fiber layer are wet to obtain the wet papermaking sheet. It is formed into a three-layer laminated structure in a wet state in the papermaking process.
  • the sealed lead-acid battery according to the ninth embodiment of the present invention is characterized by using the separator according to the first embodiment in order to achieve the above object.
  • the sealed lead-acid battery according to the tenth embodiment of the present invention is a sealed lead-acid battery in which a separator made of a wet papermaking sheet mainly composed of fine glass fibers is arranged between the electrode plates in order to achieve the above object.
  • the separator comprises a fine fiber layer composed of glass fibers having an average fiber diameter of 0.4 to 1.0 ⁇ m as the fine glass fibers and an average pore diameter of 3.5 ⁇ m or less, and an average fiber diameter of 1 as the fine glass fibers.
  • a thick fiber layer composed of glass fibers of 3 to 4.0 ⁇ m and having an average pore diameter of 4.0 ⁇ m or more and 1.5 times or more of the fine fiber layer is divided into two layers of the fine fibers in the thickness direction of the separator.
  • the sealed lead-acid battery according to the eleventh embodiment is the same as the sealed lead-acid battery according to the tenth embodiment, wherein the separator is a thickness ratio between the fine fiber layer and the thick fiber layer in all layers. Is 10/90 or more and less than 25/75.
  • a sealed lead-acid battery separator made of a fine glass fiber sheet having both functions of a retainer and a separator there are two causes of life deterioration of a sealed lead-acid battery that could not be achieved in the past (reduction in compression force and electrolyte solution).
  • the improvement in the pressure force reduction prevention effect and the improvement in the electrolyte solution stratification prevention effect, which are improvement requirements for the stratification) can be efficiently provided, and the life of the sealed lead-acid battery is further improved.
  • the electrolyte supply capability at the time of high rate discharge is increased, and the charge / discharge characteristics of the sealed lead-acid battery are further improved.
  • the sealed lead-acid battery separator of the present invention is a separator made of a wet papermaking sheet mainly composed of fine glass fibers, and is composed of glass fibers having an average fiber diameter of 0.4 to 1.0 ⁇ m as the fine glass fibers.
  • a sheet-like structure having a three-layer laminated structure (ABA laminated structure) so as to cover the glass, and the average fiber diameter of the glass fibers in the entire separator layer is 1.2 ⁇ m or more.
  • the fine fiber layer and the thick fiber layer in The thickness ratio is 10/90 to 50/50.
  • the average fiber diameter of the glass fibers in the entire separator layer By setting the average fiber diameter of the glass fibers in the entire separator layer to 1.2 ⁇ m or more, the repulsive force of the entire separator layer is increased, and the effect of preventing the reduction of the pressing force can be improved. Further, a fine fiber layer having a glass fiber average fiber diameter of 1.0 ⁇ m or less and an average pore diameter of 3.5 ⁇ m or less, or a glass fiber average fiber diameter of 0.9 ⁇ m or less is provided on the surface layer portions on both sides of the separator in contact with the electrode plate surface.
  • the separator intermediate layer portion not in contact with the electrode plate surface is a thick fiber layer having a glass fiber average fiber diameter of 1.3 ⁇ m or more and an average pore diameter of 4.0 ⁇ m or more. While improving the liquid downward movement preventing ability), the glass fiber average fiber diameter in the entire separator layer can be set to 1.2 ⁇ m or more to improve the effect of preventing the reduction of the compression force. Further, by providing the separator in the thickness direction of the average pore diameter in the thickness direction of the separator, that is, by making the average pore diameter of the thick fiber layer 1.5 times or more that of the fine fiber layer, the thickness of the separator intermediate layer is increased.
  • the liquid mobility from the fiber layer (large pore diameter) to the fine fiber layer (small pore diameter) of the separator surface layer in contact with the electrode plate surface can be improved, and the electrolyte supply capability during high rate discharge can be improved.
  • the thickness ratio of the fine fiber layer and the thick fiber layer in the entire separator layer to 10/90 or more (the total thickness of the fine fiber layer in the separator all layers is 10% or more of the total layer thickness)
  • the thickness ratio of the fine fiber layer and the thick fiber layer in the entire separator layer exceeds 50/50, it becomes difficult to improve the effect of preventing the pressure reduction, and the glass of 0.9 ⁇ m or less occupying the entire separator layer.
  • the ratio of the fiber material is high, and the unit price of the glass fiber material in the entire layer of the separator is high. Therefore, the thickness ratio of the fine fiber layer and the thick fiber layer in the entire separator layer is more preferably 40/60 or less, and more preferably less than 25/75.
  • the average fiber diameter of the glass fibers constituting the fine fiber layer is more preferably 0.5 ⁇ m or more, and further preferably 0.6 ⁇ m or more.
  • the average pore diameter of the fine fiber layer is more preferably 0.5 ⁇ m or more, and further preferably 1.0 ⁇ m or more.
  • the average fiber diameter of the glass fiber constituting the thick fiber layer exceeds 4.0 ⁇ m, it becomes difficult to achieve both the improvement of the effect of preventing the pressure force reduction and the effect of preventing the stratification of the electrolyte solution.
  • the moisture content (electrolytic solution holding power) decreases, and the strength of the thick fiber layer becomes difficult to obtain, which is not suitable. Therefore, the average fiber diameter of the glass fibers constituting the thick fiber layer is preferably 3.5 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the average pore diameter of the thick fiber layer is preferably 17 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 13 ⁇ m or less.
  • the two fine fiber layers disposed on both sides of the thick fiber layer may have a total thickness of 10% or more of the total layer thickness, but the two layers are the positive electrode plate surface and the negative electrode plate surface.
  • the positive electrode plate is used for battery design.
  • the electrolyte layer stratification prevention effect is improved by providing a fine fiber layer Fluidity from the thick fiber layer of the separator intermediate layer to the fine fiber layer of the separator surface layer.
  • the thickness of the fine fiber layer of two layers is preferably substantially the same. For the same reason, it is preferable that the average pore diameters of the two fine fiber layers are substantially the same.
  • the two fine fiber layers arranged on both sides of the thick fiber layer may have different thicknesses depending on the actual battery design.
  • the thickness of one layer of the two fine fiber layers is preferably 105 to 300% of the thickness of the other layer.
  • the two fine fiber layers are in contact with both the positive electrode plate surface and the negative electrode plate surface, one layer is in contact with the positive electrode plate surface (positive electrode plate contact layer), and the other layer is in contact with the negative electrode plate surface.
  • a layer having a larger thickness among the two fine fiber layers may be configured toward the negative plate side (to be a negative plate contact layer). preferable.
  • the positive electrode surface absorbs water at the same time as charging and releases sulfuric acid and absorbs sulfuric acid at the same time as discharge.
  • the negative electrode surface discharges sulfuric acid during charging and absorbs sulfuric acid during discharging. is doing.
  • an active electrolyte is being exchanged with the separator layer having the electrolyte holding power, which is an adjacent layer, and the separator layer has a suitable electrolysis. It is designed to have the ability to transfer and receive liquids (holding capacity and holding speed as well as supply capacity and supply speed).
  • the two fine fiber layers are required to retain the sulfuric acid released from the electrode plate in the layer and increase the effect of preventing the stratification of the electrolyte solution.
  • the electrolyte is absorbed and released simultaneously, whereas on the negative electrode plate surface, only the electrolyte is discharged during charging and only the electrolyte is absorbed during discharge.
  • the apparent amount of electrolyte movement between the plate surface and the separator adjacent to the plate surface is greater on the negative electrode plate surface than on the positive electrode plate surface.
  • the separator surface layer on the side in contact with the separator surface layer on the side in contact with the surface of the positive electrode plate has a higher level of electrolyte transfer capability (holding capacity and holding speed as well as supply capacity and supply speed, particularly here the holding capacity and supply capacity). Ie tank machine ) Is required. Therefore, as described above, the thickness of one of the two fine fiber layers is set to 105 to 300% of the thickness of the other layer, and the fine fiber layer having a larger thickness is directed toward the negative electrode plate.
  • a thin fiber layer with a smaller thickness is configured toward the positive electrode plate side, apparent electrolysis between the electrode plate surface on the positive electrode side and the negative electrode side and the separator adjacent thereto
  • a thin fiber layer with a small thickness and a low tank function is configured on the side of the positive electrode plate with a low movement amount, and a thin layer with a large thickness and a high tank function on the side of the negative electrode plate with a high movement amount.
  • the fiber layer can be configured, and the electrolyte solution stratification prevention effect by the two fine fiber layers can be exhibited, while the electrolyte solution exchange ability with the negative electrode plate surface is enhanced, and the battery reaction on the negative electrode side can be efficiently performed.
  • the battery capacity of the entire battery is improved.
  • the thickness of one of the two fine fiber layers exceeds 300% of the thickness of the other layer, the thickness of the fine fiber layer having a smaller thickness becomes too small, and the object of the present invention This is not preferable because there is a risk that the effect of preventing stratification of the electrolyte by the fine fiber layer is impaired.
  • the two fine fiber layers arranged on both sides of the thick fiber layer may have different average pore sizes depending on the actual battery design.
  • the average pore diameter of one of the two fine fiber layers is preferably 105 to 200% (however, 3.5 ⁇ m or less) of the average pore diameter of the other layer.
  • the two fine fiber layers are in contact with both the positive electrode plate surface and the negative electrode plate surface, one layer is in contact with the positive electrode plate surface (positive electrode plate contact layer), and the other layer is in contact with the negative electrode plate surface.
  • the fine fiber layer having a larger average pore diameter among the two fine fiber layers is configured toward the negative electrode plate side (to be a negative electrode plate contact layer). It is preferable.
  • the average pore size of one of the two fine fiber layers is 105 to 200% (however, 3.5 ⁇ m or less) of the average pore size of the other layer, and the fine fiber having a larger average pore size.
  • the layer is configured toward the negative electrode plate side and the fine fiber layer having a smaller average pore diameter is configured toward the positive electrode plate side, the positive electrode surface on the positive electrode side and the negative electrode side and the separator adjacent thereto In accordance with the difference in the apparent amount of electrolyte movement between the positive electrode plate with a low movement amount, a fine fiber layer with a small average pore diameter and a low liquid movement speed is formed, and on the negative electrode plate side with a high movement amount.
  • a fine fiber layer having a large average pore diameter and a high liquid moving speed can be formed, and the electrolyte solution stratification prevention effect by the two fine fiber layers is enhanced, while the electrolyte solution receiving ability with the negative electrode plate surface is enhanced, Side battery reaction can be performed efficiently, Battery capacity Te is improved.
  • the average pore diameter of one of the two fine fiber layers exceeds 200% of the average pore diameter of the other layer, the average pore diameter of the fine fiber layer having a larger average pore diameter becomes too large, and the object of the present invention This is not preferable because there is a risk that the effect of preventing stratification of the electrolyte by the fine fiber layer is impaired.
  • the separator of the present invention is a separator made of a wet papermaking sheet mainly composed of fine glass fibers, and, as long as the object of the present invention is not impaired, according to required specifications and required characteristics, for example, a wet papermaking sheet.
  • Various sub-materials such as organic fiber to increase mechanical strength, inorganic fine powder to suppress the growth of dendrite (dendritic lead) (causal substance of battery short circuit) generated by charging and discharging of the battery, etc.
  • dendrite dendritic lead
  • additives can be mixed and used. However, in order to easily improve the effect of preventing the decrease in compression force and the effect of preventing the formation of electrolyte stratification, it is preferable that the additive material is substantially composed only of glass fibers.
  • organic fiber an organic fiber having acid resistance and heat-sealing property made of polyolefin, polyester, polyacrylonitrile, polyaramid or the like can be used.
  • the binder effect can be exhibited and the strength of the fiber layer and separator can be supplemented.
  • the inorganic fine powder an inorganic fine powder made of silica, diatomaceous earth, glass, smectite or the like can be used.
  • the pore diameter of the fiber layer and the separator can be reduced, the pore structure can be complicated, and the effect of suppressing the growth of dendrites, which can cause a battery short circuit, can be imparted.
  • the inorganic fine powder preferably has a specific surface area of 50 m 2 / g or more, more preferably 100 m 2 / g or more.
  • organic fiber and inorganic fine powders are in a minimum amount according to required specifications and required characteristics within a range not impairing the object of the present invention.
  • organic fiber and inorganic fine powder are mixed and used for the above-mentioned purpose.
  • the fine glass fiber is 50% by mass or more, and has an acid resistance and heat fusion property.
  • a structure containing 0 to 30% by mass of fibers and 0 to 30% by mass of inorganic fine powder is preferable.
  • the thick fiber layer 70% by mass or more of fine glass fibers, and organic fibers having acid resistance and heat-fusibility are included. A constitution containing 0 to 30% by mass is preferable.
  • the inorganic fine powder can be efficiently suppressed from growing dendrite that precipitates and grows from the surface of the negative electrode plate by being included in the fine fiber layer of the separator in contact with the electrode plate surface.
  • acid-resistant C glass is flame-processed (a method in which molten glass is flowed down from a nozzle at the bottom of a melting furnace into a filament and blown away with a high-speed flame) or a centrifugal method (melted glass is rotated at high speed).
  • the short glass fiber In the short glass fiber, it is mixed with the original short glass fiber, the end of the fiber has a teardrop-like lump, the fiber is partially thickened, before being blown away with a flame or high-speed airflow There are cases where a small amount of granular materials or fibrous materials having a relatively large size are mixed with the original short glass fibers such as those in which thick fibers remain as they are (this is usually called a shot).
  • the separator of the present invention is not limited as long as the fine fiber layer having the characteristics described above and the thick fiber layer having the characteristics described above have a three-layer laminated structure having the characteristics described above. Or it may not be integrated.
  • a wet papermaking sheet separator having a three-layer structure of a fine fiber layer and a thick fiber layer of the present invention is obtained by laminating and integrating a wet papermaking sheet that becomes a fine fiber layer and a wet papermaking sheet that becomes a thick fiber layer.
  • the fine fiber layer and the thick fiber layer are formed (or simultaneously with the formation) and are obtained by laminating and integrating in a wet state (superimposing wet paper sheets) It is preferable that it is obtained by combining the former method and the latter method), or by combining the former method and the latter method.
  • a fine fiber layer and a thick fiber layer are formed (or simultaneously with the formation) in a wet state. Those obtained by laminating integrally remains more preferred.
  • the total thickness of the separator of the present invention is not particularly limited, but can be, for example, about 1 to 3 mm.
  • the sealed lead-acid battery according to the present invention has a structure in which a wet papermaking sheet separator having a three-layer laminated structure of the above-described characteristics is disposed between the electrode plates, and the fine fiber layer of the above-described characteristics and the thick fiber layer of the above-described characteristics.
  • a separator in which a fine fiber layer and a thick fiber layer are laminated and integrated may be incorporated, or a wet paper sheet that becomes a fine fiber layer and a wet paper sheet that becomes a thick fiber layer. You may make it integrate and integrate.
  • the pasting paper provided on the surface of the electrode plate is configured as a fine fiber layer having the above-described characteristics
  • the separator is configured as a thick fiber layer having the above-described characteristics.
  • the structure is substantially the same as the battery structure in which the wet papermaking sheet separator having the three-layer laminated structure having the above-described characteristics is arranged between the electrode plates, and brings about the same effects as the effects of the present invention described above. Can do.
  • Example 1 A wet sheet (fine fiber sheet) obtained by wet-making 100% by mass of short C glass fibers having an average fiber diameter of 0.5 ⁇ m and a wet form by wet-making 100% by mass of short C glass fibers having an average fiber diameter of 1.2 ⁇ m
  • a sheet with a three-layered structure (a thick fiber sheet) is laminated in the order of fine fiber sheet-thick fiber sheet-fine fiber sheet, integrated in a wet state, and dried. (Thickness 2.0 mm) was obtained.
  • Example 1 a separator having a three-layer structure (thickness: 2.0 mm) was obtained according to the conditions shown in Tables 1 to 4, respectively.
  • Example 51 85% by mass of short C glass fibers having an average fiber diameter of 0.8 ⁇ m, an organic fiber having acid resistance and heat-sealing properties, an average fineness of 1.3 dtex, an average fiber length of 5 mm, and a core component of polyethylene terephthalate (melting point of about 245?
  • Example 52 A wet sheet (fine fiber) prepared by wet-making paper 75% by mass of short C glass fibers having an average fiber diameter of 0.9 ⁇ m and 25% by mass of polyethylene terephthalate / copolymerized polyester core-sheath composite fiber used in Example 51 Sheet), 85% by mass of C glass short fibers having an average fiber diameter of 1.8 ⁇ m, and 15% by mass of the polyethylene terephthalate / copolymerized polyester core-sheath type composite fiber used in Example 51, while still wet.
  • a sheet (thick fiber sheet) is laminated in the order of fine fiber sheet-thick fiber sheet-fine fiber sheet, integrated in a wet state, and dried to form a separator having a three-layer structure (thickness 2) 0.0 mm).
  • Silica fine powder 20 having 65% by mass of short C glass fibers having an average fiber diameter of 1.0 ⁇ m, 15% by mass of polyethylene terephthalate / copolyester core-sheath type composite fiber used in Example 51, and a specific surface area of 200 m 2 / g.
  • a wet sheet (thick fiber sheet) made by wet-making 15% by mass of composite fiber is laminated in the order of fine fiber sheet-thick fiber sheet-thin fiber sheet and integrated in the wet state. And dried to obtain a separator having a three-layer structure (thickness: 2.0 mm).
  • 100% by mass of C glass short fibers having an average fiber diameter of 0.6 ⁇ m were wet-made and dried to obtain a single-layer separator (thickness 2.0 mm).
  • Comparative Examples 6 to 10 Similarly to Comparative Example 5, a single-layer separator (thickness 2.0 mm) was obtained according to the conditions shown in Table 4, respectively.
  • Moisture content (%) (W 2 ⁇ W 1 ) ⁇ W 2 ⁇ 100 ⁇ Pressing force>
  • the separator sample cut to 10 cm ⁇ 10 cm is placed in a plastic bag so as to have a total thickness of about 6 mm, and then sandwiched in a horizontal pressure device equipped with a load cell at a pressure of 40 kg / 100 cm 2 , and a specific gravity of 1.3
  • the sulfuric acid solution is injected at intervals of 5 g, and the pressure at each injection is measured. The injection is performed until the sulfuric acid solution overflows from the separator sample to the surface. Next, the sulfuric acid solution overflowing on the surface of the separator sample is extracted, and the amount of the extracted solution and the pressure at that time are measured.
  • the sulfuric acid solution held inside the separator sample is forcibly extracted by a syringe, and each time the sample is extracted, the amount of the extracted solution and the pressure at that time are measured. This operation is performed until the sulfuric acid solution cannot be extracted from the separator sample.
  • a graph as shown in FIG. 1 of Japanese Patent Application Laid-Open No. 5-67463 is created by taking the amount of liquid injection (the amount of liquid adhered to the separator sample) on the horizontal axis and the pressure on the vertical axis.
  • the approximate behavior shown in the graph is that the pressure gradually decreases after the start of injection, the pressure gradually decreases at a certain point, then the pressure gradually increases, and finally, the pressure increases and stops changing. .
  • the amount of liquid on the horizontal axis (the amount of liquid adhering to the separator sample) at the time when this pressure starts to rise and stops changing (point A in FIG. %,
  • the pressure is 65%, the pressure (kg / 100 cm 2 ) is read and used as the compression force (kg / 100 cm 2 ).
  • ⁇ Liquid drop speed The separator sample is sufficiently impregnated with water and is sandwiched between acrylic plates so that the pressure is 50 kg / 100 cm 2 , and a colored sulfuric acid solution having a specific gravity of 1.3 is poured from above, and the falling distance of the colored sulfuric acid solution after 60 minutes ( mm) to measure the liquid drop speed (mm / hr).
  • ⁇ Liquid transfer amount Separator samples A, B, and C (A: outer layer, B: intermediate layer, C: outer layer) having the same thickness and having a size of 10 cm ⁇ 10 cm are prepared, and weights (A 1 , B 1 , C 1 ) are measured.
  • the separator sample B is sufficiently filled with water and left on a 45 ° inclined plate for 5 minutes.
  • the weight (B 2 ) of separator sample B at this time is measured.
  • the separator sample B is sandwiched between the separator samples A and C from both sides, and a pressure of 50 kPa is applied and left for 60 minutes (water contained in the separator sample B is soaked into the separator samples A and C).
  • the weights (A 3 , B 3 , C 3 ) of the separator samples A, B, C at this time are measured. It should be noted that the amount of liquid (B 5 ) that the separator sample B can hold when pressurized by 50 kPa is measured in advance.
  • the weight (B 1 ) of the separator sample B having a size of 10 cm ⁇ 10 cm is measured.
  • pressurization of 50 kPa is applied to remove excess moisture, and the sample is left for 60 minutes, and the weight (B 4 ) is measured.
  • the amount of liquid (B 5 ) that the separator sample B can hold when pressurized by 50 kPa is calculated as (B 4 -B 1 ).
  • the amount of liquid movement (g / 100 cm 2 / hr) moved between the separator samples is calculated by the following equation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

 微細ガラス繊維主体の湿式抄造シートからなる密閉型鉛蓄電池用セパレータにおいて、微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層と、微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ細繊維層の1.5倍以上である太繊維層とが、セパレータの厚さ方向に、2層の細繊維層で1層の太繊維層を両面から覆うように3層の積層構造をなした構造体であり、全層におけるガラス繊維の平均繊維径が1.2μm以上で、全層における細繊維層と太繊維層との厚さ比率が10/90~50/50であるようにすることで、密閉型鉛蓄電池における圧迫力低下防止と電解液成層化防止の向上を同時にもたらすことができ、セパレータ内部の電解液移動性を向上させるようにする。

Description

密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池
 本発明は、セパレータを極板とともに積層した極板群を形成してなる密閉型鉛蓄電池(JIS C 8707(陰極吸収式シール形据置鉛蓄電池)またはJIS C 8704-2(制御弁式据置鉛蓄電池)に定義される)においてリテーナとセパレータの機能を併せ持つ微細ガラス繊維シートからなる密閉型鉛蓄電池用セパレータに関する。また、そのセパレータを用いた密閉型鉛蓄電池に関する。
 従来、このような密閉型鉛蓄電池用セパレータとしては、リテーナとセパレータの機能を併せ持たせるために、微細ガラス繊維、特に、平均繊維径が1μm程度のガラス繊維を主体として構成した平均孔径が3.7μm程度の、積層あるいは複合構造を有しない単層・単一構成の不織布シート(湿式抄造シート)が主流として使用されている。
 密閉型鉛蓄電池は、主に、コンピュータ機器や通信用機器のバックアップ用電源、電動車の動力源、ビルや病院等の非常用電源などに使用され、自動車用途には、主に液式鉛蓄電池が使用されているが、最近の自動車において、アイドリングストップアンドスタートシステムが採用されるようになり、液式鉛蓄電池よりもサイクル寿命特性に優れ取り扱いが安全かつ楽で設置場所が制限されない密閉型鉛蓄電池が搭載されるようになっている。したがって、このような用途の密閉型鉛蓄電池には、長寿命化と、エンジン始動性を向上させるための高率放電特性の向上が求められる。
 最近の密閉型鉛蓄電池の寿命劣化モードとして、主に、極板群における電解液含浸後の圧迫力の低下(セパレータ厚さの低下が主因。以下「圧迫力低下」という)と、電解液の成層化(充放電の繰り返しにより電池上下で電解液の比重差が生じる現象。以下「電解液成層化」または「成層化」という)という二つの原因が指摘されている。したがって、最近の密閉型鉛蓄電池において電池寿命を一層向上させる理想の電池を得るには、前記した二つの寿命劣化原因(圧迫力低下と電解液成層化)を同時に改善することが必要とされる。また、高率放電特性を向上させるためには、電池内の電解液の移動を促進させることが必要とされる。
 しかしながら、前記した従来主流の積層あるいは複合構造を有しない単層・単一構成のセパレータにおいては、前記した二つの寿命劣化原因(圧迫力低下と電解液成層化)のうち個々の寿命劣化原因を改善する技術については提案がなされているものの、前記した二つの寿命劣化原因(圧迫力低下と電解液成層化)を同時に改善する技術についてはこれまで提案がなされていない。この理由は、前記した二つの寿命劣化原因(圧迫力低下と電解液成層化)を改善するために行われるセパレータの改善事項は、相反する挙動を示すものとなるため、積層あるいは複合構造を有しない単層・単一構成のセパレータ上でこの相反する挙動を両立させることが困難であったためと考えられる。
 また、前記した従来主流の積層あるいは複合構造を有しない単層・単一構成のセパレータにおいては、高率放電特性を向上させるための電池内の電解液の移動の考え方として、極板とセパレータの界面での電解液の移動を改善する技術については提案がなされているものの、セパレータ内部での電解液の移動を改善する技術についてはこれまで提案がなされていない。この理由は、積層あるいは複合構造を有しない単層・単一構成のセパレータでは、セパレータ内部は均一の孔構造を有するため、セパレータ内部で電解液の移動を制御することが困難であったためと考えられる。
 そこで、本発明は、前記従来の問題点に鑑み、リテーナとセパレータの機能を併せ持つ微細ガラス繊維シートからなる密閉型鉛蓄電池用セパレータにおいて、従来両立し得なかった密閉型鉛蓄電池の二つの寿命劣化原因(圧迫力低下と電解液成層化)に対する改善要求事項である圧迫力低下防止効果と電解液成層化防止効果の向上を同時にもたらすことができ、かつ、高率放電特性を向上させるべくセパレータ内部での電解液の移動を促進させることのできるセパレータとそれを用いた密閉型鉛蓄電池を提供することを目的とする。
 本発明者等は、前記目的を達成するため、鋭意検討した結果、以下の知見を得た。電解液成層化は、極板から放出された高比重の硫酸が主にセパレータ内を通って下方に移動することで起きる現象であることから、極板から放出された硫酸を極板と接するセパレータ層で下方に移動させることなくできるだけ保持するように改善できれば、電解液成層化防止効果をもたらすことができることに着目した。特に、この電解液成層化防止効果をもたらす技術的ポイントとして、セパレータ全層の中でも特に極板面と接するセパレータ表面層部分の電解液保持能力(電解液下方移動防止能力)を如何に高めるかがポイントとなることに着目した。
 一方、圧迫力低下防止効果をもたらすには、ガラス繊維径を太くし繊維層の孔径を大きくして反発力を高めることが有効であり、そのためには、セパレータ全層でのガラス繊維平均繊維径を高めることが有効である。したがって、圧迫力低下防止効果と電解液成層化防止効果を同時にもたらすセパレータを得る思想としては、従来主流のガラス繊維平均繊維径が約1μmで平均孔径が約3.7μmの単層・単一構成のセパレータを基準に、全層でのガラス繊維平均繊維径を1μmよりも高めに設定することで、圧迫力低下防止効果を確保した上で、電解液成層化防止効果をもたらすために、セパレータの厚さ方向にガラス繊維平均繊維径の高低(平均孔径の高低)を設け、極板面と接するセパレータ表面層部分のみを、ガラス繊維平均繊維径を1μmよりも低め(平均孔径を3.7μmよりも低め)に設定して電解液保持能力(電解液下方移動防止能力)を局部的に高めることを見出した。
 また、短時間大電流放電性能である高率放電特性を向上させるには、セパレータに保持された電解液を極板側へ如何に素早く供給するかがポイントであり、従来、極板とセパレータの界面での電解液の移動を促進しようとする考え方(極板とセパレータの密着性を高める方法,セパレータ表面部の電解液保持量を高める方法など)が提案されていたが、本発明者等は、従来考えの及ばなかったセパレータ内部の電解液の移動についても、セパレータの厚さ方向に繊維層の平均孔径の高低を設けることで、これを制御できることを見出した。つまり、セパレータの厚さ方向に平均孔径の異なる繊維層を積層状態に構成するようにし、セパレータの厚さ方向に各層で電解液吸収力を変化させることで、セパレータの厚さ方向での電解液の移動を促進することができ、結果として電解液の供給量を高めることができることを見出した。
 本発明は、上記知見に基づきなされた発明であって、本発明の第1の実施の形態の密閉型鉛蓄電池用セパレータは、前記目的を達成するべく、微細ガラス繊維を主体とした湿式抄造シートからなる密閉型鉛蓄電池用セパレータにおいて、前記微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層と、前記微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ前記細繊維層の1.5倍以上である太繊維層とが、セパレータの厚さ方向に、2層の前記細繊維層で1層の前記太繊維層を両面から覆うように3層の積層構造をなした構造体であり、全層における前記ガラス繊維の平均繊維径が1.2μm以上で、全層における前記細繊維層と前記太繊維層との厚さ比率が10/90~50/50であることを特徴とする。
 ここでは、セパレータ全層におけるガラス繊維平均繊維径を1.2μm以上とすることで、圧迫力低下防止効果の向上を図るようにした。また、極板面と接するセパレータ両面の表面層部分に、ガラス繊維平均繊維径0.9μm以下(平均孔径3.5μm以下)の細繊維層を設け、電解液保持能力(電解液下方移動防止能力)を局部的に高めることで、電解液成層化防止効果の向上を図るようにした。また、セパレータ全層に対しセパレータの厚さ方向にガラス繊維平均繊維径の高低(平均孔径の高低)を設けることで、全層におけるガラス繊維平均繊維径を1.2μm以上と高めながらも、極板面と接するセパレータ表面層部分の電解液保持能力(電解液下方移動防止能力)の向上を図るようにした。また、極板面と接しないセパレータ中間層部分を、ガラス繊維平均繊維径1.3μm以上の太繊維層とすることで、極板面と接するセパレータ表面層部分の電解液保持能力(電解液下方移動防止能力)の向上を図るようにしながらも、全層におけるガラス繊維平均繊維径を1.2μm以上とし圧迫力低下防止効果の向上を図るようにした。また、セパレータ全層に対しセパレータの厚さ方向に平均孔径の高低を設けることで、セパレータ中間層である太繊維層(孔径大)からセパレータ表面層である細繊維層(孔径小)への液移動性を高め高率放電時の電解液供給能力の向上を図るようにした。また、セパレータ全層における細繊維層と太繊維層との厚さ比率を10/90~50/50とすることで、極板面と接するセパレータ表面層部分に設けた電解液保持力を局部的に高めた層の電解液保持量を確保し、当該層の電解液保持力と電解液保持量を確保して確実に電解液成層化防止効果の向上と高率放電時の電解液供給能力の向上を図るようにした。
 また、第2の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記2層の細繊維層の厚さは略同一であることを特徴とする。
 また、第3の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記2層の細繊維層の平均孔径は略同一であることを特徴とする。
 また、第4の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記セパレータが実質的に前記微細ガラス繊維のみから構成され、前記細繊維層を構成する前記微細ガラス繊維の平均繊維径が0.4~0.9μmであることを特徴とする。
 また、第5の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記全層における前記細繊維層と前記太繊維層との厚さ比率が10/90以上25/75未満であることを特徴とする。
 また、第6の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記細繊維層が、前記微細ガラス繊維を50質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%、無機質微粉体を0~30質量%含むことを特徴とする。
 また、第7の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記太繊維層が、前記微細ガラス繊維を70質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%含むことを特徴とする。
 また、第8の実施の形態の密閉型鉛蓄電池用セパレータは、第1の実施の形態の密閉型鉛蓄電池用セパレータにおいて、前記細繊維層と前記太繊維層は、前記湿式抄造シートを得る湿式抄造工程において湿潤状態のまま3層の積層構造体に形成されたものであることを特徴とする。
 また、本発明の第9の実施の形態の密閉型鉛蓄電池は、前記目的を達成するべく、第1の実施の形態のセパレータを使用したことを特徴とする。
 また、本発明の第10の実施の形態の密閉型鉛蓄電池は、前記目的を達成するべく、微細ガラス繊維を主体とした湿式抄造シートからなるセパレータが極板間に配置された密閉型鉛蓄電池において、前記セパレータは、前記微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層と、前記微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ前記細繊維層の1.5倍以上である太繊維層とが、セパレータの厚さ方向に、2層の前記細繊維層で1層の前記太繊維層を両面から覆うように3層の積層構造をなした構造体で、全層における前記ガラス繊維の平均繊維径が1.2μm以上、全層における前記細繊維層と前記太繊維層との厚さ比率が10/90~50/50のセパレータであり、前記極板面と接する面は前記細繊維層のみであることを特徴とする。
 また、第11の実施の形態の密閉型鉛蓄電池は、第10の実施の形態の密閉型鉛蓄電池において、前記セパレータは、前記全層における前記細繊維層と前記太繊維層との厚さ比率が10/90以上25/75未満であることを特徴とする。
 本発明によれば、リテーナとセパレータの機能を併せ持つ微細ガラス繊維シートからなる密閉型鉛蓄電池用セパレータにおいて、従来両立し得なかった密閉型鉛蓄電池の二つの寿命劣化原因(圧迫力低下と電解液成層化)に対する改善要求事項である圧迫力低下防止効果の向上と電解液成層化防止効果の向上を効率的に与えることができ、密閉型鉛蓄電池の一層の寿命向上をもたらす。また、セパレータの厚さ方向の電解液移動性が促進されることで、高率放電時の電解液供給能力が高まり密閉鉛蓄電池の一層の充放電特性の向上をもたらす。
 本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体とした湿式抄造シートからなるセパレータであって、前記微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層(A層)と、前記微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ前記細繊維層の1.5倍以上である太繊維層(B層)とが、セパレータの厚さ方向に、2層の前記細繊維層(A層)で1層の前記太繊維層(B層)を両面から覆うように3層の積層構造(A-B-A積層構造)をなしたシート状の構造体であり、セパレータ全層における前記ガラス繊維の平均繊維径が1.2μm以上で、セパレータ全層における前記細繊維層と前記太繊維層との厚さ比率が10/90~50/50であることを条件とする。
 セパレータ全層におけるガラス繊維平均繊維径を1.2μm以上とすることで、セパレータ全層の反発力が高まり圧迫力低下防止効果の向上を図ることができる。また、極板面と接するセパレータ両面の表面層部分に、ガラス繊維平均繊維径1.0μm以下かつ平均孔径3.5μm以下、あるいは、ガラス繊維平均繊維径0.9μm以下の細繊維層を設けることで、極板面と接するセパレータ両面の表面層部分の電解液保持能力(電解液下方移動防止能力)を高め、電解液成層化防止効果の向上を図ることができる。また、セパレータ全層に対しセパレータの厚さ方向にガラス繊維平均繊維径の高低(平均孔径の高低)を設けることで、セパレータ全層の反発力を高めながら、セパレータ表面層部分の電解液保持能力(電解液下方移動防止能力)の向上を図ることができる。また、極板面と接しないセパレータ中間層部分を、ガラス繊維平均繊維径1.3μm以上かつ平均孔径4.0μm以上の太繊維層とすることで、セパレータ表面層部分の電解液保持能力(電解液下方移動防止能力)の向上を図りながらも、セパレータ全層におけるガラス繊維平均繊維径を1.2μm以上とし圧迫力低下防止効果の向上を図ることができる。また、セパレータ全層に対しセパレータの厚さ方向に平均孔径の高低を設けることで、つまり、太繊維層の平均孔径を細繊維層の1.5倍以上とすることで、セパレータ中間層の太繊維層(孔径大)から極板面と接するセパレータ表面層の細繊維層(孔径小)への液移動性を高め、高率放電時の電解液供給能力の向上を図ることができる。また、セパレータ全層における細繊維層と太繊維層との厚さ比率を10/90以上(セパレータ全層における細繊維層の厚さ合計を全層厚さの10%以上)とすることで、極板面と接するセパレータ両面の表面層部分に設けた電解液保持力を局部的に高めた層の電解液保持量を確保し、当該層の電解液保持力と電解液保持量を確保して確実に電解液成層化防止効果の向上を図ることができる。
 尚、セパレータ全層における細繊維層と太繊維層との厚さ比率が50/50を超えると、圧迫力低下防止効果の向上を図りにくくなるとともに、セパレータ全層に占める0.9μm以下のガラス繊維材料の割合が高くなりセパレータ全層でのガラス繊維材料単価が高くなるので不適である。よって、セパレータ全層における細繊維層と太繊維層との厚さ比率は40/60以下、更には25/75未満であることがより好ましい。
 また、細繊維層を構成するガラス繊維の平均繊維径が0.4μm未満であると、圧迫力低下防止効果の向上と電解液成層化防止効果の向上の両立を図りにくくなるともに、細繊維層の密度が向上して空隙率が低下し電気抵抗を高めるとともに、セパレータ全層でのガラス繊維材料単価が高くなるので不適である。よって、細繊維層を構成するガラス繊維の平均繊維径は0.5μm以上、更には0.6μm以上であることがより好ましい。尚、同様の理由により、細繊維層の平均孔径は、0.5μm以上、更には1.0μm以上であることがより好ましい。
 また、太繊維層を構成するガラス繊維の平均繊維径が4.0μmを超えると、圧迫力低下防止効果の向上と電解液成層化防止効果の向上の両立を図りにくくなるとともに、太繊維層の含水率(電解液保持力)が低下するとともに、太繊維層の強度が得られにくくなるので不適である。よって、太繊維層を構成するガラス繊維の平均繊維径は3.5μm以下、更には3.0μm以下であることがより好ましい。尚、同様の理由により、太繊維層の平均孔径は、17μm以下、更には15μm以下、更には13μm以下であることがより好ましい。
 また、太繊維層の両面に配置する2層の細繊維層は、2層の厚さ合計が全層厚さの10%以上であればよいが、2層が正極板面と負極板面の両方に接し、一方の層が正極板面と接する層(正極板当接層)で他方の層が負極板面と接する層(負極板当接層)となる場合に、電池設計上正極板当接層と負極板当接層の異なる厚さ比率を適宜設定することが求められる場合など、特別の理由がない通常の場合は、細繊維層を設けたことによる電解液成層化防止効果の向上を図り易くするとともに、圧迫力低下防止効果の向上と電解液成層化防止効果の向上の両立を図り易くするとともに、セパレータ中間層の太繊維層からセパレータ表面層の細繊維層への液移動性及び液移動量をセパレータ両面(正極板当接層と負極板当接層)で均一化するため、2層の細繊維層の厚さは略同一とすることが好ましい。尚、同様の理由により、2層の細繊維層の平均孔径は略同一とすることが好ましい。
 また、太繊維層の両面に配置する2層の細繊維層は、実際の電池設計に応じて、互いに異なる厚さとなるようにしてもよい。この場合、前記2層の細繊維層の一方の層の厚さは、他方の層の厚さの105~300%であることが好ましい。更に、前記2層の細繊維層が正極板面と負極板面の両方に接し、一方の層が正極板面と接する層(正極板当接層)で他方の層が負極板面と接する層(負極板当接層)となる場合には、前記2層の細繊維層のうちより厚さの大きい層が負極板側に向けて構成される(負極板当接層とされる)ことが好ましい。鉛蓄電池の充放電反応において、正極板表面では充電時には水を吸収すると同時に硫酸を放出し放電時には硫酸を吸収すると同時に水を放出し、負極板表面では充電時には硫酸を放出し放電時には硫酸を吸収している。このように、特に密閉型鉛蓄電池の極板表面では、隣接層である電解液保持力を有したセパレータ層との間で活発な電解液の授受が行われており、セパレータ層はそれに見合う電解液の授受能力(保持容量と保持速度並びに供給容量と供給速度)を有するよう設計される。ところで、前記2層の細繊維層は極板から放出された硫酸を当該層に保持し電解液成層化防止効果を高めることが求められているが、前述の通り、正極板表面では、充電時、放電時いずれにおいても電解液の吸収と放出とが同時に行われるのに対し、負極板表面では、充電時には電解液の放出のみが行われ放電時には電解液の吸収のみが行われており、極板表面とそれに隣接するセパレータとの間での見掛け上の電解液移動量は、正極板表面での移動量よりも負極板表面での移動量の方が高くなることから、負極板表面に当接する側のセパレータ表面層では、正極板表面に当接する側のセパレータ表面層よりも、より高度な電解液授受能力(保持容量と保持速度並びに供給容量と供給速度、特にここでは保持容量と供給容量すなわちタンク機能)が必要とされる。したがって、前述のように、前記2層の細繊維層の一方の層の厚さを他方の層の厚さの105~300%とし、より厚さの大きい細繊維層が負極板側に向けて構成され、より厚さの小さい細繊維層が正極板側に向けて構成されるようにすれば、正極側、負極側での極板表面とそれに隣接するセパレータとの間での見掛け上の電解液移動量の違いに合わせ、移動量の低い正極板側には厚さが小さくタンク機能が低い細繊維層を構成し、移動量の高い負極板側には厚さが大きくタンク機能が高い細繊維層を構成することができ、2層の細繊維層による電解液成層化防止効果を発揮しつつ、負極板表面との電解液授受能力を高め、負極側の電池反応を効率良く行わせることができ、電池全体として電池能力が向上する。ただし、前記2層の細繊維層の一方の層の厚さが他方の層の厚さの300%を超えると、より厚さの小さい細繊維層の厚さが小さくなりすぎ、本発明の目的である細繊維層による電解液成層化防止効果が損なわれる危険性が生じるため、好ましくない。
 また、太繊維層の両面に配置する2層の細繊維層は、実際の電池設計に応じて、互いに異なる平均孔径となるようにしてもよい。この場合、前記2層の細繊維層の一方の層の平均孔径は、他方の層の平均孔径の105~200%(ただし、3.5μm以下)であることが好ましい。更に、前記2層の細繊維層が正極板面と負極板面の両方に接し、一方の層が正極板面と接する層(正極板当接層)で他方の層が負極板面と接する層(負極板当接層)となる場合には、前記2層の細繊維層のうちより平均孔径の大きい細繊維層が負極板側に向けて構成される(負極板当接層とされる)ことが好ましい。前述の通り、密閉型鉛蓄電池の正極側、負極側での極板表面とそれに隣接するセパレータとの間での見掛け上の電解液移動量の違いに合わせ、移動量の低い正極板側には厚さが小さくタンク機能が低い細繊維層を構成し、移動量の高い負極板側には厚さが大きくタンク機能が高い細繊維層を構成するようにすることで、負極板表面との電解液授受能力を高め、負極側の電池反応を効率良く行わせることができるが、ここでは負極板表面との電解液授受能力として保持容量と供給容量の能力(タンク機能)に着目しているが、保持速度と供給速度の能力に着目すると、細繊維層の平均孔径が大きいほど電解液の保持速度や供給速度(液移動速度)は高くなる。したがって、前述のように、前記2層の細繊維層の一方の層の平均孔径を他方の層の平均孔径の105~200%(ただし、3.5μm以下)とし、より平均孔径の大きい細繊維層が負極板側に向けて構成され、より平均孔径の小さい細繊維層が正極板側に向けて構成されるようにすれば、正極側、負極側での極板表面とそれに隣接するセパレータとの間での見掛け上の電解液移動量の違いに合わせ、移動量の低い正極板側には平均孔径が小さく液移動速度が低い細繊維層を構成し、移動量の高い負極板側には平均孔径が大きく液移動速度が高い細繊維層を構成することができ、2層の細繊維層による電解液成層化防止効果を発揮しつつ、負極板表面との電解液授受能力を高め、負極側の電池反応を効率良く行わせることができ、電池全体として電池能力が向上する。ただし、前記2層の細繊維層の一方の層の平均孔径が他方の層の平均孔径の200%を超えると、より平均孔径の大きい細繊維層の平均孔径が大きくなりすぎ、本発明の目的である細繊維層による電解液成層化防止効果が損なわれる危険性が生じるため、好ましくない。
 本発明のセパレータは、微細ガラス繊維を主体とした湿式抄造シートからなるセパレータであり、本発明の目的を損なわない範囲であれば、求められる仕様や要求特性に応じて、例えば、湿式抄造シートの機械的強度を高めるための有機繊維といったような各種副材料や、電池の充放電により発生するデンドライト(樹枝状鉛)(電池短絡の原因物質)の成長を抑制するための無機質微粉体といったような各種添加材を混合使用することができるが、圧迫力低下防止効果の向上と電解液成層化防止効果の向上を図り易くするためには、実質的にガラス繊維のみから構成されることが好ましい。
 有機繊維としては、ポリオレフィン、ポリエステル、ポリアクリロニトリル、ポリアラミド等からなる耐酸性と熱融着性を有した有機繊維が使用できる。熱融着性の有機繊維もしくはフィブリル化する有機繊維を混合使用することで、バインダー効果が発揮され、繊維層やセパレータの強度を補うことができる。
 無機質微粉体としては、シリカ、珪藻土、ガラス、スメクタイト等からなる無機質微粉体が使用できる。このような無機質微粉体を混合使用することで、繊維層やセパレータの孔径を縮小化及び孔構造を複雑化し、電池短絡の原因物質であるデンドライトの成長抑制効果を付与することができる。このため、無機質微粉体は、比表面積が50m/g以上、更には100m/g以上であることが好ましい。
 前述の通り、有機繊維及び無機質微粉体といった各種副材料や各種添加材は、本発明のセパレータにおいては、本発明の目的を損なわない範囲で、求められる仕様や要求特性に応じて最小限の量を使用するものである。この考え方に従い、前記した目的のために有機繊維、無機質微粉体を混合使用する形態としては、細繊維層の構成として、微細ガラス繊維を50質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%、無機質微粉体を0~30質量%含む構成が好ましく、太繊維層の構成として、微細ガラス繊維を70質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%含む構成が好ましい。尚、無機質微粉体は、極板面と接するセパレータの細繊維層に含ませることにより、負極板表面より析出、成長するデンドライトの成長を効率的に抑制することができる。
 本発明のガラス繊維としては、例えば、耐酸性のCガラスを、火炎法(溶融炉の底部のノズルから溶融ガラスを糸状に流下させ高速の火炎で吹き飛ばす方法)あるいは遠心法(溶融ガラスを高速回転するスピナーと呼ばれる周壁に多数のオリフィスを穿設した円筒容器へ供給し遠心力によって紡糸し高速気流で吹き飛ばす方法)といった方法によって繊維化、製造したウール状ガラス繊維(ガラス短繊維)であって、粒径30μm以上の粒状物及び直径10μm以上の繊維状物の含有率が0.1質量%以下とされたものであることが好ましい。前記ガラス短繊維においては、本来のガラス短繊維に混じって、繊維の端部に涙滴状の塊状物が付いたもの、繊維が部分的に太くなったもの、火炎や高速気流で吹き飛ばす前の太い繊維がそのまま残ったもの等の本来のガラス短繊維に対して比較的大きなサイズを有した粒状物や繊維状物が少量混入する場合がある(通常これをショットと呼んでいる)。
 本発明のセパレータは、前記した特徴の細繊維層と前記した特徴の太繊維層が前記した特徴の3層積層構造を有したものであればよく、その積層状態については、一体化されていてもよいし一体化されていなくてもよい。例えば、本発明の細繊維層と太繊維層の3層構造を有した湿式抄造シートセパレータは、細繊維層となる湿式抄造シートと、太繊維層となる湿式抄造シートとを、積層一体化して得られるか、湿式抄造シートを得る湿式抄造工程において細繊維層と太繊維層とを形成するとともに(あるいは、形成すると同時に)湿潤状態のまま積層一体化して得られる(湿紙同士を重ね合わせる「抄き合わせ法」、湿紙の上に別層を抄きながら層形成して重ねる「抄き重ね法」など)か、あるいは、前者及び後者の方法を組み合わせて得られるものであることが好ましいが、積層一体化した層間の密着性が良好である点で、後者の湿式抄造シートを得る湿式抄造工程において細繊維層と太繊維層とを形成するとともに(あるいは、形成すると同時に)湿潤状態のまま積層一体化して得られるものがより好ましい。尚、本発明のセパレータの全層厚さについては、特に制限はないが、例えば、1~3mm程度とすることができる。
 本発明の密閉型鉛蓄電池は、前記した特徴の細繊維層と前記した特徴の太繊維層が前記した特徴の3層積層構造を有した湿式抄造シートセパレータを、極板間に配置した構成であればよく、例えば、電池組立時に、細繊維層と太繊維層が積層一体化したセパレータを組み込むようにしてもよいし、細繊維層となる湿式抄造シートと太繊維層となる湿式抄造シートを重ね合わせて組み込むようにしてもよい。
 また、本発明の密閉型鉛蓄電池は、極板表面に設けるペースティングペーパーを、前記した特徴の細繊維層のごとく構成し、前記した特徴の太繊維層のごとくセパレータを構成するようにしても、実質的に、前記した特徴の3層積層構造を有した湿式抄造シートセパレータを極板間に配置した電池構成と同様の構成となり、前記した本発明の作用効果と同様の作用効果をもたらすことができる。
 次に、本発明の実施例を比較例とともに詳細に説明する。
(比較例1)
 平均繊維径0.5μmのCガラス短繊維100質量%を湿式抄造した湿潤状態のままのシート(細繊維シート)と、平均繊維径1.2μmのCガラス短繊維100質量%を湿式抄造した湿潤状態のままのシート(太繊維シート)とを、細繊維シート-太繊維シート-細繊維シートの順となるように積層し湿潤状態のまま一体化し、乾燥して、3層の積層構造のセパレータ(厚さ2.0mm)を得た。
(実施例1~50、比較例2~4)
 比較例1と同様に、それぞれ、表1~4に示す各条件に従い、3層の積層構造のセパレータ(厚さ2.0mm)を得た。
(実施例51)
 平均繊維径0.8μmのCガラス短繊維85質量%と、耐酸性及び熱融着性を有する有機繊維として平均繊度1.3dtex、平均繊維長5mmで、芯成分がポリエチレンテレフタレート(融点約245?)で鞘成分が共重合ポリエステル(融点約110?)のポリエチレンテレフタレート/共重合ポリエステル芯鞘型複合繊維(芯成分と鞘成分の重量比50:50)15質量%とを湿式抄造した湿潤状態のままのシート(細繊維シート)と、平均繊維径1.5μmのCガラス短繊維100質量%を湿式抄造した湿潤状態のままのシート(太繊維シート)とを、細繊維シート-太繊維シート-細繊維シートの順となるように積層し湿潤状態のまま一体化し、乾燥して、3層の積層構造のセパレータ(厚さ2.0mm)を得た。
(実施例52)
 平均繊維径0.9μmのCガラス短繊維75質量%と、実施例51で使用したポリエチレンテレフタレート/共重合ポリエステル芯鞘型複合繊維25質量%とを湿式抄造した湿潤状態のままのシート(細繊維シート)と、平均繊維径1.8μmのCガラス短繊維85質量%と、実施例51で使用したポリエチレンテレフタレート/共重合ポリエステル芯鞘型複合繊維15質量%とを湿式抄造した湿潤状態のままのシート(太繊維シート)とを、細繊維シート-太繊維シート-細繊維シートの順となるように積層し湿潤状態のまま一体化し、乾燥して、3層の積層構造のセパレータ(厚さ2.0mm)を得た。
(実施例53)
 平均繊維径1.0μmのCガラス短繊維65質量%と、実施例51で使用したポリエチレンテレフタレート/共重合ポリエステル芯鞘型複合繊維15質量%と、比表面積が200m/gのシリカ微粉体20質量%とを湿式抄造した湿潤状態のままのシート(細繊維シート)と、平均繊維径1.8μmのCガラス短繊維85質量%と、実施例51で使用したポリエチレンテレフタレート/共重合ポリエステル芯鞘型複合繊維15質量%とを湿式抄造した湿潤状態のままのシート(太繊維シート)とを、細繊維シート-太繊維シート-細繊維シートの順となるように積層し湿潤状態のまま一体化し、乾燥して、3層の積層構造のセパレータ(厚さ2.0mm)を得た。
(比較例5)
 平均繊維径0.6μmのCガラス短繊維100質量%を湿式抄造し、乾燥して、単層構造のセパレータ(厚さ2.0mm)を得た。
(比較例6~10)
 比較例5と同様に、それぞれ、表4に示す各条件に従い、単層構造のセパレータ(厚さ2.0mm)を得た。
 次に、上記にて得られた実施例1~53、比較例1~10の各セパレータについて、以下の試験方法により、厚さ、平均孔径、引張強度、含水率、圧迫力(注液反発力)、液降下速度、平均孔径、液移動量を測定した。結果を表1~4に示す。
〈厚さ〉
 電池工業会規格SBA S 0406に準じた方法で測定した。
〈平均孔径〉
 外層・中間層個別におのおの1.5mm厚さのセパレータ試料に測定用液体を充分含ませ、Porous Material, Inc.社のCapillary Flow Porometer(型式CFP-1200AEC)で32mmΦの専用金網アダプターを使用し、測定した。
〈引張強度〉
 電池工業会規格SBA S 0406に準じた方法で測定した。
〈含水率〉
 セパレータを10cm×10cmに裁断し試料とし、重量(W)を測定する。試料を水中に1時間浸漬後引き上げて、ピンセットで試料の角部を掴んで斜め45゜の状態に持ち上げ保持し、試料から落下する水滴の間隔が5秒以上となった時点の試料重量(W)を測定する。次式により、含水率(%)を算出する。
 含水率(%)=(W-W)÷ W × 100
〈圧迫力〉
 10cm×10cmに裁断したセパレータ試料を総厚さ約6mmとなるように重ねてポリ袋に入れた後、ロードセルを備えた横型加圧装置に圧力40kg/100cmの条件で挟み、比重1.3の硫酸液を5g間隔で注液していき、各注液時の圧力を測定する。注液は、硫酸液がセパレータ試料内部から表面に溢れ出るようになるまで行う。次に、セパレータ試料の表面に溢れ出た硫酸液を抜き取り、抜き取った液量とその時の圧力を測定する。次に、セパレータ試料内部に保持されている硫酸液を注射器により強制的に抜き取り、抜き取りの都度、抜き取った液量とその時の圧力を測定する。この操作は、セパレータ試料から硫酸液が抜き出せなくなるまで行う。これら測定結果を基に、横軸に注液量(セパレータ試料の液付着量)、縦軸に圧力を取って、特開平5-67463号公報の図1に示すようなグラフを作成する。グラフに表されるおよその挙動は、注液開始後、徐々に圧力は下がっていき、ある時点で圧力は下がり切り、その後圧力は徐々に上がっていき、最後は、圧力は上がり切り変化しなくなる。この圧力が上がり切って変化しなくなり始める時点(特開平5-67463号公報の図1ではA点)の横軸の液量(セパレータ試料の液付着量)を、セパレータ試料の硫酸液飽和度100%の時点とし、硫酸液をセパレータ試料から抜き出す操作を行った時のグラフ曲線(特開平5-67463号公報の図1ではA点からC点に向かう曲線)から、セパレータ試料の硫酸液飽和度が65%の時の圧力(kg/100cm)を読み取り、圧迫力(kg/100cm)とする。
〈液降下速度〉
 セパレータ試料を水を十分含ませた状態で50kg/100cmの圧力となるようにアクリル板で挟み、上部から比重1.3の着色硫酸液を流し込み、60分後の着色硫酸液の降下距離(mm)を測定し、液降下速度(mm/hr)とする。
〈液移動量〉
 同一厚さとした10cm×10cm寸法のセパレータ試料A,B,C(A:外層,B:中間層,C:外層)を用意し、重量(A,B1,C)を測定する。次に、セパレータ試料Bに水を十分含ませ、45゜の傾斜板上で5分間放置する。このときのセパレータ試料Bの重量(B)を測定する。次に、セパレータ試料Bを両側からセパレータ試料A,Cで挟み、50kPaの加圧を掛けて60分間放置する(セパレータ試料Bが含んでいる水をセパレータ試料A,Cに滲み込ませる)。このときのセパレータ試料A,B,Cの重量(A,B,C)を測定する。
 尚、事前に、セパレータ試料Bが50kPa加圧時に保持できる液量(B)を測定しておく。まず、10cm×10cm寸法のセパレータ試料Bの重量(B)を測定する。次に、セパレータ試料Bに水を十分含ませた後、50kPaの加圧を掛け、余分な水分を除去し、60分間放置して、重量(B)を測定する。セパレータ試料Bが50kPa加圧時に保持できる液量(B)を(B-B)にて算出する。
 次に、セパレータ試料間で移動した液移動量(g/100cm/hr)を、次式にて算出する。
(1)中間層Bから外層Aへの液移動量 A = A-A-[(B-B)÷2]
(2)中間層Bから外層Cへの液移動量 C = C-C-[(B-B)÷2]
(3)中間層Bから外層A,Cへの液移動量 D = A + C
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (11)

  1.  微細ガラス繊維を主体とした湿式抄造シートからなる密閉型鉛蓄電池用セパレータにおいて、前記微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層と、前記微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ前記細繊維層の1.5倍以上である太繊維層とが、セパレータの厚さ方向に、2層の前記細繊維層で1層の前記太繊維層を両面から覆うように3層の積層構造をなした構造体であり、全層における前記ガラス繊維の平均繊維径が1.2μm以上で、全層における前記細繊維層と前記太繊維層との厚さ比率が10/90~50/50であることを特徴とする密閉型鉛蓄電池用セパレータ。
  2.  前記2層の細繊維層の厚さは略同一であることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  3.  前記2層の細繊維層の平均孔径は略同一であることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  4.  前記セパレータが実質的に前記微細ガラス繊維のみから構成され、前記細繊維層を構成する前記微細ガラス繊維の平均繊維径が0.4~0.9μmであることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  5.  前記全層における前記細繊維層と前記太繊維層との厚さ比率が10/90以上25/75未満であることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  6.  前記細繊維層が、前記微細ガラス繊維を50質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%、無機質微粉体を0~30質量%含むことを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  7.  前記太繊維層が、前記微細ガラス繊維を70質量%以上、耐酸性及び熱融着性を有する有機繊維を0~30質量%含むことを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  8.  前記細繊維層と前記太繊維層は、前記湿式抄造シートを得る湿式抄造工程において湿潤状態のまま3層の積層構造体に形成されたものであることを特徴とする請求項1に記載の密閉型鉛蓄電池用セパレータ。
  9.  請求項1に記載のセパレータを使用したことを特徴とする密閉型鉛蓄電池。
  10.  微細ガラス繊維を主体とした湿式抄造シートからなるセパレータが極板間に配置された密閉型鉛蓄電池において、前記セパレータは、前記微細ガラス繊維として平均繊維径0.4~1.0μmのガラス繊維で構成され平均孔径が3.5μm以下である細繊維層と、前記微細ガラス繊維として平均繊維径1.3~4.0μmのガラス繊維で構成され平均孔径が4.0μm以上かつ前記細繊維層の1.5倍以上である太繊維層とが、セパレータの厚さ方向に、2層の前記細繊維層で1層の前記太繊維層を両面から覆うように3層の積層構造をなした構造体で、全層における前記ガラス繊維の平均繊維径が1.2μm以上、全層における前記細繊維層と前記太繊維層との厚さ比率が10/90~50/50のセパレータであり、前記極板面と接する面は前記細繊維層のみであることを特徴とする密閉型鉛蓄電池。
  11.  前記セパレータは、前記全層における前記細繊維層と前記太繊維層との厚さ比率が10/90以上25/75未満であることを特徴とする請求項10に記載の密閉型鉛蓄電池。
PCT/JP2011/002473 2010-05-11 2011-04-27 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池 WO2011142096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/696,883 US20130101887A1 (en) 2010-05-11 2011-04-27 Separator for valve regulated lead-acid battery, and valve regulated lead-acid battery
CN201180023218.3A CN102884654B (zh) 2010-05-11 2011-04-27 密闭型铅蓄电池用隔板及密闭型铅蓄电池
BR112012028779A BR112012028779A2 (pt) 2010-05-11 2011-04-27 separador para bateria de chumbo ácido regulada por válvula, e bateria de chumbo ácido regulada por válvula
EP11780356A EP2571079A1 (en) 2010-05-11 2011-04-27 Separator for a sealed lead-acid battery, and sealed lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010109582A JP5432813B2 (ja) 2010-05-11 2010-05-11 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池
JP2010-109582 2010-05-11

Publications (1)

Publication Number Publication Date
WO2011142096A1 true WO2011142096A1 (ja) 2011-11-17

Family

ID=44914157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002473 WO2011142096A1 (ja) 2010-05-11 2011-04-27 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池

Country Status (6)

Country Link
US (1) US20130101887A1 (ja)
EP (1) EP2571079A1 (ja)
JP (1) JP5432813B2 (ja)
CN (1) CN102884654B (ja)
BR (1) BR112012028779A2 (ja)
WO (1) WO2011142096A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator
JP2014525116A (ja) * 2011-06-20 2014-09-25 グラットフェルター ゲルンスバッハ ゲーエムベーハー アンド コムパニイ カーゲー 鉛酸電池中で使用する多機能ウェブ
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles
CN107634187A (zh) * 2017-08-18 2018-01-26 风帆有限责任公司 一种提高生极板铅膏强度的方法
CN113471642A (zh) * 2021-04-02 2021-10-01 浙江南都电源动力股份有限公司 一种负极防护组件及负极防护电池及负极防护方法
EP4112812A4 (en) * 2020-02-26 2024-04-10 Entek Asia Inc NONWOVEN FABRIC FOR LEAD ACCUMULATIVE BATTERIES, WHICH USES GLASS FIBERS AND THERMALLY FUSABLE BINDING FIBERS

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013648A (ko) * 2012-05-09 2015-02-05 히타치가세이가부시끼가이샤 전기 화학 소자용 세퍼레이터 및 그 제조 방법
CN102891272B (zh) * 2012-09-28 2017-07-04 松下蓄电池(沈阳)有限公司 铅蓄电池
JP6337777B2 (ja) * 2012-12-12 2018-06-06 日本電気株式会社 セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法
CN103137931B (zh) * 2013-01-23 2015-11-25 华南理工大学 一种隔膜纸及其制备方法和应用
KR20150126903A (ko) * 2013-03-07 2015-11-13 다라믹 엘엘씨 적층 산화 보호 분리막
JP6205811B2 (ja) * 2013-04-15 2017-10-04 株式会社Gsユアサ 鉛蓄電池
US20140377628A1 (en) * 2013-06-24 2014-12-25 Johns Manville Mat made of combination of coarse glass fibers and micro glass fibers used as a separator in a lead-acid battery
CN103545470B (zh) * 2013-09-23 2015-10-14 超威电源有限公司 一种铅酸蓄电池胶体隔板及其制作方法
CN104201314B (zh) * 2014-09-09 2016-03-30 重庆再升科技股份有限公司 高吸液量agm隔板及其制备方法
WO2016121511A1 (ja) * 2015-01-27 2016-08-04 日立化成株式会社 鉛蓄電池用セパレータ及び鉛蓄電池
JP7005130B2 (ja) * 2016-09-01 2022-01-21 北越コーポレーション株式会社 密閉型鉛蓄電池セパレータ用ガラス繊維シート、密閉型鉛蓄電池セパレータ、及び密閉型鉛蓄電池セパレータ用ガラス繊維シートの製造方法
US10622639B2 (en) 2017-02-22 2020-04-14 Johns Manville Acid battery pasting carrier
CN111433941A (zh) * 2017-12-05 2020-07-17 日立化成株式会社 铅蓄电池用隔膜和铅蓄电池
WO2019126978A1 (zh) * 2017-12-26 2019-07-04 广州华创化工材料科技开发有限公司 一种一次成形的锂离子电池隔膜及其制备方法和应用
WO2019198500A1 (ja) * 2018-04-09 2019-10-17 旭化成株式会社 多孔体、鉛蓄電池用セパレータ、及び鉛蓄電池
FR3085799B1 (fr) 2018-09-12 2021-06-18 Renault Sas Procede de fabrication d’electrodes au plomb et batterie utilisant des electrodes obtenues par ce procede.
WO2020144732A1 (ja) * 2019-01-07 2020-07-16 日立化成株式会社 セパレーター及び鉛蓄電池
WO2021171918A1 (ja) * 2020-02-26 2021-09-02 日本板硝子株式会社 ガラス繊維と熱融着性有機繊維を使用した密閉式鉛蓄電池用セパレーター
US20230411787A1 (en) * 2020-11-20 2023-12-21 Entek Asia Inc Pasting paper for lead acid batteries
CN114464958A (zh) * 2022-02-15 2022-05-10 重庆再升科技股份有限公司 一种具有高吸酸性和高拉伸强度的蓄电池用无纺垫及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524330A (en) * 1978-08-07 1980-02-21 Yuasa Battery Co Ltd Enclosed lead-acid battery
JPS56138862A (en) * 1981-02-23 1981-10-29 Yuasa Battery Co Ltd Nonmaintenance type lead battery
JPS56167266A (en) * 1980-05-26 1981-12-22 Japan Storage Battery Co Ltd Pasted lead acid battery
JPS5923457A (ja) * 1982-07-28 1984-02-06 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH04174962A (ja) * 1990-11-06 1992-06-23 Matsushita Electric Ind Co Ltd 鉛蓄電池用セパレータおよびその製造法
JPH0567463A (ja) 1991-05-23 1993-03-19 Nippon Sheet Glass Co Ltd シート状セパレータ及び密閉形鉛蓄電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189861A (ja) * 1984-03-12 1985-09-27 Nippon Muki Kk シ−ル型鉛蓄電池用セパレ−タ−並にシ−ル型鉛蓄電池
JPH08180851A (ja) * 1994-12-26 1996-07-12 Nippon Glass Fiber Co Ltd 湿式ガラスマット及びその製造方法
US6071641A (en) * 1997-09-02 2000-06-06 Zguris; George C. Glass fiber separators and batteries including such separators
CN100435386C (zh) * 2004-07-23 2008-11-19 株式会社杰士汤浅 用于控制阀式铅蓄电池的隔板及控制阀式铅蓄电池
JP5396399B2 (ja) * 2008-11-11 2014-01-22 日本板硝子株式会社 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524330A (en) * 1978-08-07 1980-02-21 Yuasa Battery Co Ltd Enclosed lead-acid battery
JPS56167266A (en) * 1980-05-26 1981-12-22 Japan Storage Battery Co Ltd Pasted lead acid battery
JPS56138862A (en) * 1981-02-23 1981-10-29 Yuasa Battery Co Ltd Nonmaintenance type lead battery
JPS5923457A (ja) * 1982-07-28 1984-02-06 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池
JPH04174962A (ja) * 1990-11-06 1992-06-23 Matsushita Electric Ind Co Ltd 鉛蓄電池用セパレータおよびその製造法
JPH0567463A (ja) 1991-05-23 1993-03-19 Nippon Sheet Glass Co Ltd シート状セパレータ及び密閉形鉛蓄電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525116A (ja) * 2011-06-20 2014-09-25 グラットフェルター ゲルンスバッハ ゲーエムベーハー アンド コムパニイ カーゲー 鉛酸電池中で使用する多機能ウェブ
EP2973781A4 (en) * 2013-03-15 2016-11-02 Hollingsworth & Vose Co BATTERY PARK WITH THREE AREAS
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator
US9728756B2 (en) 2014-09-15 2017-08-08 Hollingsworth & Vose Company Multi-region battery separators
US9577236B2 (en) 2014-09-15 2017-02-21 Hollingsworth & Vose Company Multi-region battery separators
US9627668B1 (en) 2014-09-15 2017-04-18 Hollingsworth & Vose Company Multi-region battery separators
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
US10431796B2 (en) 2014-09-15 2019-10-01 Hollingsworth & Vose Company Multi-region battery separators
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles
US10644289B2 (en) 2015-04-10 2020-05-05 Hollingsworth & Vose Company Battery separators comprising inorganic particles
CN107634187A (zh) * 2017-08-18 2018-01-26 风帆有限责任公司 一种提高生极板铅膏强度的方法
EP4112812A4 (en) * 2020-02-26 2024-04-10 Entek Asia Inc NONWOVEN FABRIC FOR LEAD ACCUMULATIVE BATTERIES, WHICH USES GLASS FIBERS AND THERMALLY FUSABLE BINDING FIBERS
CN113471642A (zh) * 2021-04-02 2021-10-01 浙江南都电源动力股份有限公司 一种负极防护组件及负极防护电池及负极防护方法
CN113471642B (zh) * 2021-04-02 2023-08-15 浙江南都电源动力股份有限公司 一种负极防护组件及负极防护电池及负极防护方法

Also Published As

Publication number Publication date
US20130101887A1 (en) 2013-04-25
JP2011238492A (ja) 2011-11-24
EP2571079A1 (en) 2013-03-20
JP5432813B2 (ja) 2014-03-05
CN102884654B (zh) 2016-01-06
CN102884654A (zh) 2013-01-16
BR112012028779A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
JP5432813B2 (ja) 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池
JP5396399B2 (ja) 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池
JP5798962B2 (ja) 液式鉛蓄電池用セパレータ及び液式鉛蓄電池
EP3314680B1 (en) Improved absorbent glass mat separators, vrla batteries, and related methods of manufacture and use
CN107431173B (zh) 包含无机颗粒的电池隔离件
CN103229328B (zh) 用于怠速启停车辆的改进的隔板、电池、系统及方法
US20120070729A1 (en) Glass compositions with high levels of bismuth oxide
US20120070728A1 (en) Compositions and delivery systems with leachable metal ions
JP4928137B2 (ja) 液式鉛蓄電池用セパレータ及び液式鉛蓄電池
US10535853B2 (en) Glass compositions with leachable metal oxides and ions
RU2686305C2 (ru) Снижающие потери воды приклеиваемые плиты для свинцово-кислотных аккумуляторов
JPWO2013187458A1 (ja) リチウムイオン電池用セパレータ
Toniazzo The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries
JP2002313305A (ja) 鉛蓄電池用セパレータ及びそれを用いた鉛蓄電池
JP2019175827A (ja) 電気化学素子用セパレータ
JP2002151034A (ja) 密閉型鉛蓄電池用セパレータ及びそれを用いた密閉型鉛蓄電池
JP7262686B1 (ja) 鉛蓄電池用ペースティングペーパー
JP2003242953A (ja) 密閉型鉛蓄電池用セパレータ及び密閉型鉛蓄電池
JP2001102027A (ja) 密閉形鉛蓄電池
JP5850687B2 (ja) 電気化学素子用セパレータ及び電気化学素子
JP2001283810A (ja) 密閉形鉛蓄電池用セパレータ
JP4765263B2 (ja) 制御弁式鉛蓄電池
JP3511858B2 (ja) 鉛蓄電池
JP5002102B2 (ja) 密閉型鉛蓄電池用セパレータ
JPH08153535A (ja) 密閉形鉛蓄電池及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023218.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696883

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011780356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011780356

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012028779

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012028779

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121109