WO2011136196A1 - 過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法 - Google Patents

過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法 Download PDF

Info

Publication number
WO2011136196A1
WO2011136196A1 PCT/JP2011/060102 JP2011060102W WO2011136196A1 WO 2011136196 A1 WO2011136196 A1 WO 2011136196A1 JP 2011060102 W JP2011060102 W JP 2011060102W WO 2011136196 A1 WO2011136196 A1 WO 2011136196A1
Authority
WO
WIPO (PCT)
Prior art keywords
peroxide
acid
soil
organic compound
organic
Prior art date
Application number
PCT/JP2011/060102
Other languages
English (en)
French (fr)
Inventor
健一 君塚
洋介 新開
浄 吉田
成康 吉岡
孝 海老原
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020127026698A priority Critical patent/KR101823171B1/ko
Priority to JP2012512841A priority patent/JP5846117B2/ja
Priority to CN201180021873.5A priority patent/CN102869743B/zh
Publication of WO2011136196A1 publication Critical patent/WO2011136196A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Definitions

  • the present invention relates to an organic substance adsorbent used in combination with a peroxide used when purifying soil and / or groundwater contaminated with an organic compound, an activator of the peroxide containing an iron complex, and the use thereof.
  • a peroxide used when purifying soil and / or groundwater contaminated with an organic compound
  • an activator of the peroxide containing an iron complex and the use thereof.
  • the organic compounds mentioned here are mainly TPH (Total Petroleum hydrocarbons such as Petroleum Hydrocarbon), persistent materials that are difficult to be decomposed by living organisms, agricultural chemicals, preservatives, cyanides, and the like.
  • Chemical purification methods that can be carried out in a neutral pH range include a purification method using a Fenton reaction using an aqueous iron chelate solution and a hydrogen peroxide solution (see Patent Document 1), and a biodegradable chelating agent and an excess solution.
  • a purification method by a Fenton reaction using an aqueous hydrogen oxide solution is known.
  • a purification method using a Fenton reaction using a hydrogen peroxide, citric acid, and iron mixed solution is known.
  • all the methods described in these documents are aqueous reactions, and it is difficult to decompose water-insoluble substances such as petroleum hydrocarbons.
  • Non-Patent Documents 1 to 3 As an in-situ purification technique in the neutral region of petroleum hydrocarbons, a cleaning method using a surfactant (Non-Patent Documents 1 to 3) has been tried, but these methods are all cleaning. There were drawbacks that required reprocessing of the recovered oil contamination.
  • the object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a method for simply, efficiently and inexpensively purifying soil and / or groundwater contaminated with organic compounds, particularly petroleum hydrocarbons. There is.
  • the present inventors have decomposed petroleum hydrocarbons even in a neutral pH range by using an organic matter adsorbent containing diatomaceous earth, an iron complex, and a peroxide. The inventors have found that this is possible and have completed the present invention.
  • a peroxide activator that activates peroxide used to purify soil and / or groundwater contaminated with organic compounds, and contains an organic substance adsorbent containing diatomaceous earth and an iron complex. It is a featured peroxide activator.
  • the iron complex is glycol ether diamine tetraacetic acid, nitrilotris (methylenephosphonic acid), L-aspartic acid diacetic acid, taurine diacetic acid, hydroxyethyliminodiacetic acid, hydroxyethylidene diphosphonic acid, 1,3-diamino One or more selected from -2-hydroxypropanetetraacetic acid, phytic acid, methylglycine diacetic acid, hydroxyethylethylenediaminetriacetic acid, L-glutamic acid diacetic acid, phosphonobutanetricarboxylic acid and (S, S) -ethylenediamine disuccinic acid
  • ⁇ 3> The peroxide activator according to ⁇ 1> or ⁇ 2> above and a peroxide are added simultaneously or sequentially to soil and / or groundwater contaminated with an organic compound, Soil and / or groundwater purification method.
  • ⁇ 4> The purification method according to ⁇ 3>, wherein the peroxide is at least one selected from compounds that generate hydrogen peroxide in an aqueous solution.
  • ⁇ 5> The purification method according to ⁇ 4>, wherein the peroxide is at least one selected from hydrogen peroxide, percarbonate, urea peroxide, peroxodisulfate, and peroxomonosulfate.
  • ⁇ 6> The purification method according to ⁇ 5>, wherein the peroxide is hydrogen peroxide or peroxodisulfate.
  • ⁇ 7> The purification method according to any one of ⁇ 3> to ⁇ 6>, wherein a pH of a reaction field between the peroxide and the organic compound is 5 to 9.
  • the peroxide activator according to any one of ⁇ 1> or ⁇ 2> is added to soil and / or groundwater contaminated with an organic compound, and the organic compound is added to the peroxide activator.
  • the method of purifying soil and / or groundwater comprising the step of adsorbing to the organic matter adsorbent in the step, and then the step of decomposing the organic compound by adding peroxide.
  • the present invention by using an organic substance adsorbent containing diatomaceous earth, an iron complex, and a peroxide, it is possible to purify soil and / or groundwater containing petroleum hydrocarbons in a neutral pH region. Furthermore, since the mixed solution of the organic substance adsorbent and the iron complex in the present invention is sufficiently stable, the preparation of the solution in advance can greatly reduce the labor for preparing the drug at the site. .
  • the organic compound in the present invention mainly includes petroleum hydrocarbons such as TPH (Total Petroleum Hydrocarbon), hardly decomposable substances that are difficult to be decomposed by living organisms, agricultural chemicals, preservatives, cyanides, and the like.
  • the soil and / or groundwater to be purified in the present invention is mainly contaminated with petroleum hydrocarbons such as TPH.
  • chemicals such as persistent organic compounds that are difficult to be decomposed by living organisms, agricultural chemicals, preservatives, organochlorine compounds such as trichlorethylene (TCE) and tetrachloroethylene (PCE), cyanides, etc. Soil and / or groundwater contaminated with substances can also be treated.
  • the organic adsorbent used in the present invention is not particularly limited as long as it contains diatomaceous earth, and may be any porous substance having an organic substance adsorbing ability, but does not substantially decompose peroxides, particularly hydrogen peroxide. It is preferable.
  • an organic substance adsorbent having a high peroxide resolution is used, the coexisting iron complex may be reduced, but in many cases, wasteful decomposition of the peroxide increases, resulting in poor economic efficiency.
  • an organic substance adsorbent that does not substantially decompose peroxide is used, particularly when the present invention is used for in-situ purification, the diffusion distance of the injected peroxide becomes long. The number of drilling can be reduced and it is very useful industrially.
  • diatomaceous earth is industrially advantageous in terms of price and availability.
  • diatomaceous earth is a siliceous deposit composed of the remains of diatom, which is a single-cell sow, and is defined as a mixture of clay, volcanic ash, organic matter and the like (Kyoritsu Shuppan Kagaku Daigaku Dictionary 3).
  • diatomaceous earth used for this invention Both an unbaked product and a baked product can be used. Similarly, both unpurified products and purified products can be used.
  • particle size the smaller the particle size, the larger the organic matter adsorption product and the better the fluidity in the case of an aqueous dispersion.
  • the BET specific surface area of diatomaceous earth in the present invention is preferably 15 to 45 m 2 / g. More preferably, it is in the range of 20 to 40 m 2 / g. If it is out of the range of 15 to 45 m 2 / g, the decomposition amount of the organic compound becomes small, which is not preferable.
  • the compounding amount of the organic substance adsorbent depends on the concentration of contamination in the soil and / or groundwater contaminated with the organic compound, and blends more than the amount capable of adsorbing the total amount of the organic compound present in the reaction field. Is preferred.
  • the specific blending amount can be determined by using a treatability test using soil and groundwater at the site as an index of whether or not purification is possible. In this treatability test, if there is a shortage of organic adsorbent, the oil film may be visually confirmed after the test, and it may be found that the blending amount is insufficient without determining whether or not purification is possible by analysis.
  • limiting in particular in the iron salt used for the said iron complex For example, ferrous sulfate, ferrous chloride, etc. are mentioned, However, Ferrous sulfate is suitable from availability.
  • the chelating agent used for the iron complex is not particularly limited, but preferably glycol ether diamine tetraacetic acid (referred to as GEDTA), nitrilotris (methylene phosphonic acid) (referred to as NTMP), L-aspartic acid.
  • GEDTA glycol ether diamine tetraacetic acid
  • NTMP nitrilotris (methylene phosphonic acid)
  • L-aspartic acid is not particularly limited, but preferably glycol ether diamine tetraacetic acid (referred to as GEDTA), nitrilotris (methylene phosphonic acid) (referred to as NTMP), L-aspartic acid.
  • Diacetic acid (referred to as ASDA), taurine diacetic acid (referred to as ESDA), hydroxyethyliminodiacetic acid (referred to as HIDA), hydroxyethylidene diphosphonic acid (referred to as HEDP), 1,3 -Diamino-2-hydroxypropanetetraacetic acid (referred to as DPTA-OH), phytic acid, methylglycine diacetic acid (referred to as MGDA), hydroxyethylethylenediaminetriacetic acid (referred to as HEDTA), L-glutamic acid Diacetic acid (referred to as GLDA), phosphonobutanetricarboxylic acid (referred to as PBTC) ) And (S, S) - which is one or more chelating agents selected from ethylenediamine disuccinic acid (referred to as EDDS).
  • ASDA taurine diacetic acid
  • HIDA hydroxyethyliminodiacetic acid
  • HEDP hydroxyethylidene diphosphonic
  • These chelating agents can be used in either acid type or base type, but it is preferable to use an iron complex before use.
  • the compounding amount of the iron complex depends on the concentration of contamination in the soil and / or groundwater contaminated with the organic compound, but it is preferable to compound 15 mg / L or more in terms of iron ion equivalent in the reaction field.
  • the compounding ratio of the iron salt and the chelating agent in the iron complex of the present invention is not particularly limited as long as the effect of the present invention is not impaired, but the molar ratio of the chelating agent to the iron salt (as iron ion)
  • the (chelating agent / iron ion) is preferably 1 to 3, more preferably 1 to 2. Too much chelating agent is not economical, and if the molar ratio is too small, precipitation of iron salt is not preferable.
  • an aqueous solution obtained by mixing an organic adsorbent containing diatomaceous earth and an iron complex, an aqueous solution containing an organic adsorbent containing diatomaceous earth and an iron complex, respectively It is possible to take various forms depending on the use conditions, such as a form in which the solid adsorbent is solid and the iron complex is an aqueous solution. In view of ease of operation, the form of an aqueous solution is particularly preferable.
  • the peroxide used in the present invention is not particularly limited, but hydrogen peroxide, peroxodisulfuric acid, and peroxomonosulfuric acid are preferably used.
  • An aqueous hydrogen peroxide solution is preferred because of its price and stability of the aqueous solution.
  • a stabilizer such as metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, condensed phosphate, phosphonic acid, picolinic acid, dipicolinic acid, and phenylurea is within a range that does not impair the effects of the present invention. It is also possible to add.
  • As the hydrogen peroxide an industrial hydrogen peroxide solution can be used.
  • the concentration of the aqueous hydrogen peroxide solution is not particularly limited, but is preferably 60% by weight or less because it is difficult to obtain a hydrogen peroxide aqueous solution having a concentration higher than 60% by weight. More preferably, it is 25 to 45% by weight, particularly preferably 30 to 45% by weight from the viewpoint of safety and transportation cost.
  • the peroxide activator and the peroxide may be supplied separately, or may be supplied simultaneously after mixing.
  • the supply method is not particularly limited, and can be applied to all methods such as injection, press-fitting, high-pressure injection, high-pressure injection agitation, spraying, and chemical injection into a pumped water aeration system. It is also possible to heat the aqueous solution containing each material before adding it to the purification object, and to heat the purification object after adding the aqueous solution containing each material.
  • the amount of peroxide supplied to the object to be purified is about 1 to 1000 times the amount necessary for decomposition of pollutants. If it is less than this, purification will be insufficient, and if it is too much, it will be inferior in economic efficiency.
  • the preferred amount of the peroxide activator to be used is preferably determined by a prior treatability test, but at least the amount of the organic adsorbent that can adsorb the entire amount of the organic compound to be purified must be used. When the amount used is small, the organic compound may not be supplied to the aqueous reaction field and decomposition may be incomplete. If too much is used, it is inferior in economic efficiency.
  • a pH buffer what is introduced by the chemical handbook etc. may be sufficient, but a carbonate type buffer is preferable from a viewpoint of iron precipitation suppression or environmental harmony.
  • the carbonate buffer include sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium bicarbonate, potassium bicarbonate and the like.
  • the pH buffering agent may be added so that the pH of soil and / or groundwater during purification is 5 to 9, but it is desirable to refrain from using it as much as possible because carbonate ions and bicarbonate ions have a radical scavenger effect. .
  • one method includes a peroxide activator and a peroxide. May be added simultaneously or sequentially to soil and / or groundwater contaminated with organic compounds.
  • a step of adding a peroxide activator to soil and / or groundwater contaminated with an organic compound, and adsorbing the organic compound in the soil and / or groundwater to an organic matter adsorbent containing diatomaceous earth Next, there is a method having a step of decomposing the organic compound by adding a peroxide.
  • Still another method includes a method of adding an organic substance adsorbent containing diatomaceous earth to the ground to adsorb the organic compound, then adding a hydrogen peroxide aqueous solution, and further adding an iron complex. It is done.
  • adsorbing the organic compound to the organic adsorbent a low water-soluble petroleum hydrocarbon such as TPH is introduced into the aqueous reaction field, and then a hydroxyl radical is removed by adding an aqueous hydrogen peroxide solution and an iron complex purifier. It is preferable because it can be generated and organic substances can be decomposed.
  • Example 1 (1) A 100 mL pressure screw cap bottle was used as a reaction vessel. (2) As an organic substance adsorbent, a solution containing 2.7% by weight of diatomaceous earth (Keiso soil reagent Lot.G1D3004 manufactured by Kosou Kagaku Yakuhin Kogyo Co., Ltd.) and an iron complex was used as a peroxide activator. The BET specific surface area of the diatomaceous earth made by Kosomaku Pharmaceutical Co., Ltd. was 38.1 m 2 / g.
  • the iron complex uses glycol ether diamine tetraacetic acid (GEDTA, “Cyrest GEA” manufactured by Kyrest Co.) as a chelating agent, and FeSO 4 ⁇ 7H 2 O (special grade reagent manufactured by Wako Pure Chemical Industries) as an iron salt.
  • GEDTA glycol ether diamine tetraacetic acid
  • FeSO 4 ⁇ 7H 2 O special grade reagent manufactured by Wako Pure Chemical Industries
  • the molar ratio of iron ions was adjusted to 1 and the iron ion concentration was adjusted to 1500 mg / L.
  • a 440 mM sodium bicarbonate / 0.875 mM sodium carbonate aqueous solution was used as a pH buffer.
  • Commercial kerosene was used as an object to be decomposed.
  • Example 2 As a result of performing a test in the same manner as in Example 1 except that nitrilotris (methylenephosphonic acid) (NTMP, “Cyrest PH-320” manufactured by Crest Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 71.9%. It was. (Example 3) As a result of performing the test in the same manner as in Example 1 except that L-aspartic acid diacetic acid (ASDA, manufactured by Mitsubishi Rayon Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 71.0%.
  • NTMP nitrilotris (methylenephosphonic acid)
  • NTMP nitrilotris (methylenephosphonic acid)
  • ASDA L-aspartic acid diacetic acid
  • Example 4 As a result of performing the test in the same manner as in Example 1 except that taurine diacetate (ESDA, “Cyrest ESDA-30” manufactured by Crest Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 70.1%.
  • Example 5 As a result of performing the test in the same manner as in Example 1 except that hydroxyethyliminodiacetic acid (HIDA, “Cyrest E-20” manufactured by CHIRES Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 67.6%.
  • HIDA hydroxyethyliminodiacetic acid
  • Example 6 As a result of performing the test in the same manner as in Example 1 except that hydroxyethylidene diphosphonic acid (HEDP, “Cyrest PH-212” manufactured by CHIRES Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 66.6%.
  • Example 7 As a result of performing the test in the same manner as in Example 1 except that 1,3-diamino-2-hydroxypropanetetraacetic acid (DPTA-OH, “Cyrest RA” manufactured by Kyrest Co.) was used as a chelating agent, the kerosene decomposition rate was 65 0.0%.
  • DPTA-OH 1,3-diamino-2-hydroxypropanetetraacetic acid
  • Example 8 As a result of performing a test in the same manner as in Example 1 except that phytic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a chelating agent, the kerosene decomposition rate was 63.4%.
  • Example 9 As a result of performing the test in the same manner as in Example 1 except that methylglycine diacetate (MGDA, “TRILON M” manufactured by BASF Corporation) was used as the chelating agent, the kerosene decomposition rate was 56.5%.
  • MGDA methylglycine diacetate
  • Example 10 As a result of performing the test in the same manner as in Example 1 except that hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Chillest Co., Ltd.) was used as the chelating agent, the kerosene decomposition rate was 56.1%.
  • Example 11 As a result of conducting the test in the same manner as in Example 1 except that L-glutamic acid diacetic acid (GLDA, “Cyrest CMG-40” manufactured by Kyrest Co.) was used as a chelating agent, the kerosene decomposition rate was 55.3%.
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • GLDA L-glutamic acid diacetic acid
  • Example 12 As a result of conducting the test in the same manner as in Example 1 except that phosphonobutanetricarboxylic acid (PBTC, “Cyrest PH-430” manufactured by Crest Co.) was used as the chelating agent, the kerosene decomposition rate was 52.5%.
  • Example 13 As a result of performing the test in the same manner as in Example 1 except that (S, S) -ethylenediamine disuccinic acid (EDDS, “Cyrest EDDS-35” manufactured by CHIRES Co., Ltd.) was used as the chelating agent, the kerosene decomposition rate was 52.5. %Met.
  • Example 14 Tested in the same manner as in Example 1 except that the concentration of diatomaceous earth was 5.3% by weight in Example 1 (2) and hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Crest Co.) was used as the chelating agent. As a result, the kerosene decomposition rate was 56.3%.
  • Example 15 The test was performed in the same manner as in Example 1 except that the iron ion concentration was 500 mg / L in Example 2 (2) and hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Crest Co.) was used as the chelating agent.
  • Example 16 The test was conducted in the same manner as in Example 1 except that the iron ion concentration was 3000 mg / L in Example 1 (2), and hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Kyrest Co., Ltd.) was used as the chelating agent. As a result, the kerosene decomposition rate was 54.7%.
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • Example 17 In Example 1 (2), Example 1 except that Isolite Industry's diatomaceous earth Isolite DP was used as the organic substance adsorbent, and Hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Kirest Corporation) was used as the chelating agent. As a result of conducting the test in the same manner as above, the kerosene decomposition rate was 67.0%. The BET specific surface area of Isolite DP manufactured by Isolite Industry was 24.5 m 2 / g. (Example 18) In Example 1 (2), except that diatomite radiolite SPF manufactured by Showa Chemical Industry Co., Ltd.
  • hydroxyethylethylenediaminetriacetic acid HEDTA, “Chillest HA” manufactured by Kyrest Co., Ltd.
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • the kerosene decomposition rate was 70.1%.
  • the BET specific surface area of Radiolite SPF manufactured by Showa Chemical Industry was 31.8 m 2 / g.
  • Example 1 (Comparative Example 1)
  • an activated carbon aqueous dispersion (“Dia Fresh Olson AT” manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as the organic adsorbent, and hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Crest, Inc.) as the chelating agent. ) was used in the same manner as in Example 1 and the kerosene decomposition rate was 33.5%.
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • Example 1 (2) was the same as Example 1 except that molecular sieve 3A was pulverized and used as the organic substance adsorbent, and hydroxyethylethylenediaminetriacetic acid (HEDTA, “Cyrest HA” manufactured by Crest Co.) was used as the chelating agent. As a result, the kerosene decomposition rate was 10.0%.
  • Comparative Example 3 As a result of performing the test in the same manner as in Example 1 except that a solution containing no iron complex was used as the peroxide activator in (2) of Example 1, the kerosene decomposition rate was 46.0%. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 低水溶性の有機化合物で汚染された土壌及び/又は地下水を、簡便で効率良くかつ安価に浄化する方法を提供する。低水溶性の有機化合物に汚染された土壌及び/又は地下水の浄化に用いる過酸化物を活性する過酸化物活性化剤であって、珪藻土を含む有機物吸着材と鉄錯体とを含有することを特徴とする過酸化物活性化剤、並びにこれを用いた浄化方法に関する。

Description

過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法
 本発明は、有機化合物で汚染された土壌及び/又は地下水を浄化する際に用いる過酸化物と併用される有機物吸着材及び鉄錯体を含有する該過酸化物の活性化剤、並びにこれらを用いた浄化方法に関する。
 土壌及び/又は地下水中の汚染が生活環境に大きく影響を与えることが明らかとなり、水質汚濁防止法や土壌汚染対策法等が整備され、これまで蓄積、放置されていた有機化合物汚染の浄化が進められている。なお、ここでいう、有機化合物とは、主にTPH(Total
Petroleum Hydrocarbon)のような石油系炭化水素や、生物による分解が困難な難分解性物質、農薬、防腐剤、シアン化物等が該当する。
 これらの有機化合物に対し、物理的、化学的、生物的或いはそれらを組み合わせた様々な浄化方法が試みられている。物理的な方法、例えば掘削除去では汚染場所の浄化は可能であるが、除去された汚染物質の二次的な処理が必要となる欠点がある。また、生物的な方法、例えばバイオオーグメンテーションは周辺環境への影響が少ないメリットはあるが、高濃度汚染や複合汚染への適用は難しいというデメリットがある。これらに対し、化学的な浄化方法では、汚染物質の分解が可能なため二次処理が不要であり、さらに分解対象に選択性がなく、高濃度汚染や複合汚染への適用も可能である。化学的な浄化方法の中でも、中性pH領域で実施可能な方法は重金属類の溶出拡散の恐れが少ないとされており、種々の方法が開発されてきている。
 中性pH領域で実施可能な化学的浄化方法としては、pH5~8の鉄キレート水溶液と過酸化水素水溶液を用いたフェントン反応による浄化方法(特許文献1参照)や、生分解性キレート剤と過酸化水素水溶液を用いたフェントン反応による浄化方法(特許文献2参照)が知られている。また、過酸化水素、クエン酸、鉄混合溶液を用いたフェントン反応による浄化方法(特許文献3参照)が知られている。しかしながら、これらの文献に記載された方法は何れも水系反応であり、石油系炭化水素のような水不溶性の物質の分解は困難であった。
 石油系炭化水素のような水不溶性物質の分解に関する試みとしては、金属塩、過酸化水素分解能力を有する活性炭及び酸化剤を添加して分解する方法(特許文献4参照)が知られている。しかし、この方法は反応場のpHを5以下としなければならず、重金属類の溶出拡散が懸念されるものであった。
 石油系炭化水素の中性領域での原位置浄化技術としては、界面活性剤を用いた洗浄方法(非特許文献1~3)が試みられているが、これらの方法は何れも洗浄であり、回収した油汚染の再処理が必要な欠点があった。
特許第3793084号公報 国際公開第2006/123574号パンフレット 特開2009-285609号公報 特開2006-247483号公報
戸成ら、界面活性剤を用いた含油土壌の原位置噴射洗浄実験の紹介、第15回地下水・土壌汚染とその防止対策に関する研究集会講演集、2009年、14頁 大村ら、油含有土壌の原位置洗浄に関する研究、第15回地下水・土壌汚染とその防止対策に関する研究集会講演集、2009年、72頁 岡田ら、界面活性剤を用いた石油汚染地盤の原位置洗浄技術に関する検討、第15回地下水・土壌汚染とその防止対策に関する研究集会講演集、2009年、146頁
 本発明の目的は、従来技術における上記したような課題を解決し、有機化合物、特に石油系炭化水素で汚染された土壌及び/又は地下水を簡便で効率良く、かつ安価に浄化する方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、珪藻土を含む有機物吸着材、鉄錯体、及び過酸化物を用いることにより、中性pH領域でも石油系炭化水素が分解可能であることを見出し、本発明を完成させるに至った。
 すなわち、上記課題は、以下の本発明によって解決することができる。
<1> 有機化合物に汚染された土壌及び/又は地下水の浄化に用いる過酸化物を活性する過酸化物活性化剤であって、珪藻土を含む有機物吸着材と、鉄錯体とを含有することを特徴とする過酸化物活性化剤である。
<2> 前記鉄錯体が、グリコールエーテルジアミン四酢酸、ニトリロトリス(メチレンホスホン酸)、L-アスパラギン酸二酢酸、タウリン二酢酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチリデンジホスホン酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、フィチン酸、メチルグリシン二酢酸、ヒドロキシエチルエチレンジアミン三酢酸、L-グルタミン酸二酢酸、ホスホノブタントリカルボン酸及び(S,S)-エチレンジアミンジコハク酸から選ばれる一種以上のキレート剤で形成されていることを特徴とする上記<1>に記載の過酸化物活性化剤である。
<3> 上記<1>または<2>に記載の過酸化物活性化剤と過酸化物とを同時に、あるいは逐次に、有機化合物で汚染された土壌及び/又は地下水に添加することを特徴とする土壌及び/又は地下水の浄化方法である。
<4> 前記過酸化物が、水溶液中で過酸化水素を発生する化合物から選ばれる1種以上である上記<3>に記載の浄化方法である。
<5> 前記過酸化物が、過酸化水素、過炭酸塩、過酸化尿素、ペルオキソ二硫酸塩及びペルオキソ一硫酸塩から選ばれる1種以上である上記<4>に記載の浄化方法である。
<6> 前記過酸化物が過酸化水素またはペルオキソ二硫酸塩である上記<5>に記載の浄化方法である。
<7> 前記過酸化物と前記有機化合物との反応場のpHが5~9である上記<3>~<6>のいずれかに記載の浄化方法である。
<8> 上記<1>または<2>のいずれかに記載の過酸化物活性化剤を有機化合物で汚染された土壌及び/又は地下水に添加し、前記有機化合物を前記過酸化物活性化剤における有機物吸着材に吸着させる工程、次いで過酸化物を添加して前記有機化合物を分解する工程を有する土壌及び/又は地下水の浄化方法である。
<9> 前記過酸化物と前記有機化合物との反応場のpHが5~9である上記<8>に記載の浄化方法である。
<10> 珪藻土を含む有機物吸着材を、有機化合物で汚染された土壌及び/又は地下水に添加して、前記有機化合物を前記有機物吸着材に吸着させる工程、次いで過酸化物を添加する工程、次いで鉄錯体溶液を添加する工程を有することを特徴とする土壌及び/又は地下水の浄化方法である。
<11> 前記過酸化物と前記有機化合物との反応場のpHが5~9である上記<10>に記載の浄化方法である。
 本発明によれば、珪藻土を含む有機物吸着材、鉄錯体、及び過酸化物を用いることにより、石油系炭化水素を含む土壌及び/又は地下水の中性pH領域での浄化が可能となる。さらに本発明における有機物吸着材と鉄錯体との混合溶液は十分に安定であることから、当該溶液を予め調製しておくことで、サイトでの薬剤調製の手間を大幅に省くことも可能である。
 本発明における有機化合物とは、主にTPH(Total Petroleum Hydrocarbon)のような石油系炭化水素や、生物による分解が困難な難分解性物質、農薬、防腐剤、シアン化物等が挙げられる。本発明において浄化対象となる土壌及び/又は地下水は、主にTPHのような石油系炭化水素に汚染されたものである。また、本発明の好ましい態様によれば、生物による分解が困難な難分解性の有機化合物や、農薬、防腐剤、トリクロロエチレン(TCE)、テトラクロロエチレン(PCE)等の有機塩素化合物、シアン化物等の化学物質に汚染された土壌及び/又は地下水も処理可能である。
 本発明に用いられる有機物吸着材は、珪藻土を含むものであれば特に制限はなく、有機物吸着能を有する多孔質物質であれば良いが、過酸化物、特に過酸化水素を実質的に分解しないことが好ましい。過酸化物分解能の高い有機物吸着材を使用した場合には、共存させる鉄錯体を低減出来る場合もあるが、多くの場合は過酸化物の無駄分解が多くなり、経済性に劣る。これに対し、過酸化物を実質的に分解しない有機物吸着材を用いた場合、特に本発明を原位置浄化に用いる場合には、注入された過酸化物の拡散距離が長くなるため、注入井戸の掘削数を削減出来、工業的に非常に有益である。
 上記珪藻土は価格、入手の容易さの点でも工業的に有利である。本発明において珪藻土とは、単細胞ソウ類であるケイソウの遺ガイから成るケイ質の堆積物で、粘土、火山灰、有機物などが混じっているもの(共立出版化学大辞典3)と定義される。本発明に用いられる珪藻土としては、特に制限はなく、未焼成品、焼成品のいずれも使用可能である。同様に、未精製品、精製品のいずれも使用可能である。粒径については、小さいほど、有機物吸着積が大きくなり、かつ水性分散液とした場合の流動性が向上することから、小粒径である方が好ましい。本発明における珪藻土のBET比表面積は15~45m/gが好ましい。さらに好ましくは、20~40m/gの範囲である。15~45m/gの範囲を外れると有機化合物の分解量が小さくなり、好ましくない。
 有機物吸着材の配合量は、有機化合物に汚染された土壌及び/又は地下水における汚染の濃度に依存し、反応場に存在する前記有機化合物の全量を吸着することが可能な量以上を配合することが好ましい。具体的な配合量は、サイトの土壌及び地下水を用いたトリータビリティー試験によって、浄化可否を指標として求めることが出来る。このトリータビリティー試験において、有機物吸着材が不足すると、試験後に油膜が目視確認されることがあり、浄化可否を分析により求めずとも、配合量の不足が分かることもある。
 上記鉄錯体に用いられる鉄塩には特に制限はなく、例えば硫酸第一鉄や塩化第一鉄等が挙げられるが、入手の容易さから硫酸第一鉄が好適である。
 上記鉄錯体に用いられるキレート剤には特に制限はないが、好ましくはグリコールエーテルジアミン四酢酸(GEDTAと称される)、ニトリロトリス(メチレンホスホン酸)(NTMPと称される)、L-アスパラギン酸二酢酸(ASDAと称される)、タウリン二酢酸(ESDAと称される)、ヒドロキシエチルイミノ二酢酸(HIDAと称される)、ヒドロキシエチリデンジホスホン酸(HEDPと称される)、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸(DPTA-OHと称される)、フィチン酸、メチルグリシン二酢酸(MGDAと称される)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTAと称される)、L-グルタミン酸二酢酸(GLDAと称される)、ホスホノブタントリカルボン酸(PBTCと称される)及び(S,S)-エチレンジアミンジコハク酸(EDDSと称される)から選ばれる一種以上のキレート剤である。
 これらのキレート剤は酸型、塩基型の何れも使用可能であるが、使用前に鉄錯体としておくことが好ましい。鉄錯体の配合量は有機化合物に汚染された土壌及び/又は地下水における汚染の濃度に依存するが、反応場における鉄イオン換算濃度で15mg/L以上配合することが好ましい。本発明の鉄錯体における鉄塩とキレート剤との配合比は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、鉄塩(鉄イオンとして)に対するキレート剤のモル比(キレート剤/鉄イオン)として、好ましくは1~3、より好ましくは1~2である。キレート剤を多くし過ぎることは経済性に反し、モル比を小さくし過ぎると鉄塩の沈殿が生じ好ましくない。
 本発明の過酸化物活性化剤の形態にも特に制限はなく、珪藻土を含む有機物吸着材と鉄錯体とを混合した水溶液、珪藻土を含む有機物吸着材と鉄錯体とをそれぞれ単独で含む水溶液、両者の固体の混合物、有機物吸着材が固体であって鉄錯体が水溶液である形態など、使用状況に応じて様々な形態をとることが可能である。操作の容易さを考えると水溶液の形態が特に好ましい。
 本発明に用いられる過酸化物にも特に制限はないが、過酸化水素、ペルオキソ二硫酸、ペルオキソ一硫酸が好適に用いられる。価格、水溶液の安定性から過酸化水素水溶液が好ましい。また過酸化水素水溶液には、メタリン酸、ピロリン酸、オルトリン酸、縮合リン酸塩、ホスホン酸、ピコリン酸、ジピコリン酸、フェニル尿素などの安定剤を本発明の効果を損なわない範囲内であれば添加することも可能である。過酸化水素には工業用過酸化水素水溶液を用いることができる。過酸化水素水溶液の濃度は特に制限はないが、60重量%より高濃度の過酸化水素水溶液は入手が困難であるため、60重量%以下であることが好ましい。さらに好ましくは、安全性及び輸送コストの観点から25~45重量%、特に好ましくは30~45重量%である。
 浄化に際しては、過酸化物活性化剤及び過酸化物を別々に供給しても良いし、混合後に同時供給しても良い。また、供給方法には特に制限はなく、注入、圧入、高圧噴射、高圧噴射攪拌、噴霧、揚水曝気システムへの薬剤注入等、あらゆる工法への適用が可能である。また、各材料を含む水溶液を浄化対象に添加する前に加熱すること、各材料を含む水溶液を添加した後、浄化対象を加熱することも可能である。
 浄化対象に供給する過酸化物の量は、汚染物質の分解に必要な量の1~1000倍程度である。これより少なければ浄化が不十分となり、多すぎる場合は経済性に劣る。
 好ましい過酸化物活性化剤の使用量は、事前のトリータビリティー試験より求めることが好ましいが、少なくとも浄化対象の有機化合物を全量吸着出来る量以上の有機物吸着材の使用は必要である。使用量が少ない場合は、有機化合物が水系反応場へ供給されず分解が不完全となる恐れがある。使用量が多すぎる場合は経済性に劣る。
 土壌及び/又は地下水の汚染物質である有機化合物の分解においては、前記有機化合物と過酸化物との反応場のpHを5~9に保つことが望ましい。反応場のpHを5~9に保つことにより、重金属類の溶出拡散を抑制することができる。浄化対象となる土壌等にpH緩衝能が充分あればpH調整剤の添加は必要ないが、薬剤の添加や有機物分解の進行によってpHが変動する場合は、市販のpH調整剤及び/又はpH緩衝剤を用いることも可能である。pH調整剤としては、硫酸、硝酸、リン酸等の酸や水酸化ナトリウム、水酸化カリウム等の塩基が使用可能である。また、pH緩衝剤としては、化学便覧等で紹介されているもので良いが、鉄の沈殿抑制や環境調和の観点から炭酸系緩衝剤が好ましい。炭酸系緩衝剤としては、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられる。このうち、コストや溶解度、pHの観点からは炭酸水素ナトリウムを単独で使用するか、もしくは炭酸水素ナトリウムと炭酸ナトリウムとを併用することが望ましい。pH緩衝剤は浄化中の土壌及び/又は地下水のpHが5~9となるように添加すれば良いが、炭酸イオン及び炭酸水素イオンにはラジカルスカベンジャー効果があるため、極力使用を控えることが望ましい。
 本発明を有機化合物に汚染された土壌及び/又は地下水の原位置浄化に用いようとする場合の方法に特に制限はないが、一つの方法としては、過酸化物活性化剤と過酸化物とを同時に、あるいは逐次に有機化合物で汚染された土壌及び/又は地下水に添加する方法が挙げられる。他の方法としては、過酸化物活性化剤を有機化合物で汚染された土壌及び/又は地下水に添加し、土壌及び/又は地下水中の前記有機物化合物を珪藻土を含む有機物吸着材に吸着させる工程、次いで過酸化物を添加して前記有機化合物を分解する工程を有する方法が挙げられる。さらに他の方法としては、珪藻土を含む有機物吸着材を地盤中に添加して前記有機化合物を吸着させる工程、次いで過酸化水素水溶液を添加する工程、さらに鉄錯体を添加する工程を有する方法が挙げられる。有機物吸着材に前記有機化合物を吸着させることでTPH等の低水溶性石油系炭化水素が水系反応場へ導入され、次いで過酸化水素水溶液及び鉄錯体の浄化剤を添加することで、ヒドロキシルラジカルを発生させ、有機物を分解させることが出来るため好適である。
 以下、実施例により本発明を具体的に説明するが、本発明は、以下の実施例に何ら制限を受けるものではない。
<BET比表面積の測定方法>
 下記の実施例及び比較例で用いた珪藻土のBET比表面積は、日本ベル社製 BELSORP miniIIを用いて測定した。なお、各珪藻土は日本ベル社製 BELSORP-vacIIにより300℃/3時間の前処理を行った後に、BET比表面積を測定した。
(実施例1)
(1)100mL耐圧ネジ口瓶を反応容器として用いた。
(2)有機物吸着材として珪藻土(小宗科学薬品工業株式会社製 けいそう土試薬 Lot.G1D3004)2.7重量%、及び鉄錯体を含む溶液を過酸化物活性化剤として用いた。この小宗科学薬品工業製けいそう土のBET比表面積は38.1m/gであった。なお、鉄錯体は、キレート剤としてグリコールエーテルジアミン四酢酸(GEDTA、キレスト社製「キレストGEA」)、鉄塩としてFeSO・7HO(和光純薬製特級試薬)を用いて、キレート剤/鉄イオンのモル比が1、かつ鉄イオン濃度が1500mg/Lとなるように調整した。
(3)pH緩衝剤として440mM炭酸水素ナトリウム/0.875mM炭酸ナトリウム水溶液を用いた。
(4)分解対象として市販の灯油を用いた。
(5)94mLの超純水を反応容器に入れ、次いで前記(2)の過酸化物活性化剤1mL、前記(3)のpH緩衝剤4mLを添加した。さらに1.5重量%の過酸化水素水溶液1mLを加えた。
(6)前記(4)の灯油を12μL添加した後、直ちに密栓した。
(7)TAITEC社製ストロングシェーカーSR-2Sに密栓した反応器を固定し、300回振盪/分にて22℃で20時間振盪させた。
(8)所定時間経過後開封し、灯油抽出用としてn-ヘキサン10mLを添加し、再び密栓した。
(9)前記(7)の振盪機にて30分振盪し、次いで30分静置した。
(10)無水硫酸ナトリウムを入れた2mLオートサンプラー用バイアルにヘキサン層を分取し、GC-FID分析に供した。
(11)灯油の定量方法はEPA(アメリカ環境保護局)8015Bに従い行った。
(12)前記(5)において前記(2)の過酸化物活性化剤1mLを100mLの超純水に添加したものを調製し、前記(6)以降の操作を行ったものをリファレンスとした。
(13)灯油の分解率は下記式により求めた。
{灯油分解率(%)}={前記(10)にて抽出された灯油}/{リファレンスにて抽出された灯油}×100
 なお、有機物吸着材より回収される灯油の回収率は、回収される量によらず一定とした。上記試験の結果、灯油分解率は79.9%であった。
(実施例2)
 キレート剤としてニトリロトリス(メチレンホスホン酸)(NTMP、キレスト社製「キレストPH-320」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は71.9%であった。
(実施例3)
 キレート剤としてL-アスパラギン酸二酢酸(ASDA、三菱レイヨン社製)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は71.0%であった。
(実施例4)
 キレート剤としてタウリン二酢酸(ESDA、キレスト社製「キレストESDA-30」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は70.1%であった。
(実施例5)
 キレート剤としてヒドロキシエチルイミノ二酢酸(HIDA、キレスト社製「キレストE-20」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は67.6%であった。
(実施例6)
 キレート剤としてヒドロキシエチリデンジホスホン酸(HEDP、キレスト社製「キレストPH-212」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は66.6%であった。
(実施例7)
 キレート剤として1,3-ジアミノ-2-ヒドロキシプロパン四酢酸(DPTA-OH、キレスト社製「キレストRA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は65.0%であった。
(実施例8)
 キレート剤としてフィチン酸(東京化成工業社製試薬)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は63.4%であった。
(実施例9)
 キレート剤としてメチルグリシン二酢酸(MGDA、BASF社製「TRILON M」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は56.5%であった。
(実施例10)
 キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は56.1%であった。
(実施例11)
 キレート剤としてL-グルタミン酸二酢酸(GLDA、キレスト社製「キレストCMG-40」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は55.3%であった。
(実施例12)
 キレート剤としてホスホノブタントリカルボン酸(PBTC、キレスト社製「キレストPH-430」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は52.5%であった。
(実施例13)
 キレート剤として(S,S)-エチレンジアミンジコハク酸(EDDS、キレスト社製「キレストEDDS-35」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は52.5%であった。
(実施例14)
 実施例1の(2)において珪藻土の濃度を5.3重量%とし、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は56.3%であった。
(実施例15)
 実施例1の(2)において鉄イオン濃度を500mg/Lとし、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は58.2%であった。
(実施例16)
 実施例1の(2)において鉄イオン濃度を3000mg/Lとし、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は54.7%であった。
(実施例17)
 実施例1の(2)において、有機物吸着材としてイソライト工業社製珪藻土 イソライトDPを用い、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は67.0%であった。このイソライト工業製イソライトDPのBET比表面積は24.5m/gであった。
(実施例18)
 実施例1の(2)において、有機物吸着材として昭和化学工業社製珪藻土 ラヂオライトSPFを用い、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は70.1%であった。この昭和化学工業製ラヂオライトSPFのBET比表面積は31.8m/gであった。
(比較例1)
 実施例1の(2)において活性炭水性分散液(三菱ガス化学社製「ダイヤフレッシュ オルソンAT」)を有機物吸着材として用い、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は33.5%であった。
(比較例2)
 実施例1の(2)において有機物吸着材としてモレキュラーシーブス3Aを粉砕して用い、キレート剤としてヒドロキシエチルエチレンジアミン三酢酸(HEDTA、キレスト社製「キレストHA」)を用いた以外は実施例1と同様に試験を行った結果、灯油分解率は10.0%であった。
(比較例3)
 実施例1の(2)において、鉄錯体を含まない溶液を過酸化物活性化剤として用いた以外は実施例1と同様に試験を行った結果、灯油分解率は46.0%であった。
 なお、上記実験(実施例1~18、比較例1~3)における反応場のpHは何れも6~8であった。

Claims (11)

  1.  有機化合物に汚染された土壌及び/又は地下水の浄化に用いる過酸化物を活性する過酸化物活性化剤であって、珪藻土を含む有機物吸着材と、鉄錯体とを含有することを特徴とする過酸化物活性化剤。
  2.  前記鉄錯体が、グリコールエーテルジアミン四酢酸、ニトリロトリス(メチレンホスホン酸)、L-アスパラギン酸二酢酸、タウリン二酢酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチリデンジホスホン酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、フィチン酸、メチルグリシン二酢酸、ヒドロキシエチルエチレンジアミン三酢酸、L-グルタミン酸二酢酸、ホスホノブタントリカルボン酸及び(S,S)-エチレンジアミンジコハク酸から選ばれる一種以上のキレート剤で形成されていることを特徴とする請求項1に記載の過酸化物活性化剤。
  3.  請求項1または2に記載の過酸化物活性化剤と過酸化物とを同時に、あるいは逐次に、有機化合物で汚染された土壌及び/又は地下水に添加することを特徴とする土壌及び/又は地下水の浄化方法。
  4.  前記過酸化物が、水溶液中で過酸化水素を発生する化合物から選ばれる1種以上である請求項3に記載の浄化方法。
  5.  前記過酸化物が、過酸化水素、過炭酸塩、過酸化尿素、ペルオキソ二硫酸塩及びペルオキソ一硫酸塩から選ばれる1種以上である請求項4に記載の浄化方法。
  6.  前記過酸化物が過酸化水素またはペルオキソ二硫酸塩である請求項5に記載の浄化方法。
  7.  前記過酸化物と前記有機化合物との反応場のpHが5~9である請求項3~6のいずれかに記載の浄化方法。
  8.  請求項1または2に記載の過酸化物活性化剤を有機化合物で汚染された土壌及び/又は地下水に添加し、前記有機化合物を前記過酸化物活性化剤における有機物吸着材に吸着させる工程、次いで過酸化物を添加して前記有機化合物を分解する工程を有する土壌及び/又は地下水の浄化方法。
  9.  前記過酸化物と前記有機化合物との反応場のpHが5~9である請求項8に記載の浄化方法。
  10.  珪藻土を含む有機物吸着材を、有機化合物で汚染された土壌及び/又は地下水に添加して、前記有機化合物を前記有機物吸着材に吸着させる工程、次いで過酸化物を添加する工程、次いで鉄錯体溶液を添加する工程を有することを特徴とする土壌及び/又は地下水の浄化方法。
  11.  前記過酸化物と前記有機化合物との反応場のpHが5~9である請求項10に記載の浄化方法。
PCT/JP2011/060102 2010-04-30 2011-04-26 過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法 WO2011136196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127026698A KR101823171B1 (ko) 2010-04-30 2011-04-26 과산화물 활성화제 그리고 토양 및/또는 지하수의 정화 방법
JP2012512841A JP5846117B2 (ja) 2010-04-30 2011-04-26 過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法
CN201180021873.5A CN102869743B (zh) 2010-04-30 2011-04-26 过氧化物活化剂及土壤和/或地下水的净化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010104788 2010-04-30
JP2010-104788 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011136196A1 true WO2011136196A1 (ja) 2011-11-03

Family

ID=44861495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060102 WO2011136196A1 (ja) 2010-04-30 2011-04-26 過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法

Country Status (5)

Country Link
JP (1) JP5846117B2 (ja)
KR (1) KR101823171B1 (ja)
CN (1) CN102869743B (ja)
TW (1) TWI551551B (ja)
WO (1) WO2011136196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701881A (zh) * 2012-06-05 2012-10-03 凌天骏 一种土壤消毒剂以及土壤消毒灭菌方法
JP5194223B1 (ja) * 2012-03-05 2013-05-08 株式会社セイネン 化学処理剤

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438300B (zh) * 2014-10-23 2017-01-18 江苏盖亚环境工程有限公司 一种汽油污染土壤的协同修复方法
CN104438302B (zh) * 2014-10-23 2016-08-24 江苏盖亚环境工程有限公司 一种三氯乙烯污染土壤的修复方法
CN104310561A (zh) * 2014-11-24 2015-01-28 天津大港油田滨港集团博弘石油化工有限公司 一种采油用亚铁离子处理剂
CN104671387A (zh) * 2015-02-04 2015-06-03 华东理工大学 一种新型过碳酸钠氧化剂去除地下水中btex的方法
CN104692515A (zh) * 2015-02-04 2015-06-10 华东理工大学 一种加强活化过氧化钙去除水中氯代烯烃的方法
CN104646410A (zh) * 2015-02-28 2015-05-27 辽宁石油化工大学 一种联合修复镉污染土壤的方法
CN106396317B (zh) * 2016-12-07 2019-09-20 宁波大红鹰学院 修复河道污泥的复合材料及其制备方法和应用
CN108178276A (zh) * 2016-12-08 2018-06-19 刘宫介 一种渔业用底质改良剂及其制备方法
KR101867729B1 (ko) * 2016-12-21 2018-06-14 주식회사 포스코 토양 및 지하수 정화용 조성물 및 이를 이용한 정화처리 방법
CN107442565A (zh) * 2017-09-30 2017-12-08 青岛农业大学 一种原位修复多环芳烃污染农田土壤的方法及装置
CN108585221A (zh) * 2018-05-15 2018-09-28 中山国晟生物工程有限公司 一种多功能环保型污水处理复合药剂及其制备方法、应用
CN109201727B (zh) * 2018-09-03 2020-12-11 杭州鸿明市政工程有限公司 一种土壤淋洗液、使用方法和设备
CN110961451B (zh) * 2019-12-30 2021-07-23 上海交通大学 一种氧化降解有机污染物的土壤修复材料和土壤修复方法
CN115634922A (zh) * 2021-07-20 2023-01-24 中国石油天然气股份有限公司 石油烃污染土壤的修复方法、修复药剂及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503197A (ja) * 1999-07-01 2003-01-28 エス. グリーンバーグ,リチャード 土壌及び/又は地下水の改善方法
JP2005139328A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 有機塩素化合物除去剤及び有機塩素化合物除去方法
JP2006247483A (ja) * 2005-03-09 2006-09-21 Mitsubishi Gas Chem Co Inc 汚染土壌の処理方法
WO2006123574A1 (ja) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. 土壌及び/又は地下水の浄化方法
JP2007215552A (ja) * 2005-10-26 2007-08-30 Mitsubishi Gas Chem Co Inc 有機ハロゲン化合物の処理方法
JP2010082600A (ja) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc 土壌及び/又は地下水の浄化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438621B (en) * 1997-02-07 2001-06-07 Ebara Corp Purification method for contaminants caused by halogenated organic compounds
EP1521820B1 (en) * 2002-07-11 2006-03-22 Ciba SC Holding AG Use of metal complex compounds as oxidation catalysts
CN100575281C (zh) * 2007-04-06 2009-12-30 北京化工大学 低浓度有机污染物的水处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503197A (ja) * 1999-07-01 2003-01-28 エス. グリーンバーグ,リチャード 土壌及び/又は地下水の改善方法
JP2005139328A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 有機塩素化合物除去剤及び有機塩素化合物除去方法
JP2006247483A (ja) * 2005-03-09 2006-09-21 Mitsubishi Gas Chem Co Inc 汚染土壌の処理方法
WO2006123574A1 (ja) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. 土壌及び/又は地下水の浄化方法
JP2007215552A (ja) * 2005-10-26 2007-08-30 Mitsubishi Gas Chem Co Inc 有機ハロゲン化合物の処理方法
JP2010082600A (ja) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc 土壌及び/又は地下水の浄化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194223B1 (ja) * 2012-03-05 2013-05-08 株式会社セイネン 化学処理剤
JP2013184983A (ja) * 2012-03-05 2013-09-19 Seinen:Kk 化学処理剤
CN102701881A (zh) * 2012-06-05 2012-10-03 凌天骏 一种土壤消毒剂以及土壤消毒灭菌方法
CN102701881B (zh) * 2012-06-05 2014-05-14 凌天骏 一种土壤消毒剂以及土壤消毒灭菌方法

Also Published As

Publication number Publication date
KR101823171B1 (ko) 2018-01-29
JP5846117B2 (ja) 2016-01-20
JPWO2011136196A1 (ja) 2013-07-18
TWI551551B (zh) 2016-10-01
CN102869743A (zh) 2013-01-09
KR20130083379A (ko) 2013-07-22
CN102869743B (zh) 2015-03-18
TW201144237A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5846117B2 (ja) 過酸化物活性化剤ならびに土壌及び/又は地下水の浄化方法
JP5029562B2 (ja) 土壌及び/又は地下水の浄化方法
CA2776869C (fr) Procede d'oxydation de composes organiques
Maity et al. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment
Shih et al. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes
KR101809888B1 (ko) 토양 및/또는 지하수의 정화제, 및 정화 방법
US9463990B2 (en) Water treatment agent for removing contaminant through oxidation with highly-active manganese (V) intermediate
JP5250975B2 (ja) 土壌及び/又は地下水の浄化方法
WO2010073976A1 (ja) 安定性に優れる過酸化水素水溶液
KR101771761B1 (ko) 과황산염 및 은 착물을 함유하는 화학 물질 분해용 처리제 및 그것을 사용한 화학 물질의 분해 방법
US20180305230A1 (en) Methods for treating selenocyanate in wastewater
Hara Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone
Wang et al. Kinetics for diclofenac degradation by chlorine dioxide in aqueous media: Influences of natural organic matter additives
Nurlan et al. Competitive inhibition of catalytic nitrate reduction over Cu–Pd-hematite by groundwater oxyanions
JP4912608B2 (ja) 化学物質分解剤およびこれを用いた浄化方法
JP5666832B2 (ja) 有機物質の分解処理方法および有機物質の分解処理剤キット
JP2004202357A (ja) 有機化合物汚染の浄化方法
JP2006326121A (ja) 化学物質分解剤およびこれを用いた浄化方法
JP2011000497A (ja) 鉄キレート水溶液ならびに土壌及び/又は地下水の浄化方法
JP2012035196A (ja) 酢酸含有排水の処理方法及び装置
Ahn et al. Mechanistic aspects of nitrate reduction by Fe (0) in water
KR101833480B1 (ko) 친환경 제설제 및 그 제조방법
WO1993023517A1 (en) Peroxygen cleaning composition
JP2786982B2 (ja) 廃水処理剤
JP2004298719A (ja) 揮発性有機塩素化合物の化学的分解方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021873.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512841

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127026698

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774977

Country of ref document: EP

Kind code of ref document: A1