TW201144237A - Peroxide activator and method for purifying soil and/or underground water - Google Patents

Peroxide activator and method for purifying soil and/or underground water Download PDF

Info

Publication number
TW201144237A
TW201144237A TW100114249A TW100114249A TW201144237A TW 201144237 A TW201144237 A TW 201144237A TW 100114249 A TW100114249 A TW 100114249A TW 100114249 A TW100114249 A TW 100114249A TW 201144237 A TW201144237 A TW 201144237A
Authority
TW
Taiwan
Prior art keywords
peroxide
acid
soil
organic
organic compound
Prior art date
Application number
TW100114249A
Other languages
Chinese (zh)
Other versions
TWI551551B (en
Inventor
Kenichi Kimiduka
Yousuke Shinkai
Kiyoshi Yoshida
Shigeyasu Yoshioka
Original Assignee
Mitsubishi Gas Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co filed Critical Mitsubishi Gas Chemical Co
Publication of TW201144237A publication Critical patent/TW201144237A/en
Application granted granted Critical
Publication of TWI551551B publication Critical patent/TWI551551B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Provided is a method for purifying soil and/or underground water polluted with an organic compound of low water solubility handily, efficiently, and at a low cost. It relatives to an peroxide activator for activating the peroxide which is used for purifying the soil and/or the underground water polluted with an organic compound of low water solubility, which is characterized by containing an organic adsorbent comprising diatomite and an complex, and a purifying method using this activator.

Description

201144237 六、發明說明: 【發明所屬之技術領域] 本發明係關於在淨化被有機化合物污染之土壤及/或 地下水時’所使用之與過氧化物併用之含有有機物吸附材 與鐵錯合物之該過氧化物的活性化劑,以及使用彼等之淨 化方法。 【先前技術】 現已知土壤及/或地下水中的汙染會對生活環境造成 很大的影響’於是整備水質污濁防止法與土壤污染對策法 等’推展對迄今所積蓄、放置之有機化合物污染的淨化。 此處所述之有機化合物,係指以TPH (T〇tai Petr〇leum Hydrocarbon)為主之石油系烴或難以生物分解之難分解性 物質、農藥、防腐劑、氰化物等。 對於此等有機化合物,嘗試採用物理的、化學的、生201144237 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an organic-containing adsorbent material and an iron complex compound used in combination with a peroxide for purifying soil and/or ground water contaminated with an organic compound. The peroxide activator and the purification method using them. [Prior Art] It is known that pollution in soil and/or groundwater can have a great impact on the living environment, so that the water pollution prevention method and the soil pollution countermeasure method are used to promote the pollution of organic compounds accumulated and placed heretofore. Purification. The organic compound as used herein refers to a petroleum hydrocarbon mainly composed of TPH (T〇tai Petr〇leum Hydrocarbon) or a hardly decomposable substance which is difficult to be biodegraded, a pesticide, a preservative, a cyanide or the like. For these organic compounds, try to use physical, chemical, raw

加(bioaugmentation)雖且右斜H、息斑α 再有對周邊環境影響較小的優Although the bioaugmentation has a right oblique H and a spot α, it has a small influence on the surrounding environment.

理’且對分解對象沒有選擇性, ^^ 〇 A]~ ML xj. ^ /l -1- . 可適用在高濃度污染或複And 'has no selectivity for the decomposition object, ^^ 〇 A]~ ML xj. ^ /l -1- . Applicable to high concentration pollution or complex

323034 3 201144237 用PH5至8之鐵螯合物水溶液與過氧化氫水溶液之費頓反 應(Fenton Reaction)淨化方法(參考專利文獻〇,與 使用生物分解性螯合物劑與過氧化氣水溶液之費頓反應淨 化方法(參考專利文獻2)。另外已知使用過氧化氩、捧樣 酸、鐵混合溶液之費頓反應淨化方法(參考專利文獻3)。 但是這些文獻所記載之方法皆為水系反應,難时解石油 系烴等水不溶性物質。 嘗試有關石油系烴等水不溶性物質的分解,已知添加 對金屬鹽、過氧化氫具有分解能力之活性碳及氧化劑的分 解方法(參考專利文獻4)。但是此方法反應場所之pH必 須在5以下,故有重金屬類溶出擴散的疑慮。 嘗試以使用界面活性劑之洗淨方法(非專利文獻i至 3 )作為石油系烴在中性領域之原位置淨化技術,但此等方 法不論何者皆有需要再處理洗淨所回收之油污染物的缺 點。 ' [先前技術文獻] [專利文獻] [專利文獻1]曰本特許第3793084號公報 [專利文獻2]國際公開第2006/123574號小冊 [專利文獻3]日本特開2009_285609號公報 [專利文獻4]日本特開2〇〇6_247483號公報 [非專利文獻] [非專利文獻1]戶成等人,使用界面活性劑之含油土 壤原位置喷射洗淨實驗的介紹,第15回關於地下水、土壞 4 323034 講集,2009年’14頁 201144237 污染之防止對策之研究集,關於含油土壤之原位置洗 [非專利文獻2]大村T 防止對策之研 淨的研究,第15回關於地下水 究集會演講集,2009年,72貢。 ^ ^ 「 站1,關於使用界面活性劑之石 [非專利文獻3]岡田等人 ^ ,方掄討,第15回關於地下 油污染地盤的原位置洗淨技術之^ ΟΛΠ0 ^ 究集會演講集,2009年, 水、土壌污染及其防止對雇之研 146 頁。 【發明内容】 (發明欲解決之課題) 本發明的目的為解決過女技術中如上述之&gt;課題1於 被有機化合物,尤其是石油系嫁所污染之土壤及〇 土下 水,提供簡便、效專佳且低價之淨化方法。 (解決課題之方法) 本案發明者為解決上述課題,經重複銳思檢°才、、°果 發現由使用含㈣藻土之有機物吸附材、鐵錯合物及過氧 化物,即使在中性ρΗ區域亦4分解石油系烴,從而完成本 發明。 即上述課題可由以下之本發明而解決。 〈1&gt; -種過氡化物活性化#1 ’可’舌化在淨化有機化 合物所污染之土壤及/或地下水所用之過氧化物,其特徵為 具有含矽藻土之有機物吸附材與鐵錯合體。 〈2&gt;上述〈1&gt;所記載之過氧化物活性化劑’其中, 刖述鐵錯合物係由乙二醇雙胺基乙醚四乙酸、氮基三(亞 5 323〇34 201144237 曱基膦酸)、L-天冬麟二乙酸、胺基乙树二乙峻… 基亞胺基二乙酸、羥基亞乙基二膦酸、丨,3_二胺基、、羥乙 烷四乙酸、植酸、甲基甘胺酸二乙酸、羥乙基乙^ = ¾丙 酸、L-麵胺酸二乙、膦基丁燒三驗、(s,s) 乂賤三己 琥珀酸選出之一種以上之螯合劑所形成者。 〜垵二 〈3〉一種土壌及/或地下水之淨化方法,係將 或〈2〉所記載之過氧化物活性化劑與過氧化物同,〔、〈1〉 添加於有機化合物所污染之土壌及/或地下水者。虱遂次 〈4〉上述〈3〉所記載之淨化方法,其中’ 化物係由在水溶液中會產生過氧化氫之化合物,氣 種以上者。 1 〈5〉上述〈4〉所記載之淨化方法,其中,騎 化物係由過氧化氫、過碳酸鹽、過氧化尿素、過氣過氣 鹽、過氧單硫酸鹽所選出之1種以上者。 〜碌峻 〈6〉上述〈5〉所記载之淨化方法,其中,骑 化物為過氧化氫或過氧二硫酸鹽者。 遮過氡 〈7〉上述〈3〉至〈6〉中任一項所記載之淨化方、 其中,别述過氧化物與前述有機化合物的反應場去, 為5至9者》 〈8〉一種土壤及/或地下水的淨化方法,係具有在 有機化合物污染之土壤及/或地下水添加上述⑴或〈^〉 中任-項所記載之過氧.化物雜化劑,並使前述有機化合 物吸附於則述過氧化物活性化劑中的有機物吸附材之步驟 以及接著添加過氧化物使前述有機化合物分解之步驟者。 6 323034 201144237 〈9〉上述〈8〉所記載之淨化方法,其中,&lt;、 化物與前述有機化合物的反應場所之pH為5至9別述過氧 〈10〉一種土壤及/或地下水之淨化方法,^。 被有機化合物污染之土壞及/或地下添加含有矽第具有在 機物吸附材,並具備使前述有機化合物吸附於前=土之有 吸附材之步驟、接著添加過氧化物之步驟、再:有機物 錯合物溶液之步驟者。 考恭加鐵 〈11 &gt;上述〈10〉所記載之淨化方法,其中,此、、 氧化物與前述有機化合物的反應場所之p =過 (發明的效果) 9者。 根據本發明,由使用含石夕簾土之有機物吸附材 合物及過氧化物,可在中性PH區域淨化含石油系煙之土^ 及/或地下水。復因本發明中有機物吸附材與鐵錯合物的混 合溶液十分安定,故可預先調製該溶液,可大幅節省在使 用場所調製藥劑的時間。 【實施方式】 本發明中的有機化合物可舉出以TPH ( Total Petroleum Hydrocarbon )為主之石油系烴、難以生物分解 之難分解性物質、農藥、防腐劑、氰化物等。本發明淨化 對象之土壤及/或地下水,係被TPH (Totai Petr〇leum Hydrocarbon)為主之石油系烴所污染者。此外,由本發明 較佳的樣態可處理難以生物分解之難分解性有機化合物, 以及農藥、防腐劑、三氯乙晞(TCE)、四氣乙烯(pcE)等 之有機氣化合物、氰化物等化學物質所污染之土壤及/或地 323034 201144237 下水。 即無吏物吸附材只要為含㈣藻土者 佳,較佳A 有機物吸附能力之多孔性物質為 使用分解解過氧化物(特別是過氧化氮)者。 多,經濟β * —夕情形為過氧化物無意義的分解過 化時,所、± 尤其疋使用在以本發明進行原位置淨 之注入井 上述矽藻土從價格、入丰办 工業上的應用。本發明中料:„考量’亦有利於 藻遺骸所叙@質_物ί ㈣為之矽 無:共立出版化學大辭典3)。本發明所使用之 製。’未燒成品、燒成品皆可使用。同樣的,、未梦 物吸附面積較大二!於粒徑,若粒徑較小則有機 較佳為m&quot; 讀液雜動性可提升,故 ‘、、、/、;立徑者。本發明中矽藻土較佳之bet比表 範為2〇至·之範圍。在15至‘ 卜!有機化合物的分解量變小,較為不理想。 :機物吸附材之混合量係依照被化合 =及/或地下水中污㈣濃度 混^之 Γ::反應場所存在之前地有機化合物之全量4 : 使用場所之土壤及地下4 一·上_ ^上由 201144237 (Treatability testing)作為能否淨化之指標,可求得 具體的混合量。在處理能力試驗中若有機物吸附材不足了 試驗後可目視確認到油膜,不需要做能否淨化之分析即可 了解為混合量的不足。 上述鐵錯合物所使用之鐵鹽並無特別限制,可舉出例 如硫酸亞鐵或氣化亞鐵等,容易入手之硫酸亞鐵較為合適。 上述鐵錯合物所使用之螯合劑並沒有特別限制,°較佳 為從乙二醇雙胺基乙醚四乙酸(亦稱為GEDTA)、氮基三(亞 甲基膦酸)(亦稱為NTMP)、L_天冬胺酸二乙酸稱為 ASDA)、胺基乙磺酸二乙酸(亦稱為ESDA)、羥乙基亞胺^ 二乙酸(亦稱為HIDA)、經基亞乙基二膦酸(亦稱為刪p)土、 1,3-二胺基-2-羥丙烷四乙酸(亦稱為DpTA_〇H)、植酸、 甲基甘胺酸二乙酸(亦稱為MGDA)、羥乙基乙二胺三乙酸 (亦稱為HEDTA)、L-楚胺酸二乙酸(亦稱為GLDA)、膊義 :燒三鏡(亦稱為PBTC)、(S,S) _乙二胺二伽酸(二 稱為EDDS)選出之一種以上之螯合劑。 這些螯合劑不論為酸形、驗型都可 ^為鐵錯合物。鐵錯合物的混合量依照有機=: =:鐵離:換算濃度為— 之矿圍:與的配合比’只要在不損及本發明的效果 ^内U別的限制,相對於鐵鹽(作 ) =劑的莫耳比(螯合劑/鐵離子)較佳為4 3,更佳為 至2。整合劑過多則不符合經濟性,莫耳比過小則會產生 323034 9 201144237 鐵鹽沉澱故較不理想。 本發明之過氧化物活性化劑的型態並沒有特別限 制,含矽藻土之有機物吸附材與鐵錯合物 、 含石夕藻土之有機物謂材與鐵錯合物各自單^水溶液、 兩者之固體混合物、有機物吸附材為固體而鐵錯合物為水 溶液之型態等,依使用狀況可為各種型態。以操作容易度 來考慮特佳為水溶液之型態。 本發明所使用之過氧化物亦無特別限制,使用過氧化 氫、過氧二誠、過氧單_較為合適,簡格、水溶液 的安定性而言較佳為過氧化氫水溶液。另外在不損及本發 =果的範_,過氧化氫水溶液可添加偏雜、焦填酸、 正磷酸、縮合魏、職、K賴、^ 苯基 服等安定劑。過氧化氫可使I業用過氧化氫水溶液。過 2氣水溶液㈣度並沒有特別限制,因6〇重量%以上高 ί度之過氧化氫水溶液入手困難’故較佳為6〇重量%以 安全性及輸送成本的觀點來看較佳為烈至45重量 /〇 ’特佳為30至45重量%。 $淨化時,可各別供給過氧化物活性化劑及過氧^ 可混合後㈣供給。_,供給枝並沒有特別Ρ &gt; 主入、壓入、高壓噴射、高壓噴 水曝氣系统注入藥劑等,各插 添w 種工法都可適用。此外,可^ 含各奸聽對线將含各材料之水溶液加熱,也可在添) 各材料之水溶液後對淨化對象加埶。 供給淨化對象之過氧化物的量為分解污染物質… 323034 10 201144237 量之1至1000倍左右。若較此為少則淨化不完全,過 則經濟性較差。 寸 較佳的過氧化物活性化劑使用量,較佳為事先以處理 能力試驗求得,但至少需要使用可將淨化對象之有機化人 物全量吸附之量以上的有機物吸附材。使用量過少時 機化合物不會供給於水系反應場所而有分解不完全 慮。使用量過多時經濟性較差》 在分解土壤及/或地下水之有機化合物污染物 較佳為前述有機化合物與過氧化物之反應場所的PH保持 至卜將反應場所PH保持5至9可抑制重金屬類的溶出擴5 散。右土壌等淨化對象之PH緩衝能力充分則不需要口 pH調整劑’添加藥劑或進行有機物分解造成邱變動時σ 可使用市售之PH調整劑及/或ΡΗ緩衝劑。ρΗ調整吏 用硫酸、魏、顧特與氫氧仙、氫氧化鉀等驗 夕卜=緩衝财為化學便㈣所介紹者,叫制鐵的沉殿 的觀點來看較佳為碳酸系緩衝劑。碳酸系緩衝 可舉出、碳_、碳酸約、魏鎂、碳酸氣納、 碳,氫卸等。其中以成本及溶解度、pH的觀點來看,較佳 為皁獨使用碳酸氫鈉或併用碳酸氫納與碳酸納。較為 加pH缓衝劑使淨化中之土壤及/或地下水的pH為5至^ 因碳酸料及碳酸氫離子有自由基捕捉劑 scavenger)的效果,故較佳為盡量控制使用量。 使用树明於有機化合物所污染之土壞及/或地下水 之原位置淨化時,其方法並沒有特別限制,可舉出一方法 323034 11 201144237 為將過氧化物活性化劑與過氧化物同時或逐次添加於 化合物所污染之土壌及/或地下水。可舉出具有以下步 其他方法:將過氧化物活性化劑添加於有機化合物所污仇 之土壌及/或地下水,使土壌及/或地下水中之前述有機二 化合物吸附於含有矽藻土之有機物吸附材之步驟,接著添 加過氧化物使前述有機化合物分解之步驟。復可兴出具4、 以下步驟之其他方法:將含树藻土之有機物^材 於地盤中吸附前述有機化合物之步驟,接著添㈣氧 水溶液之步驟,再接著添加鐵錯合物之步驟。藉由使 有機化合物被吸附在有機物吸附材中,使ΤΡΗ等低水容性 石油等烴被導人水系反應場所’接著添加過氧化氫水溶液 及鐵錯合物之淨化劑使產生㈣由基,因可分解有機物故 為合適。 (實施例) 以下以實施例對本發明作更詳細的說明。但本發明並 非受限於以下之實施例者。 ' 〈bet比表面積的測定方法〉 使用日本BEL公司製BELS〇PR Mini Π測定下述之實施 例以及比較例所使用矽藻土之BET比表面積。各矽藻土以 日本BEL公司製BELS0PR-vacn進行30(rc/3小時前處理 後,測定BET比表面積。 實施例1 (1) 使用100mL耐壓螺口瓶作為反應容器。 (2) 將含有作為有機物吸附材之矽藻土(小宗科學 323034 12 201144237 藥品工業股份公司製矽藻土試藥L〇t. G1D3〇〇4)2. 7重量% 及鐵錯δ物的 &gt;谷液做為過氧化物活性化劑使用。此小宗科 學藥品工業製矽藻土之ΒΕΤ比表面積為38· lmVg。此外, 鐵錯合體使用乙二醇雙胺基乙醚四乙酸(GEDTA,chelest 公司製「CHELEST GEA」)作為螯合劑、FeSOWHzO (和光 純藥製特級試藥)做為鐵鹽,螯合劑/鐵離子之莫耳比為 1 ’且調整鐵離子濃度為15〇〇mg/L。 (3) 使用440mM碳酸氫鈉/〇.875mM碳酸鈉水溶液作 為pH緩衝劑。 (4) 使用市售煤油作為分解對象 (5) 在反應谷器中加入94mL超純水’接著添加前述 (2)之過氧化物活性化劑ImL、前述(3)之PH緩衝劑4此。 再加入1· 5重量%過氧化氫水溶液lmL。 (6) 添加前述之(4)煤油i2eL後,將其密栓。 (7) 將密栓之反應容器固定在TAITEC公司製 Str〇ngShakerSR-2S,在22t以300次震盪/分振盪2〇小 時。 (8) 在經過預定時間後開封,添加1〇ml正己烷作為 萃取煤油之用途,再密栓。 (9) 以前述(7)之震盪機震盪3〇分鐘,接著靜置 3 0分鐘。 (10) 分取己烷層置入預先放入無水硫酸鈉之自 動取樣用小瓶,供GC-FID分析使用。 (11) 煤油之定量方法依照EPA (美國環境保護局) 323034 13 201144237 8015B進行。 (12) 在前述(5)中,調製添加前述(2)之過氧化 物活性化劑1 mL至1 OOmL超純水中者,進行前述(6 )以後 之操作,作為對照。 (13) 煤油之分解率以下述式求之。 {煤油分解率(%)} = U-[前述(10)所萃取之煤油]/[對 照組所萃取之煤油]}χ100 此外,由有機物吸附材所回收之煤油的回收率無關於 所回收的量而是為一定值。上述實驗之結果,煤油分解率 為 79·9%。 (實施例2) 除了使用次胺基三(亞曱基膦酸)(NTMP,CHELEST公 司製「CHELEST PH-320」)作為螯合劑以外.,與實施例1 相同方式進行試驗,結果煤油分解率為71. 9°/〇。 (實施例3) 除了使用L-天冬胺酸二乙酸(ASDA,三菱Rayon公司 製)作為螯合劑以外,與實施例1相同方式進行試驗,結 果煤油分解率為71. 0%。 (實施例4) 除了使用胺基乙磺酸二乙酸(ESDA,CHELEST公司製 「CHELEST ESDA-30」)作為螯合劑以外,與實施例1相同 方式進行試驗,結果煤油分解率為70. 1%。 (實施例5) 除了使用羥乙基亞胺基二乙酸(HIDA,CHELEST公司 14 323034 201144237 製「CHELESTE-20」)作為螯合劑以外,與實施例1相同方 式進行試驗,結果煤油分解率為67. 6%。 (實施例6) 除了使用羥基亞乙基二膦酸(HEDP,CHELEST公司製 「CHELESTPH-212」)作為螯合劑以外,與實施例1相同方 式進行試驗,結果煤油分解率為66. 6%。 (實施例7) 除了使用1,3-二胺基-2-羥丙烷四乙酸(DPTA-0H, CHELEST公司製「CHELEST RA」)作為螯合劑以外,與實施 例1相同方式進行試驗,結果煤油分解率為65.0%。 (實施例8) 除了使用植酸(東京化成工業公司製試藥)作為螯合 劑以外,與實施例1相同方式進行試驗,結果煤油分解率 為 63. 4°/〇。 (實施例9) 除了使用曱基甘胺酸二乙酸(MGDA,BASF公司製 「TRIL0NM」)作為螯合劑以外,與實施例1相同方式進行 試驗,結果煤油分解率為56. 5°/〇。 (實施例10) 除了使用羥乙基乙二胺三乙酸(HEDTA,CHELEST公司 製「CHELEST HA」)作為螯合劑以外,與實施例1相同方式 進行試驗,結果煤油.分解率為56. 1%。 (實施例11) 除了使用L-麩胺酸二乙酸(GLDA,CHELEST公司製 15 323034 201144237 「CHELESTCMG-40」)作為螯合劑以外,與實施例1相同方 式進行試驗,結果煤油分解率為55. 3°/〇。 (實施例12) 除了使用膦基丁烷三羧酸(PBTC,CHELEST公司製 「CHELESTPH-430」)作為螯合劑以外,與實施例1相同方 式進行試驗,結果煤油分解率為52. 5%。 (實施例13) 除了使用膦酸(S, S )-乙二胺二琥珀酸(EDDS,CHELEST 公司製「CHELEST EDDS-35」)作為螯合劑以外,與實施例 1相同方式進行試驗,結果煤油分解率為52.5%。 (實施例14) 除了實施例1之(2)中矽藻土濃度為5. 3重量%,且 使用羥乙基乙二胺三乙酸(HEDTA,CHELEST公司製 「CHELEST HA」)作為螯合劑以外,與實施例1相同方式進 行試驗,結果煤油分解率為56. 3%。323034 3 201144237 Fenton Reaction purification method using aqueous solution of iron chelate of PH5 to 8 and aqueous hydrogen peroxide solution (refer to the patent document 〇, and the use of biodegradable chelating agent and aqueous solution of peroxidic gas) A reaction purification method (refer to Patent Document 2). A Fenton reaction purification method using argon peroxide, a holding acid, and an iron mixed solution is known (refer to Patent Document 3). However, the methods described in these documents are all water-based reactions. In the case of a water-insoluble matter such as a petroleum-based hydrocarbon, it is difficult to solve the decomposition of a water-insoluble matter such as a petroleum-based hydrocarbon, and it is known to add an activated carbon and an oxidizing agent which have a decomposing ability to a metal salt or hydrogen peroxide (refer to Patent Document 4). However, the pH of the reaction site must be less than 5, so there is a concern that the heavy metal is dissolved and diffused. Try to use a surfactant cleaning method (Non-Patent Documents i to 3) as a petroleum-based hydrocarbon in the neutral field. Original position purification technology, but any of these methods has the disadvantage of needing to deal with the oil contaminants recovered by washing. ' [Previous technology [Patent Document 1] [Patent Document 1] Japanese Patent Publication No. 3,793,084 [Patent Document 2] International Publication No. 2006/123574 (Patent Document 3) Japanese Laid-Open Patent Publication No. 2009-285609 [Patent Document 4] [Non-patent document] [Non-Patent Document 1] [Non-Patent Document 1] Mr. Hiroshi, etc., introduction of the oil-containing soil in situ spray cleaning experiment using a surfactant, the 15th lecture on groundwater, soil failure 4 323034 In 2009, the 14th, 2011, the 14th, 2011, the 14th, 2011, the research report on the prevention of pollution, the study of the original position of the oily soil [Non-patent Document 2] The research on the prevention of the prevention of the Omura T, the 15th lecture on the groundwater research meeting, 2009 In the year, 72 tribute. ^ ^ "Site 1, about the use of surfactant stone [Non-Patent Document 3] Okada et al., Fang beg, the 15th time about the underground location of the oil-contaminated site cleaning technology ^ ΟΛΠ 0 ^ Research Lectures, 2009, Water and Soil Pollution and Prevention of Employment 146 pages. [Disclosure] The object of the present invention is to solve the above-mentioned problems in the female technology. 1 is there Machine compounds, especially those contaminated by petroleum-derived soils and bauxite, provide a simple, effective and low-cost purification method. (Methods for solving the problem) In order to solve the above problems, the inventors of the present invention repeatedly repeated the inspection. In addition, it was found that the use of the organic matter adsorbing material containing the (four) algae soil, the iron complex and the peroxide, and the decomposition of the petroleum hydrocarbon in the neutral pH region, thereby completing the present invention. The invention solves the problem. <1> - a kind of over-chemical activation #1 ' can be used to purify the peroxide used in the soil and/or groundwater contaminated by the organic compound, and is characterized by having an organic matter containing diatomaceous earth The adsorbent material is in misalignment with iron. <2> The peroxide activator described in the above <1>, wherein the iron complex is derived from ethylene glycol bis-aminoethyl ether tetraacetate, and nitrogen tris(sub 5 323 〇 34 201144237 decyl phosphine Acid), L-aspartic acid, aminoethyl sulphate, sulphate, hydroxyethylidene diphosphonic acid, hydrazine, 3-diamine, hydroxyethanetetraacetic acid, plant Acid, methylglycine diacetic acid, hydroxyethyl bethane = 3⁄4 propionic acid, L- faceted acid di- bis, phosphinobutane triazole, (s, s) succinyl succinic acid selected one or more The chelating agent is formed. ~垵二 <3> A method for purifying earthworms and/or groundwater, which is the same as the peroxide activator described in <2>, and [1] added to the soil contaminated by organic compounds. And / or groundwater. <4> The purification method according to the above <3>, wherein the compound is a compound which generates hydrogen peroxide in an aqueous solution or a gas species or higher. (1) The purification method according to the above <4>, wherein the riding compound is one or more selected from the group consisting of hydrogen peroxide, percarbonate, urea peroxide, peroxygen gas salt, and peroxymonosulfate. . <6> The cleaning method according to the above <5>, wherein the rider is hydrogen peroxide or peroxodisulfate. (7) The purifying method described in any one of the above <3> to <6>, wherein the reaction field of the peroxide and the organic compound is described as 5 to 9 "8" The method for purifying soil and/or groundwater is to add a peroxy compound hybrid agent as described in any of the above (1) or <^> to soil and/or groundwater contaminated with organic compounds, and to adsorb the above organic compound. The step of the organic substance adsorbing material in the peroxide activator and the step of subsequently adding a peroxide to decompose the organic compound. The cleaning method according to the above <8>, wherein the pH of the reaction site of the compound and the organic compound is 5 to 9, and the peroxidation <10> is a purification of soil and/or groundwater. Method, ^. The soil contaminated with the organic compound is damaged and/or the step of adding the adsorbent having the organic material to the adsorbed material of the former = soil, and the step of adding the peroxide, and then adding: The step of the organic complex solution. <11> The purification method according to the above <10>, wherein the reaction site of the oxide and the organic compound is p = (the effect of the invention). According to the present invention, it is possible to purify petroleum-containing tobacco soil and/or groundwater in a neutral pH region by using an organic matter-absorbing material containing a shisha soil and a peroxide. In the present invention, the mixed solution of the organic substance adsorbing material and the iron complex is very stable, so that the solution can be prepared in advance, and the time for preparing the agent at the place of use can be greatly saved. [Embodiment] The organic compound in the present invention may be a petroleum hydrocarbon mainly composed of TPH (Total Petroleum Hydrocarbon), a hardly decomposable substance which is difficult to be biodegraded, a pesticide, a preservative, a cyanide or the like. The soil and/or groundwater of the object to be purified by the present invention is contaminated by petroleum hydrocarbons mainly composed of TPH (Totai Petr〇leum Hydrocarbon). Further, according to a preferred aspect of the present invention, it is possible to treat a hardly decomposable organic compound which is difficult to be biodegraded, and an organic gas compound such as a pesticide, a preservative, a trichloroethane (TCE), a tetraethylene ethene (pcE), a cyanide or the like. Soil contaminated with chemicals and/or ground 323034 201144237 launched. That is, the non-material adsorbing material is preferably a porous material containing (4) algae, and preferably a porous material having an organic substance adsorbing ability is a decomposing peroxide (particularly nitrogen peroxide). In many cases, the economy is β--the case is when the peroxide is deliberately decomposed, and ± is especially used in the injection of the above-mentioned diatomaceous earth from the price, into the industry. application. The material of the present invention: "Consideration" is also beneficial to the algae testaments. @质_物 ( (4) 矽 : : : : : : : : : : : : : : : : 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共. In the same way, the area of adsorption of undreamed objects is larger. In the particle size, if the particle size is smaller, the organic is preferably m&quot; the fluid miscellaneous property can be improved, so ',,, /,; In the present invention, the beet algae is preferably in the range of 2 〇 to · in the range of 15 to ' 卜! The decomposition amount of the organic compound becomes small, which is not preferable. The mixing amount of the organic adsorption material is according to the compounding. = and / or groundwater pollution (four) concentration mixed Γ:: the total amount of organic compounds before the reaction site exists 4: the soil and underground of the use site 4 · _ ^ on by 201144237 (Treatability testing) as a purification For the index, the specific mixing amount can be obtained. If the organic material adsorption material is insufficient in the treatment capacity test, the oil film can be visually confirmed, and it is not necessary to do the analysis of the purification to understand the shortage of the mixing amount. The iron salt used in the object is not particularly limited. For example, ferrous sulfate or ferrous ferrous oxide is suitable, and ferrous sulfate which is easy to handle is suitable. The chelating agent used in the above iron complex is not particularly limited, and is preferably from ethylene glycol dimethyl ether. Tetraacetic acid (also known as GEDTA), nitrogen tris (methylene phosphonic acid) (also known as NTMP), L_aspartic acid diacetic acid (ASDA), amino ethanesulfonic acid diacetic acid (also known as ESDA), hydroxyethylimine diacetic acid (also known as HIDA), phenylethylidene diphosphonic acid (also known as p), 1,3-diamino-2-hydroxypropanetetraacetic acid ( Also known as DpTA_〇H), phytic acid, methylglycine diacetic acid (also known as MGDA), hydroxyethylethylenediamine triacetic acid (also known as HEDTA), L-cholinic acid diacetic acid (also It is called GLDA), and it is one or more chelating agents selected by burning three mirrors (also known as PBTC) and (S,S) _ethylenediamine diglyceride (two is called EDDS). The shape and the test type can be iron complex. The mixing amount of the iron complex is in accordance with the organic =: =: iron separation: the conversion concentration is - the ratio of the mixture: the ratio of 'with respect to the present invention Effect ^ inside the other limits, as opposed to The molar ratio (chelating agent/iron ion) of the salt is preferably 4 3 or more preferably 2. The excessive amount of the integrator is not economical, and the molar ratio is too small to produce 323034 9 201144237 iron salt The type of the peroxide activator of the present invention is not particularly limited, and the organic material adsorbing material containing the diatomaceous earth is in misalignment with the iron complex and the organic matter containing the earthy earth. Each of the materials is a single aqueous solution, a solid mixture of the two, the organic material adsorbing material is a solid, and the iron complex is in the form of an aqueous solution, and can be in various forms depending on the use condition. state. The peroxide to be used in the present invention is not particularly limited, and hydrogen peroxide, peroxydicarb, and peroxygen are preferably used, and the stability of the aqueous solution and the aqueous solution is preferably an aqueous hydrogen peroxide solution. In addition, in the case of not damaging the hair = fruit, the hydrogen peroxide aqueous solution may be added with a stabilizer such as meta, coke acid, orthophosphoric acid, condensed Wei, occupation, K Lai, and phenyl. Hydrogen peroxide allows I to use an aqueous solution of hydrogen peroxide. The degree of the second aqueous solution (four degrees) is not particularly limited, and it is difficult to start with a hydrogen peroxide aqueous solution having a high concentration of 6 〇 or more. Therefore, it is preferably 6 〇% by weight. From the viewpoint of safety and transportation cost, it is preferable to be strong. It is preferably from 30 to 45% by weight to 45% by weight. When purifying, the peroxide activator and the peroxygen can be supplied separately and then mixed (4). _, the supply branch is not particularly Ρ &gt; main injection, press-in, high-pressure injection, high-pressure water aeration system injection of drugs, etc., each of which can be applied. In addition, it is possible to heat the aqueous solution containing each material, or to add an aqueous solution of each material to the object to be purified. The amount of peroxide supplied to the object to be purified is the decomposition of pollutants... 323034 10 201144237 The amount is about 1 to 1000 times. If it is less than this, the purification is incomplete, and the economy is poor. The amount of the peroxide activator to be used is preferably determined by a treatment capacity test in advance, but it is necessary to use at least an organic substance adsorbing material which can adsorb the entire amount of the organic substance to be purified. When the amount of use is too small, the compound is not supplied to the water reaction site and the decomposition is not completely considered. When the amount of use is too high, the economy is poor. The organic compound pollutant in the decomposition of soil and/or groundwater is preferably maintained at the pH of the reaction site of the organic compound and the peroxide. The pH of the reaction site is maintained at 5 to 9 to inhibit heavy metals. The dissolution is expanded. When the PH buffering ability of the object to be purified such as the right soil is sufficient, the pH adjuster is not required. When the drug is added or the organic matter is decomposed to cause a change in the σ, a commercially available pH adjuster and/or a buffer can be used. ρΗ adjustment, using sulfuric acid, Wei, Gute and oxyhydroxide, potassium hydroxide, etc. = buffering for the chemical (4) introduced, called the iron sink from the point of view of the preferred carbonation buffer . Examples of the carbonic acid buffer include carbon_, carbonic acid, ferulic magnesium, carbonic acid gas, carbon, hydrogen unloading, and the like. Among them, from the viewpoint of cost, solubility, and pH, it is preferred to use sodium hydrogencarbonate or sodium hydrogencarbonate in combination with sodium carbonate. The addition of a pH buffer to the pH of the soil and/or groundwater in the purification is 5 to 2. Since the carbonate and hydrogencarbon ions have a scavenger effect, it is preferred to control the amount of use as much as possible. The method is not particularly limited, and the method is 323034 11 201144237 for simultaneously or It is added successively to the soil and/or groundwater contaminated by the compound. Other methods are as follows: a peroxide activator is added to the earthy soil and/or groundwater of the organic compound, and the aforementioned organic compound in the soil and/or groundwater is adsorbed to the organic matter containing the diatomaceous earth. The step of adsorbing the material, followed by the step of adding a peroxide to decompose the aforementioned organic compound. Fuxingxing 4, the other method of the following steps: the step of adsorbing the organic compound containing the algae soil on the ground plate, followed by the step of adding the (tetra) aqueous solution of oxygen, followed by the step of adding the iron complex. By causing the organic compound to be adsorbed in the organic material adsorbing material, a hydrocarbon such as a low water-capacity petroleum such as helium is introduced into a water-based reaction site, and then a hydrogen peroxide aqueous solution and an iron complex cleaning agent are added to generate a (four) radical. It is suitable because it can decompose organic matter. (Examples) Hereinafter, the present invention will be described in more detail by way of examples. However, the invention is not limited by the following examples. <Measurement method of bet specific surface area> The BET specific surface area of the diatomaceous earth used in the following examples and comparative examples was measured using BELSI(R) PR Mini(R) manufactured by BEL Co., Ltd., Japan. Each diatomaceous earth was subjected to 30 (rc/3 hours pretreatment), and the BET specific surface area was measured by using BELSPO-vacn, manufactured by BEL Co., Ltd., Japan. Example 1 (1) A 100 mL pressure-resistant screw bottle was used as a reaction container. (2) As an organic matter adsorption material, diatomaceous earth (Small Science 323034 12 201144237 Pharmaceutical Industry Co., Ltd. diatomaceous earth test drug L〇t. G1D3 〇〇 4) 2. 7 wt% and iron δδ物&gt; It is used as a peroxide activator. The specific surface area of the diatomaceous earth made by this small scientific pharmaceutical industry is 38·lmVg. In addition, the ethylene complex is ethylene glycol bis-aminoether tetraacetic acid (GEDTA, manufactured by Chelet Co., Ltd.). CHELEST GEA") as a chelating agent, FeSOWHzO (a special grade drug manufactured by Wako Pure Chemical Industries Co., Ltd.) as an iron salt, a chelating agent/iron ion molar ratio of 1 ' and an adjusted iron ion concentration of 15 〇〇 mg/L. 440 mM sodium bicarbonate / 〇 875 mM sodium carbonate aqueous solution was used as a pH buffer. (4) Commercially available kerosene was used as a decomposition target (5) 94 mL of ultrapure water was added to the reaction vessel. Then, the above (2) was added. The oxide activating agent ImL and the PH buffer 4 of the above (3) are added. (5) After adding the above (4) kerosene i2eL, it is tightly packed. (7) The reaction container of the dense plug is fixed to Str〇ngShaker SR-2S manufactured by TAITEC, 300 times at 22t. Oscillation/minute oscillation for 2 hours. (8) After the predetermined time has elapsed, 1 〇ml of n-hexane is added for the purpose of extracting kerosene, and then the plug is tightly sealed. (9) The shock of the above (7) is oscillated for 3 minutes, followed by Allow to stand for 30 minutes. (10) Separate the hexane layer and place the auto-sampling vial with anhydrous sodium sulfate in advance for GC-FID analysis. (11) Quantitative method for kerosene according to EPA (US Environmental Protection Agency) 323034 13 201144237 8015B. (12) In the above (5), the addition of the peroxide activating agent (1) to (1) to 100 mL of ultrapure water is prepared, and the operation after (6) is performed as (13) The decomposition rate of kerosene is obtained by the following formula: {kerosene decomposition rate (%)} = U-[the kerosene extracted in (10) above] [the kerosene extracted in the control group]}χ100 In addition, The recovery rate of the kerosene recovered from the organic adsorbent material is not related to the amount recovered but is constant The kerosene decomposition rate was 79.9% as a result of the above experiment. (Example 2) In addition to the use of a secondary amino group (m-decylphosphonic acid) (NTMP, "CHELEST PH-320" manufactured by CHELEST Co., Ltd.) as a chelating agent 9度/〇。 The kerosene decomposition rate was 71. 9 ° / 〇. (Example 3) The test was carried out in the same manner as in Example 1 except that L-aspartic acid diacetic acid (ASDA, manufactured by Mitsubishi Rayon Co., Ltd.) was used as a chelating agent, and the kerosene decomposition rate was 71.0%. (1) The kerosene decomposition rate was 70. 1%. The test was carried out in the same manner as in Example 1 except that the amine ethanesulfonic acid diacetic acid (ESDA, CHELEST ESDA-30) was used as the chelating agent. . (Example 5) The test was conducted in the same manner as in Example 1 except that hydroxyethyliminodiacetic acid (HIDA, "CHELESTE-20" manufactured by CHELEST Co., Ltd., 14 323034 201144237) was used as a chelating agent, and the kerosene decomposition rate was 67. .6%. (Example 6) The kerosene decomposition rate was 66.6%, except that the hydroxyethylidene diphosphonic acid (HEDP, "CHELEST PH-212" manufactured by CHELEST Co., Ltd.) was used as the chelating agent, and the test was carried out in the same manner as in Example 1. (Example 7) A kerosene was tested in the same manner as in Example 1 except that 1,3-diamino-2-hydroxypropanetetraacetic acid (DPTA-0H, "CHELEST RA" manufactured by CHELEST Co., Ltd.) was used as a chelating agent. The decomposition rate was 65.0%. (Example 8) The kerosene decomposition rate was 63. 4 ° / 〇, except that phytic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a chelating agent. (Example 9) The kerosene decomposition rate was 55.6 °/〇, except that the thioglycolic acid diacetic acid (MGDA, "TRIL0NM", manufactured by BASF Corporation) was used as the chelating agent, and the test was carried out in the same manner as in Example 1. (Example 10) The kerosene decomposition rate was 56.1%. The test was carried out in the same manner as in Example 1 except that hydroxyethylethylenediaminetriacetic acid (HEDTA, CHELEST HA) was used as the chelating agent. . (Example 11) The test was carried out in the same manner as in Example 1 except that L-glutamic acid diacetic acid (GLDA, 15 323034 201144237 "CHELESTCMG-40" manufactured by CHELEST Co., Ltd.) was used as the chelating agent, and the kerosene decomposition rate was 55. 3°/〇. (Example 12) The kerosene decomposition rate was 52.5%, except that phosphine butane tricarboxylic acid (PBTC, "CHELEST PH-430", manufactured by CHELEST Co., Ltd.) was used as a chelating agent, and the test was carried out in the same manner as in Example 1. (Example 13) A kerosene was tested in the same manner as in Example 1 except that phosphonic acid (S, S)-ethylenediamine disuccinic acid (EDDS, "CHELEST EDDS-35" manufactured by CHELEST Co., Ltd.) was used as a chelating agent. The decomposition rate was 52.5%. (Example 14) The diatomite concentration was 5.3 wt%, and hydroxyethylethylenediaminetriacetic acid (HEDTA, "CHELEST HA" manufactured by CHELEST Co., Ltd.) was used as a chelating agent. 3%。 The test was carried out in the same manner as in Example 1, the kerosene decomposition rate was 56.3%.

(實施例15) 除了實施例1之(2)中鐵離子濃度為50〇mg/L,且使 用羥乙基乙二胺三乙酸(HEDTA,CHELEST公司製r CHELEST HA」)作為螯合劑以外’與實施例1相同方式進行試驗,結 果煤油分解率為58.2%。 (實施例16) 除了實施例1之(2)中鐵離子濃度為300mg/L,且使 用羥乙基乙二胺三乙酸(HEDTA,CHELEST公司製「CHELEST HA」)作為螯合劑以外,與實施例1相同方式進行試驗,結 16 323034 201144237 果煤油分解率為54. 7%。 (實施例17) 除了實施例1之(2)中,使用IS0LITE工業公司製 石夕藻土 I SOL ITE DP作為有機物吸附材,且使用經乙基乙二 胺三乙酸(HEDTA,CHELEST公司製「CHELEST HA」)作為 螯合劑以外,與實施例1相同方式進行試驗,結果煤油分(Example 15) In addition to the iron ion concentration of 50 〇mg/L in (2) of Example 1, hydroxyethylethylenediaminetriacetic acid (HEDTA, r CHELEST HA by CHELEST) was used as a chelating agent. The test was conducted in the same manner as in Example 1, and as a result, the kerosene decomposition rate was 58.2%. (Example 16) Except that the iron ion concentration in the (2) of Example 1 was 300 mg/L, and hydroxyethylethylenediaminetriacetic acid (HEDTA, "CHELEST HA" manufactured by CHELEST Co., Ltd.) was used as a chelating agent, 7%。 The kerosene decomposition rate was 54.7%. (Example 17) In addition to the example (2), ISOLITE Industrial Co., Ltd. was used as the organic material adsorbing material, and ethyl ethylenediamine triacetic acid (HEDTA, manufactured by CHELEST Co., Ltd.) was used. CHELEST HA") was tested in the same manner as in Example 1 except for the chelating agent, and the kerosene was obtained.

解率為67· 0%。此IS0LITE工業公司製矽藻土 ISOLITE DP 之PBT比表面積為24. 5m2/g。 (實施例18) 除了實施例1之(2)中,使用昭和化學工業公司製 矽藻土 RADIOLITE SPF作為有機物吸附材,且使用羥乙基 乙二胺三乙酸(HEDTA,CHELEST公司製「CHELEST HA」) 作為螯合劑以外,與實施例1相同方式進行試驗,結果煤 油分解率為70. 1%。此昭和化學工業公司製矽薄土 RADIOLITE SPF 之 PBT 比表面積為 31. 8m2/g。 (比較例1) 除了實施例1之(2)中,使用活性碳水性分散液(三 菱瓦斯化學製「DIAFRESHD OR-SON AT」)作為有機物吸附 材,且使用羥乙基乙二胺三乙酸(HEDTA,CHELEST公司製 「CHELEST HA」)作為螯合劑以外,與實施例1相同方式進 行試驗,結果煤油分解率為33. 5%。 (比較例2)The solution rate is 67.0%. 5米2/克。 The PBT specific surface area of the sulphide soil ISOLITE DP made by the IS0LITE industrial company is 24. 5m2 / g. (Example 18) In the (2) of the first embodiment, the diatomaceous earth RADIOLITE SPF manufactured by Showa Chemical Industry Co., Ltd. was used as the organic material adsorbing material, and hydroxyethylethylenediamine triacetic acid (HEDTA, CHELEST HA manufactured by CHELEST Co., Ltd.) was used. 1%。 The kerosene decomposition rate was 70.1%. The specific surface area of the PBT of the RADIOLITE SPF made by the Showa Chemical Industry Co., Ltd. is 31. 8 m 2 /g. (Comparative Example 1) In the (2) of the first embodiment, an aqueous activated carbon dispersion ("DIAFRESHD OR-SON AT" manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used as an organic adsorbent, and hydroxyethylethylenediaminetriacetic acid (hydroxyethylethylenediaminetriacetic acid) was used. The kerosene decomposition rate was 33.5%. The test was carried out in the same manner as in Example 1 except that the chelating agent was used as the chelating agent. (Comparative Example 2)

除了實施例1之(2)中,將分子篩3A粉碎作為有機 物吸附材’且使用羥乙基乙二胺三乙酸(HEDTA,CHELEST 17 323034 201144237 公司製「CHELESTHA」)作為螯合劑以外,與實施例1相同 方式進行試驗,結果煤油分解率為10. 0%。 (比較例3) 除了實施例1之(2)中,除了使用不含鐵錯合物之 溶液作為過氧化物活性化劑以外,與實施例1相同方式進 行試驗,結果煤油分解率為46. 0%。 此外,上述實驗(實施例1至18,比較例1至3)中, 反應場所之pH皆為6至8。 【圖式簡單說明】 無。 【主要元件符號說明】 無0 18 323034In addition to the chelating agent of hydroxyethylethylenediaminetriacetic acid (HEDTA, "CHELESTHA" manufactured by CHELEST 17 323034 201144237), and the use of hydroxyethylethylenediaminetriacetic acid (HEDTA, "CHELESTHA", CHELEST 17 323034 201144237) as the chelating agent, in the example (2) of Example 1, 0%。 The kerosene decomposition rate was 10. 0%. (Comparative Example 3) The test was carried out in the same manner as in Example 1 except that the solution containing no iron complex was used as the peroxide activator in Example 2, and the kerosene decomposition rate was 46. 0%. Further, in the above experiments (Examples 1 to 18, Comparative Examples 1 to 3), the pH of the reaction site was 6 to 8. [Simple description of the diagram] None. [Main component symbol description] None 0 18 323034

Claims (1)

201144237 七、申請專利範圍: 1. 一種過氧化物活性化劑’係為活化在淨化被有機化合物 污染之土壤及/或地下水所用之過氧化物,其特徵為: 具有含矽藻土之有機物吸附材與鐵錯合物。 2·如申請專利範圍第1項所述之過氧化物活性化劑,其 中,前述鐵錯合物係由乙二醇雙胺基乙醚四乙酸 (glycoletherdianime tetraacetic acid)、氮基三(&amp; 曱基膦酸)(nitrilotris(methylene phosphonic acid))、L-天冬胺酸二乙酸、胺基乙磺酸二乙酸、輕己 基亞胺基二乙酸(hydroxyl ethylimino diacetic acid)、羥基亞乙基二膦酸、1,3-二胺基-2-羥丙烷四乙 酸、植酸(phytic acid)、曱基甘胺酸二乙酸、羥乙我 乙二胺三乙酸、L-麩胺酸二乙酸、膦基丁烷三羧酸、以 及(S’S)-乙二胺二琥珀酸選出之一種以上之螫合劑所 形成者。 3. —種土壞及/或地下水之淨化方法,係將申請專利範圍 第1項或第2項所述之過氧化物活性化劑與過氧化物, 同時或逐次添加於被有機化合物污染之土壤及/或地 水者。 4. 如申請專利範®第3項所述之淨化方法,其巾,前述過 氧化物係由在水溶液中會產生過氧化氫之化合物選出 之1種以上者。 ' 5. 如申請專利_第4顿述之淨化方法,其中,前述過 氧化物係由過氧化氫、過碳酸鹽、過氧化尿素、過氧二 1 t:i 323034 201144237 硫酸鹽、過氧單硫酸選出之1種以上者。 6.如申請專利範圍第5項所述之淨化方法,其中,前述過 氧化物為過氧化氫或過氧二硫酸鹽者。 7·如申請專利範圍第3至6項中任一項所述之淨化方法, 其中,前述過氧化物與前述有機化合物的反應場所之 pH為5至9者。 8· —種土壤及/或地下水之淨化方法,係具有在被有機化 合物污染之土壤及/或地下水添加申請專利範圍第1項 或第2項所述之過氧化物活性化劑’並使前述有機化合 物吸附於前述過氧化物活性化劑中之有機物吸附材之 步驟,以及接著添加過氧化物使前述有機化合物分解之 步驟者。 9.如申請專利範圍第8項所述之淨化方法’其中,前述過 氧化物與前述有機化合物的反應場所之pH為5至9者。 〇.種土壌及/或地下水之淨化方法’係具有在被有機化 合物污染之土壌及/或地下水添加含有矽藻土之有機物 °及附材’並使前述有機化合物吸附於前述有機物吸附材 之步驟、接著添加過氧化物之步驟、以及再接著添加鐵 錯合物溶液之步驟者。 .如申請專利範圍第10項所述之淨化方法,其中,前述 過氣化物與前述有機化合物的反應場所之pH為5至9 者。 2 323034 201144237 四、指定代表圖:本案無圖式。 (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無化學式。 323034201144237 VII. Patent application scope: 1. A peroxide activator is a peroxide used in the purification of soil and/or groundwater contaminated by organic compounds, characterized by: adsorption of organic matter containing diatomaceous earth Material and iron complex. 2. The peroxide activator according to claim 1, wherein the iron complex is composed of glycoletherdianime tetraacetic acid, nitrogen-based (amp; Nitrilotris (methylene phosphonic acid), L-aspartic acid diacetic acid, amino ethanesulfonic acid diacetic acid, hydroxyl ethylimino diacetic acid, hydroxyethylidene diphosphine Acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, phytic acid, thioglycine diacetic acid, hydroxyethylidene diamine triacetic acid, L-glutamic acid diacetic acid, phosphine A group formed by one or more chelating agents selected from the group consisting of butylbutane tricarboxylic acid and (S'S)-ethylenediamine disuccinic acid. 3. The method for purifying soil and/or groundwater is to add the peroxide activator and peroxide as described in item 1 or 2 of the patent application, simultaneously or sequentially to the organic compound. Soil and / or groundwater. 4. The cleaning method according to the third aspect of the invention, wherein the peroxide is one or more selected from the group consisting of a compound which generates hydrogen peroxide in an aqueous solution. 5. The method of purifying according to the application of the patent _ 4th, wherein the peroxide is hydrogen peroxide, percarbonate, urea peroxide, peroxydithionate 1 t:i 323034 201144237 sulfate, peroxygen One or more selected from sulfuric acid. 6. The purification method according to claim 5, wherein the peroxide is hydrogen peroxide or peroxodisulfate. The purification method according to any one of claims 3 to 6, wherein the pH of the reaction site of the peroxide and the organic compound is 5 to 9. 8. A method for purifying soil and/or groundwater, which comprises adding a peroxide activator as described in claim 1 or 2 to soil and/or groundwater contaminated with organic compounds and The step of adsorbing the organic compound to the organic substance adsorbing material in the above-mentioned peroxide activator, and then adding a peroxide to decompose the aforementioned organic compound. 9. The purification method according to claim 8, wherein the pH of the reaction site of the peroxide and the organic compound is 5 to 9. 〇 种 种 种 种 壌 壌 壌 种 种 种 种 种 种 种 种 种 种 具有 具有 具有 具有 地下水 地下水 具有 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水 地下水Then, the step of adding a peroxide, and then the step of adding an iron complex solution. The purification method according to claim 10, wherein the pH of the reaction site of the pervaporation compound and the organic compound is 5 to 9. 2 323034 201144237 IV. Designated representative map: There is no schema in this case. (1) The representative representative of the case is: No. (2) A brief description of the symbol of the representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: There is no chemical formula in this case. 323034
TW100114249A 2010-04-30 2011-04-25 Peroxide activator and method for purifying soil and/or underground water TWI551551B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104788 2010-04-30

Publications (2)

Publication Number Publication Date
TW201144237A true TW201144237A (en) 2011-12-16
TWI551551B TWI551551B (en) 2016-10-01

Family

ID=44861495

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114249A TWI551551B (en) 2010-04-30 2011-04-25 Peroxide activator and method for purifying soil and/or underground water

Country Status (5)

Country Link
JP (1) JP5846117B2 (en)
KR (1) KR101823171B1 (en)
CN (1) CN102869743B (en)
TW (1) TWI551551B (en)
WO (1) WO2011136196A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
CN102701881B (en) * 2012-06-05 2014-05-14 凌天骏 Soil disinfectant and soil disinfecting and sterilizing method
CN104438302B (en) * 2014-10-23 2016-08-24 江苏盖亚环境工程有限公司 A kind of restorative procedure of trichloro ethylene contaminated soil
CN104438300B (en) * 2014-10-23 2017-01-18 江苏盖亚环境工程有限公司 Synergetic restoration method for gasoline contaminated soil
CN104310561A (en) * 2014-11-24 2015-01-28 天津大港油田滨港集团博弘石油化工有限公司 Ferrous ion treating agent for oil production
CN104671387A (en) * 2015-02-04 2015-06-03 华东理工大学 Method for removing BTEX out of underwater through novel sodium percarbonate oxidizing agent
CN104692515A (en) * 2015-02-04 2015-06-10 华东理工大学 Method for removing chloro-olefin in water through strengthening activating calcium peroxide
CN104646410A (en) * 2015-02-28 2015-05-27 辽宁石油化工大学 Method for performing combined remediation on cadmium-contaminated soil
CN106396317B (en) * 2016-12-07 2019-09-20 宁波大红鹰学院 Repair the composite material and preparation method and application of river sludge
CN108178276A (en) * 2016-12-08 2018-06-19 刘宫介 A kind of fishery substrate modifier and preparation method thereof
KR101867729B1 (en) * 2016-12-21 2018-06-14 주식회사 포스코 Composition for treating soil and groundwater and treatment method using the same
CN107442565A (en) * 2017-09-30 2017-12-08 青岛农业大学 A kind of method and device of in-situ immobilization polycyclic aromatic hydrocarbon polluted farmland soil
CN108585221A (en) * 2018-05-15 2018-09-28 中山国晟生物工程有限公司 A kind of multifunction environment-protection type sewage disposal composite drug and preparation method thereof, application
CN109201727B (en) * 2018-09-03 2020-12-11 杭州鸿明市政工程有限公司 Soil leacheate and using method and equipment thereof
CN110961451B (en) * 2019-12-30 2021-07-23 上海交通大学 Soil remediation material for oxidative degradation of organic pollutants and soil remediation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438621B (en) * 1997-02-07 2001-06-07 Ebara Corp Purification method for contaminants caused by halogenated organic compounds
US6319328B1 (en) * 1999-07-01 2001-11-20 Richard S. Greenberg Soil and/or groundwater remediation process
JP4643259B2 (en) * 2002-07-11 2011-03-02 チバ ホールディング インコーポレーテッド Metal complex compounds and their use as oxidation catalysts
JP4377657B2 (en) * 2003-11-07 2009-12-02 株式会社神戸製鋼所 Organochlorine compound removing agent and organochlorine compound removing method
JP2006247483A (en) * 2005-03-09 2006-09-21 Mitsubishi Gas Chem Co Inc Treatment method of contaminated soil
WO2006123574A1 (en) * 2005-05-19 2006-11-23 Mitsubishi Gas Chemical Company, Inc. Method of purifying soil and/or groundwater
JP2007215552A (en) * 2005-10-26 2007-08-30 Mitsubishi Gas Chem Co Inc Method of treating organohalogen compound
CN100575281C (en) * 2007-04-06 2009-12-30 北京化工大学 The water treatment method of light concentration organic pollutant
JP5029562B2 (en) * 2008-10-02 2012-09-19 三菱瓦斯化学株式会社 Soil and / or groundwater purification method

Also Published As

Publication number Publication date
JPWO2011136196A1 (en) 2013-07-18
KR20130083379A (en) 2013-07-22
CN102869743A (en) 2013-01-09
JP5846117B2 (en) 2016-01-20
WO2011136196A1 (en) 2011-11-03
CN102869743B (en) 2015-03-18
TWI551551B (en) 2016-10-01
KR101823171B1 (en) 2018-01-29

Similar Documents

Publication Publication Date Title
TW201144237A (en) Peroxide activator and method for purifying soil and/or underground water
Gharibzadeh et al. Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process
Maity et al. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: a comparative effectiveness assessment
JP5029562B2 (en) Soil and / or groundwater purification method
Bessa et al. Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters
US10543518B2 (en) Chemical oxidation method
Huang et al. Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: Part I
US20220332611A1 (en) Methods and compositions for the treatment of produced water
US8728325B2 (en) Advanced oxidation of kinetic hydrate inhibitors
TWI558439B (en) Treatment agent containing persulfate and silver complex for decomposing chemical substances and method for decomposing chemical substances using same
Takeuchi et al. Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments
WO2010073976A1 (en) Aqueous hydrogen peroxide solution of excellent stability
JP2007244983A (en) Method for purifying soil
JP4167052B2 (en) Purification method for organic compound contamination
Jorfi et al. Bioremediation of pyrene-contaminated soils using biosurfactant
Mallick et al. Adsorption of recalcitrant phosphorus compounds using the phosphate-selective binding-protein PstS
CN116745390A (en) Chemical composition and method for treating sulfur-containing composition and other pollutants in fluid by using chemical composition
JP2011000497A (en) Iron chelate aqueous solution and decontamination method of soil and/or ground water
Sarkar et al. Ionic liquids and deep eutectic solvents in wastewater treatment: recent endeavours
Assameur et al. Contribution to the removal study of Co2+ ions by acid-activated clay from Maghnia (Algeria): equilibrium and kinetic studies
JP2004202364A (en) Soil treatment method
Shih et al. Remediation of PFAS-impacted soils using magnetic activated carbon (MAC) and hydrothermal alkaline treatment (HALT)
Nowrouzi et al. Chemical Enhanced Oil Recovery from Carbonate Reservoirs by Coherent Surfactant and Surfactant–Alkali (SA) Slug Injection Using a Green Cationic Surfactant Synthesized from Avocado Oil
Acquaviva et al. Effect of a synthetic surfactant on phenanthrene and n-eicosane utilization by two pure marine strains grown separately in batch cultures with or without sand particles
KR101405713B1 (en) Soil Remediation Composition Containing Hydrogen Peroxide Solution

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees