JP2007215552A - Method of treating organohalogen compound - Google Patents

Method of treating organohalogen compound Download PDF

Info

Publication number
JP2007215552A
JP2007215552A JP2005311173A JP2005311173A JP2007215552A JP 2007215552 A JP2007215552 A JP 2007215552A JP 2005311173 A JP2005311173 A JP 2005311173A JP 2005311173 A JP2005311173 A JP 2005311173A JP 2007215552 A JP2007215552 A JP 2007215552A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
activated carbon
treating
added
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311173A
Other languages
Japanese (ja)
Other versions
JP2007215552A5 (en
Inventor
Hisaoki Abe
久起 阿部
Satoru Nanba
哲 南場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005311173A priority Critical patent/JP2007215552A/en
Publication of JP2007215552A publication Critical patent/JP2007215552A/en
Publication of JP2007215552A5 publication Critical patent/JP2007215552A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide new technologies capable of preventing environmental pollution by detoxicating organohalogen compounds, many of which are harmful and difficult to be biodegraded, easily, inexpensively, safely and environmentally gently. <P>SOLUTION: The method of treating organohalogen compounds, many of which are harmful and difficult to be biodegraded, is characterized by addition of metal salts such as active carbon and iron salt with high hydrogen peroxide decomposing capability to the organohalogen compounds and treatment with an oxidizing agent such as hydrogen peroxide under the condition of pH 5 or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機ハロゲン化合物の処理方法に関する。   The present invention relates to a method for treating an organic halogen compound.

近年、種々の有機塩素化合物(パークロロエチレン、トリクロロエチレン、テトラクロロエタン、トリクロロエタン、クロロベンゼン類、クロロナフタレン類、ヘキサクロロシクロキサン、ポリクロロビフェニール(PCB)等)や、種々の農薬・防腐剤(ジクロロジフェニルトリクロロエタン(DDT)、ベンゼンヘキサクロライド(BHC)、クロルフタリウム、プロピザミドなどや、塩素以外の種々の類似の有機ハロゲン化合物(フッ素、臭素、ヨウ素化物など)の、有害且つ微生物難分解性な有機汚染物質による、海や河川、湖沼などの水や、土壌、地下水、さらには、埋め立て地からの浸出水などの汚染や、汚染物質を含む焼却炉の焼却灰による汚染、さらには、汚染土壌からの揮発性汚染物質の発散、焼却炉廃ガスによる大気の汚染等が顕在化し、大きな社会問題となってきている。   In recent years, various organochlorine compounds (perchloroethylene, trichloroethylene, tetrachloroethane, trichloroethane, chlorobenzenes, chloronaphthalenes, hexachlorocyclooxane, polychlorobiphenyl (PCB), etc.) and various agricultural chemicals and preservatives (dichlorodiphenyltrichloroethane) Harmful and microbial non-degradable organic pollutants such as (DDT), benzene hexachloride (BHC), chlorophthalium, propyzamide, and various similar organic halogen compounds other than chlorine (fluorine, bromine, iodide, etc.) Contamination of water from seas, rivers, lakes, etc., soil, groundwater, leachate from landfills, contamination by incinerator ash from polluted incinerators, and volatilization from contaminated soil Of atmospheric pollutants and incinerator waste gas Dyeing, etc. have become manifest, serious social problem.

これらの物質を分解無害化するために、種々の方法が提案・実行されてきており、大別すると(1)焼却炉で熱分解する方法、(2)超臨界水により分解する方法、(3)紫外線や太陽光を利用して光分解する方法、(4)オゾンや過酸化水素、塩素などにより化学分解する方法、(5)紫外線によりオゾンや過酸化水素を活性化させて化学分解する方法、(6)活性炭などで吸着除去する方法、(7)電子線やマイクロ波を照射して分解する方法、等に分けられる。   In order to decompose and detoxify these substances, various methods have been proposed and implemented, and can be broadly classified as follows: (1) thermal decomposition in an incinerator, (2) decomposition with supercritical water, (3 ) Method of photolysis using ultraviolet rays or sunlight, (4) Method of chemical decomposition with ozone, hydrogen peroxide, chlorine, etc., (5) Method of chemical decomposition by activating ozone or hydrogen peroxide with ultraviolet rays And (6) a method of removing by adsorption with activated carbon or the like, and (7) a method of decomposing by irradiating with an electron beam or microwave.

(1)の焼却炉で熱分解する方法としては(特許文献1〜4参照)等が、(2)の超臨界水により分解する方法としては(特許文献5〜8参照)等が、(3)の紫外線や太陽光を利用して光分解する方法としては(特許文献9〜16参照)等が、(4)のオゾンや過酸化水素、塩素などにより化学分解する方法としては(特許文献17〜22参照)等が、(5)の紫外線などによりオゾンや過酸化水素を活性化させて化学分解する方法としては(特許文献23〜28参照)等が、(6)活性炭などで吸着除去する方法としては(特許文献29〜30参照)等が、(7)電子線やマイクロ波を照射して分解する方法としては(特許文献31〜35参照)等が挙げられる。 (1) As a method of thermal decomposition in an incinerator (see Patent Documents 1 to 4), etc. (2) As a method of decomposing with supercritical water (see Patent Documents 5 to 8), (3) (4) is a method of chemical decomposition using ozone, hydrogen peroxide, chlorine, etc. (Patent Document 17). (Refer to Patent Documents 23 to 28) and the like (6) Activated adsorption with activated carbon or the like. Examples of the method include (see Patent Documents 29 to 30), and (7) Examples of a method for decomposition by irradiation with an electron beam or microwave (see Patent Documents 31 to 35).

しかし、これらの方法はいずれの方法も完全な方法とは言い難く、より良い技術の開発が望まれている。例えば、(1)の焼却炉で熱分解する方法は、大がかりな設備が必要となる。また、一般的に助燃剤が必要であり、助燃剤を含めた炭酸ガス発生から地球温暖化を促進すると共に、焼却灰の安全な処理および最終埋立処分地が必要となる等の問題がある。(2)の超臨界水により分解する方法は、大がかりな設備が必要となる。また、一般的に連続処理に適さない等の問題がある。(3)の紫外線や太陽光を利用して光分解する方法は、濁りのある廃液では光線の透過率が低いため、著しく効率が低下する。また、土壌や燃焼灰などの粉体や固体の処理が原理的に難しい。さらに、紫外線を使用する方法では大量の電力を必要とする。また、太陽光を使用する方法では処理が天候に左右される等の問題がある。   However, none of these methods is a perfect method, and development of better technology is desired. For example, the method of thermal decomposition in the incinerator (1) requires large-scale equipment. In addition, a combustion aid is generally required, and there are problems such as the need for a safe disposal of incinerated ash and a final landfill site as well as the promotion of global warming from the generation of carbon dioxide gas including the combustion aid. The method (2) of decomposing with supercritical water requires large-scale equipment. In addition, there is a problem that it is generally not suitable for continuous processing. The method of (3) photodecomposition using ultraviolet rays or sunlight is markedly reduced in efficiency because the turbid waste liquid has low light transmittance. In addition, it is difficult in principle to treat powders and solids such as soil and combustion ash. Furthermore, a method using ultraviolet rays requires a large amount of electric power. In addition, the method using sunlight has a problem that the process depends on the weather.

(4)のオゾンや過酸化水素、塩素などにより化学分解する方法は、一般的に分解の効率が悪い化合物があること、さらに、オゾンによる場合はオゾン発生に多大な電力を必要とすること、オゾンの溶解度が少ない問題がある。塩素を使用する場合は、条件によってはさらに有害な有機塩素化合物を新規に発生させてしまう恐れ等の問題がある。(5)の紫外線などによりオゾンや過酸化水素を活性化させて化学分解する方法では、オゾンや過酸化水素単独よりは分解の効率が向上するものの、やはり分解しにくい物質があることと、紫外線などの活性化用に多量の電力などを消費することや、濁りなど紫外線などを透過しにくい廃液や土壌や燃焼灰などの粉体や固体の場合、処理が原理的に難しい等の問題がある。(6)の活性炭などで吸着除去する方法では、低濃度の有害な有機塩素化合物などを除去できる強みはあるが、基本的に活性炭へ吸着させているだけで、有害な物質はそのまま残っているため、本質的な解決ではない。(7)の電子線やマイクロ波を照射して分解する方法は、設備が非常に大がかりになると共に、電子線やマイクロ波からの防御が必要となる等の問題がある。
特開平5−231624号公報 特開2001−349519号公報 特開2002−143806号公報 特開平11−101420号公報 特開平10−76282号公報 特開2001−121166号公報 特表2001−246201号公報 特開2002−136860号公報 特開平5−285342号公報 特開平7−88489号公報 特開平7−116467号公報 特開平7−155543号公報 特開平8−173765号公報 特開平9−253447号公報 特開平10−216716号公報 特開平10−328533号公報 特開2002−28666号公報 特開昭50−136947号公報 特開昭63−158188号公報 特開平6−23378号公報 特開2004−66128号公報 特開平5−292号公報 特開平11−33593号公報 特開2003−326285号公報 特開2004−267934号公報 特開2004−105870号公報 特開2001−96284号公報 特開2005−125230号公報 特開平8−332479号公報 特開平7−328386号公報 特開平11−319793号公報 特開平5−49927号公報 特開平8−99018号公報 特開平11−123317号公報 特開2005−120252号公報
(4) The method of chemically decomposing with ozone, hydrogen peroxide, chlorine, etc., generally has a compound with inferior decomposition efficiency. Furthermore, in the case of ozone, it requires a lot of power to generate ozone. There is a problem of low solubility of ozone. When chlorine is used, there is a problem that a harmful organic chlorine compound may be newly generated depending on conditions. In the method of (5) activating ozone or hydrogen peroxide with ultraviolet rays or the like to chemically decompose, the decomposition efficiency is improved compared to ozone or hydrogen peroxide alone, but there are substances that are still difficult to decompose, and ultraviolet rays In the case of waste liquid that is difficult to transmit ultraviolet rays such as turbidity or powder or solid such as soil or combustion ash, it is difficult to process in principle. . The method of adsorption removal with activated carbon, etc. in (6) has the advantage of removing low concentrations of harmful organochlorine compounds, but basically only adsorbed on activated carbon leaves harmful substances as they are. Therefore, it is not an essential solution. The method of (7) irradiating and decomposing with an electron beam or microwave has problems that the equipment becomes very large and protection from the electron beam and microwave is required.
JP-A-5-231624 JP 2001-349519 A Japanese Patent Laid-Open No. 2002-143806 JP 11-101420 A Japanese Patent Laid-Open No. 10-76282 JP 2001-121166 A Special Table 2001-246201 JP 2002-136860 A JP-A-5-285342 JP 7-88489 A Japanese Patent Laid-Open No. 7-116467 JP 7-155543 A JP-A-8-173765 Japanese Patent Laid-Open No. 9-253447 JP-A-10-216716 Japanese Patent Laid-Open No. 10-328533 Japanese Patent Laid-Open No. 2002-28666 JP 50-136947 A JP-A-63-158188 JP-A-6-23378 JP 2004-66128 A JP-A-5-292 Japanese Patent Laid-Open No. 11-33593 JP 2003-326285 A JP 2004-267934 A JP 2004-105870 A JP 2001-96284 A JP 2005-125230 A JP-A-8-332479 JP 7-328386 A Japanese Patent Application Laid-Open No. 11-319793 Japanese Patent Laid-Open No. 5-49927 JP-A-8-99018 Japanese Patent Application Laid-Open No. 11-123317 JP 2005-120252 A

本発明は、近年、種々の有機塩素化合物(パークロロエチレン、トリクロロエチレン、テトラクロロエタン、トリクロロエタン、クロロベンゼン類、クロロナフタレン類、ヘキサクロロシクロキサン、ポリクロロビフェニール(PCB)等)や、種々の農薬・防腐剤(ジクロロジフェニルトリクロロエタン(DDT)、ベンゼンヘキサクロライド(BHC)、クロルフタリウム、プロピザミドなどや、塩素以外の種々の類似の有機ハロゲン化合物(フッ素、臭素、ヨウ素化物など)の、有害且つ微生物難分解性な有機汚染物質により汚染された、海や河川、湖沼などの水や、土壌、地下水、さらには、埋め立て地からの浸出水などの汚染や、汚染物質を含む焼却炉の焼却灰による汚染、さらには、汚染土壌からの揮発性汚染物質の発散、焼却炉廃ガスによる大気の汚染等を容易にかつ低コストで、安全に環境に優しく無害化する新しい技術を提供するものである。   In recent years, the present invention relates to various organic chlorine compounds (perchloroethylene, trichloroethylene, tetrachloroethane, trichloroethane, chlorobenzenes, chloronaphthalenes, hexachlorocyclohexane, polychlorobiphenyl (PCB), etc.), various agricultural chemicals and preservatives. Harmful and microbial non-degradability of dichlorodiphenyltrichloroethane (DDT), benzenehexachloride (BHC), chlorophthalium, propyzamide, and various similar organic halogen compounds other than chlorine (fluorine, bromine, iodide, etc.) Contaminated by various organic pollutants, such as water from seas, rivers and lakes, soil, groundwater, leachate from landfills, etc., and incineration ash from incinerators containing pollutants, Volatile pollutant emission from contaminated soil, incineration The contamination of the atmosphere by exhaust gases easily and at low cost, and provides a new technique for safely gently harmless to the environment.

本発明者等これまでに、過酸化水素分解能力の高い活性炭と鉄塩などの金属塩を、過酸化水素などの酸化剤と併用することで、難分解性の汚染物質を低コストで容易に、かつ安全で環境に優しく無害化できることを見出している(特開2003-245678)。さらに、発明者らは、同様の方法を有機ハロゲン化合物へ適用することで、意外にも、有機ハロゲン化合物も分解できることを見出し、本発明にいたった。つまり、本発明は、有機ハロゲン化合物の処理方法において、鉄塩などの金属塩あるいは金属および過酸化水素分解能力の高い活性炭を加え、可能ならばpHを5以下に調整し、さらに、過酸化水素などの酸化剤を加え、該対象物を処理することを特長とする、有機ハロゲン化合物の処理方法に関するものである。   The present inventors have previously made it possible to easily make persistent pollutants at low cost by using activated carbon with high hydrogen peroxide decomposing ability and metal salts such as iron salts in combination with oxidizing agents such as hydrogen peroxide. In addition, it has been found that it is safe and environmentally friendly and harmless (Japanese Patent Laid-Open No. 2003-245678). Furthermore, the inventors have unexpectedly found that an organic halogen compound can be decomposed by applying the same method to the organic halogen compound, and have arrived at the present invention. That is, the present invention provides a method for treating an organic halogen compound by adding a metal salt such as an iron salt or a metal and activated carbon having a high ability to decompose hydrogen peroxide, adjusting the pH to 5 or lower if possible, It is related with the processing method of an organic halogen compound characterized by adding this oxidizing agent etc. and processing this target object.

本発明によれば、有機ハロゲン化合物を、二次公害などを発生させることなく、温和な条件で、短時間でかつ非常に効率良く、安価に浄化処理できるので産業上極めて有用な方法である。   According to the present invention, an organic halogen compound can be purified in a short time, very efficiently and inexpensively under mild conditions without causing secondary pollution and the like, which is an extremely useful industrial method.

本発明の特徴は、過酸化水素などの酸化剤を使用するにもかかわらず、過酸化水素分解能力の高い活性炭を使用することにある。本発明に使用する活性炭の過酸化水素分解能力は、温度27℃、過酸化水素濃度0.5重量%の水溶液において、活性炭を0.5%添加し、60分間放置後、残存過酸化水素濃度を測定し、下式で算出される過酸化水素分解率で表される。
過酸化水素分解率=(0.5−残存過酸化水素濃度(%))/0.5×100
A feature of the present invention resides in the use of activated carbon having a high ability to decompose hydrogen peroxide despite the use of an oxidizing agent such as hydrogen peroxide. The activated carbon used in the present invention has the ability to decompose hydrogen peroxide in an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight. Is measured by the hydrogen peroxide decomposition rate calculated by the following formula.
Hydrogen peroxide decomposition rate = (0.5−residual hydrogen peroxide concentration (%)) / 0.5 × 100

本発明においては上記過酸化水素分解率が5%以上、好ましくは20%以上の活性炭を用いる。過酸化水素分解活性が高いほど、対象物中の汚染物質の分解が効率的に進み、活性炭使用量を少なく、処理時間を短くでき有利である。過酸化水素分解率5%以下では大量の活性炭が必要とされる或いは非常に長い処理時間が必要となり、本発明の目的を達することができない。   In the present invention, activated carbon having a hydrogen peroxide decomposition rate of 5% or more, preferably 20% or more is used. The higher the hydrogen peroxide decomposing activity, the more efficiently the decomposition of the pollutants in the object proceeds, and it is advantageous that the amount of activated carbon used is reduced and the treatment time can be shortened. When the hydrogen peroxide decomposition rate is 5% or less, a large amount of activated carbon is required or a very long treatment time is required, and the object of the present invention cannot be achieved.

本発明で使用する活性炭は、過酸化水素分解能力を有するものであればよく、その由来は特に限定されない。活性炭の製造工程は、おもに原料を炭化物とする炭化工程と、得られた炭化物を水蒸気等で細孔を成長させる賦活工程からなるが、炭化方法や賦活方法は特に限定しない。活性炭の原料は、通常、木材、セルロース、のこくず、木炭、ヤシガラ炭、パーム核炭、素灰などの植物質を原料としたもの、泥炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭系鉱物質を原料としたもの、石油残渣、硫酸スラッジ、オイルカーボンなどの石油系鉱物質を原料としたもの、蛋白質を原料としたもの、蛋白質を含有する汚泥もしくは廃棄物を出発原料としたもの、発酵生産の廃菌体を原料としたもの、ポリアクリロニトリル(PAN)を原料としたもの、などが挙げられるが、その中でも、特に瀝青炭、醸造後の廃菌体、菌体を主成分とする廃水処理の汚泥、おから、PANなどの賦活前の炭化物の窒素濃度が1%以上になる有機物を原料とする活性炭が好適に使用される。また、これらの活性炭に処理を加えることにより、過酸化水素分解能力を付与する、或いは向上させて使用することもできる。   The activated carbon used in the present invention is not particularly limited as long as it has hydrogen peroxide decomposition ability. The manufacturing process of activated carbon mainly includes a carbonization process using a raw material as a carbide and an activation process for growing pores of the obtained carbide with water vapor or the like, but the carbonization method and the activation method are not particularly limited. The raw materials for activated carbon are usually wood, cellulose, sawdust, charcoal, coconut husk charcoal, palm kernel charcoal, raw ash, etc., and coal-based minerals such as peat, lignite, lignite, bituminous coal, anthracite From raw materials, from petroleum minerals such as petroleum residue, sulfuric acid sludge and oil carbon, from protein, from sludge or waste containing protein, fermentation Examples include those made from production waste cells, and those made from polyacrylonitrile (PAN), among others, bituminous coal, waste cells after brewing, and wastewater treatment mainly composed of cells. The activated carbon which uses as a raw material the organic substance which becomes 1% or more of nitrogen concentration of the carbide | carbonized_material before activation, such as sludge, okara, and PAN, is used suitably. Moreover, by adding a treatment to these activated carbons, it is possible to impart or improve the hydrogen peroxide decomposition ability.

また、使用する活性炭はその粒子が細かいほどその効果が大きく、特に1000μm以下、望ましくは300μm以下の微粉末を使用することで、その効果を高めることができる。これは微粉末とすることにより接触面積が大きくなり、もって過酸化水素分解率が上がることに由来すると考えられる。粒径が1000μm以上、例えば10mmであっても、過酸化水素分解能力があれば本発明の目的は達することができるが、使用量が多くなり、或いは処理時間を長くする必要があり、工業的操作性も勘案すると1000μm以下が好ましい。また、活性炭は、工業的には、粉塵発生抑制、操作性の点で懸濁液としての供給の方が有利であり、懸濁液の流動性、操作性の点から、1000μm以下、好ましくは300μm以下の粉末の懸濁液として供給することが好ましく、さらに、活性炭は、通常水分吸着などによりその吸着能力を減ずるが、本発明においては、活性炭を水などの分散媒中に懸濁して使用することができる。   In addition, the activated carbon used is more effective as the particles are finer, and the effect can be enhanced by using fine powder of 1000 μm or less, preferably 300 μm or less. This is considered to be due to the fact that the contact area is increased by using fine powder, and the decomposition rate of hydrogen peroxide is increased. Even if the particle size is 1000 μm or more, for example, 10 mm, the object of the present invention can be achieved if it has the ability to decompose hydrogen peroxide. However, it is necessary to increase the amount of use or to increase the treatment time. In consideration of operability, it is preferably 1000 μm or less. In addition, activated carbon is industrially more advantageous to supply as a suspension in terms of dust generation suppression and operability. From the viewpoint of fluidity and operability of the suspension, 1000 μm or less, preferably It is preferable to supply it as a suspension of powder of 300 μm or less. Furthermore, activated carbon usually reduces its adsorption capacity by moisture adsorption or the like. In the present invention, activated carbon is suspended in a dispersion medium such as water. can do.

微粉末にする方法としては、古くからある石臼の様に粉砕する石臼式、胴体の回転等によるロッドの落下衝撃力で粉砕するロッド式、胴体の回転等によるボールの落下衝撃力で粉砕するボール式、遠心力が作用するローラーとタイヤの間で粉砕する遠心ローラー式、粉体の流動層内へジェット気流を吹き込み粉体同士の衝突で粉砕するジェット式、遠心場内で小さなボールを運動させ粉砕する攪拌式などが挙げられる。さらに、各機器メーカーにより、これらを組み合わせた形の粉砕器も多数開発されている。また、乾燥状態で粉砕する乾式法と、水などで湿潤化させた状態で粉砕する湿式法が各々適用できる場合もある。活性炭を微粉末にする方法に特に限定はないが、より微粉末とすることができ、粉砕時の発塵などを防止できる点で、ボール式や攪拌式などが好適に使用できる。   The fine powder can be crushed like an old millstone, a rod mill that grinds with the drop impact force of the rod due to rotation of the fuselage, or a ball that grinds with the ball drop impact force due to rotation of the fuselage, etc. Type, centrifugal roller type that pulverizes between the roller and the tire on which centrifugal force acts, jet type that blows a jet stream into the fluidized bed of powder and pulverizes by collision of powder, pulverizes by moving a small ball in the centrifugal field And a stirring type. In addition, a number of pulverizers that combine these have been developed by each equipment manufacturer. In some cases, a dry method of pulverizing in a dry state and a wet method of pulverizing in a state moistened with water or the like may be applied. There is no particular limitation on the method of making activated carbon into a fine powder, but a ball type or a stirring type can be suitably used in that it can be made into a finer powder and can prevent dusting during pulverization.

本発明では過酸化水素分解能力のある活性炭とともに、酸化剤、金属塩を用いる。これらは、通常の酸化処理法による廃棄物処理に用いられているものであれば良く、特に制限はなく、酸化剤としては、例えば過酸化水素、過酢酸、過酢酸塩、過炭酸、過炭酸塩、過硫酸、過硫酸塩、過ホウ酸、過ホウ酸塩、次亜塩素酸、次亜塩素酸塩、オゾン、酸素、塩素、空気などが挙げられ、操作性、価格などの点から過酸化水素が好ましい。金属塩としては、銅、マンガン、鉄などの塩が好適に用いられるが、安全性、経済性などの点から、鉄塩が好ましい。鉄塩としては例えば硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄、シュウ酸鉄(II)、臭化鉄(II)、臭化鉄(III)、硝酸鉄臭化鉄(III)、フマル酸鉄(III)、フッ化鉄(III)、グルコン酸鉄(II)、水酸化鉄(III)、次亜リン酸鉄(III)、乳酸鉄(II)などが挙げられるが、価格、操作性の点から硫酸第一鉄や塩化第一鉄が好ましい。また、若干効率は低下するが、金属鉄も使用可能である。 In the present invention, an oxidizing agent and a metal salt are used together with activated carbon capable of decomposing hydrogen peroxide. These are not particularly limited as long as they are used for waste treatment by a normal oxidation treatment method. Examples of the oxidizing agent include hydrogen peroxide, peracetic acid, peracetate, percarbonate, percarbonate. Salt, persulfuric acid, persulfate, perboric acid, perborate, hypochlorous acid, hypochlorite, ozone, oxygen, chlorine, air, etc. Hydrogen oxide is preferred. As the metal salt, a salt of copper, manganese, iron or the like is preferably used, but an iron salt is preferable from the viewpoint of safety and economy. Examples of iron salts include ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, iron (II) oxalate, iron (II) bromide, iron (III) bromide, and iron nitrate bromide Iron (III), iron (III) fumarate, iron (III) fluoride, iron (II) gluconate, iron (III) hydroxide, iron (III) hypophosphite, iron (II) lactate, etc. However, ferrous sulfate and ferrous chloride are preferable from the viewpoint of cost and operability. Moreover, although iron efficiency falls a little, metallic iron can also be used.

酸化剤、金属塩の使用量には特に制限はなく、必要とされる対象物の処理レベルにより適宜選択されるが、一般的には、酸化剤は、過酸化水素に換算して、対象物に対して0.1〜50重量%、金属塩は、鉄塩を使用する場合、硫酸第一鉄に換算して、対象物に対して0.01〜5重量%、過酸化水素分解能力のある活性炭は、対象物に対して0.01〜5重量%である。本発明による処理では、pHを5以下とするのが好ましい。pHが高い場合は効果が損なわれる。pHの調整法としては、特に制限はないが、硫酸、塩酸、硝酸、リン酸などを添加することが挙げられるが、価格、操作性などから、硫酸が好適に使用される。 There are no particular restrictions on the amount of the oxidant and metal salt used, and it is appropriately selected depending on the required treatment level of the object. In general, the oxidant is converted into hydrogen peroxide and the object. 0.1 to 50% by weight with respect to the metal salt, when using an iron salt, 0.01 to 5% by weight with respect to the object in terms of hydrogen peroxide decomposition capacity in terms of ferrous sulfate A certain activated carbon is 0.01 to 5 weight% with respect to a target object. In the treatment according to the present invention, the pH is preferably 5 or less. When the pH is high, the effect is impaired. Although there is no restriction | limiting in particular as a pH adjustment method, Although sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. are mentioned, A sulfuric acid is used suitably from a price, operativity, etc.

処理対象とする有機ハロゲン化合物を含む対象物と、鉄塩などの金属塩および過酸化水素分解能力のある活性炭の混合方法に特に制限は無いが、対象物が廃水などの液体の場合、土壌や焼却灰などの固体の場合、ガスなどの気体やミストなどの場合、水と混じりにくい例えば油状物質の場合に分けて、以下説明する。   There is no particular limitation on the method of mixing the object containing the organic halogen compound to be treated with the metal salt such as iron salt and activated carbon capable of decomposing hydrogen peroxide, but if the object is a liquid such as waste water, In the case of a solid such as incinerated ash, the case will be described below in the case of a gas such as a gas, a mist, etc., which is difficult to mix with water, for example, an oily substance.

対象物が廃水などの液体の場合は、これらの薬剤の内、まず、金属塩、過酸化水素分解能力のある活性炭、好ましくはpH調整剤を添加し、出来る限り均等に混合する。ついで、過酸化水素などの酸化剤を添加するが、添加方法としては、一括で添加する方法、逐次添加する方法、連続で添加する方法などがあり、使用条件に応じて適宜選択すればよい。基本的には、連続で少量ずつ添加する方法が好ましい。   When the object is a liquid such as waste water, first of all, a metal salt and activated carbon capable of decomposing hydrogen peroxide, preferably a pH adjuster, are added and mixed as evenly as possible. Then, an oxidizing agent such as hydrogen peroxide is added. As an addition method, there are a batch addition method, a sequential addition method, a continuous addition method, and the like, which may be appropriately selected according to the use conditions. Basically, a method of adding small amounts continuously is preferable.

さらに、過酸化水素分解能力のある活性炭を充填塔などへ充填しておき、廃水へ金属塩、好ましくはpH調整剤を添加し、過酸化水素などの酸化剤を添加した後、過酸化水素分解能力のある活性炭を充填した充填塔を流通あるいは循環流通させる方法や、スチールウールなどの金属と過酸化水素分解能力のある活性炭を充填塔などへ充填しておき、好ましくはpH調整剤を添加した廃水へ、過酸化水素などの酸化剤を添加した後、スチールウールなどの金属と過酸化水素分解能力のある活性炭を充填した充填塔を流通あるいは循環流通させる方法や、スチールウールなどの金属を充填塔などへ充填しておき、廃水へ金属塩、酸化水素分解能力のある活性炭、好ましくはpH調整剤を添加し、過酸化水素などの酸化剤を添加した後、スチールウールなどの金属を充填した充填塔を流通あるいは循環流通させる方法も好適である。各々の例において、過酸化水素などの酸化剤は、充填塔の流通入り口や途中で添加することや、流通時に随時追加することも可能である。   Furthermore, activated carbon capable of decomposing hydrogen peroxide is packed in a packed tower, etc., a metal salt, preferably a pH adjuster, is added to the wastewater, and an oxidizing agent such as hydrogen peroxide is added, followed by hydrogen peroxide decomposition. A method of circulating or circulating a packed tower filled with activated carbon, or filling a packed tower with a metal such as steel wool and activated carbon capable of decomposing hydrogen peroxide, and preferably adding a pH adjuster After adding an oxidizing agent such as hydrogen peroxide to the wastewater, a method such as circulating or circulating a packed tower filled with a metal such as steel wool and activated carbon capable of decomposing hydrogen peroxide, or filling a metal such as steel wool It is packed in a tower, etc., and a metal salt, activated carbon capable of decomposing hydrogen oxide, preferably a pH adjuster is added to the wastewater, and an oxidizing agent such as hydrogen peroxide is added. The method of distributing or circulate circulating packed tower filled with metal such as Le also suitable. In each example, an oxidant such as hydrogen peroxide can be added at the inlet or in the middle of the packed tower, or added at any time during the distribution.

対象物が土壌や焼却灰などの固体の場合は、鉄塩などの金属塩および過酸化水素分解能力のある活性炭の混合方法に特に制限は無いが、通常は、まず、これらの薬剤の内、金属塩、過酸化水素分解能力のある活性炭、好ましくはpH調整剤を混入する。これらを対象物中に混入する方法としては、例えば固体の薬剤は、粒状又は粉末上にして散布し、さらにすき込む方法や、これらの薬剤を水溶液又はスラリー状にして散布する方法、これらの薬剤を水溶液又はスラリー状にして対象物に圧入する方法、対象物を掘上げ、ミキサー等を用いて土壌中に混ぜ込む方法等が挙げられるが、その他何れの方法でもよく、出来る限り均等に混ざることが好ましいが、多少不均一であっても目的は十分に達成される。 When the object is a solid such as soil or incinerated ash, there is no particular limitation on the method of mixing the metal salt such as iron salt and the activated carbon capable of decomposing hydrogen peroxide, but usually, among these drugs, A metal salt and activated carbon capable of decomposing hydrogen peroxide, preferably a pH adjuster are mixed. As a method for mixing these into the object, for example, a solid drug is sprayed in the form of particles or powder, and a further scrubbing method, a method of spraying these drugs in an aqueous solution or slurry, and these drugs There are a method of press-fitting into a target object in the form of an aqueous solution or slurry, a method of digging up the target object and mixing it into the soil using a mixer, etc., but any other method may be used and mix as evenly as possible. However, the object is sufficiently achieved even if it is somewhat non-uniform.

一般的には、その後、過酸化水素を混入するが、その方法としては、例えば、過酸化水素水を散布する方法、過酸化水素水を、対象物中に圧入する方法等が挙げられる又、一度に所定量を散布あるいは圧入する方法、所定量を何回かに分割して散布あるいは圧入する方法、一定時間をかけて所定量を連続して散布あるいは圧入する方法などがあり、一般的には、連続法、分割法、一括法の順で、より効率的な浄化処理が行える。また、対象物からの浸出水へ過酸化水素を追加したものを循環させる方法も有効である。さらに、本法によれば、過酸化水素分解能力のある活性炭を使用するため、たとえ過酸化水素が残存したとしても、過酸化水素分解能力のある活性炭により過酸化水素が分解され、環境中に残留するおそれもない。さらに、過酸化水素添加処理後に適当なアルカリ剤、たとえば、水酸化ナトリウム、消石灰などを固体のまま、あるいは、水溶液として散布、混合し、対象物を中性にもどすことも可能である。 In general, hydrogen peroxide is then mixed in. Examples of the method include a method of spraying hydrogen peroxide solution, a method of press-fitting hydrogen peroxide solution into an object, and the like. There are a method of spraying or press-fitting a predetermined amount at a time, a method of spraying or press-fitting a predetermined amount into several times, a method of spraying or press-in a predetermined amount continuously over a certain time, etc. Can perform more efficient purification in the order of continuous method, split method, and batch method. Another effective method is to circulate the leachate from the object plus hydrogen peroxide. Furthermore, according to this method, activated carbon that has the ability to decompose hydrogen peroxide is used, so even if hydrogen peroxide remains, hydrogen peroxide is decomposed by activated carbon that has the ability to decompose hydrogen peroxide. There is no risk of remaining. Furthermore, after the hydrogen peroxide addition treatment, an appropriate alkaline agent, for example, sodium hydroxide, slaked lime, or the like can be solid or sprayed and mixed as an aqueous solution to return the object to neutrality.

対象物がガスなどの気体やミストなどの場合は、スクラバーなどで代表される廃ガス等処理装置の循環液として、鉄塩などの金属塩および過酸化水素分解能力のある活性炭と、好ましくはpH調整剤を添加した液へ、過酸化水素などの酸化剤を添加した液を循環することで、目的を達成することが出来る。過酸化水素などの酸化剤、pH調整剤、鉄塩などの金属塩は、必要に応じて適宜追加することも可能である。   When the object is a gas such as a gas or mist, as a circulating liquid of a treatment apparatus such as a waste gas represented by a scrubber or the like, a metal salt such as iron salt and activated carbon capable of decomposing hydrogen peroxide, preferably pH The object can be achieved by circulating the liquid added with an oxidizing agent such as hydrogen peroxide to the liquid added with the adjusting agent. An oxidizing agent such as hydrogen peroxide, a pH adjuster, and a metal salt such as an iron salt can be added as necessary.

対象物が水と混じりにくい例えば油状物質などの場合は、処理をより効率的に行うために、汚染物を含まない、あるいは汚染物濃度の低い砂や、珪藻土などの坦体を、追加することで、汚染物質の分散を良くし、対象物が土壌や焼却灰などの固体の場合と同様に処理することもできる。 If the target object is difficult to mix with water, such as oily substances, add a carrier such as sand or diatomaceous earth that does not contain contaminants or have a low concentration of contaminants in order to perform the treatment more efficiently. Thus, it is possible to improve the dispersion of pollutants and to treat the object in the same manner as when the object is solid such as soil or incinerated ash.

また、本発明は、処理対象物を移送し、別の処理場で処理することが可能な他、処理対象物を移送せずとも、原位置にても浄化が可能である。原位置で浄化することにより、大量の処理対象物を移送する必要がなくなり、移送費用等が安価になり、さらに、処理対象物の移動・運搬にかかわる問題なども回避することが出来る利点を有する。   In addition, the present invention can move the object to be processed and process it in a separate processing plant, and can also purify the original object without transferring the object to be processed. By purifying in-situ, there is no need to transfer a large amount of processing object, transfer cost is reduced, and problems related to movement / transportation of the processing object can be avoided. .

さらには、本方法の前処理として、一般的な生物処理を実施することにより、易生分解性物質を分解し、過酸化水素などの酸化剤の使用量を削減することや、本方法を過酸化水素などの酸化剤の使用量を削減した条件で適用することにより、対象物を炭酸ガスにまで分解するに至らずとも、生分解性を向上させ、その後微生物処理を実施し、完全に分解する方法も採用することができる。   Furthermore, as a pretreatment of this method, a general biological treatment is performed to decompose easily biodegradable substances and reduce the amount of oxidizing agents such as hydrogen peroxide. By applying under conditions where the amount of oxidant such as hydrogen oxide is reduced, the biodegradability is improved without subjecting the target to decomposition to carbon dioxide, and then microbial treatment is carried out to ensure complete decomposition. It is also possible to adopt a method to do this.

以下実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example.

参考例1:活性炭の種類
500ppmに希釈したエタノールをモデル廃液として、その1Lに対して、硫酸によりpHを2.7に調整した後、表1に示した硫酸第一鉄7水塩、平均粒径50μmの各種活性炭を加え、表1に示した過酸化水素を8時間かけて滴下した。表中各成分の濃度はモデル廃液に対する値である。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化カルシウムでpHを中性とした後、一部を濾別してろ過液についてTOC(全有機炭素)測定を行った。同時に過酸化水素を添加せずに同様の実験を行い、TOC測定を行った。過酸化水素無添加実験のTOC測定値に対する過酸化水素添加実験のTOC測定値の比率からTOC分解率を算出した。結果を表1に示す。
Reference Example 1: Type of activated carbon Ethanol diluted to 500 ppm was used as a model waste liquid, and after adjusting pH to 2.7 with sulfuric acid for 1 L, ferrous sulfate heptahydrate shown in Table 1, average grain Various activated carbons having a diameter of 50 μm were added, and hydrogen peroxide shown in Table 1 was dropped over 8 hours. The concentration of each component in the table is the value for the model waste liquid. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with calcium hydroxide, a part was filtered off, and the TOC (total organic carbon) measurement was performed on the filtrate. At the same time, the same experiment was performed without adding hydrogen peroxide, and TOC measurement was performed. The TOC decomposition rate was calculated from the ratio of the TOC measurement value of the hydrogen peroxide addition experiment to the TOC measurement value of the hydrogen peroxide non-addition experiment. The results are shown in Table 1.

Figure 2007215552
Figure 2007215552

参考例2:活性炭の粒径
500ppmに希釈したジメチルスルホキシド(DMSO)をモデル廃液として、活性炭として種々の平均粒径の廃菌体系活性炭の20重量%水スラリー液の3000ppmを用いた以外は、参考例1と同様に実験を行った。結果を表2に示す。
Reference Example 2: Activated charcoal particle size dimethyl sulfoxide (DMSO) diluted to 500 ppm was used as a model waste solution, except that 3000 ppm of 20 wt% water slurry solution of waste fungal activated carbon with various average particle sizes was used as activated carbon. The experiment was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2007215552
Figure 2007215552

参考例3:pH
500ppmに希釈したエタノールアミン(EA)をモデル廃液として、平均粒径50μmの石炭系活性炭材料を600ppm加え、表3に示したpHを硫酸および水酸化ナトリウムで維持しながら、過酸化水素を8時間かけて滴下した以外は、参考例1と同様に実験を行った。結果を表3に示す。
Reference Example 3: pH
Using ethanolamine (EA) diluted to 500 ppm as a model waste liquor, adding 600 ppm of coal-based activated carbon material with an average particle size of 50 μm, maintaining the pH shown in Table 3 with sulfuric acid and sodium hydroxide for 8 hours. The experiment was performed in the same manner as in Reference Example 1 except that the solution was dropped. The results are shown in Table 3.

Figure 2007215552
Figure 2007215552

実施例1:各種有機塩素化合物の分解(水系)
各種の有機塩素化合物の1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%と、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.4%の濃度で添加混合し、硫酸でpHを2.7に調整した後、表4に示した過酸化水素を17時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、水層を濾過し、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。結果を表4に示した。トリクロロエチレンでは90%近い分解率、非常に分解しにくいジクロロペンタフルオロプロパンでも10%近い分解率が認められた。
Example 1: Decomposition of various organochlorine compounds (aqueous)
0.2 g of ferrous sulfate heptahydrate and 0.2% of 20 wt% water slurry of bituminous charcoal activated carbon (average particle size 50 μm) per 500 g of 1000 ppm water suspension of various organochlorine compounds. After adding and mixing at a concentration of 4% and adjusting the pH to 2.7 with sulfuric acid, the hydrogen peroxide shown in Table 4 was added dropwise over 17 hours. The treatment temperature was 20 ° C. After the completion of the addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, the aqueous layer was filtered, and the carbon-chlorine bond of the organic chlorine compound was cleaved and dissolved in the aqueous layer by ion chromatography. The chlorine ion concentration was measured, and the decomposition rate was calculated by comparison with the amount of chlorine in the added organic chlorine compound. The results are shown in Table 4. A decomposition rate of nearly 90% was observed with trichlorethylene, and a decomposition rate of nearly 10% was observed with dichloropentafluoropropane, which is very difficult to decompose.

Figure 2007215552
Figure 2007215552

比較例1
実施例1で使用したと同じ各種の有機塩素化合物の1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%の濃度で添加混合し、硫酸でpHを2.7に調整した後、実施例1と同様に過酸化水素を17時間で滴下しながら混合し、同様に分析を行った。結果を表5に示した。実施例1と比較して、低い分解率であった。
Comparative Example 1
Ferrous sulfate heptahydrate was added and mixed at a concentration of 0.2% to 500 g of a 1000 ppm aqueous suspension of the same various organochlorine compounds as used in Example 1, and the pH was adjusted to 2. with sulfuric acid. After adjusting to 7, hydrogen peroxide was added dropwise over 17 hours in the same manner as in Example 1, and the analysis was performed in the same manner. The results are shown in Table 5. Compared with Example 1, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例2:各種有機塩素化合物の分解(砂系)
実施例1と同じ、各種の有機塩素化合物の0.5gを500gのコンクリート用水洗済川砂へ混合させた物を用いて、ロータリーエバポレターを応用して攪拌しながら、実施例1と同様の処理を中和まで実施した。中和後、川砂を当重量の純水で3回洗浄した後、3回の洗浄水を合わせて、濾過し、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。結果を表6に示した。実施例1より良好な分解率が得られた。これは、実施例1と異なり、川砂表面に有機塩素化合物がまぶされる形となり、より効率的に処理が行われたためと考えられた。
Example 2: Decomposition of various organochlorine compounds (sand type)
The same treatment as in Example 1, using 0.5 g of various organochlorine compounds mixed with 500 g of washed water-washed concrete sand for concrete, with stirring using a rotary evaporator. Was carried out until neutralization. After neutralization, the river sand is washed with pure water of the same weight three times, and then combined with the three washing waters, filtered, and the carbon-chlorine bond of the organochlorine compound is cleaved by ion chromatography to form an aqueous layer. The chlorine ion concentration dissolved in the solution was measured, and the decomposition rate was calculated in comparison with the amount of chlorine in the added organic chlorine compound. The results are shown in Table 6. A better decomposition rate than in Example 1 was obtained. This was thought to be because, unlike Example 1, the surface of the river sand was covered with an organic chlorine compound, and the treatment was performed more efficiently.

Figure 2007215552
Figure 2007215552

比較例2
実施例2で使用したと同じ各種の有機塩素化合物の1000ppm川砂混合物の500gに対して、硫酸第一鉄7水塩を0.2%の濃度で添加混合し、硫酸でpHを2.7に調整した後、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を添加しない以外は実施例2と同様に過酸化水素を17時間で滴下しながら混合し、同様に分析を行った。結果を表7に示した。実施例2と比較して、低い分解率であった。
Comparative Example 2
Ferrous sulfate heptahydrate was added and mixed at a concentration of 0.2% to 500 g of a 1000 ppm river sand mixture of the same various organochlorine compounds used in Example 2, and the pH was adjusted to 2.7 with sulfuric acid. After the adjustment, hydrogen peroxide was added dropwise for 17 hours in the same manner as in Example 2 except that a 20 wt% water slurry solution of bituminous coal-based activated carbon (average particle size 50 μm) was not added, and the analysis was performed in the same manner. . The results are shown in Table 7. Compared with Example 2, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例3:各種ダイオキシン骨格化合物の分解(水系)
各種のダイオキシン類の骨格化合物である、ジフェニレンオキシドとジフェニレンジオキシドの400ppm水溶液の各々250gに対して、硫酸第一鉄7水塩を0.5%と、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.5%の濃度で添加混合し、硫酸でpHを2.7に調整した後、表8に示した過酸化水素を10時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、エタノールで未分解のジフェニレンオキシドとジフェニレンジオキシドを抽出し、乾燥後、水に懸濁し、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表8に示した。共に90%以上の分解が認められ、これらを骨格構造として持つダイオキシン類でも同様の分解が期待された。
Example 3: Decomposition of various dioxin skeleton compounds (aqueous)
For each 250 g of 400 ppm aqueous solution of diphenylene oxide and diphenylene dioxide, which are skeleton compounds of various dioxins, 0.5% ferrous sulfate heptahydrate and waste fungal activated carbon (average particle size 50 μm) of a 20 wt% water slurry solution was added and mixed at a concentration of 0.5%, and after adjusting the pH to 2.7 with sulfuric acid, the hydrogen peroxide shown in Table 8 was added dropwise over 10 hours. . The treatment temperature was 20 ° C. After completing the dropwise addition of hydrogen peroxide, neutralize the pH with sodium hydroxide, extract undecomposed diphenylene oxide and diphenylene dioxide with ethanol, dry, suspend in water, and measure total organic carbon. Was used to determine the total organic carbon (TOC). The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 8. In both cases, decomposition of 90% or more was observed, and the same decomposition was expected for dioxins having these as a skeleton structure.

Figure 2007215552
Figure 2007215552

実施例4:各種ダイオキシン骨格化合物の分解(砂系)
実施例3と同じ、ジフェニレンオキシドとジフェニレンジオキシドの200mgを500gのコンクリート用水洗済川砂へ混合させた物を用いて、ロータリーエバポレターを応用して攪拌しながら、実施例3と同様の処理を中和まで実施した。中和後、川砂からエタノールで未分解のジフェニレンオキシドとジフェニレンジオキシドを抽出し、乾燥後、水に懸濁し、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表9に示した。共に90%以上の分解が認められ、これらを骨格構造として持つダイオキシン類でも同様の分解が期待された。
Example 4: Decomposition of various dioxin skeleton compounds (sand type)
The same as in Example 3, using a mixture of diphenylene oxide and 200 mg of diphenylene dioxide mixed with 500 g of washed river sand for concrete, using a rotary evaporator and stirring. Processing was carried out until neutralization. After neutralization, undecomposed diphenylene oxide and diphenylene dioxide were extracted from river sand with ethanol, dried, suspended in water, and total organic carbon (TOC) was quantified with a total organic carbon meter. The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 9. In both cases, decomposition of 90% or more was observed, and the same decomposition was expected for dioxins having these as a skeleton structure.

Figure 2007215552
Figure 2007215552

比較例3
実施例3と同じ、ジフェニレンオキシドとジフェニレンジオキシドの200mgを500gのコンクリート用水洗済川砂へ混合させた物を用いて、ロータリーエバポレターを応用して、実施例3と同様の処理を、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を添加しない以外は、中和まで実施した。中和後、川砂からエタノールで未分解のジフェニレンオキシドとジフェニレンジオキシドを抽出し、乾燥後、水に懸濁し、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表10に示した。
Comparative Example 3
The same treatment as in Example 3 was applied using a rotary evaporator, using the same mixture of diphenylene oxide and 200 mg of diphenylene dioxide in 500 g of washed river sand for concrete as in Example 3. The process was carried out until neutralization, except that 20% by weight aqueous slurry of waste fungal activated carbon (average particle size 50 μm) was not added. After neutralization, undecomposed diphenylene oxide and diphenylene dioxide were extracted from river sand with ethanol, dried, suspended in water, and total organic carbon (TOC) was quantified with a total organic carbon meter. The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 10.

Figure 2007215552
Figure 2007215552

実施例5:ダイオキシン類を含む焼却灰中のダイオキシン類の分解
ダイオキシン類を含む焼却灰および土壌を用いて、ロータリーエバポレターを応用して、硫酸第一鉄7水塩を0.5%と、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.8%の濃度で添加混合し、硫酸でpHを2.7に調整した後、35%過酸化水素を50g/kgの添加量で、16時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、トルエンで抽出し、濃縮を行い、その後GC−MSにより濃度測定を行い、処理前後の量から分解率を算出した。結果を表11に示した。共にTEQ(毒性等量)換算で90%以上の分解が認められた。
Example 5: Decomposition of dioxins in incinerated ash containing dioxins Using incineration ash and soil containing dioxins, a rotary evaporator was applied to make ferrous sulfate heptahydrate 0.5%, After adding 20% by weight aqueous slurry of waste bacteria activated carbon (average particle size 50 μm) at a concentration of 0.8% and adjusting the pH to 2.7 with sulfuric acid, 35% hydrogen peroxide is 50 g / kg. The mixture was added dropwise for 16 hours. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, extracted with toluene, concentrated, and then subjected to concentration measurement by GC-MS, and the decomposition rate was calculated from the amount before and after the treatment. The results are shown in Table 11. In both cases, decomposition of 90% or more in terms of TEQ (toxic equivalent amount) was observed.

Figure 2007215552
Figure 2007215552

比較例4
実施例5と同じ、ダイオキシン類を含む焼却灰および土壌を用いて、ロータリーエバポレターを応用して、実施例5と同様の処理を、過酸化水素を添加しない以外は同様に実施し、濃度測定を行い、処理前後の量から分解率を算出した。結果を表12に示した。共にTEQ(毒性等量)換算で分解は認められなかった。
Comparative Example 4
The same treatment as in Example 5 was applied, except that hydrogen peroxide was not added, using a rotary evaporator with the same incinerated ash and soil containing dioxins as in Example 5, and concentration measurement was performed. And the decomposition rate was calculated from the amount before and after the treatment. The results are shown in Table 12. In both cases, no decomposition was observed in terms of TEQ (toxic equivalent).

Figure 2007215552
Figure 2007215552

実施例6:過酸化水素添加方法(水系)
ジクロロメタンおよびジクロロペンタフルオロプロパンの1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%と、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.4%の濃度で添加混合し、硫酸でpHを2.7に調整した後、表13に示した様に、ジクロロメタンの場合は8.6gの35%過酸化水素を、ジクロロペンタフルオロプロパンの場合は7.8gの35%過酸化水素を、混合しながら、17時間で連続して滴下、あるいは8等分した量の過酸化水素を2時間毎に8回添加、あるいは3等分した量の過酸化水素を5時間毎に3回添加、あるいは最初に一括添加し、合計で17時間の処理を行った。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、水層を濾過し、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。結果を表13に示した。一括添加と比較して、より連続添加に近い方が高い分解率を示した。
Example 6: Method for adding hydrogen peroxide (aqueous)
For 500 g of a 1000 ppm aqueous suspension of dichloromethane and dichloropentafluoropropane, 0.2% ferrous sulfate heptahydrate and 0 wt% water slurry of bituminous coal-based activated carbon (average particle size 50 μm) After adding and mixing at a concentration of 4% and adjusting the pH to 2.7 with sulfuric acid, as shown in Table 13, in the case of dichloromethane, 8.6 g of 35% hydrogen peroxide was added to dichloropentafluoropropane. In this case, 7.8 g of 35% hydrogen peroxide was added dropwise continuously in 17 hours while mixing, or 8 parts of hydrogen peroxide was added 8 times every 2 hours or 3 parts. The hydrogen peroxide was added three times every 5 hours, or added all at once, and the treatment was performed for a total of 17 hours. The treatment temperature was 20 ° C. After the completion of the addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, the aqueous layer was filtered, and the carbon-chlorine bond of the organic chlorine compound was cleaved and dissolved in the aqueous layer by ion chromatography. The chlorine ion concentration was measured, and the decomposition rate was calculated by comparison with the amount of chlorine in the added organic chlorine compound. The results are shown in Table 13. Compared with batch addition, the decomposition rate was higher when it was closer to continuous addition.

Figure 2007215552
Figure 2007215552

比較例5
実施例6で使用したと同じ有機塩素化合物の1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%の濃度で添加混合し、硫酸でpHを2.7に調整した後、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を添加しない以外は実施例6と同様に過酸化水素添加混合し、同様に分析を行った。結果を表14に示した。実施例6と比較して、低い分解率であった。
Comparative Example 5
To 500 g of a 1000 ppm aqueous suspension of the same organochlorine compound as used in Example 6, ferrous sulfate heptahydrate was added and mixed at a concentration of 0.2%, and the pH was adjusted to 2.7 with sulfuric acid. After the adjustment, hydrogen peroxide was added and mixed in the same manner as in Example 6 except that a 20 wt% water slurry solution of bituminous coal-based activated carbon (average particle size 50 μm) was not added, and the same analysis was performed. The results are shown in Table 14. Compared with Example 6, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例7:過酸化水素添加方法(砂系)
ジクロロメタンおよびジクロロペンタフルオロプロパンの0.5gを500gのコンクリート用水洗済川砂へ混合させた物を用いて、ロータリーエバポレターを応用して攪拌しながら、実施例6と同様の処理を中和まで実施した。中和後、川砂を当重量の純水で3回洗浄した後、3回の洗浄水を合わせて、濾過し、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。結果を表15に示した。砂系でも、一括添加と比較して、より連続添加に近い方が高い分解率を示した。
Example 7: Hydrogen peroxide addition method (sand type)
Using a mixture of 0.5 g of dichloromethane and dichloropentafluoropropane mixed with 500 g of washed river sand for concrete, the same treatment as in Example 6 was carried out until neutralization while stirring using a rotary evaporator. did. After neutralization, the river sand is washed with pure water of the same weight three times, and then combined with the three washing waters, filtered, and the carbon-chlorine bond of the organochlorine compound is cleaved by ion chromatography to form an aqueous layer. The chlorine ion concentration dissolved in the solution was measured, and the decomposition rate was calculated in comparison with the amount of chlorine in the added organic chlorine compound. The results are shown in Table 15. Even in the sand system, the decomposition rate was higher when closer to continuous addition than when batch addition was performed.

Figure 2007215552
Figure 2007215552

比較例6
実施例7で使用したと同じ有機塩素化合物の1000ppm川砂混合物の500gに対して、硫酸第一鉄7水塩を0.2%の濃度で添加混合し、硫酸でpHを2.7に調整した後、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を添加しない以外は実施例7と同様に過酸化水素添加混合し、同様に分析を行った。結果を表16に示した。実施例7と比較して、低い分解率であった。
Comparative Example 6
Ferrous sulfate heptahydrate was added and mixed at a concentration of 0.2% to 500 g of a 1000 ppm river sand mixture of the same organochlorine compound used in Example 7, and the pH was adjusted to 2.7 with sulfuric acid. Thereafter, hydrogen peroxide was added and mixed in the same manner as in Example 7 except that a 20 wt% water slurry solution of bituminous coal-based activated carbon (average particle size 50 μm) was not added, and analysis was performed in the same manner. The results are shown in Table 16. Compared with Example 7, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例8:過酸化水素添加方法(水系)
各種のダイオキシン類の骨格化合物である、ジフェニレンジオキシドの400ppm水溶液の各々250gに対して、硫酸第一鉄7水塩を0.5%と、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.5%の濃度で添加混合し、硫酸でpHを2.7に調整した後、表17に示した様に、10gの35%過酸化水素を、混合しながら、10時間で連続して滴下、あるいは3等分した量の過酸化水素を3時間毎に3回添加、あるいは最初に一括添加し、合計で10時間の処理を行った。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、エタノールで未分解のジフェニレンオキシドとジフェニレンジオキシドを抽出し、乾燥後、水に懸濁し、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表17に示した。一括添加と比較して、より連続添加に近い方が高い分解率を示した。
Example 8: Method for adding hydrogen peroxide (aqueous)
For each 250 g of 400 ppm aqueous solution of diphenylene dioxide, which is a skeleton compound of various dioxins, 0.5% of ferrous sulfate heptahydrate and 20% of waste fungal activated carbon (average particle size 50 μm) After adding and mixing the weight% water slurry at a concentration of 0.5% and adjusting the pH to 2.7 with sulfuric acid, as shown in Table 17, 10 g of 35% hydrogen peroxide was mixed while mixing. An amount of hydrogen peroxide that was continuously dropped or divided into three equal portions in 10 hours was added three times every 3 hours, or added all at once, and the treatment was performed for a total of 10 hours. The treatment temperature was 20 ° C. After completing the dropwise addition of hydrogen peroxide, neutralize the pH with sodium hydroxide, extract undecomposed diphenylene oxide and diphenylene dioxide with ethanol, dry, suspend in water, and measure total organic carbon. Was used to determine the total organic carbon (TOC). The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 17. Compared with batch addition, the decomposition rate was higher when it was closer to continuous addition.

Figure 2007215552
Figure 2007215552

比較例7
実施例8で使用したと同じ各種のダイオキシン類の骨格化合物である、ジフェニレンジオキシドの400ppm水溶液の各々250gに対して、硫酸第一鉄7水塩の0.5%を添加混合し、硫酸でpHを2.7に調整した後、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を添加しない以外は実施例8と同様に過酸化水素添加混合し、同様に分析を行った。結果を表18に示した。実施例8と比較して、低い分解率であった。
Comparative Example 7
0.5% of ferrous sulfate heptahydrate was added to and mixed with 250 g of each 400 ppm aqueous solution of diphenylene dioxide, which is the same dioxin skeleton compound used in Example 8, and sulfuric acid was added. After adjusting the pH to 2.7, hydrogen peroxide was added and mixed in the same manner as in Example 8 except that 20% by weight water slurry of waste bacteria activated carbon (average particle size 50 μm) was not added, and analysis was performed in the same manner. went. The results are shown in Table 18. Compared to Example 8, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例9:活性炭充填塔の利用(水系)
1,1,1−トリクロロエタン、ジクロロメタンの1000ppm水懸濁液、およびジフェニレンジオキシドの1000ppm水溶液500gに対して、硫酸第一鉄7水塩を0.5%添加し、硫酸でpHを2.7に調整した液を、12〜40メッシュの瀝青炭系活性炭を直径25mmのガラスカラムへ、ベット容積100mlとなる様に充填した充填塔へ、50ml/分で循環させながら、表19に示した過酸化水素を15時間かけて添加した。処理温度は室温(約25℃)とした。過酸化水素の添加終了後、液を取り出し、水酸化ナトリウムでpHを中性とした後、水層を濾過し、1,1,1−トリクロロエタン、ジクロロメタンについては、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。ジフェニレンジオキシドについては、実施例1と同様にして、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表19に示した。活性炭充填塔を使用しても分解が認められた。
Example 9: Utilization of activated carbon packed tower (aqueous)
0.5% ferrous sulfate heptahydrate is added to 500 g of 1,1,1-trichloroethane, 1000 ppm aqueous suspension of dichloromethane, and 1000 ppm aqueous solution of diphenylene dioxide, and the pH is adjusted to 2. with sulfuric acid. The liquid adjusted to 7 was circulated at a rate of 50 ml / min through a packed column packed with 12-40 mesh bituminous charcoal-based activated carbon to a glass column with a diameter of 25 mm so as to have a bed volume of 100 ml. Hydrogen oxide was added over 15 hours. The treatment temperature was room temperature (about 25 ° C.). After the addition of hydrogen peroxide, the liquid was taken out, neutralized with sodium hydroxide, and the aqueous layer was filtered. For 1,1,1-trichloroethane and dichloromethane, the organic chlorine compound was analyzed by ion chromatography. The concentration of chlorine ions dissolved in the water layer was measured by cutting the carbon-chlorine bond, and the decomposition rate was calculated by comparison with the amount of chlorine in the added organic chlorine compound. About diphenylene dioxide, it carried out similarly to Example 1, and quantified the total organic carbon (TOC) with the total organic carbon measuring meter. The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 19. Decomposition was observed using an activated carbon packed tower.

Figure 2007215552
Figure 2007215552

実施例10:活性炭充填塔の利用(水系)
1,1,1−トリクロロエタン、ジクロロメタンの1000ppm水懸濁液、およびジフェニレンジオキシドの1000ppm水溶液500gに対して、硫酸でpHを2.7に調整した液を、直径25mmのガラスカラムへ、10gのスチールウールと12〜40メッシュの瀝青炭系活性炭をベット容積100mlとなる様に共に充填した充填塔へ、50ml/分で循環させながら、表20に示した過酸化水素を15時間かけて添加した。処理温度は室温(約25℃)とした。過酸化水素の添加終了後、液を取り出し、水酸化ナトリウムでpHを中性とした後、水層を濾過し、1,1,1−トリクロロエタン、ジクロロメタンについては、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。ジフェニレンジオキシドについては、実施例1と同様にして、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表20に示した。金属鉄と活性炭を充填した塔を使用しても分解が認められた。
Example 10: Utilization of activated carbon packed tower (aqueous system)
A solution prepared by adjusting pH to 2.7 with sulfuric acid to 500 g of 1,1,1-trichloroethane, 1000 ppm aqueous suspension of dichloromethane, and 1000 ppm aqueous solution of diphenylene dioxide was applied to a glass column having a diameter of 25 mm to 10 g. Hydrogen peroxide as shown in Table 20 was added over 15 hours while circulating at 50 ml / min to a packed tower packed together with a steel wool of 12 to 40 mesh and a bituminous coal-based activated carbon of 12 to 40 mesh to a bed volume of 100 ml. . The treatment temperature was room temperature (about 25 ° C.). After the addition of hydrogen peroxide, the liquid was taken out, neutralized with sodium hydroxide, and the aqueous layer was filtered. For 1,1,1-trichloroethane and dichloromethane, the organic chlorine compound was analyzed by ion chromatography. The concentration of chlorine ions dissolved in the water layer was measured by cutting the carbon-chlorine bond, and the decomposition rate was calculated by comparison with the amount of chlorine in the added organic chlorine compound. About diphenylene dioxide, it carried out similarly to Example 1, and quantified the total organic carbon (TOC) with the total organic carbon measuring meter. The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 20. Decomposition was observed even when a tower filled with metallic iron and activated carbon was used.

Figure 2007215552
Figure 2007215552

実施例11:金属鉄充填塔の利用(水系)
1,1,1−トリクロロエタン、ジクロロメタンの1000ppm水懸濁液、およびジフェニレンジオキシドの1000ppm水溶液500gに対して、硫酸第一鉄7水塩を0.5%と、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.5%の濃度で添加混合し、硫酸でpHを2.7に調整した液を、直径25mmのガラスカラムへ、30gのスチールウールを充填した充填塔へ、50ml/分で循環させながら、表21に示した過酸化水素を15時間かけて添加した。処理温度は室温(約25℃)とした。過酸化水素の添加終了後、液を取り出し、水酸化ナトリウムでpHを中性とした後、水層を濾過し、1,1,1−トリクロロエタン、ジクロロメタンについては、イオンクロマトグラフィーにより、有機塩素化合物の炭素-塩素結合が切断されて、水層に溶解してきた塩素イオン濃度を測定し、添加した有機塩素化合物中の塩素量と比較して分解率を算出した。ジフェニレンジオキシドについては、実施例1と同様にして、全有機炭素測定計により、全有機炭素(TOC)の定量を行った。処理前後の全有機炭素(TOC)量から分解率を算出した。結果を表20に示した。金属鉄を充填した塔を使用しても分解が認められた。
Example 11: Utilization of metallic iron packed tower (water system)
0.5% ferrous sulfate heptahydrate with respect to 500 g of 1000 ppm aqueous suspension of 1,1,1-trichloroethane and dichloromethane and 1000 ppm aqueous solution of diphenylene dioxide, bituminous coal-based activated carbon (average particle size 50 μm) 20 wt% water slurry liquid added and mixed at a concentration of 0.5%, and a liquid whose pH was adjusted to 2.7 with sulfuric acid was packed into a glass column with a diameter of 25 mm and packed with 30 g of steel wool. The hydrogen peroxide shown in Table 21 was added over 15 hours while circulating at 50 ml / min. The treatment temperature was room temperature (about 25 ° C.). After the addition of hydrogen peroxide, the liquid was taken out, neutralized with sodium hydroxide, and the aqueous layer was filtered. For 1,1,1-trichloroethane and dichloromethane, the organic chlorine compound was analyzed by ion chromatography. The concentration of chlorine ions dissolved in the water layer was measured by cutting the carbon-chlorine bond, and the decomposition rate was calculated by comparison with the amount of chlorine in the added organic chlorine compound. About diphenylene dioxide, it carried out similarly to Example 1, and quantified the total organic carbon (TOC) with the total organic carbon measuring meter. The decomposition rate was calculated from the total organic carbon (TOC) amount before and after the treatment. The results are shown in Table 20. Decomposition was observed even when a tower filled with metallic iron was used.

Figure 2007215552
Figure 2007215552

比較例8
実施例11で使用したと同じ1,1,1−トリクロロエタン、ジクロロメタンの1000ppm水懸濁液、およびジフェニレンジオキシドの1000ppm水溶液500gに対して、硫酸第一鉄7水塩を0.5%の濃度で添加混合し、硫酸でpHを2.7に調整した液を、直径25mmのガラスカラムへ、30gのスチールウールを充填した充填塔へ、50ml/分で循環させながら、表22に示した過酸化水素を15時間かけて添加した。過酸化水素添加後、実施例12と同様に分析を行った。結果を表22に示した。実施例12と比較して、低い分解率であった。
Comparative Example 8
The same 1,1,1-trichloroethane used in Example 11, 1000 ppm aqueous suspension of dichloromethane, and 500 g of 1000 ppm aqueous solution of diphenylene dioxide, 0.5% ferrous sulfate heptahydrate was added to 0.5%. Table 22 shows the liquid added and mixed at a concentration and adjusted to pH 2.7 with sulfuric acid while circulating at a rate of 50 ml / min through a glass column having a diameter of 25 mm and a packed column packed with 30 g of steel wool. Hydrogen peroxide was added over 15 hours. After the addition of hydrogen peroxide, analysis was performed in the same manner as in Example 12. The results are shown in Table 22. Compared to Example 12, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例12:ガスの処理
充填物として直径1mmのガラスビーズをベット容量として100mlを充填した、内径15mmのガラスカラムへ、硫酸第一鉄7水塩を0.5%と、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.5%と、過酸化水素を100%濃度換算で1%添加混合し、硫酸でpHを2.7に調整した液を、50ml/分で上部より循環させながら、100ppmの表23に示した有機塩素化合物を100ppm含む空気を、ガラスカラム下部より、1ml/分で流し、上部から出てくるガスをガスクロマトグラフィーで分析し、分解率を算出した。なお、循環液中の過酸化水素濃度は、15分毎に測定し、必要に応じて35%過酸化水素を追加して、100%濃度換算で1%維持した。結果を表23に示した。有機塩素化合物の分解が認められた。
Example 12: Treatment of gas 0.5% ferrous sulfate heptahydrate and a bituminous charcoal-based activated carbon (average) into a glass column with a diameter of 15 mm and filled with 100 ml of 1 mm diameter glass beads as a packing 0.5% of a 20 wt% water slurry solution with a particle size of 50 μm), 1% of hydrogen peroxide was added and mixed in terms of 100% concentration, and a solution adjusted to pH 2.7 with sulfuric acid at 50 ml / min. While circulating from the top, 100 ppm of air containing 100 ppm of the organic chlorine compounds shown in Table 23 was flowed from the bottom of the glass column at 1 ml / min, and the gas emitted from the top was analyzed by gas chromatography to determine the decomposition rate. Calculated. The concentration of hydrogen peroxide in the circulating fluid was measured every 15 minutes, and 35% hydrogen peroxide was added as necessary, and maintained at 1% in terms of 100% concentration. The results are shown in Table 23. Decomposition of organochlorine compounds was observed.

Figure 2007215552
Figure 2007215552

比較例9
実施例12で使用したと同じ実験装置で、ガラスカラムの循環液を、硫酸第一鉄7水塩を0.5%と、過酸化水素を100%濃度換算で1%添加混合し、硫酸でpHを2.7に調整した液に変更した他は、実施例12と同様に試験を行った。結果を表24に示した。実施例12と比較して、低い分解率であった。
Comparative Example 9
In the same experimental apparatus used in Example 12, 0.5% ferrous sulfate heptahydrate and 1% hydrogen peroxide in 100% concentration were added and mixed with the circulating liquid in the glass column. The test was conducted in the same manner as in Example 12 except that the solution was changed to a solution adjusted to pH 2.7. The results are shown in Table 24. Compared to Example 12, the decomposition rate was low.

Figure 2007215552
Figure 2007215552

実施例13:残存過酸化水素の分解
ジクロロメタンの1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%と、瀝青炭系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.4%の濃度で添加混合し、硫酸でpHを2.7に調整した後、35%過酸化水素の8.6gを17時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、経時的に残存過酸化水素濃度を、ヨウ化カリウム−チオ硫酸ナトリウム滴定法で分析した。結果を表25に示した。過酸化水素添加終了後3時間で残存過酸化水素はすべて分解された。
Example 13: Decomposition of residual hydrogen peroxide Based on 500 g of a 1000 ppm aqueous suspension of dichloromethane, 0.2% of ferrous sulfate heptahydrate and 20% by weight of bituminous coal-based activated carbon (average particle size 50 μm) The water slurry was added and mixed at a concentration of 0.4%, and after adjusting the pH to 2.7 with sulfuric acid, 8.6 g of 35% hydrogen peroxide was added dropwise over 17 hours. The treatment temperature was 20 ° C. After completion of the addition of hydrogen peroxide, the residual hydrogen peroxide concentration was analyzed over time by the potassium iodide-sodium thiosulfate titration method. The results are shown in Table 25. All residual hydrogen peroxide was decomposed 3 hours after the addition of hydrogen peroxide.

Figure 2007215552
Figure 2007215552

比較例10
実施例13と同様に、ジクロロメタンの1000ppm水懸濁液の500gに対して、硫酸第一鉄7水塩を0.2%添加混合し、硫酸でpHを2.7に調整した後、35%過酸化水素の8.6gを17時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、経時的に残存過酸化水素濃度を、ヨウ化カリウム−チオ硫酸ナトリウム滴定法で分析した。結果を表26に示した。過酸化水素添加終了後12時間経過しても残存過酸化水素は完全には分解されなかった。
Comparative Example 10
In the same manner as in Example 13, 0.2% of ferrous sulfate heptahydrate was added to and mixed with 500 g of a 1000 ppm aqueous suspension of dichloromethane, and the pH was adjusted to 2.7 with sulfuric acid. 8.6 g of hydrogen peroxide was mixed dropwise over 17 hours. The treatment temperature was 20 ° C. After completion of the addition of hydrogen peroxide, the residual hydrogen peroxide concentration was analyzed over time by the potassium iodide-sodium thiosulfate titration method. The results are shown in Table 26. The remaining hydrogen peroxide was not completely decomposed even after 12 hours had passed after the addition of hydrogen peroxide.

Figure 2007215552
Figure 2007215552

実施例14:ダイオキシン類を含む廃油中のダイオキシン類の分解
ダイオキシン類を含む廃油10gへ水100gあるいは分散剤としてコンクリート用水洗済川砂を100g添加して、さらに硫酸第一鉄7水塩を0.5%と、廃菌体系活性炭(平均粒子径50μm)の20重量%水スラリー液を0.8%の濃度で添加混合し、硫酸でpHを2.7に調整した後、水を添加した物は攪拌機、川砂を添加した物はロータリーエバポレターを応用して、35%過酸化水素の10gを16時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、トルエンで抽出し、濃縮を行い、その後GC−MSにより濃度測定を行い、処理前後の量から分解率を算出した。結果を表27に示した。TEQ(毒性等量)換算で水を使用した場合で50%弱、川砂を使用した場合で90%以上の分解が認められた。
Example 14: Decomposition of dioxins in waste oil containing dioxins 100 g of water or 100 g of washed river sand for concrete as a dispersant was added to 10 g of waste oil containing dioxins, and ferrous sulfate heptahydrate was added in an amount of 0.1%. 5% and 20% by weight aqueous slurry of waste bacteria activated carbon (average particle size 50 μm) added and mixed at a concentration of 0.8%, adjusted to pH 2.7 with sulfuric acid, and then added with water Was added with a stirrer, and the river sand was added using a rotary evaporator, and 10 g of 35% hydrogen peroxide was mixed dropwise over 16 hours. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, extracted with toluene, concentrated, and then subjected to concentration measurement by GC-MS, and the decomposition rate was calculated from the amount before and after the treatment. The results are shown in Table 27. Decomposition of less than 50% was observed when water was used in terms of TEQ (toxic equivalent), and over 90% was observed when river sand was used.

Figure 2007215552
Figure 2007215552

比較例11
実施例14と同じ、ダイオキシン類を含む廃油を用いて、実施例14と同様の処理を、過酸化水素を添加しない以外は同様に実施し、濃度測定を行い、処理前後の量から分解率を算出した。結果を表28に示した。TEQ(毒性等量)換算で共に分解は認められなかった。
Comparative Example 11
Using the same waste oil containing dioxins as in Example 14, the same process as in Example 14 was performed except that hydrogen peroxide was not added, the concentration was measured, and the decomposition rate was calculated from the amount before and after the process. Calculated. The results are shown in Table 28. No decomposition was observed in terms of TEQ (toxic equivalent).

Figure 2007215552
Figure 2007215552

実施例15:活性炭の種類による分解能の比較
各種の原料を450℃窒素気流下で2時間炭化処理を行い、元素分析法により窒素濃度を測定した後、さらに900℃窒素気流下で水蒸気賦活を行い、賦活活性炭を得た。この活性炭を湿式粉砕し、平均粒子径50μmの20重量%水スラリー液を作成した。ついで、500ppmに希釈したジメチルスルホキシド(DMSO)をモデル廃液として、その1Lに対して、硫酸によりpHを2.7に調整した後、表29に示した硫酸第一鉄7水塩、上記で調整した各種活性炭の20重量%水スラリー液の3000ppmを加え、表29に示した過酸化水素を8時間かけて滴下した。表中各成分の濃度はモデル廃液に対する値である。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化カルシウムでpHを中性とした後、一部を濾別してろ過液についてTOC(全有機炭素)測定を行った。同時に過酸化水素を添加せずに同様の実験を行い、TOC測定を行った。過酸化水素無添加実験のTOC測定値に対する過酸化水素添加実験のTOC測定値の比率からTOC分解率を算出した。結果を表29に示した。炭化物の窒素濃度が高いものは、過酸化水素分解能力も高く、TOC分解率も高い結果となった。
Example 15: Comparison of resolution depending on the type of activated carbon Various raw materials were carbonized in a 450 ° C. nitrogen stream for 2 hours, measured for nitrogen concentration by elemental analysis, and further steam activated in a 900 ° C. nitrogen stream. An activated activated carbon was obtained. The activated carbon was wet pulverized to prepare a 20 wt% water slurry liquid having an average particle diameter of 50 μm. Next, dimethyl sulfoxide (DMSO) diluted to 500 ppm was used as a model waste solution, and 1 L of the solution was adjusted to pH 2.7 with sulfuric acid, and then the ferrous sulfate heptahydrate shown in Table 29 was adjusted as described above. 3000 ppm of a 20 wt% aqueous slurry of various activated carbons was added, and hydrogen peroxide shown in Table 29 was added dropwise over 8 hours. The concentration of each component in the table is the value for the model waste liquid. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with calcium hydroxide, a part was filtered off, and the TOC (total organic carbon) measurement was performed on the filtrate. At the same time, the same experiment was performed without adding hydrogen peroxide, and TOC measurement was performed. The TOC decomposition rate was calculated from the ratio of the TOC measurement value of the hydrogen peroxide addition experiment to the TOC measurement value of the hydrogen peroxide non-addition experiment. The results are shown in Table 29. The high nitrogen concentration of the carbide had high hydrogen peroxide decomposition ability and high TOC decomposition rate.

Figure 2007215552
Figure 2007215552

比較例12
実施例15と同様に、各種原料を用いて、同様の試験を実施した。結果を表30に示した。炭化物の窒素濃度が1%以下の炭化物を賦活して得られた活性炭は、一様に過酸化水素分解力が劣り、あわせて、TOC分解率も低い結果となった。
Comparative Example 12
Similar to Example 15, similar tests were performed using various raw materials. The results are shown in Table 30. Activated carbon obtained by activating a carbide having a nitrogen concentration of 1% or less of the carbide was uniformly inferior in hydrogen peroxide decomposing ability, and also had a low TOC decomposition rate.

Figure 2007215552
Figure 2007215552

Claims (10)

有機ハロゲン化合物を、金属塩、過酸化水素分解能力を有する活性炭および酸化剤を添加することで分解することを特徴とする有機ハロゲン化合物の処理方法。   A method for treating an organic halogen compound, comprising decomposing an organic halogen compound by adding a metal salt, activated carbon having an ability to decompose hydrogen peroxide, and an oxidizing agent. 金属塩が鉄、銅またはマンガンの塩である請求項1記載の有機ハロゲン化合物の処理方法。   The method for treating an organic halogen compound according to claim 1, wherein the metal salt is an iron, copper or manganese salt. 酸化剤が過酸化水素である請求項1記載の有機ハロゲン化合物の処理方法。   The method for treating an organic halogen compound according to claim 1, wherein the oxidizing agent is hydrogen peroxide. 有機ハロゲン化合物が有機塩素化合物である請求項1記載の有機ハロゲン化合物の処理方法。   The method for treating an organic halogen compound according to claim 1, wherein the organic halogen compound is an organic chlorine compound. 処理開始時のpHを5以下に調整することを特徴とする請求項1記載の有機ハロゲン化合物の処理方法。   The method for treating an organic halogen compound according to claim 1, wherein the pH at the start of the treatment is adjusted to 5 or less. 活性炭が、温度27℃、過酸化水素濃度0.5重量%の水溶液において、活性炭を0.5重量%添加した時の60分後の過酸化水素分解率が5%以上の過酸化水素分解能を有するものであることを特徴とする請求項1記載の有機ハロゲン化合物の処理方法。   In an aqueous solution with an activated carbon temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight, the hydrogen peroxide decomposition rate after 5 minutes of addition of 0.5% by weight of activated carbon is 5% or more. 2. The method for treating an organic halogen compound according to claim 1, wherein the organic halogen compound is treated. 活性炭が、賦活前の炭化物の窒素濃度が1%以上になる有機物を原料とするものである請求項1記載の有機ハロゲン化合物の処理方法。   2. The method for treating an organic halogen compound according to claim 1, wherein the activated carbon is made from an organic material having a nitrogen concentration of 1% or more before activation as a raw material. 活性炭が、瀝青炭、ポリアクリロニトリル、廃菌体、汚泥、または、おからを原料とする請求項1記載の有機ハロゲン化合物の処理方法。   The method for treating an organic halogen compound according to claim 1, wherein the activated carbon is bituminous coal, polyacrylonitrile, waste cells, sludge, or okara. 活性炭が、1000μm以下の粉末であることを特徴とする請求項1記載の有機ハロゲン化合物の処理方法。   2. The method for treating an organic halogen compound according to claim 1, wherein the activated carbon is a powder having a size of 1000 μm or less. 活性炭が、1000μm以下の微粉末の懸濁液であることを特徴とする請求項1記載の有機ハロゲン化合物の処理方法。   2. The method for treating an organohalogen compound according to claim 1, wherein the activated carbon is a suspension of fine powder of 1000 μm or less.
JP2005311173A 2005-10-26 2005-10-26 Method of treating organohalogen compound Pending JP2007215552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311173A JP2007215552A (en) 2005-10-26 2005-10-26 Method of treating organohalogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311173A JP2007215552A (en) 2005-10-26 2005-10-26 Method of treating organohalogen compound

Publications (2)

Publication Number Publication Date
JP2007215552A true JP2007215552A (en) 2007-08-30
JP2007215552A5 JP2007215552A5 (en) 2008-11-27

Family

ID=38493456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311173A Pending JP2007215552A (en) 2005-10-26 2005-10-26 Method of treating organohalogen compound

Country Status (1)

Country Link
JP (1) JP2007215552A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136196A1 (en) * 2010-04-30 2011-11-03 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
WO2013142648A1 (en) 2012-03-22 2013-09-26 Fmc Corporation Environmental remediation process
WO2015020005A1 (en) * 2013-08-07 2015-02-12 株式会社アオヤマエコシステム Tool for generating reactive oxygen species
CN106734125A (en) * 2016-11-28 2017-05-31 广东工业大学 A kind of method that microwave Graphene strengthens sodium percarbonate degradation soil organic pollutant
CN112275320A (en) * 2020-10-26 2021-01-29 江苏三美化工有限公司 Catalyst for catalytic oxidation of dichloromethane in wastewater and wastewater treatment process
CN113522236A (en) * 2021-07-23 2021-10-22 广东省科学院微生物研究所(广东省微生物分析检测中心) Carbon material synthesized by utilizing waste strain biomass for producing gamma-polyglutamic acid and preparation method and application thereof
JP2023007430A (en) * 2021-06-28 2023-01-18 株式会社片山化学工業研究所 Seawater treatment method
CN115724477A (en) * 2022-11-30 2023-03-03 衢州华友钴新材料有限公司 Purification method of nickel sulfate solution, modified activated carbon and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080275A (en) * 2001-09-13 2003-03-18 Nippon Shokubai Co Ltd Method for treating organic halogen compound in water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080275A (en) * 2001-09-13 2003-03-18 Nippon Shokubai Co Ltd Method for treating organic halogen compound in water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136196A1 (en) * 2010-04-30 2011-11-03 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
CN102869743A (en) * 2010-04-30 2013-01-09 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
JP5846117B2 (en) * 2010-04-30 2016-01-20 三菱瓦斯化学株式会社 Peroxide activator and soil and / or groundwater purification method
WO2013142648A1 (en) 2012-03-22 2013-09-26 Fmc Corporation Environmental remediation process
EP2828209A4 (en) * 2012-03-22 2015-12-16 Peroxychem Llc Environmental remediation process
WO2015020005A1 (en) * 2013-08-07 2015-02-12 株式会社アオヤマエコシステム Tool for generating reactive oxygen species
CN106734125A (en) * 2016-11-28 2017-05-31 广东工业大学 A kind of method that microwave Graphene strengthens sodium percarbonate degradation soil organic pollutant
CN112275320A (en) * 2020-10-26 2021-01-29 江苏三美化工有限公司 Catalyst for catalytic oxidation of dichloromethane in wastewater and wastewater treatment process
JP2023007430A (en) * 2021-06-28 2023-01-18 株式会社片山化学工業研究所 Seawater treatment method
JP7216974B2 (en) 2021-06-28 2023-02-02 株式会社片山化学工業研究所 Seawater treatment method
CN113522236A (en) * 2021-07-23 2021-10-22 广东省科学院微生物研究所(广东省微生物分析检测中心) Carbon material synthesized by utilizing waste strain biomass for producing gamma-polyglutamic acid and preparation method and application thereof
CN113522236B (en) * 2021-07-23 2023-10-17 广东省科学院微生物研究所(广东省微生物分析检测中心) Carbon material synthesized by utilizing waste strain biomass for producing gamma-polyglutamic acid as well as preparation method and application thereof
CN115724477A (en) * 2022-11-30 2023-03-03 衢州华友钴新材料有限公司 Purification method of nickel sulfate solution, modified activated carbon and preparation method thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review
Rathna et al. Recent developments and prospects of dioxins and furans remediation
Kulkarni et al. Dioxins sources and current remediation technologies—a review
ES2754812T5 (en) Compositions for the removal of hydrocarbons and halogenated hydrocarbons from contaminated environments
JP2007215552A (en) Method of treating organohalogen compound
US9029623B2 (en) Process for eliminating or reducing persistent organic pollutants contained in particles
ES2926175T3 (en) Composition with a prolonged release material for the elimination of halogenated hydrocarbons from contaminated environments and in situ soil remediation procedure using said composition
JP2006247483A (en) Treatment method of contaminated soil
TWI433818B (en) Purification method of pollutants containing organic chemical substances
CN114433161B (en) Composite material for efficiently activating monopersulfate, and preparation method and application thereof
Shi et al. Effect of magnetite on the catalytic oxidation of polycyclic aromatic hydrocarbons in fly ash from MSW incineration: a comparative study of one-step and two-step hydrothermal processes
KR20100009450A (en) The contaminated soil remediation composition and the soil remediation technique which uses this
JP2011161218A (en) Detoxification method of solid containing organohalogen compound
KR20010067212A (en) Catalyst for decomposing organohalogen compound
Mudhoo et al. Dioxins and furans: sources, impacts and remediation
Kristanti et al. A review on thermal desorption treatment for soil contamination
JP2005185870A (en) Additive used for restoration of contaminated soil, ground water or bottom deposit
KR101185943B1 (en) Triple salt composition for contaminated soil and the method of restore contaminated soil using the triple salt composition
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JP2003285043A (en) Method for cleaning material polluted with chemical substance
JP4709997B2 (en) Method and apparatus for decomposing persistent organic compounds with soil mineral-iron complex
JP3811705B2 (en) Exhaust gas treatment method and equipment
Olasupo et al. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2006026460A (en) Method of detoxifying polluted substance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306