JP2011161218A - Detoxification method of solid containing organohalogen compound - Google Patents

Detoxification method of solid containing organohalogen compound Download PDF

Info

Publication number
JP2011161218A
JP2011161218A JP2010279188A JP2010279188A JP2011161218A JP 2011161218 A JP2011161218 A JP 2011161218A JP 2010279188 A JP2010279188 A JP 2010279188A JP 2010279188 A JP2010279188 A JP 2010279188A JP 2011161218 A JP2011161218 A JP 2011161218A
Authority
JP
Japan
Prior art keywords
metal
halogen compound
organic halogen
detoxifying
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010279188A
Other languages
Japanese (ja)
Other versions
JP5278834B2 (en
Inventor
Koji Mitoma
好治 三苫
Hideaki Miyata
秀明 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prefectural University of Hiroshima
Original Assignee
Prefectural University of Hiroshima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prefectural University of Hiroshima filed Critical Prefectural University of Hiroshima
Priority to JP2010279188A priority Critical patent/JP5278834B2/en
Publication of JP2011161218A publication Critical patent/JP2011161218A/en
Application granted granted Critical
Publication of JP5278834B2 publication Critical patent/JP5278834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detoxification method of a solid containing an organohalogen compound, having excellent processing efficiency while an operating condition is mild and the energy consumption amount is small. <P>SOLUTION: The solid containing the organohalogen compound and a metal particle as an electron donor are brought into contact with each other to reduce the organohalogen compound and detoxify the same. At this time, at least some of the metal particles to be used are particles of nano size. The metal particles including particles of nano size are obtained by crushing a mixture of solid-like metal and water adsorption and desorption agent and/or a porous inorganic material until at least some of the solid-like metal becomes nano size. The obtained metal particles are dispersed in the water adsorption and desorption agent and/or a porous inorganic material to form a metal dispersed body. Thus, the high activity can be maintained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ダイオキシン類に代表される有機ハロゲン化合物を含有する土壌、焼却灰、焼却飛灰、汚泥などの固体を無害化する有機ハロゲン化合物を含有する固体の無害化方法に関する。   The present invention relates to a method for detoxifying a solid containing an organic halogen compound that detoxifies solids such as soil, incineration ash, incineration fly ash, and sludge containing an organic halogen compound typified by dioxins.

ダイオキシン類、PCBなど残留性有機汚染物質(POPs:Persistent Organic Pollutants)及び/又は揮発性有機化合物(VOC:Volatile Organic Compounds)に汚染された土壌を無害化する処理方法として、化学的あるいは生物学的手法による処理方法が多く研究開発されている。化学的手法によるPOPsの分解については、これまでラボレベルで多くの脱塩素化法が開発されているが、残念ながらそれを直接フィールドに利用できない場合が多い。理由の1つは、土壌などのヘテロな固相中に吸着されたPOPsと分解剤の効率的接触が困難であり、かつ共存する物質、例えば水分等の影響を受けて分解剤が失活するからである。   Chemical or biological treatment methods to detoxify soil contaminated with persistent organic pollutants (POPs) and / or volatile organic compounds (VOC) such as dioxins and PCBs Many treatment methods using methods have been researched and developed. Regarding the decomposition of POPs by chemical methods, many dechlorination methods have been developed at the laboratory level so far, but unfortunately they are often not directly available in the field. One reason is that it is difficult to efficiently contact POPs adsorbed in a heterogeneous solid phase such as soil and a decomposing agent, and the decomposing agent is deactivated due to the influence of coexisting substances such as moisture. Because.

実用化された技術に目を向けると、間接加熱酸化分解法、ジオスチーム工法、溶剤抽出法、バイオレメディエーション法などがよく知られている。しかし間接加熱酸化分解法やジオスチーム工法は、加熱を伴うために単位処理量当たりに投入するエネルギー量が莫大で高コストとなる。他方、処理温度を抑えた溶剤抽出法は、抽出効率を上げるため高沸点の炭化水素系溶剤を加えるために対象物からの溶剤の完全分離が困難となる。バイオレメディエーション法では、分解に時間が掛かること、最適分解条件の制御に手間が掛かること、さらには分解可能な対象物に制限があるために他法と組み合わせる必要がある。VOCによって汚染された土壌に水と接触し発熱する生石灰などからなるホットソイル(登録商標)を添加、混合し、発生する水和熱によってVOCを揮発、分離させて汚染土壌を浄化させるホットソイル法は、POPsの分解を行うことはできない。   Turning to practical technologies, indirect heating oxidative decomposition method, geosteaming method, solvent extraction method, bioremediation method and the like are well known. However, since the indirect heating oxidative decomposition method and geosteaming method involve heating, the amount of energy input per unit processing amount is enormous and the cost is high. On the other hand, in the solvent extraction method in which the processing temperature is suppressed, a hydrocarbon solvent having a high boiling point is added to increase the extraction efficiency, so that it is difficult to completely separate the solvent from the object. In the bioremediation method, it takes time to decompose, takes time to control the optimal decomposition conditions, and further, there is a limit to the decomposable objects, so it must be combined with other methods. Hot soil method that purifies contaminated soil by adding and mixing hot soil (registered trademark) consisting of quick lime and the like that comes into contact with water and generating heat to soil contaminated by VOC, and volatilizing and separating VOC by the generated heat of hydration Cannot decompose POPs.

この他、メカノケミカル法では、遊星ボールミルの衝撃波により固相中のPOPsをほぼ常温で無害化可能であるが、分解補助剤の酸化カルシウムの添加量が被処理物の数〜数十倍に達し、低濃度になるほどミル処理効率が低下する(例えば非特許文献1参照)。また実質、酸化カルシウムを還元剤としたメカノケミカル法は、最終的な廃棄物の量が多くなり実用的とは言い難い。   In addition, in the mechanochemical method, POPs in the solid phase can be rendered harmless at room temperature by the shock wave of the planetary ball mill, but the amount of addition of calcium oxide as a decomposition aid reaches several to several tens of times that of the object to be processed. The milling efficiency decreases as the concentration increases (for example, see Non-Patent Document 1). In addition, the mechanochemical method using calcium oxide as a reducing agent is not practical because the final amount of waste increases.

これらに対して本発明者は、金属カルシウムを利用する新規なPOPs分解技術を見出し99%以上の高い処理効率を達成した(例えば非特許文献2参照)。この方法は、アルコール共存下で金属カルシウムを電子源として活用する湿式反応である(例えば特許文献1参照)。この処理方法は有用な方法であるが、可燃性の低級アルコールを使用するため、より安全で低コストな処理方法が求められた。このためアルコールを使用することなく遊星ボールミルを用い、外部から脱塩素反応に必要なエネルギーをミルを通じて供給する方法を開発した。この方法を用い、常温下でダイオキシン含有焼却灰を処理し、3000〜5000pgTEQ/gの初期濃度を検出下限界値(0.1pgTEQ/g)まで無害化することに成功した(例えば非特許文献3参照)。   In contrast, the present inventors have found a novel POPs decomposition technique using metallic calcium and achieved a high treatment efficiency of 99% or more (see, for example, Non-Patent Document 2). This method is a wet reaction using metallic calcium as an electron source in the presence of alcohol (see, for example, Patent Document 1). This treatment method is a useful method, but since a flammable lower alcohol is used, a safer and cheaper treatment method has been demanded. For this reason, we developed a method of supplying the energy required for dechlorination reaction from the outside using a planetary ball mill without using alcohol. Using this method, the dioxin-containing incinerated ash was treated at room temperature, and the initial concentration of 3000 to 5000 pgTEQ / g was successfully rendered harmless to the lower detection limit (0.1 pgTEQ / g) (for example, Non-Patent Document 3). reference).

特許第3785556号公報Japanese Patent No. 3785556

“Elucidation of Degradation Mechanism of Dioxins during Mechanochemical Treatment”Y.Nomura,S.Nakai,M.Hosomi,Environ.Sci.Technol.,39,3799-3804(2005)“Elucidation of Degradation Mechanism of Dioxins during Mechanochemical Treatment” Y. Nomura, S. Nakai, M. Hosomi, Environ. Sci. Technol., 39, 3799-3804 (2005) ”Highly effective degradation of polychlorinated biphenyls in soilmediated by a Ca/Rh bicatalyticsystem,”Y.Mitoma,N.Egashira,C.Simion,Chemosphere,74,968-973(2009)”Highly effective degradation of polychlorinated biphenyls in soilmediated by a Ca / Rh bicatalyticsystem,” Y. Mitoma, N. Egashira, C. Simion, Chemosphere, 74, 968-973 (2009) “Current Condition of Dioxins Emitted by Incineration and Degradation of Dioxins Using Metallic Calcium,”M.Takase,M.Kakeda,Y.Yoshino,Y.mitoma,Bull.Hiroshima Pref.Univ.19,69-81(2007)“Current Condition of Dioxins Emitted by Incineration and Degradation of Dioxins Using Metallic Calcium,” M.Takase, M.Kakeda, Y.Yoshino, Y.mitoma, Bull.Hiroshima Pref.Univ.19,69-81 (2007)

本発明者が開発した遊星ボールミルを使用する方法は、ダイオキシン類で汚染された土壌を効率的に無害化することができるが、実機を想定すると装置コストが非常に高くなる。また上記のように、これまでに開発、提案されている他の汚染土壌の無害化方法も、エネルギー消費量、処理効率、処理速度、装置コスト、ランニングコスト等に課題を抱えており、さらなる改良、改善が求められている。   Although the method using the planetary ball mill developed by the present inventor can efficiently detoxify soil contaminated with dioxins, the cost of the apparatus becomes very high when an actual machine is assumed. In addition, as described above, other methods for detoxifying contaminated soil that have been developed and proposed so far have problems in energy consumption, processing efficiency, processing speed, equipment cost, running cost, etc. There is a need for improvement.

本発明の目的は、温和な操作条件で少ないエネルギー消費量ながら処理効率に優れる有機ハロゲン化合物を含有する固体の無害化方法を提供することである。   An object of the present invention is to provide a method for detoxifying a solid containing an organic halogen compound that is excellent in processing efficiency while being low in energy consumption under mild operating conditions.

請求項1に記載の本発明は、有機ハロゲン化合物を含有する固体と電子供与体である金属粒子とを接触させ前記有機ハロゲン化合物を無害化する方法であって、前記金属粒子の少なくとも一部はナノサイズの粒子であり、前記有機ハロゲン化合物を還元し無害化することを特徴とする有機ハロゲン化合物を含有する固体の無害化方法である。   The present invention according to claim 1 is a method of detoxifying the organic halogen compound by bringing a solid containing the organic halogen compound into contact with metal particles as an electron donor, wherein at least a part of the metal particles is A method for detoxifying a solid containing an organic halogen compound, comprising nano-sized particles, wherein the organic halogen compound is reduced and detoxified.

また請求項2に記載の本発明は、請求項1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記金属粒子は、固形状の金属と水分調整機能を有し水素源として作用する水を吸脱着する水吸脱着剤及び/又は多孔質無機材との混合物を、固形状の金属の少なくとも一部がナノサイズとなるまで粉砕し得られる金属粒子を水吸脱着剤及び/又は多孔質無機材中に分散させた金属分散体として与えられることを特徴とする。   The present invention according to claim 2 is the method of detoxifying a solid containing the organohalogen compound according to claim 1, wherein the metal particles have a function of adjusting moisture with a solid metal and function as a hydrogen source. The water adsorbing and desorbing agent and / or the porous inorganic material that adsorbs and desorbs the water to the metal particles obtained by pulverizing the solid metal until at least a part of the metal becomes nano-sized, and / or It is provided as a metal dispersion dispersed in a porous inorganic material.

また請求項3に記載の本発明は、請求項2に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記金属分散体は、ナノサイズの金属粒子の表面を前記水吸脱着剤及び/又は多孔質無機材がコーティングし、水吸脱着剤及び/又は多孔質無機材が、ナノサイズの金属粒子の大部分が酸素、二酸化炭素又は水と直接接触することを阻止することを特徴とする。   Further, the present invention described in claim 3 is the method for detoxifying a solid containing the organohalogen compound according to claim 2, wherein the metal dispersion has a surface of nano-sized metal particles attached to the water adsorption / desorption agent and The porous inorganic material is coated, and the water adsorption / desorption agent and / or the porous inorganic material prevents most of the nano-sized metal particles from coming into direct contact with oxygen, carbon dioxide or water. To do.

また請求項4に記載の本発明は、請求項1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記金属粒子は、前記有機ハロゲン化合物を無害化する処理において、前記有機ハロゲン化合物を含有する固体と固形状の金属とを、少なくとも固形状の金属の一部がナノサイズとなるように粉砕することで与えられることを特徴とする。   According to a fourth aspect of the present invention, there is provided the method for detoxifying a solid containing the organic halogen compound according to the first aspect, wherein the metal particles are used in the treatment for detoxifying the organic halogen compound. The solid containing a solid and a solid metal are obtained by pulverizing such that at least a part of the solid metal is nano-sized.

また請求項5に記載の本発明は、請求項4に記載の有機ハロゲン化合物を含有する固体の無害化方法において、さらに水吸脱着剤及び/又は多孔質無機材を添加し、該水吸脱着剤及び/又は多孔質無機材を同時に粉砕することを特徴とする。   Further, the present invention according to claim 5 is the method for detoxifying a solid containing the organic halogen compound according to claim 4, further comprising adding a water adsorption / desorption agent and / or a porous inorganic material, An agent and / or a porous inorganic material are pulverized simultaneously.

また請求項6に記載の本発明は、請求項1から5のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、外部から積極的に加熱することなく、遊星ボールミルに比較してミル内のエネルギー密度が小さいミルを使用し攪拌しながら、有機ハロゲン化合物を還元し無害化することを特徴とする。   Further, the present invention according to claim 6 is a method for detoxifying a solid containing the organic halogen compound according to any one of claims 1 to 5, compared with a planetary ball mill without actively heating from the outside. The organic halogen compound is reduced and rendered harmless while stirring using a mill having a low energy density in the mill.

また請求項7に記載の本発明は、請求項1から6のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、さらに水素源であるアルコール及び/又は有機酸等を共存させ、前記有機ハロゲン化合物を還元し無害化することを特徴とする。   Further, the present invention according to claim 7 is the method of detoxifying a solid containing the organic halogen compound according to any one of claims 1 to 6, and further, alcohol and / or organic acid as a hydrogen source coexist. The organic halogen compound is reduced and rendered harmless.

また請求項8に記載の本発明は、請求項7に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記有機ハロゲン化合物を含有する固体は、土壌、焼却灰、焼却飛灰、汚泥又はこれらの混合物であり、前記アルコール及び/又は有機酸等は、土壌、焼却灰、焼却飛灰、汚泥又はこれらの混合物に含まれているアルコール及び/又は有機酸等であることを特徴とする。   Further, the present invention according to claim 8 is the method for detoxifying a solid containing the organic halogen compound according to claim 7, wherein the solid containing the organic halogen compound is soil, incineration ash, incineration fly ash, sludge Or a mixture thereof, wherein the alcohol and / or organic acid is an alcohol and / or organic acid or the like contained in soil, incineration ash, incineration fly ash, sludge, or a mixture thereof. .

また請求項9に記載の本発明は、請求項1から8のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記有機ハロゲン化合物を含有する固体に含まれる水分量が所定の値を越えるときは、前記有機ハロゲン化合物の無害化の処理に先立ち、該固体に水分調整剤を加え、該固体に含まれる水分量を所定の値以下とする水分調整を行うことを特徴とする。   The present invention according to claim 9 is the method of detoxifying a solid containing an organic halogen compound according to any one of claims 1 to 8, wherein the amount of water contained in the solid containing the organic halogen compound is When it exceeds a predetermined value, prior to the detoxification treatment of the organic halogen compound, a water adjusting agent is added to the solid to adjust the water content so that the amount of water contained in the solid is not more than a predetermined value. And

また請求項10に記載の本発明は、請求項1から9のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記金属粒子は、アルカリ金属、アルカリ土類金属、第3族元素、鉄、亜鉛及びこれらを含む合金のうち少なくともいずれか1を含むことを特徴とする。   Further, the present invention according to claim 10 is the method for detoxifying a solid containing the organic halogen compound according to any one of claims 1 to 9, wherein the metal particles are alkali metal, alkaline earth metal, It is characterized by containing at least one of group 3 elements, iron, zinc and alloys containing these.

また請求項11に記載の本発明は、請求項1から10のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法において、前記有機ハロゲン化合物が、残留性有機汚染物質及び/又は揮発性有機化合物であることを特徴とする。   The present invention according to claim 11 is the method of detoxifying a solid containing the organic halogen compound according to any one of claims 1 to 10, wherein the organic halogen compound is a residual organic pollutant and / or It is a volatile organic compound.

また請求項12に記載の本発明は、請求項11に記載の有機ハロゲン化合物を含有する固体の無害化方法において、さらに前記有機ハロゲン化合物を無害化するときに発生する揮発性有機化合物の蒸気を吸着材に吸着させ、該吸着材と電子供与体である金属粒子とをメカノケミカル処理し、又は該吸着材とプロトン性溶媒に少なくとも一部は溶解し電子移動による還元力を有する金属とプロトン性溶媒とを混合し、揮発性有機化合物を無害化する工程を含むことを特徴とする。   Further, the present invention according to claim 12 is the method for detoxifying a solid containing the organic halogen compound according to claim 11, wherein the vapor of the volatile organic compound generated when the organic halogen compound is further detoxified. Adsorbed on an adsorbent and mechanochemically treating the adsorbent and metal particles as an electron donor, or at least partly dissolved in the adsorbent and a protic solvent and having a reducing power by electron transfer and proticity It includes a step of mixing with a solvent and detoxifying volatile organic compounds.

本発明に係る有機ハロゲン化合物を含有する固体の無害化方法は、有機ハロゲン化合物を含有する固体とナノサイズの電子供与体である金属粒子とを接触させ有機ハロゲン化合物を還元し無害化する方法であり、温和な操作条件ながら高い無害化率を実現することができる。外部から積極的に加熱する必要もなくエネルギー消費量も少ない。   The method for detoxifying a solid containing an organic halogen compound according to the present invention is a method in which a solid containing an organic halogen compound and metal particles that are nano-sized electron donors are brought into contact with each other to reduce and detoxify the organic halogen compound. Yes, a high detoxification rate can be achieved with mild operating conditions. There is no need to actively heat from the outside, and energy consumption is low.

実施例1で製造した金属カルシウムナノ分散体(1)の電子顕微鏡写真(SEM)である。2 is an electron micrograph (SEM) of the metallic calcium nanodispersion (1) produced in Example 1. FIG. 実施例2の実験前後のGC−MSクロマトグラムであり、(a)は実験前、(b)は実験後である。It is GC-MS chromatogram before and behind experiment of Example 2, (a) is before an experiment, (b) is after an experiment.

本発明に係る有機ハロゲン化合物を含有する固体の無害化方法は、有機ハロゲン化合物を含有する固体と電子供与体である金属粒子とを接触させ前記有機ハロゲン化合物を無害化する方法であって、前記金属粒子の少なくとも一部はナノサイズの粒子であり、前記有機ハロゲン化合物を還元し無害化することを特徴とする。   The method for detoxifying a solid containing an organic halogen compound according to the present invention is a method for detoxifying the organic halogen compound by bringing a solid containing the organic halogen compound into contact with metal particles which are an electron donor. At least a part of the metal particles is nano-sized particles, and the organic halogen compound is reduced and rendered harmless.

本発明に係る有機ハロゲン化合物を含有する固体の無害化方法の被処理物としては、ダイオキシン類、PCBなどPOPs及び/又はVOCに汚染された土壌、焼却灰、焼却飛灰、汚泥又はこれら混合物などが挙げられる。   Examples of the object to be treated of the method for detoxifying a solid containing the organic halogen compound according to the present invention include soil contaminated with POPs and / or VOC such as dioxins and PCB, incineration ash, incineration fly ash, sludge, or a mixture thereof. Is mentioned.

電子供与体である金属粒子は、有機ハロゲン化合物に電子、イオンを供与する物質である。具体的には、アルカリ金属、金属カルシウムなどのアルカリ土類金属、アルミニウムなどの第3族元素、鉄、亜鉛、及びこれら元素を含む合金が例示される。これらは単独で使用してもよく、混合して使用してもよく、金属カルシウムを好適に使用することができる。   The metal particles that are electron donors are substances that donate electrons and ions to the organic halogen compound. Specific examples include alkali metals, alkaline earth metals such as calcium metal, Group 3 elements such as aluminum, iron, zinc, and alloys containing these elements. These may be used alone or in combination, and metallic calcium can be suitably used.

電子供与体である金属粒子は、少なくとも一部がナノサイズの粒子を使用する。このような金属粒子は、固形状の金属と水吸脱着剤及び/又は多孔質無機材との混合物を、粉砕機で固形状の金属の少なくとも一部がナノサイズとなるまで粉砕し得ることが好ましい。金属と水吸脱着剤及び/又は多孔質無機材との混合割合は、重量比で1:2が好ましいがこの割合に限定されるものではなく、重量比で1:20〜50、さらに金属の混合割合を少なくしてもよい。ここで使用可能な水吸脱着剤としては、酸化カルシウムが、多孔質無機材としては、セライト(Celiteは、セライトコーポレーションの登録商標)、シリカゲル、活性炭が例示される。セライトは、炭酸ナトリウムとともに焼成した珪藻土であり、水分を大量に保持することができる。   The metal particles that are electron donors are at least partially nano-sized particles. Such metal particles can be pulverized with a pulverizer until at least a part of the solid metal is nano-sized by a mixture of the solid metal and the water adsorption / desorption agent and / or the porous inorganic material. preferable. The mixing ratio of the metal and the water adsorbing / desorbing agent and / or the porous inorganic material is preferably 1: 2 by weight, but is not limited to this ratio, and is 1:20 to 50 by weight, The mixing ratio may be reduced. Examples of the water adsorption / desorption agent that can be used here include calcium oxide, and examples of the porous inorganic material include celite (Celite is a registered trademark of Celite Corporation), silica gel, and activated carbon. Celite is diatomaceous earth calcined with sodium carbonate and can retain a large amount of moisture.

このようにして得られる粉砕物は、ナノサイズの金属粒子を含む金属粒子が、水吸脱着剤及び/又は多孔質無機材中に分散した金属分散体である。金属分散体において、ナノサイズの金属粒子の表面は水吸脱着剤及び/又は多孔質無機材でコーティングされている。一般的に金属をナノサイズまで微細化すると、環境中では酸化し失活するが、金属分散体においては、ナノサイズの金属粒子の表面を覆う水吸脱着剤及び/又は多孔質無機材が、該金属粒子の大部分が酸素、二酸化炭素又は水と直接接触することを阻止するので、ナノサイズの金属粒子は、大気中においても高い活性を維持することができる。実験の結果、セライト(登録商標)と共に粉砕した金属カルシウムは、電子源として90%以上の活性を有し、2ヶ月以上大気中で安定的に存在させることができた。同様に、酸化カルシウムと共に粉砕した金属カルシウムは、大気中常温下、1カ月以上も初期活性の80%以上を維持した。   The pulverized product thus obtained is a metal dispersion in which metal particles including nano-sized metal particles are dispersed in a water adsorption / desorption agent and / or a porous inorganic material. In the metal dispersion, the surface of the nano-sized metal particles is coated with a water adsorption / desorption agent and / or a porous inorganic material. Generally, when a metal is refined to a nano size, it is oxidized and deactivated in the environment. However, in the metal dispersion, a water absorption / desorption agent and / or a porous inorganic material covering the surface of the nano size metal particles is provided. Since most of the metal particles are prevented from coming into direct contact with oxygen, carbon dioxide, or water, the nano-sized metal particles can maintain high activity even in the atmosphere. As a result of the experiment, metallic calcium ground with Celite (registered trademark) had an activity of 90% or more as an electron source, and could be stably present in the atmosphere for 2 months or more. Similarly, the calcium metal ground with calcium oxide maintained 80% or more of the initial activity for 1 month or more at room temperature in the atmosphere.

また水吸脱着剤及び/又は多孔質無機材は、汚染土壌など被処理物に含まれる水分を吸着する水分調整剤として機能する。また水吸脱着剤及び/又は多孔質無機材は、吸着した水を脱着させる。この水は水素源として作用する。   Further, the water absorption / desorption agent and / or the porous inorganic material functions as a moisture adjusting agent that adsorbs moisture contained in an object to be treated such as contaminated soil. The water absorption / desorption agent and / or the porous inorganic material desorbs the adsorbed water. This water acts as a hydrogen source.

次に、ダイオキシン類を含む土壌(以下汚染土壌と記す)を例にとり、これを、ナノサイズの金属粒子を含む金属粒子が水吸脱着剤及び/又は多孔質無機材中に分散した前記金属分散体を用いて無害化する方法を説明する。   Next, taking a soil containing dioxins (hereinafter referred to as contaminated soil) as an example, the metal dispersion in which metal particles containing nano-sized metal particles are dispersed in a water adsorption / desorption agent and / or a porous inorganic material. A method of detoxifying using the body will be described.

汚染土壌に金属分散体を添加し、これらを必要に応じて攪拌混合し、汚染土壌とナノサイズの金属粒子とを接触させる。これにより有機ハロゲン化合物は、脱ハロゲン化、環還元反応等により還元され無害化される。これら操作は室温下で行うことが可能であり、外部から積極的に加熱しなくてもよい。金属分散体の汚染土壌に対する添加割合は、汚染土壌に含まれるダイオキシン類の量により異なるけれども、重量比で1/100程度の量とすることができる。この値は、従来の酸化カルシウムを用いたメカノケミカル法で使用する酸化カルシウムの量の1/5〜1/200程度であり、非常に少ない。この結果、汚染土壌を処理した後の量が、処理前の汚染土壌の量と比較しほとんど増加しない。この点は、本発明の特徴の一つである。   A metal dispersion is added to the contaminated soil, and these are stirred and mixed as necessary to bring the contaminated soil into contact with the nano-sized metal particles. As a result, the organic halogen compound is reduced and rendered harmless by dehalogenation, ring reduction reaction or the like. These operations can be performed at room temperature and do not need to be positively heated from the outside. Although the addition ratio of the metal dispersion to the contaminated soil varies depending on the amount of dioxins contained in the contaminated soil, it can be about 1/100 by weight. This value is about 1/5 to 1/200 of the amount of calcium oxide used in the mechanochemical method using conventional calcium oxide, and is very small. As a result, the amount after treating the contaminated soil hardly increases compared to the amount of the contaminated soil before the treatment. This is one of the features of the present invention.

汚染土壌に含まれるダイオキシン類の無害化速度、無害化率(分解率)を高めるには、汚染土壌中のダイオキシン類とナノサイズの電子供与体である金属粒子との接触機会を高めることが重要である。このため汚染土壌と金属分散体とを攪拌混合することが好ましく、汚染土壌及び/又は金属分散体の表面を更新しながら汚染土壌と金属分散体とを攪拌混合することがより好ましい。このため粉砕機能を備えるミルは攪拌混合機として好ましい。攪拌混合は、汚染土壌中のダイオキシン類とナノサイズの電子供与体である金属粒子との接触機会を高めるために行う操作であるから、攪拌強度は小さくてもよい。このため上記攪拌混合には、遊星ボールミルに比較してミル内のエネルギー密度が小さいミルを使用して行うことができる。このようなミルとしてローラーミル、タワーミルが挙げられる。遊星ボールミルは、高いエネルギーを加えることが可能な一方で、所要動力が大きく、大型化も困難である。これに対してローラーミルは、石炭焚火力発電所の石炭の粉砕にも使用されていることからも分かるように、大型化の実績もあり、所要動力が小さい点に特徴があり(例えば化学工学便覧、改訂六版、846頁)、汚染土壌の処理を大規模に進めて行くには好ましいミルと言える。   To increase the detoxification rate and detoxification rate (decomposition rate) of dioxins contained in contaminated soil, it is important to increase the chance of contact between dioxins in contaminated soil and metal particles that are nano-sized electron donors It is. For this reason, it is preferable to stir and mix the contaminated soil and the metal dispersion, and it is more preferable to stir and mix the contaminated soil and the metal dispersion while updating the surface of the contaminated soil and / or the metal dispersion. Therefore, a mill having a pulverizing function is preferable as a stirring mixer. Since the stirring and mixing is an operation performed to increase the chance of contact between the dioxins in the contaminated soil and the metal particles that are nano-sized electron donors, the stirring strength may be small. Therefore, the stirring and mixing can be performed using a mill having a smaller energy density in the mill as compared with the planetary ball mill. Examples of such a mill include a roller mill and a tower mill. The planetary ball mill can apply high energy, but requires a large amount of power and is difficult to increase in size. On the other hand, roller mills are also used for pulverization of coal at coal-fired thermal power plants. Handbook, Revised 6th edition, page 846), it can be said to be a preferable mill for proceeding with the treatment of contaminated soil on a large scale.

メカノケミカル処理においては、ダイオキシン類の無害化に必要なエネルギーをミルを通じて与える必要があるが、本方法において、攪拌混合操作は、汚染土壌と金属分散体との接触機会を高めることができればよく、ダイオキシン類の無害化に必要なエネルギーを攪拌混合操作を通じて与える必要はない。本方法では、ナノサイズに微細化した電子供与体である金属を使用することで低エネルギー投入条件下でも、ダイオキシン類を無害化させることができる。一般的にナノサイズに微細化した電子供与体である金属は、高い活性、反応性が得られる一方で、その高い活性、反応性により大気中の酸素、二酸化炭素又は水と反応し失活する。このためナノサイズに微細化した電子供与体である金属をそのまま使用してもダイオキシン類を無害化できない。しかしここでは、前記金属分散体を使用することで、ナノサイズに微細化した電子供与体である金属の活性を高い状態に維持し、低エネルギー投入条件下でも、ダイオキシン類を無害化させることができる。   In the mechanochemical treatment, it is necessary to give the energy necessary for detoxification of dioxins through the mill, but in this method, the stirring and mixing operation only needs to increase the contact opportunity between the contaminated soil and the metal dispersion, It is not necessary to give the energy required for detoxification of dioxins through a stirring and mixing operation. In this method, dioxins can be rendered harmless even under low energy input conditions by using a metal that is an electron donor that has been refined to a nano size. In general, a metal, which is an electron donor that has been miniaturized to a nano size, has high activity and reactivity, but reacts with oxygen, carbon dioxide or water in the atmosphere due to its high activity and reactivity, and deactivates. . For this reason, even if it uses the metal which is an electron donor refined | miniaturized to nanosize as it is, dioxins cannot be made harmless. However, here, by using the metal dispersion, it is possible to maintain the activity of the metal, which is an electron donor refined to a nano size, in a high state, and to detoxify dioxins even under low energy input conditions. it can.

また攪拌混合操作も以下のように行うことができる。汚染土壌に含まれるダイオキシン類は土壌表面に存在することが多いことから、汚染土壌中のダイオキシン類の含有量が少ないときは、ダイオキシン類の殆どは汚染土壌表面に存在しているものと推察される。このような場合は、一度、汚染土壌と金属分散体とを均一に混合した後は、攪拌を停止してもよい。このとき初期のみ200℃以下の温度で加熱することで、汚染土壌中のダイオキシン類の無害化を一気に進め、その後は、加熱、攪拌を停止して残りのダイオキシン類を徐々に無害化させてもよい。同様に、初期に反応促進剤を添加し、汚染土壌中のダイオキシン類の無害化を一気に進め、その後は、反応促進剤を添加することなく、攪拌を停止して残りのダイオキシン類を徐々に無害化させてもよい。初期にダイオキシン類の無害化を一気に進めておくことで、以降、ダイオキシン類に対する金属分散体の濃度が相対的に高くなるので効率的に汚染土壌中のダイオキシン類を無害化することができる。加熱も初期しか行わないので、エネルギー消費量も非常に少なく、コスト的にも有利である。一方、汚染土壌中のダイオキシン類の含有量が多いときは、汚染土壌内部にもダイオキシン類が存在すると推察されることから、汚染土壌及び/又は金属分散体の表面を更新するような攪拌混合を行うことが好ましい。   The stirring and mixing operation can also be performed as follows. Since dioxins contained in contaminated soil are often present on the soil surface, it is assumed that most dioxins are present on the contaminated soil surface when the content of dioxins in the contaminated soil is low. The In such a case, once the contaminated soil and the metal dispersion are uniformly mixed, stirring may be stopped. At this time, by heating at a temperature of 200 ° C. or less only at the initial stage, the dioxins in the contaminated soil can be detoxified at a stretch, and then the heating and stirring can be stopped to gradually detoxify the remaining dioxins. Good. Similarly, the reaction accelerator is added in the initial stage, and the dioxins in the contaminated soil are detoxified. After that, without adding the reaction accelerator, the stirring is stopped and the remaining dioxins are gradually harmless. You may make it. By proceeding with detoxification of dioxins at an early stage, the concentration of the metal dispersion with respect to the dioxins becomes relatively high, so that the dioxins in the contaminated soil can be detoxified efficiently. Since heating is performed only in the initial stage, the energy consumption is very small, which is advantageous in terms of cost. On the other hand, when the content of dioxins in the contaminated soil is large, it is presumed that dioxins are also present inside the contaminated soil. Therefore, stirring and mixing that renews the surface of the contaminated soil and / or metal dispersion is performed. Preferably it is done.

ダイオキシン類を含む汚染土壌とナノサイズの電子供与体である金属粒子とを接触させ無害化させる他の態様を説明する。前記方法では、ナノサイズの電子供与体である金属粒子は、予め調整した金属分散体として与えたが、ここでは、汚染土壌を無害化させる過程でナノサイズの電子供与体である金属粒子を与える。   Another mode of detoxifying the contaminated soil containing dioxins with the metal particles that are nano-sized electron donors will be described. In the above method, the metal particles that are nano-sized electron donors were provided as a preliminarily prepared metal dispersion, but here, metal particles that are nano-sized electron donors are provided in the process of detoxifying contaminated soil. .

汚染土壌と固形状の電子供与体である金属とを、少なくとも固形状の金属の一部がナノサイズとなるように粉砕機を用いて粉砕する。この方法は、汚染土壌の無害化処理を行う過程で、同時に電子供与体である金属をナノサイズにし、ダイオキシン類を還元し無害化させるものである。このとき同時にセライト(登録商標)などの多孔質無機材及び/又は酸化カルシウムなどの水吸脱着剤を添加してこれらを同時に粉砕することが好ましい。多孔質無機材及び/又は水吸脱着剤が汚染土壌中に含まれる場合は、別途、多孔質無機材及び/又は水吸脱着剤を添加しなくてもよい。これにより前記方法と同様に、ナノサイズの電子供与体である金属粒子の活性を失わせることなく維持することができる。ここでも粉砕機は、固形状の金属の少なくとも一部がナノサイズとなるように粉砕できればよく、遊星ボールミルを使用する必要はない。この方法においても外部から積極的に加熱しなくてもよい。   The contaminated soil and the metal that is a solid electron donor are pulverized using a pulverizer so that at least a part of the solid metal is nano-sized. In this method, in the process of detoxifying contaminated soil, the metal as an electron donor is made nano-sized, and dioxins are reduced and detoxified. At this time, it is preferable to simultaneously add a porous inorganic material such as Celite (registered trademark) and / or a water absorption / desorption agent such as calcium oxide and pulverize them simultaneously. When the porous inorganic material and / or the water adsorption / desorption agent are contained in the contaminated soil, it is not necessary to add the porous inorganic material and / or the water adsorption / desorption agent separately. Thereby, like the said method, it can maintain, without losing the activity of the metal particle which is a nanosized electron donor. Here, the pulverizer only needs to be able to pulverize so that at least a part of the solid metal is nano-sized, and it is not necessary to use a planetary ball mill. Also in this method, it is not necessary to actively heat from the outside.

汚染土壌、汚泥は水分を含有していることが多く、焼却灰、焼却飛灰なども放置されることで空気中の水分を吸水し、又は飛散防止のために散水を行った結果、水分を含有する場合も多い。水分を含む汚染土壌等に含まれるダイオキシン類等を上記方法で無害化するとき、水分濃度が5重量%程度以下であれば、そのまま上記方法で無害化させればよい。汚染土壌等に含まれる水、有機酸、アミン類、金属ヒドリド、及び/又はアルコール性ヒドロキシル基などは、上記無害化方法の処理過程で水素源として機能するので、これを除去しなくてもよい。   Contaminated soil and sludge often contain moisture. Incineration ash, incineration fly ash, etc. are also left unattended to absorb moisture in the air or spray water to prevent scattering. Often contains. When the dioxins and the like contained in contaminated soil containing water are detoxified by the above method, if the water concentration is about 5% by weight or less, it may be detoxified by the above method as it is. Water, organic acids, amines, metal hydrides, and / or alcoholic hydroxyl groups, etc. contained in contaminated soil, etc. function as a hydrogen source in the treatment process of the above detoxification method, and thus do not need to be removed. .

しかしながら汚染土壌等に多くの水分を含む場合は、次の要領で無害化することが好ましい。汚染土壌等に多くの水分を含む場合、上記方法で無害化することは問題ないが、水分量が多い場合、電子供与体である金属粒子の添加量が増加する。このため上記無害化方法において、同時に酸化カルシウムを添加し処理することが好ましい。酸化カルシウムは、水分を吸収する水分調整剤として機能すると共に分解助剤として機能し、さらに酸化カルシウムが水と反応して水酸化カルシウムとなる際に発する熱は、無害化率を高めるように作用する。ここで添加する酸化カルシウムは、上記水吸脱着剤として添加する酸化カルシウムを利用することができるので、多くの水分を含む汚染土壌等を無害化させるとき、汚染土壌と酸化カルシウムと固形状の電子供与体である金属とを、少なくとも固形状の金属の一部がナノサイズとなるように粉砕機で粉砕しながら無害化させることもできる。   However, when the contaminated soil contains a lot of water, it is preferably detoxified in the following manner. When contaminated soil or the like contains a large amount of moisture, it is not a problem to make it harmless by the above method, but when the amount of moisture is large, the amount of metal particles added as electron donors increases. For this reason, in the said detoxification method, it is preferable to add and process calcium oxide simultaneously. Calcium oxide functions as a moisture adjuster that absorbs moisture and functions as a decomposition aid. Furthermore, the heat generated when calcium oxide reacts with water to form calcium hydroxide acts to increase the detoxification rate. To do. The calcium oxide added here can utilize the calcium oxide added as the water adsorbing and desorbing agent. Therefore, when decontaminating contaminated soil containing a lot of water, the contaminated soil, calcium oxide and solid electrons The donor metal can be detoxified while being pulverized by a pulverizer so that at least a part of the solid metal is nano-sized.

さらに水分量が多く、水分濃度が40重量%を越えるような汚染土壌などを無害化させるときは、2ステップ方式で行なうことが好ましい。2ステップ方式とは、第1ステップとして、必要に応じてろ過操作等で脱水された後の水分を含む汚染土壌などに酸化カルシウムを添加して水分調整を行なった後、第2ステップとしてナノサイズの電子供与源である金属を加え、前記方法で無害化させる方式である。第1ステップでの水分調整も、ローラーミルを用いかつ外部から強制的に加熱することなく行うことが可能で、第2ステップでの無害化処理も、第1ステップの水分調整処理に引続き、ローラーミル内にナノサイズの電子供与体である金属を含む金属分散体を加え行えばよい。酸化カルシウムを添加し水分調整を行う工程と、ナノサイズの電子供与体である金属を加え、無害化する工程を分離することで、電子供与体である金属の添加量をより低減させることができる。   Furthermore, when detoxifying contaminated soil having a high water content and a water concentration exceeding 40% by weight, it is preferable to use a two-step method. The two-step method is the first step, in which calcium oxide is added to the contaminated soil containing water after being dehydrated by filtration operation or the like as necessary, and after adjusting the moisture, the second step is nano size. In this method, a metal which is an electron donor source is added and detoxified by the above method. Moisture adjustment in the first step can also be performed using a roller mill and without forcibly heating from the outside, and the detoxification process in the second step is followed by the moisture adjustment process in the first step. A metal dispersion containing a metal that is a nano-sized electron donor may be added to the mill. The amount of addition of the metal as the electron donor can be further reduced by separating the step of adjusting the moisture by adding calcium oxide and the step of adding the metal as the nano-sized electron donor and detoxifying it. .

次にダイオキシン類などの他にVOCが同時に含まれている汚染土壌などの無害化要領について説明する。汚染土壌の無害化は、水分量に応じて上記の無害化方法を適宜選択して行う。土壌にダイオキシン類の他にVOCが含まれていても、基本的にダイオキシン類を含む汚染土壌を無害化させるときの要領と変わるところはない。しかしながら無害化処理の工程で、VOCが一部蒸気となってミルから排出される可能性があるので、ミルから排出される排ガスを排ガス処理装置に導き、VOCをここでトラップする。活性炭など吸着材からなる排ガス処理装置を使用することで、VOCを簡単にトラップすることができる。VOCを吸着した吸着材は、別途、電子供与体である金属を添加しメカノケミカル処理するか、又は該吸着材とプロトン性溶媒に少なくとも一部は溶解し電子移動による還元力を有する金属とプロトン性溶媒とを混合し、VOCを無害化すればよい。このような処理方法は、特開2008−207044号公報、特許第3785556号公報に詳細に記載されている。なお、VOCを含まないダイオキシン類などを含有する汚染土壌などを無害化するときも、必要に応じて排出される排ガスを排ガス処理装置に導き、同じように排ガスを浄化してもよいことは当然である。   Next, the point of detoxification of contaminated soil or the like containing VOCs in addition to dioxins will be described. The detoxification of the contaminated soil is performed by appropriately selecting the above detoxification method according to the amount of water. Even if the soil contains VOC in addition to dioxins, there is basically no difference from the procedure for detoxifying contaminated soil containing dioxins. However, in the detoxification process, there is a possibility that VOC is partially vaporized and discharged from the mill. Therefore, the exhaust gas discharged from the mill is guided to the exhaust gas treatment device, and the VOC is trapped here. By using an exhaust gas treatment apparatus made of an adsorbent such as activated carbon, VOC can be easily trapped. The adsorbent that has adsorbed VOC is separately added with a metal as an electron donor and subjected to mechanochemical treatment, or at least partly dissolved in the adsorbent and a protic solvent and has a reducing power by electron transfer and proton. A VOC may be rendered harmless by mixing with an organic solvent. Such a processing method is described in detail in Japanese Patent Application Laid-Open No. 2008-207044 and Japanese Patent No. 3785556. When decontaminating contaminated soil containing dioxins and the like that do not contain VOCs, it is natural that exhaust gas discharged as needed may be guided to an exhaust gas treatment device and the exhaust gas purified in the same way. It is.

上記実施形態で示すように本発明に係る有機ハロゲン化合物を含有する固体の無害化方法は、外部から強制的に加熱する必要がなく、また攪拌混合に使用する装置も、ローラーミルなど消費動力の少ないミルを使用することができるので、ダイオキシン類で汚染された土壌等を少ないエネルギーで無害化することができる。消費動力が少なく、温和な操作条件ながら、電子供与体である金属にナノサイズの金属を使用することで高い無害化率、早い無害化速度を達成することができる。また、汎用装置を使用して本発明に係る有機ハロゲン化合物を含有する固体の無害化方法を実施することができるので、大型化、大容量化も容易であり、実機での処理コストも安価となる。また本発明に係る有機ハロゲン化合物を含有する固体の無害化方法は、無害化処理に先立ち汚染土壌等を洗浄する必要がない。これも本無害化方法の特徴の一つと言える。   As shown in the above embodiment, the method for detoxifying a solid containing an organic halogen compound according to the present invention does not require forcibly heating from the outside, and the apparatus used for stirring and mixing also has a power consumption such as a roller mill. Since a small mill can be used, soil contaminated with dioxins can be rendered harmless with less energy. A high detoxification rate and a high detoxification rate can be achieved by using a nano-sized metal as the electron donor metal while consuming little power and mild operating conditions. In addition, since a solid-state detoxification method containing an organic halogen compound according to the present invention can be carried out using a general-purpose apparatus, it is easy to increase the size and capacity, and the processing cost in an actual machine is also low. Become. Moreover, the solid detoxification method containing the organic halogen compound according to the present invention does not require washing of contaminated soil or the like prior to the detoxification treatment. This is also one of the characteristics of this detoxification method.

さらにナノサイズの電子供与体である金属を水吸脱着剤及び/又は多孔質無機材に分散させることで、取扱いが容易となる。本発明に係る有機ハロゲン化合物を含有する固体の無害化方法では、ローラーミル等による摩擦力、せん断力による発熱、還元力を有する金属の水和熱さらには、酸化カルシウムの水和熱により温度は上昇するけれども、外部から強制的に加熱して熱を加える方法と異なり、ミル内の温度を200℃以下にすることが可能であり、350〜500℃で夾雑物と塩素分などが反応してダイオキシン類が生成する可能性を排除することができる。   Furthermore, handling becomes easy by disperse | distributing the metal which is a nanosize electron donor to a water adsorption / desorption agent and / or a porous inorganic material. In the method for detoxifying a solid containing an organohalogen compound according to the present invention, the temperature is increased by heat of hydration of a metal having frictional force by a roller mill or the like, heat generation by shearing force, reduction power, and further by hydration heat of calcium oxide. Although it rises, unlike the method of applying heat by forcibly heating from the outside, the temperature in the mill can be made 200 ° C. or lower, and impurities and chlorine content react at 350 to 500 ° C. The possibility that dioxins are generated can be eliminated.

また本発明に係る有機ハロゲン化合物を含有する固体の無害化方法において、電子供与体である金属に金属カルシウムを使用する場合、カルシウムは、汚染土壌のセメント材料化などの障害とならない。仮に高塩素含有物の処理を行った場合、処理土壌の洗浄により塩化カルシウムを除去した後、キルンによるセメント材料化とすればよい。一般的に汚染土壌の処理後、処理土壌の処分場確保を難しくなっている現状においては、本方法は好ましい方法と言える。さらにVOC処理後の土壌は、一般的にオイルで汚染されているが、上記キルン処理においては、助燃剤入りの土壌と位置付けることができる。このとき、塩素はカルシウム添加によりダイオキシンとして発生し難い燃焼環境にある。   Further, in the method for detoxifying a solid containing an organic halogen compound according to the present invention, when calcium metal is used as the metal as the electron donor, the calcium does not become an obstacle to making contaminated soil into a cement material. If a high-chlorine content is treated, after removing calcium chloride by washing the treated soil, a kiln can be used as a cement material. In general, after the treatment of contaminated soil, it is difficult to secure a disposal site for the treated soil. Furthermore, although the soil after VOC processing is generally contaminated with oil, in the kiln processing, it can be positioned as soil containing a combustion aid. At this time, chlorine is in a combustion environment that is difficult to generate as dioxin by adding calcium.

実施例1
金属カルシウムナノ分散体(1)の製造
金属カルシウム1gとセライト5gとを遊星ボールミルを用いて、窒素ガス雰囲気下、400rpmで60分間、常温粉砕処理を行った。ミル粉砕物を窒素ガス雰囲気下、分級し、2mm篩下の粉砕物を得た。これを金属カルシウムナノ分散体(1)とした。電子顕微鏡写真(SEM)を図1に示した。電子顕微鏡写真から少なくとも金属カルシウムの一部は、50〜100nmであることを確認した。得られた金属カルシウムナノ分散体(1)中の金属カルシウム含有量は、水上置換法により水との接触時に発生する水素量から算出した。実験の結果、金属カルシウムナノ分散体(1)0.5gに対して、水素ガス発生量は5〜15mlであり、この結果から、金属カルシウムナノ分散体(1)1g当りの金属カルシウム含有量は、0.018〜0.054gであった。
Example 1
Production of Metal Calcium Nanodispersion (1) 1 g of metal calcium and 5 g of celite were subjected to normal temperature pulverization treatment at 400 rpm for 60 minutes in a nitrogen gas atmosphere using a planetary ball mill. The milled product was classified in a nitrogen gas atmosphere to obtain a 2 mm sieved product. This was designated as metal calcium nanodispersion (1). An electron micrograph (SEM) is shown in FIG. From an electron micrograph, it was confirmed that at least a part of metallic calcium was 50 to 100 nm. The metal calcium content in the obtained metal calcium nanodispersion (1) was calculated from the amount of hydrogen generated upon contact with water by a water displacement method. As a result of the experiment, the hydrogen gas generation amount is 5 to 15 ml with respect to 0.5 g of the metal calcium nanodispersion (1). From this result, the metal calcium content per 1 g of the metal calcium nanodispersion (1) is , 0.018-0.054 g.

無害化実験
初期濃度2850mg/kgのPCBを含有する汚染土壌1gに、上記金属カルシウムナノ分散体(1)1g(金属カルシウム含有量0.054g)を加え、ローラーミル形式の粉砕機を用いて、24時間常温で攪拌した。その後、塩酸を加えて反応を完全にクエンチし、有機物全量をジエチルテーテルで回収後に濃縮し、全量を公定法に従ってGC−ECD法で分析した。分析値は、34mg/kgであった。
Detoxification experiment To 1 g of contaminated soil containing PCB with an initial concentration of 2850 mg / kg, 1 g of the above metal calcium nanodispersion (1) (metal calcium content 0.054 g) was added, and using a roller mill type pulverizer, Stir at ambient temperature for 24 hours. Thereafter, hydrochloric acid was added to quench the reaction completely, and the total amount of organic matter was collected with diethyl ether and concentrated. The total amount was analyzed by the GC-ECD method according to the official method. The analytical value was 34 mg / kg.

実施例2
実施例1と全く同一の条件で、無害化実験を行った。初期濃度2850mg/kgのPCBが120mg/kgとなった。このときのGC−MSクロマトグラムを図2に示した。図2(a)は、実験前の初期濃度2850mg/kgのPCBを含有する汚染土壌のGC−MSクロマトグラムであり、図2(b)は、実験後の120mg/kgのPCBを含有する汚染土壌のGC−MSクロマトグラムである。無害化実験後は、各成分の濃度が大幅に低下したことが分かる。さらに図中破線で示したように、無害化実験前後で、各成分の割合が大きく変化した。
Example 2
A detoxification experiment was conducted under exactly the same conditions as in Example 1. The PCB with an initial concentration of 2850 mg / kg was 120 mg / kg. The GC-MS chromatogram at this time is shown in FIG. FIG. 2 (a) is a GC-MS chromatogram of contaminated soil containing an initial concentration of 2850 mg / kg PCB before the experiment, and FIG. 2 (b) is a contamination containing 120 mg / kg PCB after the experiment. It is a GC-MS chromatogram of soil. It can be seen that after the detoxification experiment, the concentration of each component was greatly reduced. Furthermore, as indicated by broken lines in the figure, the ratio of each component changed greatly before and after the detoxification experiment.

実施例3〜実施例6
金属カルシウムナノ分散体(2)の製造
セライトに代え酸化カルシウムを用いて、金属カルシウムナノ分散体(1)と同一の方法で金属カルシウムナノ分散体(2)を製造した。得られた金属カルシウムナノ分散体(2)中の金属カルシウム含有量は、水上置換法により水との接触時に発生する水素量から算出した。実験の結果、金属カルシウムナノ分散体(2)1.0gに対して、水素ガス発生量は100mlであり、この結果から、金属カルシウムナノ分散体(2)1g当りの金属カルシウム含有量は、0.357gであった。
Example 3 to Example 6
Production of Metal Calcium Nanodispersion (2) Metal calcium nanodispersion (2) was produced in the same manner as metallic calcium nanodispersion (1) using calcium oxide instead of celite. The metal calcium content in the obtained metal calcium nanodispersion (2) was calculated from the amount of hydrogen generated upon contact with water by a water displacement method. As a result of the experiment, the hydrogen gas generation amount was 100 ml with respect to 1.0 g of the metal calcium nanodispersion (2). From this result, the metal calcium content per 1 g of the metal calcium nanodispersion (2) was 0. 357 g.

無害化実験
表1に示すように2−chlorobiphenyl 1mmolを500μm篩下のまさ土10gに添加し、これを供試体した。各供試体は、水分含有量が異なり、実施例3の供試体は水分を全く含んでいない。実験は、実施例1と同様の要領で行った。実験結果を表1に示した。実験の結果、供試体中の水分が多いほど無害化は進んだ。但し、供試体中に全く水分を含まない場合であっても、2−chlorobiphenylは還元された。供試体中の水分が少ない場合、脱塩素化反応が進行し、供試体中の水分が多い場合、環還元反応が進行した。
Detoxification experiment As shown in Table 1, 1 mmol of 2-chlorobiphenyl was added to 10 g of mash under a 500 μm sieve, and this was used as a specimen. Each specimen has a different moisture content, and the specimen of Example 3 does not contain any moisture. The experiment was performed in the same manner as in Example 1. The experimental results are shown in Table 1. As a result of the experiment, the more water contained in the specimen, the more harmless. However, 2-chlorobiphenyl was reduced even when the specimen did not contain any moisture. When the water content in the specimen was low, the dechlorination reaction proceeded, and when the water content in the specimen was high, the ring reduction reaction proceeded.

実施例7
実施例3〜6と同様に2−chlorobiphenyl 1mmolを500μm篩下のまさ土10gに添加し、これを供試体した。このときのまさ土の水分量は、1.28重量%であった。金属カルシウムナノ分散体(2)1.0gと水分を10重量%含む活性炭1.0gを供試体に添加し、実施例1と同様の要領で実験を行った。実験の結果、2−chlorobiphenylは無害化され、2量体などが生成した。
Example 7
In the same manner as in Examples 3 to 6, 1 mmol of 2-chlorobiphenyl was added to 10 g of mash under a 500 μm sieve, and this was used as a specimen. The moisture content of the masa soil at this time was 1.28% by weight. An experiment was performed in the same manner as in Example 1 by adding 1.0 g of the metal calcium nanodispersion (2) and 1.0 g of activated carbon containing 10% by weight of water to the specimen. As a result of the experiment, 2-chlorobiphenyl was detoxified and a dimer was produced.

実施例8
実施例7の活性炭に代え、水分を3重量%含むシリカゲル1.0gを供試体に添加した実験を行った。実験の結果、環還元反応が進行し2−chlorobiphenylは無害化された。
Example 8
An experiment was conducted in which 1.0 g of silica gel containing 3% by weight of water was added to the specimen instead of the activated carbon of Example 7. As a result of the experiment, the ring reduction reaction proceeded and 2-chlorobiphenyl was rendered harmless.

比較例1
金属カルシウムナノ分散体(2)に代え、ナノサイズの粒子を全く含まない金属カルシウムを用いて、実施例4と同一条件で無害化実験を行った。但し、金属カルシウムの添加量(仕込量)は、0.05gとした。実施例4に比較して無害化が進まなかった。結果を表1に示した。
Comparative Example 1
In place of the metal calcium nanodispersion (2), a detoxification experiment was conducted under the same conditions as in Example 4 using metal calcium containing no nano-sized particles. However, the addition amount (preparation amount) of metallic calcium was 0.05 g. Detoxification did not progress compared to Example 4. The results are shown in Table 1.

比較例2
金属カルシウムナノ分散体(2)に代え、金属カルシウムを全く含まずナノサイズの粒子を含む酸化カルシウムを用いて、実施例4と同一条件で無害化実験を行った。但し、酸化カルシウムの添加量(仕込量)は、0.95gとした。実施例4に比較して無害化が進まなかった。結果を表1に示した。
Comparative Example 2
A detoxification experiment was performed under the same conditions as in Example 4 using calcium oxide containing no metal calcium at all and containing nano-sized particles in place of the metal calcium nanodispersion (2). However, the addition amount (preparation amount) of calcium oxide was 0.95 g. Detoxification did not progress compared to Example 4. The results are shown in Table 1.

実施例9〜17
以下のように、金属カルシウムナノ分散体を用いて、POPs汚染土壌の無害化処理を行った。市販の金属Ca(φ2.0−2.5mm,0.43−0.48m/g)とCaO(850℃、2時間乾燥)をCa/CaO=2/5の混合比とし、Ar雰囲気下、遊星ボールミル(Fritsch製:型式P−7)を用いて600rpmで1時間粉砕処理を行った。得られた粉砕混合物を走査型電子顕微鏡(JEOL製、6510ASEM−EDS)にて観察した。粉砕混合物中の金属Ca量は、水上置換法により水素ガス量から求めた。土壌の水分測定はJIS−Z7302−3に準じ、組成分析はJIS−M8853及びM8855によって行った。代表的な分解試験は次の通りである。ナノサイズに調製した金属Ca/CaO粉砕混合物とPOPs汚染土壌とを所定の混合比(汚染土壌に対する金属Caの混合比率=0.5〜1.12wt%)で乳鉢式分解装置に加え、開放系常温下、所定時間攪拌混合を行った。処理後、溶剤を用いて全量を回収し、残存POPsの全量分析を行った。POPs分析は目的に応じてGC−ECD、GC/QMS、あるいはHRGC/HRMSにより行った。いずれも前処理は公定法に準拠した。また処理前後におけるPOPs全量の比較から分解効率(分解率)を求めた。
Examples 9-17
As described below, the POPs-contaminated soil was detoxified using the metallic calcium nanodispersion. Commercially available metal Ca (φ2.0-2.5 mm, 0.43-0.48 m 2 / g) and CaO (850 ° C., dried for 2 hours) were mixed at a ratio of Ca / CaO = 2/5, and in an Ar atmosphere Then, pulverization was performed at 600 rpm for 1 hour using a planetary ball mill (manufactured by Fritsch: model P-7). The obtained pulverized mixture was observed with a scanning electron microscope (JEOL, 6510ASEM-EDS). The amount of metallic Ca in the pulverized mixture was determined from the amount of hydrogen gas by the water displacement method. The soil moisture was measured according to JIS-Z7302-3, and the composition analysis was performed according to JIS-M8853 and M8855. A typical degradation test is as follows. Metal nano Ca / CaO pulverized mixture and POPs-contaminated soil are added to the mortar-type decomposition apparatus at a predetermined mixing ratio (mixing ratio of metal Ca to contaminated soil = 0.5 to 1.12 wt%), and an open system The mixture was stirred and mixed at room temperature for a predetermined time. After the treatment, the whole amount was recovered using a solvent, and the whole amount of residual POPs was analyzed. POPs analysis was performed by GC-ECD, GC / QMS, or HRGC / HRMS depending on the purpose. In all cases, the pretreatment conformed to the official law. Further, the decomposition efficiency (decomposition rate) was determined from the comparison of the total amount of POPs before and after the treatment.

粉砕混合物中の金属Ca量は、およそ2.8mmol/g−mixture(11.2wt%Ca/g−mixture)であった。電子顕微鏡観察から粒子径が50nm以下の凝集物であることが明らかとなり、大気中常温下、1カ月以上も初期活性の80%以上を維持した。次に粉砕混合物の脱塩素活性を検討した。例えば、1mmolの2−クロロビフェニル及び2.8mmol相当の金属Caを含む粉砕混合物を乳鉢式分解装置で24時間混合すると、ビフェニルが得られることを確認した。そこで、本法をPOPs汚染土壌の処理に応用した。   The amount of metallic Ca in the pulverized mixture was approximately 2.8 mmol / g-mixture (11.2 wt% Ca / g-mixture). Observation with an electron microscope revealed that the particles were aggregates having a particle size of 50 nm or less, and maintained 80% or more of the initial activity for 1 month or more at room temperature in the atmosphere. Next, the dechlorination activity of the ground mixture was examined. For example, it was confirmed that biphenyl was obtained by mixing a pulverized mixture containing 1 mmol of 2-chlorobiphenyl and 2.8 mmol of metal Ca in a mortar-type decomposition apparatus for 24 hours. Therefore, this method was applied to the treatment of POPs contaminated soil.

上記ナノサイズに調製した金属Ca/CaO粉砕混合物(11.2wt%Ca/g−mixture)を用いて、大気中常温下、POPs汚染土壌を処理した。ナノサイズに調製した金属Ca/CaO粉砕混合物(11.2wt%Ca/g−mixture)とPOPs汚染土壌との割合は、1g:9gとした。処理条件及び結果を表2に示した。表2中、水分量は、金属Ca/CaO粉砕混合物を加えたPOPs汚染土壌に対する値である。表2に示したようにポリ塩化ジベンゾ−P−ジオキシン類(PCDDs)の分解は常温下であっても91.5%の高効率で進行した(実施例9)。さらに4.36wt%〜9.61wt%の含水土壌中のポリ塩化ジベンゾフラン類(PCDFs)についても脱塩素反応が進行し、61.4%の分解率を維持した(実施例10〜12)。PCDDs及びPCDFsのいずれにおいても多塩素体側で脱塩素反応による分解が促進される傾向が見られた。   Using the metal Ca / CaO pulverized mixture (11.2 wt% Ca / g-mixture) prepared to the nano size, POPs-contaminated soil was treated at normal temperature in the atmosphere. The ratio of the metal Ca / CaO pulverized mixture (11.2 wt% Ca / g-mixture) prepared to nanosize and the POPs-contaminated soil was 1 g: 9 g. The processing conditions and results are shown in Table 2. In Table 2, the amount of water is a value for POPs-contaminated soil to which a metal Ca / CaO pulverized mixture is added. As shown in Table 2, the decomposition of polychlorinated dibenzo-P-dioxins (PCDDs) proceeded with a high efficiency of 91.5% even at room temperature (Example 9). Furthermore, the dechlorination reaction also proceeded for polychlorinated dibenzofurans (PCDFs) in 4.36 wt% to 9.61 wt% hydrous soil, and the decomposition rate of 61.4% was maintained (Examples 10 to 12). In both PCDDs and PCDFs, the decomposition by dechlorination reaction was promoted on the polychlorinated body side.

次に、10gの土壌中に1060μg〜2850μgのPCBsを含む汚染土壌を同様に処理し、96.2〜99.9%の分解率を達した(実施例13〜15)。またコプラナーPCBsの各成分においても高い分解率を達成した(実施例16)。単に、円筒式回転装置で24時間攪拌するのみで61.3%の脱塩素化効率を達成した(実施例17)。参考までに常温下、酸化カルシウムのみを分解剤とした場合や未粉砕の金属Caを用いた脱塩素化反応は殆ど進行しないことも確認した。   Next, the contaminated soil containing 1060 μg to 2850 μg of PCBs in 10 g of soil was treated in the same manner, and a decomposition rate of 96.2 to 99.9% was achieved (Examples 13 to 15). In addition, a high decomposition rate was achieved in each component of coplanar PCBs (Example 16). A dechlorination efficiency of 61.3% was achieved only by stirring for 24 hours with a cylindrical rotating device (Example 17). For reference, it was also confirmed that dechlorination reaction using calcium oxide alone or unground metal Ca hardly progressed at room temperature.

さらに、10wt%含水率土壌の全水分量は、使用した金属Ca量のおよそ10倍モル、また、CaOの3倍モル程度存在するにもかかわらず、ナノ粒子化した金属Caは高い脱塩素活性を維持した。   Furthermore, although the total water content of the 10 wt% water content soil is about 10 times mol of the amount of metal Ca used and about 3 times mol of CaO, nanoparticulate metal Ca has high dechlorination activity. Maintained.

実施例18〜24、比較例3
市販の金属Ca(φ2.0−2.5mm,0.43−0.48m/g)とCaO(825℃、2時間乾燥)をCa/CaO=1/5の混合比とし、Ar雰囲気下、遊星ボールミル(Fritsch製:型式P−7)を用いて600rpmで1時間粉砕処理を行った。得られた粉砕混合物を走査型電子顕微鏡(JEOL製、6510ASEM−EDS)にて観察した。粉砕混合物中の金属Ca量は、水上置換法により水素ガス量から求めた。土壌の水分測定はJIS−Z7302−3に準じ、組成分析はJIS−M8853及びM8855によって行った。粉砕混合物中の金属Ca量は、およそ2.8mmol/g−mixture(11.2wt%Ca/g−mixture)であった。電子顕微鏡観察から粒子径が50nm以下の凝集物であることが明らかとなり、大気中常温下、1カ月以上も初期活性の80%以上を維持した。
Examples 18-24, Comparative Example 3
Commercially available metal Ca (φ2.0-2.5 mm, 0.43-0.48 m 2 / g) and CaO (825 ° C., dried for 2 hours) were mixed at a ratio of Ca / CaO = 1/5, and in an Ar atmosphere Then, pulverization was performed at 600 rpm for 1 hour using a planetary ball mill (manufactured by Fritsch: model P-7). The obtained pulverized mixture was observed with a scanning electron microscope (JEOL, 6510ASEM-EDS). The amount of metallic Ca in the pulverized mixture was determined from the amount of hydrogen gas by the water displacement method. The soil moisture was measured according to JIS-Z7302-3, and the composition analysis was performed according to JIS-M8853 and M8855. The amount of metallic Ca in the pulverized mixture was approximately 2.8 mmol / g-mixture (11.2 wt% Ca / g-mixture). Observation with an electron microscope revealed that the particles were aggregates having a particle size of 50 nm or less, and maintained 80% or more of the initial activity for 1 month or more at room temperature in the atmosphere.

上記ナノサイズに調製した金属Ca/CaO粉砕混合物(11.2wt%Ca/g−mixture)を用いて、大気中常温下、PCBs汚染土壌を処理した。ナノサイズに調製した金属Ca/CaO粉砕混合物(11.2wt%Ca/g−mixture)とPCBs汚染土壌との割合は、1g:9gとした。処理条件及び結果を表3に示した。表3中、水分量は、金属Ca/CaO粉砕混合物を加えたPCBs汚染土壌に対する値である。比較例3として、大気中常温下、酸化カルシウムのみを分解剤とした実験も行った。分析要領は、実施例9と同様である。ナノサイズに調製した金属Ca/CaO粉砕混合物を使用することで、常温下でも90%以上の高い分解率を達成した。攪拌混合操作も乳鉢式攪拌装置で1時間攪拌しただけで、後は10日放置しても97%の分解率を達成した(実施例23)。一方、分解剤に酸化カルシウムを使用した場合には、PCBsは全く分解されなかった。   PCBs-contaminated soil was treated at room temperature in the atmosphere using the metal Ca / CaO pulverized mixture (11.2 wt% Ca / g-mixture) prepared to the nano size. The ratio of the metal Ca / CaO pulverized mixture (11.2 wt% Ca / g-mixture) prepared to nanosize and PCBs-contaminated soil was 1 g: 9 g. The processing conditions and results are shown in Table 3. In Table 3, the amount of water is a value for PCBs-contaminated soil to which a metal Ca / CaO pulverized mixture is added. As Comparative Example 3, an experiment was conducted using only calcium oxide as a decomposition agent at room temperature in the atmosphere. The analysis procedure is the same as in Example 9. By using a metal Ca / CaO pulverized mixture prepared to a nano size, a high decomposition rate of 90% or more was achieved even at room temperature. The stirring and mixing operation was also performed by stirring for 1 hour with a mortar type stirring device, and a decomposition rate of 97% was achieved even after being left for 10 days (Example 23). On the other hand, when calcium oxide was used as the decomposing agent, PCBs were not decomposed at all.

実施例25〜40
実施例18と同じ要領で製造したナノサイズに調製した金属Ca/CaO粉砕混合物(11.9wt%Ca/g−mixture、2.8mmol)を用いて、大気中常温下、PCBs、PCDDs、PCDFs汚染土壌を処理した。ナノサイズに調製した金属Ca/CaO粉砕混合物と汚染土壌との割合は、1g:9gとした。処理条件及び結果を表4〜7に示した。表4〜7中、水分量は、金属Ca/CaO粉砕混合物を加えたPCBs汚染土壌に対する値である。攪拌装置には、乳鉢式攪拌装置を使用し、常温下、24時間攪拌混合した。分析要領は、実施例9と同様である。ナノサイズに調製した金属Ca/CaO粉砕混合物を使用することで、常温下でも高い分解率を達成した。
Examples 25-40
Contamination of PCBs, PCDDs, and PCDFs at room temperature in the air using a metal Ca / CaO pulverized mixture (11.9 wt% Ca / g-mixture, 2.8 mmol) prepared in the same manner as in Example 18 The soil was treated. The ratio of the metal Ca / CaO pulverized mixture prepared in nanosize to the contaminated soil was 1 g: 9 g. Treatment conditions and results are shown in Tables 4-7. In Tables 4-7, the amount of water is a value for PCBs-contaminated soil to which a metal Ca / CaO pulverized mixture is added. As the stirrer, a mortar stirrer was used, and the mixture was stirred and mixed at room temperature for 24 hours. The analysis procedure is the same as in Example 9. By using a metal Ca / CaO pulverized mixture prepared in nano size, a high decomposition rate was achieved even at room temperature.

Claims (12)

有機ハロゲン化合物を含有する固体と電子供与体である金属粒子とを接触させ前記有機ハロゲン化合物を無害化する方法であって、
前記金属粒子の少なくとも一部はナノサイズの粒子であり、前記有機ハロゲン化合物を還元し無害化することを特徴とする有機ハロゲン化合物を含有する固体の無害化方法。
A method of detoxifying the organic halogen compound by bringing a solid containing the organic halogen compound into contact with metal particles as an electron donor,
A method for detoxifying a solid containing an organic halogen compound, wherein at least a part of the metal particles are nano-sized particles, and the organic halogen compound is reduced and detoxified.
前記金属粒子は、固形状の金属と水分調整機能を有し水素源として作用する水を吸脱着する水吸脱着剤及び/又は多孔質無機材との混合物を、固形状の金属の少なくとも一部がナノサイズとなるまで粉砕し得られる金属粒子を水吸脱着剤及び/又は多孔質無機材中に分散させた金属分散体として与えられることを特徴とする請求項1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   The metal particle is a mixture of a solid metal and a water adsorbing / desorbing agent for adsorbing / desorbing water having a moisture adjusting function and acting as a hydrogen source and / or a porous inorganic material, at least a part of the solid metal. 2. The organohalogen compound according to claim 1, wherein the organohalogen compound according to claim 1 is provided as a metal dispersion in which metal particles obtained by pulverization until a nano-size is dispersed in a water adsorption / desorption agent and / or a porous inorganic material A method for detoxifying contained solids. 前記金属分散体は、ナノサイズの金属粒子の表面を前記水吸脱着剤及び/又は多孔質無機材がコーティングし、水吸脱着剤及び/又は多孔質無機材が、ナノサイズの金属粒子の大部分が酸素、二酸化炭素又は水と直接接触することを阻止することを特徴とする請求項2に記載の有機ハロゲン化合物を含有する固体の無害化方法。   In the metal dispersion, the surface of nano-sized metal particles is coated with the water adsorption / desorption agent and / or porous inorganic material, and the water adsorption / desorption agent and / or porous inorganic material is large in size of the nano-sized metal particles. 3. The method for detoxifying a solid containing an organic halogen compound according to claim 2, wherein the portion is prevented from coming into direct contact with oxygen, carbon dioxide or water. 前記金属粒子は、前記有機ハロゲン化合物を無害化する処理において、前記有機ハロゲン化合物を含有する固体と固形状の金属とを、少なくとも固形状の金属の一部がナノサイズとなるように粉砕することで与えられることを特徴とする請求項1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   In the treatment for detoxifying the organic halogen compound, the metal particles are obtained by pulverizing the solid containing the organic halogen compound and the solid metal so that at least a part of the solid metal is nano-sized. The method for detoxifying a solid containing an organic halogen compound according to claim 1, wherein さらに水吸脱着剤及び/又は多孔質無機材を添加し、該水吸脱着剤及び/又は多孔質無機材を同時に粉砕することを特徴とする請求項4に記載の有機ハロゲン化合物を含有する固体の無害化方法。   The solid containing an organic halogen compound according to claim 4, further comprising adding a water adsorption / desorption agent and / or a porous inorganic material, and simultaneously pulverizing the water adsorption / desorption agent and / or the porous inorganic material. Detoxification method. 外部から積極的に加熱することなく、遊星ボールミルに比較してミル内のエネルギー密度が小さいミルを使用し攪拌しながら、有機ハロゲン化合物を還元し無害化することを特徴とする請求項1から5のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   6. The organic halogen compound is reduced and rendered harmless while stirring using a mill having a lower energy density in the mill as compared with a planetary ball mill without actively heating from the outside. A method for detoxifying a solid containing the organic halogen compound according to any one of the above. さらに水素源であるアルコール及び/又は有機酸等を共存させ、前記有機ハロゲン化合物を還元し無害化することを特徴とする請求項1から6のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   The solid containing an organic halogen compound according to any one of claims 1 to 6, further comprising an alcohol and / or an organic acid as a hydrogen source coexisting to reduce and detoxify the organic halogen compound. Detoxification method. 前記有機ハロゲン化合物を含有する固体は、土壌、焼却灰、焼却飛灰、汚泥又はこれらの混合物であり、
前記アルコール及び/又は有機酸等は、土壌、焼却灰、焼却飛灰、汚泥又はこれらの混合物に含まれているアルコール及び/又は有機酸等であることを特徴とする請求項7に記載の有機ハロゲン化合物を含有する固体の無害化方法。
The solid containing the organic halogen compound is soil, incineration ash, incineration fly ash, sludge or a mixture thereof,
8. The organic according to claim 7, wherein the alcohol and / or organic acid is alcohol and / or organic acid contained in soil, incineration ash, incineration fly ash, sludge, or a mixture thereof. A method for detoxifying a solid containing a halogen compound.
前記有機ハロゲン化合物を含有する固体に含まれる水分量が所定の値を越えるときは、前記有機ハロゲン化合物の無害化の処理に先立ち、該固体に水分調整剤を加え、該固体に含まれる水分量を所定の値以下とする水分調整を行うことを特徴とする請求項1から8のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   When the amount of water contained in the solid containing the organic halogen compound exceeds a predetermined value, a moisture adjusting agent is added to the solid prior to the detoxification treatment of the organic halogen compound, and the amount of water contained in the solid The method for detoxifying a solid containing an organic halogen compound according to any one of claims 1 to 8, wherein the moisture is adjusted to a value not more than a predetermined value. 前記金属粒子は、アルカリ金属、アルカリ土類金属、第3族元素、鉄、亜鉛及びこれらを含む合金のうち少なくともいずれか1を含むことを特徴とする請求項1から9のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   10. The metal particle according to claim 1, wherein the metal particles include at least one of an alkali metal, an alkaline earth metal, a Group 3 element, iron, zinc, and an alloy containing these. A method for detoxifying a solid containing an organic halogen compound. 前記有機ハロゲン化合物が、残留性有機汚染物質及び/又は揮発性有機化合物であることを特徴とする請求項1から10のいずれか1に記載の有機ハロゲン化合物を含有する固体の無害化方法。   The method for detoxifying a solid containing an organic halogen compound according to any one of claims 1 to 10, wherein the organic halogen compound is a residual organic pollutant and / or a volatile organic compound. さらに前記有機ハロゲン化合物を無害化するときに発生する揮発性有機化合物の蒸気を吸着材に吸着させ、
該吸着材と電子供与体である金属粒子とをメカノケミカル処理し、又は該吸着材とプロトン性溶媒に少なくとも一部は溶解し電子移動による還元力を有する金属とプロトン性溶媒とを混合し、揮発性有機化合物を無害化する工程を含むことを特徴とする請求項11に記載の有機ハロゲン化合物を含有する固体の無害化方法。
Further, the adsorbent adsorbs the vapor of the volatile organic compound generated when detoxifying the organic halogen compound,
The adsorbent and metal particles as an electron donor are mechanochemically treated, or at least a part of the adsorbent and a protic solvent are dissolved and mixed with a metal having a reducing power by electron transfer and a protic solvent, The method for detoxifying a solid containing an organic halogen compound according to claim 11, comprising a step of detoxifying a volatile organic compound.
JP2010279188A 2010-01-14 2010-12-15 Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent Expired - Fee Related JP5278834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279188A JP5278834B2 (en) 2010-01-14 2010-12-15 Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010006074 2010-01-14
JP2010006074 2010-01-14
JP2010279188A JP5278834B2 (en) 2010-01-14 2010-12-15 Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent

Publications (2)

Publication Number Publication Date
JP2011161218A true JP2011161218A (en) 2011-08-25
JP5278834B2 JP5278834B2 (en) 2013-09-04

Family

ID=44592574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279188A Expired - Fee Related JP5278834B2 (en) 2010-01-14 2010-12-15 Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent

Country Status (1)

Country Link
JP (1) JP5278834B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110722B1 (en) * 2012-03-27 2012-12-26 エヌ・ティ・ティジーピー・エコ株式会社 Insulating oil improving apparatus, insulating oil improving column, and insulating oil improving method
JP2014236779A (en) * 2013-06-06 2014-12-18 公立大学法人県立広島大学 Method of making solid containing organic halide harmless and agent for making organic halide harmless
JP2016016176A (en) * 2014-07-09 2016-02-01 公立大学法人県立広島大学 Detoxifying method of solid containing organic halogen compound and organic halogen compound detoxifying agent
JP2017023218A (en) * 2015-07-16 2017-02-02 公立大学法人県立広島大学 Method of making solid containing organic halide compound harmless and detoxifying agent of organic halide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861866A (en) * 2014-03-11 2014-06-18 天津师范大学 Fixed enrichment method for city life compost heavy metals through modified nanocarbon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141774A (en) * 2002-10-24 2004-05-20 Kurita Water Ind Ltd Method of purifying soil or deposited substance
JP2007105059A (en) * 2005-08-09 2007-04-26 Tokyo Electric Power Co Inc:The Method of decomposing dioxins
JP2007209361A (en) * 2005-09-22 2007-08-23 Tokyo Univ Of Agriculture & Technology Method for insolubilizing heavy metal using mechanochemical method
JP2008188478A (en) * 2006-06-23 2008-08-21 Takenaka Komuten Co Ltd Method and system for purifying polluted soil
JP2008207044A (en) * 2006-10-06 2008-09-11 Koji Mitoma Detoxification method of solid containing organohalogen compound
JP2010000301A (en) * 2008-06-23 2010-01-07 Tosoh Corp Iron-containing slurry and method of detoxifying substance contaminated with organohalogen compound using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141774A (en) * 2002-10-24 2004-05-20 Kurita Water Ind Ltd Method of purifying soil or deposited substance
JP2007105059A (en) * 2005-08-09 2007-04-26 Tokyo Electric Power Co Inc:The Method of decomposing dioxins
JP2007209361A (en) * 2005-09-22 2007-08-23 Tokyo Univ Of Agriculture & Technology Method for insolubilizing heavy metal using mechanochemical method
JP2008188478A (en) * 2006-06-23 2008-08-21 Takenaka Komuten Co Ltd Method and system for purifying polluted soil
JP2008207044A (en) * 2006-10-06 2008-09-11 Koji Mitoma Detoxification method of solid containing organohalogen compound
JP2010000301A (en) * 2008-06-23 2010-01-07 Tosoh Corp Iron-containing slurry and method of detoxifying substance contaminated with organohalogen compound using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013008356; GEIGER Cherie L. et al.: 'A Review of Environmental Applications of Nanoscale and Microscale Reactive Metal Particles' American Chemical Society No.1027, 2009, Page.1-20 *
JPN6013008358; 松井敏樹, 今井知之: 'ナノ鉄複合粒子「RNIP」の技術と用途' JETI Vol.57 No.13, 20091214, Page.73-75 *
JPN6013008360; 山本拓司, 遠藤明, 中岩勝, 大森隆夫: '廃水中のPOPsの高効率回収および無害化処理に関する研究' 環境保全研究成果集 Vol.2005, 2005, Page.35-1〜35-8 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110722B1 (en) * 2012-03-27 2012-12-26 エヌ・ティ・ティジーピー・エコ株式会社 Insulating oil improving apparatus, insulating oil improving column, and insulating oil improving method
JP2014236779A (en) * 2013-06-06 2014-12-18 公立大学法人県立広島大学 Method of making solid containing organic halide harmless and agent for making organic halide harmless
JP2016016176A (en) * 2014-07-09 2016-02-01 公立大学法人県立広島大学 Detoxifying method of solid containing organic halogen compound and organic halogen compound detoxifying agent
JP2017023218A (en) * 2015-07-16 2017-02-02 公立大学法人県立広島大学 Method of making solid containing organic halide compound harmless and detoxifying agent of organic halide

Also Published As

Publication number Publication date
JP5278834B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
Zhang et al. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review
Zhao et al. Thermal desorption for remediation of contaminated soil: A review
Chen et al. Dioxins degradation and reformation during mechanochemical treatment
Chen et al. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles
Yan et al. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration
JP5278834B2 (en) Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent
Li et al. Degradation characteristics of dioxin in the fly ash by washing and ball-milling treatment
Hung et al. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil
Trinh et al. Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash
Yu et al. HCB dechlorination combined with heavy metals immobilization in MSWI fly ash by using n-Al/CaO dispersion mixture
JP5752387B2 (en) Contaminated soil treatment method
JP2007215552A (en) Method of treating organohalogen compound
Yuan et al. Mechanochemical remediation of soil contaminated with heavy metals and persistent organic pollutants by ball milling with nZVI-CaO-Ca3 (PO4) 2 additives
JP2006247483A (en) Treatment method of contaminated soil
Lundin et al. Low temperature thermal degradation of PCDD/Fs in soil using nanosized particles of zerovalent iron and CaO
Mudhoo et al. Dioxins and furans: sources, impacts and remediation
JP6323951B2 (en) Method for detoxifying solid containing organic halogen compound and organic halogen compound detoxifying agent
JP4572048B2 (en) Detoxification method for substances contaminated with organochlorine hazardous substances
JP2008207044A (en) Detoxification method of solid containing organohalogen compound
JP2000239191A (en) Reductive dehalogenation of liquid or solid halogenated hydrocarbon
Birke et al. Dechlorination of recalcitrant polychlorinated contaminants using ball milling
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
Kuo et al. Pollution characteristics of thermal treatments for elutriated ashes. Part 2: comparison with incineration system and plasma melting system
JP3395724B2 (en) Detoxification method of dioxin pollutants
JP3108061B2 (en) Method and apparatus for treating incinerated ash

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees