JP2006247483A - Treatment method of contaminated soil - Google Patents

Treatment method of contaminated soil Download PDF

Info

Publication number
JP2006247483A
JP2006247483A JP2005065114A JP2005065114A JP2006247483A JP 2006247483 A JP2006247483 A JP 2006247483A JP 2005065114 A JP2005065114 A JP 2005065114A JP 2005065114 A JP2005065114 A JP 2005065114A JP 2006247483 A JP2006247483 A JP 2006247483A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
contaminated soil
activated carbon
soil
tph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065114A
Other languages
Japanese (ja)
Other versions
JP2006247483A5 (en
Inventor
Hisaoki Abe
久起 阿部
Satoru Nanba
哲 南場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005065114A priority Critical patent/JP2006247483A/en
Publication of JP2006247483A publication Critical patent/JP2006247483A/en
Publication of JP2006247483A5 publication Critical patent/JP2006247483A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of detoxifying soil contaminated by harmful and hardly decomposable organic contaminating substances easily, inexpensively, safely and environmentally friendly and, further, capable of preventing ground water contamination by detoxifying the contaminated soil. <P>SOLUTION: The treatment method of water quality contamination organic substance-containing waste is characterized in that the soil contaminated by harmful and hardly decomposable organic contaminating substances is treated by adding active carbon and metallic salt such as iron salt which have high peroxide decomposition ability and by adding an oxidizing agent such as peroxide under conditions of pH 5 or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、難分解性有機汚染物質などで汚染された土壌の処理方法に関する。   The present invention relates to a method for treating soil contaminated with persistent organic pollutants and the like.

近年、有機塩素化合物(パークロロエチレン、トリクロロエチレン、テトラクロロエタン、トリクロロエタン、クロロベンゼン類、クロロナフタレン類、ヘキサクロロシクロキサン、ポリクロロビフェニール(PCB)等)、芳香族化合物(フェノール、トルオール、カテコール、ビフェニル、キノリン、ジベンゾフラン、ピレン、フェナントレン、アントラセン、フルオレン、アセナフテン、カルバゾール等)、農薬・防腐剤(ジクロロジフェニルトリクロロエタン(DDT)、ベンゼンヘキサクロライド(BHC)、クレゾール、チウラム、シマジン、イソキサチオン、ダイアジノン、フェニトロチオン、クロルピリホス、トリクロルホン、ブタホミス、プロピザミド等)、石油及びその留分(原油、重油、軽油、灯油、潤滑油等)などの有害且つ難分解性な有機汚染物質による土壌汚染や地下水汚染が顕在化し、大きな社会問題となってきている。   In recent years, organic chlorine compounds (perchloroethylene, trichloroethylene, tetrachloroethane, trichloroethane, chlorobenzenes, chloronaphthalenes, hexachlorocyclohexane, polychlorobiphenyl (PCB), etc.), aromatic compounds (phenol, toluol, catechol, biphenyl, quinoline) , Dibenzofuran, pyrene, phenanthrene, anthracene, fluorene, acenaphthene, carbazole, etc.), agricultural chemicals / preservatives (dichlorodiphenyltrichloroethane (DDT), benzenehexachloride (BHC), cresol, thiuram, simazine, isoxathione, diazinone, fenitrothion, chlorpyrifos, Trichlorphone, butahomis, propizzamide, etc.), petroleum and its fractions (crude oil, heavy oil, light oil, kerosene, lubricating oil, etc.) Harmful and soil pollution and groundwater contamination by persistent organic pollutants has become a manifest, serious social problem.

これに対して、種々の方法が提案・実行されてきており、大別すると(1)汚染土壌を原位置で浄化する方法、(2)汚染土壌を原位置でそのまま封じ込めする方法、(3)汚染土壌を掘削後、原位置で浄化して埋め戻す方法、(4)汚染土壌を掘削後、処理設備へ移送・浄化し、その後埋立処分などで廃棄する方法、等に分けられる。   On the other hand, various methods have been proposed and implemented, and can be broadly classified as follows: (1) a method for purifying contaminated soil in situ, (2) a method for containing contaminated soil in situ, (3) After excavating contaminated soil, it can be divided into a method of purifying and refilling in situ, and (4) a method of excavating contaminated soil, transferring it to a treatment facility, purifying it, and then disposing it by landfill.

(1)の原位置で浄化する方法としては、微生物による方法(特許文献1〜5参照)、植物による方法、各種薬剤などを利用した化学的分解法(特許文献6、7参照、非特許文献1参照)、光触媒などを使用した分解(特許文献8参照)、減圧などにより土壌から発生するガスを吸引する方法(非特許文献1参照)、活性炭などを注入する方法(特許文献9、10参照)、生石灰を注入し水和反応による熱で汚染物質を揮発させる方法(非特許文献1参照)等が、(2)の原位置でそのまま封じ込めする方法としてはセメントや各種薬剤を加え、不溶化する方法等(特許文献11参照)が、(3)の掘削後、原位置で浄化し、埋め戻す方法としては、汚染土壌を掘削した後、直接、微生物を利用して分解する、各種薬剤などを利用して化学的に分解する、減圧などにより土壌から発生するガスを吸引除去して浄化する、加熱処理により発生するガスを吸引して浄化する、加熱処理により汚染物質を分解する。あるいは、汚染土壌を種々の方法で抽出した後、抽出物を種々の方法(たとえば上記方法)で処理する等の方法(非特許文献1参照)がある。(4)の掘削後、処理設備へ移送、浄化し、その後埋立処分などで廃棄する方法としては、浄化方法としては上記の方法等が適用できる。 (1) In-situ purification methods include microorganism-based methods (see Patent Documents 1 to 5), plant-based methods, and chemical decomposition methods using various drugs (see Patent Documents 6 and 7, non-patent documents). 1), decomposition using a photocatalyst or the like (see Patent Document 8), a method of sucking gas generated from soil by decompression or the like (see Non-Patent Document 1), a method of injecting activated carbon or the like (see Patent Documents 9 and 10) ), The method of injecting quicklime and volatilizing the pollutants with heat from the hydration reaction (see Non-Patent Document 1), etc. As a method of containment as it is in the original position of (2), cement and various chemicals are added and insolubilized After the excavation of (3), the method or the like (see Patent Document 11) purifies and refills in place, after excavating the contaminated soil, directly using various microorganisms that decompose using microorganisms, etc. Utilize chemical Decompose, purify the gas generated from the soil by suction removed by reduced pressure, purifying by sucking gas generated by heat treatment to decompose the contaminants by heat treatment. Alternatively, there is a method (see Non-Patent Document 1) in which after extracting contaminated soil by various methods, the extract is treated by various methods (for example, the above method). After the excavation in (4), as a method for transferring to a treatment facility, purifying, and then disposing by landfill, etc., the above method can be applied as a purification method.

しかし、これらの方法はいずれも完全な方法とは言い難く、より良い技術の開発が望まれている。例えば、(1)の汚染土壌を原位置にて浄化する方法は、汚染土壌を移動することなく浄化が可能という利点はあるものの、微生物や植物による方法では、分解反応がゆっくり進行するため、効果が現れるまでに長時間を要すること。各種薬剤などを利用した化学的分解法では化学薬剤の残留などによる二次汚染がありうること。光触媒などを使用した分解法では光を照射する必要があること。減圧などにより土壌から発生するガスを吸引する方法では汚染物質の揮発性で効率が左右され、比較的揮発性の高い物質は効率よく除去されるが、揮発性の低い物質の除去効率は低い。活性炭などを注入する方法では吸着能力に見合う活性炭を使用する必要があること。生石灰を注入する方法では揮発性の低い物質の除去効率が悪いこと、などの問題がある。   However, none of these methods can be said to be perfect methods, and development of better technology is desired. For example, although the method (1) of purifying contaminated soil in situ has the advantage that it can be purified without moving the contaminated soil, the method using microorganisms or plants is effective because the decomposition reaction proceeds slowly. It takes a long time to appear. In chemical decomposition methods using various drugs, there may be secondary contamination due to residual chemical drugs. In the decomposition method using a photocatalyst, it is necessary to irradiate light. In the method of sucking gas generated from the soil by decompression or the like, the efficiency is affected by the volatility of the pollutant, and the relatively highly volatile substance is efficiently removed, but the removal efficiency of the less volatile substance is low. In the method of injecting activated carbon, etc., it is necessary to use activated carbon that matches the adsorption capacity. The method of injecting quicklime has problems such as poor removal efficiency of substances with low volatility.

(2)の汚染土壌を原位置でそのまま封じ込めする方法は、本質的に汚染物質が浄化されず、その場に残るため、常に、漏出する危険を残す問題がある。(3)の掘削後、原位置で浄化し、埋め戻す方法は、原位置にて浄化する方法より効率は良いものの、汚染土壌を掘削したり、抽出する工程が必要となり、多大な労力を必要とする他、場合によっては地上の建造物や植裁の撤去が必要となったり、現地に大がかりな処理設備を設置するなどの対応が必要となる問題がある。(4)の掘削後、処理設備へ移送、浄化し、その後埋立処分などで廃棄する方法は、掘削が完全であれば、現地の浄化としては良い方法であるが、汚染土壌を移動する必要があるため、汚染を広範囲に拡大する恐れがあることと、処理場での汚染浄化には上記(1)から(3)と同様の問題が発生しうること。さらには、最終埋め立て地の決定的な不足や、無害化処理が不十分であった場合には最終埋め立て地の汚染と言ったさらに深刻な問題が発生するおそれがある。
特開2003−116526号公報 特開2003−102469号公報 特開平8−80484号公報 特開平8−3012号公報 特開平10−34127号公報 特開2004−321887号公報 特表平11−500708号公報 特開2001−19954号公報 特開2003−164846号公報 特開2004−216249号公報 特開2003−290757号公報 大成建設株式会社パンフレット0211.1000.再S
The method (2) for containing contaminated soil as it is has the problem that it always leaves the danger of leakage because the pollutant is essentially not purified and remains on the spot. After excavation in (3), the method of purifying and backfilling in situ is more efficient than the method of purifying in situ, but it requires a process of excavating and extracting contaminated soil and requires a lot of labor. In some cases, it may be necessary to remove structures and plantations on the ground, or to install large-scale treatment facilities locally. After excavation in (4), the method of transferring to a treatment facility, purifying, and then disposing by landfill disposal is a good method for local purification if excavation is complete, but it is necessary to move contaminated soil. Therefore, there is a risk that the contamination may be spread over a wide range, and the same problems as in (1) to (3) above may occur in the purification of the contamination at the treatment plant. Furthermore, there is a risk that a serious problem such as contamination of the final landfill may occur if the final landfill is critically insufficient or the detoxification treatment is insufficient.
JP2003-116526A JP 2003-102469 A JP-A-8-80484 JP-A-8-3012 JP 10-34127 A JP 2004-321887 A Japanese National Patent Publication No. 11-500708 JP 2001-19554 A Japanese Patent Laid-Open No. 2003-164846 JP 2004-216249 A JP 2003-290757 A Taisei Corporation Pamphlet 0211.1000. Re-S

本発明は、有機塩素化合物、農薬・防腐剤、石油及びその留分等の有害且つ微生物難分解性な有機汚染物質による土壌汚染を容易にかつ低コストで、安全に環境に優しく無害化し、さらに、土壌汚染を浄化することにより、地下水汚染を防止することも可能となる新しい技術を提供するものである。   The present invention makes it easy and low-cost, environmentally friendly and harmless to soil contamination by organic pollutants that are toxic and difficult to decompose, such as organochlorine compounds, agricultural chemicals / preservatives, petroleum and its fractions, In addition, by purifying soil contamination, it provides a new technology that can prevent groundwater contamination.

本発明者等は、上記課題について鋭意検討した結果、過酸化水素分解能力の高い活性炭と鉄塩などの金属塩を、過酸化水素などの酸化剤と併用することで、土壌中の汚染物質を低コストで容易に、かつ安全で環境に優しく無害化できることを見出した。即ち、本発明は、汚染土壌の浄化方法において、鉄塩などの金属塩および過酸化水素分解能力の高い活性炭を加え、可能ならばpHを5以下に調整し、さらに、過酸化水素などの酸化剤を加え、該土壌を処理することを特長とする難分解性の有機汚染物質により汚染された土壌の処理方法に関するものである。   As a result of intensive studies on the above problems, the present inventors have used activated carbon having a high ability to decompose hydrogen peroxide and a metal salt such as iron salt in combination with an oxidizing agent such as hydrogen peroxide to reduce pollutants in the soil. It was found that it can be made harmless easily at low cost, easily and safely. That is, the present invention adds a metal salt such as an iron salt and activated carbon having a high ability to decompose hydrogen peroxide in a method for purifying contaminated soil, adjusts the pH to 5 or lower if possible, and further oxidizes such as hydrogen peroxide. The present invention relates to a method for treating soil contaminated with persistent organic pollutants, characterized by adding an agent and treating the soil.

本発明によれば、広範囲の難分解性有機物で汚染された土壌を、二次公害などを発生させることなく、温和な条件で、短時間でかつ非常に効率良く、安価に浄化処理できるので産業上極めて有用な方法である。   According to the present invention, soil contaminated with a wide range of hardly decomposable organic substances can be purified in a short time, very efficiently and inexpensively under mild conditions without causing secondary pollution, etc. This is a very useful method.

本発明の特徴は、過酸化水素などの酸化剤を使用するにもかかわらず、過酸化水素分解能力の高い活性炭を使用することにある。本発明に使用する活性炭の過酸化水素分解能力は、温度27℃、過酸化水素濃度0.5重量%の水溶液において、活性炭を0.5%添加し、60分間放置後、残存過酸化水素濃度を測定し、下式で算出される過酸化水素分解率で表される。
過酸化水素分解率=(0.5−残存過酸化水素濃度(%))/0.5×100
A feature of the present invention resides in the use of activated carbon having a high ability to decompose hydrogen peroxide despite the use of an oxidizing agent such as hydrogen peroxide. The activated carbon used in the present invention has the ability to decompose hydrogen peroxide in an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight. Is measured by the hydrogen peroxide decomposition rate calculated by the following formula.
Hydrogen peroxide decomposition rate = (0.5−residual hydrogen peroxide concentration (%)) / 0.5 × 100

本発明においては上記過酸化水素分解率が5%以上、好ましくは20%以上の活性炭を用いる。過酸化水素分解活性が高いほど、土壌中の汚染物質の分解が効率的に進み、活性炭使用量を少なく、処理時間を短くでき有利である。過酸化水素分解率5%以下では大量の活性炭が必要とされる或いは非常に長い処理時間が必要となり、本発明の目的を達することができない。   In the present invention, activated carbon having a hydrogen peroxide decomposition rate of 5% or more, preferably 20% or more is used. The higher the hydrogen peroxide decomposing activity, the more efficiently the decomposition of pollutants in the soil proceeds, and the amount of activated carbon used is reduced, and the treatment time can be shortened. When the hydrogen peroxide decomposition rate is 5% or less, a large amount of activated carbon is required or a very long treatment time is required, and the object of the present invention cannot be achieved.

本発明で使用する活性炭は、過酸化水素分解能力を有するものであればよく、その由来は特に限定されないが、通常、木材、セルロース、のこくず、木炭、ヤシガラ炭、パーム核炭、素灰などの植物質を原料としたもの、泥炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭系鉱物質を原料としたもの、石油残渣、硫酸スラッジ、オイルカーボンなどの石油系鉱物質を原料としたもの。蛋白質を原料としたもの、蛋白質を含有する汚泥もしくは廃棄物を出発原料としたもの、発酵生産の廃菌体を原料としたもの、ポリアクリロニトリル(PAN)を原料としたもの、などが挙げられ、特に瀝青炭、廃菌体、PANが好適に使用される。また、これら活性炭に処理を加えることにより、過酸化水素分解能力を付与する、或いは向上させて使用することもできる。   The activated carbon used in the present invention is not limited as long as it has hydrogen peroxide decomposing ability, and its origin is not particularly limited, but usually wood, cellulose, sawdust, charcoal, coconut husk charcoal, palm kernel charcoal, uncoated ash Using plant materials such as peat, lignite, lignite, bituminous coal, anthracite and other coal-based minerals, petroleum residue, sulfate sludge, oil carbon and other petroleum-based minerals . Those using protein as raw materials, those using protein-containing sludge or waste as starting materials, those using waste bacterial cells from fermentation production, those using polyacrylonitrile (PAN) as raw materials, etc. In particular, bituminous coal, waste cells, and PAN are preferably used. Moreover, by adding a treatment to these activated carbons, the ability to decompose hydrogen peroxide can be imparted or used.

また、使用する活性炭は微粉末であるほどその効果が大きく、特に1000μm以下、望ましくは300μm以下の微粉末を使用することで、その効果を高めることができる。これは微粉末とすることにより接触面積が大きくなり、もって過酸化水素分解率が上がることに由来すると考えられる。粒径が1000μm以上、例えば10mmであっても、過酸化水素分解能力があれば本発明の目的は達することができるが、使用量が多くなり、或いは処理時間を長くする必要があり、工業的操作性も勘案すると1000μm以下が好ましい。また、活性炭は、工業的には、粉塵発生抑制、操作性の点で懸濁液としての供給の方が有利であり、懸濁液の流動性、操作性の点から、1000μm以下、好ましくは300μm以下の粉末の懸濁液として供給することが好ましく、さらに、活性炭は、通常水分吸着などによりその吸着能力を減ずるが、本発明においては、活性炭を水などの分散媒中に懸濁して使用することができる。   Further, the activated carbon used is more effective as the powder becomes finer, and the effect can be enhanced by using a fine powder of 1000 μm or less, preferably 300 μm or less. This is considered to be due to the fact that the contact area is increased by using fine powder, and the decomposition rate of hydrogen peroxide is increased. Even if the particle size is 1000 μm or more, for example, 10 mm, the object of the present invention can be achieved if it has the ability to decompose hydrogen peroxide. However, it is necessary to increase the amount of use or to increase the treatment time. In consideration of operability, it is preferably 1000 μm or less. In addition, activated carbon is industrially more advantageous to supply as a suspension in terms of dust generation suppression and operability. From the viewpoint of fluidity and operability of the suspension, 1000 μm or less, preferably It is preferable to supply it as a suspension of powder of 300 μm or less. Furthermore, activated carbon usually reduces its adsorption capacity by moisture adsorption or the like. In the present invention, activated carbon is suspended in a dispersion medium such as water. can do.

微粉末にする方法としては、古くからある石臼の様に粉砕する石臼式、胴体の回転等によるロッドの落下衝撃力で粉砕するロッド式、胴体の回転等によるボールの落下衝撃力で粉砕するボール式、遠心力が作用するローラーとタイヤの間で粉砕する遠心ローラー式、粉体の流動層内へジェット気流を吹き込み粉体同士の衝突で粉砕するジェット式、遠心場内で小さなボールを運動させ粉砕する攪拌式などが挙げられる。さらに、各機器メーカーにより、これらを組み合わせた形の粉砕器も多数開発されている。また、乾燥状態で粉砕する乾式法と、水などで湿潤化させた状態で粉砕する湿式法が各々適用できる場合もある。活性炭を微粉末にする方法に特に限定はないが、より微粉末とすることができ、粉砕時の発塵などを防止できる点で、ボール式や攪拌式などが好適に使用できる。   The fine powder can be crushed like an old millstone, a rod mill that grinds with the drop impact force of the rod due to rotation of the fuselage, or a ball that grinds with the ball drop impact force due to rotation of the fuselage, etc. Type, centrifugal roller type that crushes between the roller and the tire on which centrifugal force acts, jet type that blows a jet stream into the fluidized bed of powder and crushes by collision of powder, pulverizes by moving a small ball in the centrifuge And a stirring type. In addition, a number of pulverizers that combine these have been developed by each equipment manufacturer. In some cases, a dry method of pulverizing in a dry state and a wet method of pulverizing in a state moistened with water or the like may be applied. There is no particular limitation on the method of making activated carbon into a fine powder, but a ball type or a stirring type can be suitably used in that it can be made into a finer powder and can prevent dusting during pulverization.

本発明では過酸化水素分解能力のある活性炭とともに、酸化剤、金属成分を用いる。これらは、通常の酸化処理法による廃棄物処理に用いられているものであれば良く、特に制限はなく、酸化剤としては、例えば過酸化水素、過酢酸、過酢酸塩、過炭酸、過炭酸塩、過硫酸、過硫酸塩、過ホウ酸、過ホウ酸塩、次亜塩素酸、次亜塩素酸塩、オゾン、酸素、塩素、空気などが挙げられ、操作性、価格などの点から過酸化水素が好ましい。金属成分としては、銅、マンガン、鉄などが好適に用いられるが、安全性、経済性などの点から、鉄塩が好ましい。鉄塩としては例えば硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄、シュウ酸鉄(II)、臭化鉄(II)、臭化鉄(III)、硝酸鉄臭化鉄(III)、フマル酸鉄(III)、フッ化鉄(III)、グルコン酸鉄(II)、水酸化鉄(III)、次亜リン酸鉄(III)、乳酸鉄(II)などが挙げられるが、価格、操作性の点から硫酸第一鉄や塩化第一鉄が好ましい。 In the present invention, an oxidizing agent and a metal component are used together with activated carbon capable of decomposing hydrogen peroxide. These are not particularly limited as long as they are used for waste treatment by a normal oxidation treatment method. Examples of the oxidizing agent include hydrogen peroxide, peracetic acid, peracetic acid salt, percarbonate, percarbonate. Salt, persulfuric acid, persulfate, perboric acid, perborate, hypochlorous acid, hypochlorite, ozone, oxygen, chlorine, air, etc. Hydrogen oxide is preferred. As the metal component, copper, manganese, iron and the like are preferably used, but iron salts are preferable from the viewpoint of safety and economy. Examples of iron salts include ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, iron (II) oxalate, iron (II) bromide, iron (III) bromide, iron nitrate bromide Iron (III), iron (III) fumarate, iron (III) fluoride, iron (II) gluconate, iron (III) hydroxide, iron (III) hypophosphite, iron (II) lactate, etc. However, ferrous sulfate and ferrous chloride are preferable from the viewpoint of cost and operability.

酸化剤、鉄塩の使用量には特に制限はなく、必要とされる廃液の処理レベルにより適宜選択されるが、一般的には、酸化剤は、過酸化水素に換算して、処理土壌に対して0.1〜50重量%、鉄塩は、硫酸第一鉄に換算して、処理土壌に対して0.01〜5重量%、過酸化水素分解能力のある活性炭は、処理土壌に対して0.01〜5重量%である。本発明による処理では、pHを5以下とするのが好ましい。pHが高い場合は効果が損なわれる。pHの調整法としては、特に制限はないが、硫酸、塩酸、硝酸、リン酸などを添加することが挙げられるが、価格、操作性などから、硫酸が好適に使用される。 There are no particular restrictions on the amount of the oxidizer and iron salt used, and it is appropriately selected depending on the required treatment level of the waste liquid. In general, the oxidizer is converted into hydrogen peroxide and treated in the treated soil. In contrast, 0.1 to 50% by weight, iron salt is converted to ferrous sulfate, 0.01 to 5% by weight with respect to the treated soil, and activated carbon having the ability to decompose hydrogen peroxide is with respect to the treated soil. 0.01 to 5% by weight. In the treatment according to the present invention, the pH is preferably 5 or less. When the pH is high, the effect is impaired. Although there is no restriction | limiting in particular as a pH adjustment method, Although sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. are mentioned, A sulfuric acid is used suitably from a price, operativity, etc.

汚染土壌と、鉄塩などの金属塩および過酸化水素分解能力のある活性炭の混合方法に特に制限は無いが、通常は、まず、これらの薬剤の内、金属塩、過酸化水素分解能力のある活性炭、好ましくはpH調整剤を混入する。これらを土壌中に混入する方法としては、例えば固体の薬剤は、粒状又は粉末上にして散布し、さらにすき込む方法や、これらの薬剤を水溶液又はスラリー状にして散布する方法、これらの薬剤を水溶液又はスラリー状にして土壌中に圧入する方法、土壌を掘上げ、ミキサー等を用いて土壌中に混ぜ込む方法等が挙げられるが、その他何れの方法でもよく、出来る限り均等に混ざることが好ましいが、多少不均一であっても目的は十分に達成される。さらに、油分などの水に溶解しにくい汚染物質が多量に含まれる場合は、処理をより効率的に行うために、汚染物を含まない、あるいは汚染物濃度の低い土壌や、珪藻土などの坦体を、追加することで、汚染物質の分散を良くし、浄化処理の効率を向上させることもできる。   There are no particular restrictions on the method of mixing contaminated soil with metal salts such as iron salts and activated carbon capable of decomposing hydrogen peroxide. Usually, however, these agents are first capable of decomposing metal salts and hydrogen peroxide. Activated carbon, preferably a pH adjuster is mixed. As a method of mixing these into the soil, for example, a solid drug is sprayed in the form of particles or powder, and further, a method of swallowing, a method of spraying these drugs in an aqueous solution or slurry, Examples include a method of press-fitting into the soil in the form of an aqueous solution or slurry, a method of digging up the soil, and mixing into the soil using a mixer, etc., but any other method may be used, and it is preferable to mix as evenly as possible. However, even if it is somewhat non-uniform, the object is sufficiently achieved. In addition, if there is a large amount of pollutants that are difficult to dissolve in water such as oil, in order to perform the treatment more efficiently, soils that do not contain pollutants or have low concentrations of pollutants, or carriers such as diatomaceous earth Can be added to improve the dispersion of pollutants and improve the efficiency of the purification process.

一般的には、その後、過酸化水素を混入するが、その方法としては、例えば、過酸化水素水を散布する方法、過酸化水素水を、土壌中に圧入する方法等が挙げられる。また、一度に所定量を散布あるいは圧入する方法、所定量を何回かに分割して散布あるいは圧入する方法、一定時間をかけて所定量を連続して散布あるいは圧入する方法などがあり、一般的には、連続法、分割法、一括法の順で、より効率的な浄化処理が行える。また、土壌からの浸出水へ過酸化水素を追加したものを循環させる方法も有効である。さらに、本法によれば、過酸化水素分解能力のある活性炭を使用するため、たとえ過酸化水素が残存したとしても、過酸化水素分解能力のある活性炭により過酸化水素が分解され、環境中に残留するおそれもない。さらに、過酸化水素添加処理後に適当なアルカリ剤、たとえば、水酸化ナトリウム、消石灰などを固体のまま、あるいは、水溶液として散布、混合し、土壌を中性にもどすことも可能である。 In general, hydrogen peroxide is then mixed in. Examples of the method include a method of spraying hydrogen peroxide solution, a method of press-fitting hydrogen peroxide solution into soil, and the like. Also, there are a method of spraying or press-fitting a predetermined amount at a time, a method of spraying or press-fitting a predetermined amount into several times, a method of spraying or press-fitting a predetermined amount continuously over a certain time, etc. Specifically, more efficient purification treatment can be performed in the order of continuous method, division method, and batch method. Another effective method is to circulate a solution of hydrogen peroxide added to the leachate from the soil. Furthermore, according to this method, activated carbon that has the ability to decompose hydrogen peroxide is used, so even if hydrogen peroxide remains, hydrogen peroxide is decomposed by activated carbon that has the ability to decompose hydrogen peroxide. There is no risk of remaining. Furthermore, it is also possible to return the soil to neutrality by spraying and mixing an appropriate alkaline agent such as sodium hydroxide or slaked lime as a solid or as an aqueous solution after the hydrogen peroxide addition treatment.

また、本発明は、汚染地域から搬出された汚染土壌を、別の処理場で処理することが可能な他、汚染土壌を搬出せずとも、原位置にても浄化が可能である。原位置で浄化することにより、大量の汚染土壌を搬出する必要がなくなり、移送費用等が安価になり、さらに、汚染土壌の移動・運搬にかかわる問題なども回避することが出来る利点を有する。   Moreover, this invention can process the contaminated soil carried out from the contaminated area in another processing plant, and can also purify it in its original position without carrying out the contaminated soil. By purifying in-situ, there is no need to carry out a large amount of contaminated soil, the transportation cost and the like are reduced, and further, problems related to the movement and transportation of contaminated soil can be avoided.

以下実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example.

参考例1:活性炭の種類
500ppmに希釈したエタノールをモデル廃液として、その1Lに対して、硫酸によりpHを2.7に調整した後、表1に示した硫酸第一鉄7水塩、活性炭を加え、表1に示した過酸化水素を8時間かけて滴下した。表中各成分の濃度はモデル廃液に対する値である。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化カルシウムでpHを中性とした後、一部を濾別してろ過液についてTOC(全有機炭素)測定を行った。同時に過酸化水素を添加せずに同様の実験を行い、TOC測定を行った。過酸化水素無添加実験のTOC測定値に対する過酸化水素添加実験のTOC測定値の比率からTOC分解率を算出した。結果を表1に示す。
Reference Example 1: Type of activated carbon Ethanol diluted to 500 ppm was used as a model waste solution, and after adjusting pH to 2.7 with sulfuric acid for 1 L, ferrous sulfate heptahydrate and activated carbon shown in Table 1 were used. In addition, hydrogen peroxide shown in Table 1 was added dropwise over 8 hours. The concentration of each component in the table is the value for the model waste liquid. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with calcium hydroxide, a part was filtered off, and the TOC (total organic carbon) measurement was performed on the filtrate. At the same time, the same experiment was performed without adding hydrogen peroxide, and TOC measurement was performed. The TOC decomposition rate was calculated from the ratio of the TOC measurement value of the hydrogen peroxide addition experiment to the TOC measurement value of the hydrogen peroxide non-addition experiment. The results are shown in Table 1.

Figure 2006247483
Figure 2006247483

参考例2:活性炭の粒径
500ppmに希釈したジメチルスルホキシド(DMSO)をモデル廃液として、活性炭として種々の平均粒径の廃菌体系活性炭の20重量%水スラリー液の3000ppmを用いた以外は、実施例1と同様に実験を行った。結果を表2に示す。
Reference Example 2: Activated charcoal Particle size of dimethyl sulfoxide (DMSO) diluted to 500 ppm was used as a model waste liquid, except that 3000 ppm of 20 wt% water slurry liquid of waste fungal activated carbon with various average particle diameters was used as activated carbon. The experiment was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2006247483
Figure 2006247483

実施例1
ガソリンスタンド跡地からサンプリングした油汚染土壌の100gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表3に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表3に示した過酸化水素を表3に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、濾別後残った土壌について臭気とTPH(Total Petroleum Hydro Carbon)を測定した。結果を表3に示した。臭いの大幅な低減とTPHの分解が認められた。
Example 1
To 100 g of oil-contaminated soil sampled from a gas station site, ferrous sulfate heptahydrate and 20 wt% water slurry of bituminous coal-based activated carbon (average particle size 100 μm) were added and mixed at the concentrations shown in Table 3. Then, after adjusting the pH to 2.7 with sulfuric acid, the hydrogen peroxide shown in Table 3 was mixed while dropping at the time shown in Table 3. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, and the odor and TPH (Total Petroleum Hydro Carbon) were measured on the soil remaining after filtration. The results are shown in Table 3. A significant reduction in odor and decomposition of TPH were observed.

Figure 2006247483
Figure 2006247483

比較例1
実施例1で使用したと同じ油汚染土壌の100gに対して、硫酸第一鉄7水塩と、必要に応じて瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表4に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表4に示した水あるいは過酸化水素を表4に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、濾別後残った土壌について臭気とTPHを測定した。結果を表4に示した。実施例1と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 1
For 100 g of the same oil-contaminated soil used in Example 1, ferrous sulfate heptahydrate and 20 wt% water slurry liquid of bituminous coal-based activated carbon (average particle size 100 μm) as necessary are shown in Table 4. After adding and mixing at the indicated concentrations and adjusting the pH to 2.7 with sulfuric acid, water or hydrogen peroxide shown in Table 4 was added dropwise at the times shown in Table 4. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, and the odor and TPH were measured on the soil remaining after filtration. The results are shown in Table 4. Compared to Example 1, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例2:酸化剤の量の検討
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表5に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表5に示した過酸化水素を表5に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、濾別し、残った土壌について臭気とTPHを測定した。結果を表5に示した。臭いの大幅な低減とTPHの分解が認められた。
Example 2 Examination of Amount of Oxidizing Agent 10 g of A heavy oil was added to 10 kg of horticultural culture soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, ferrous sulfate heptahydrate and 20 wt% water slurry of bituminous coal-based activated carbon (average particle size 100 μm) were added and mixed at the concentrations shown in Table 5, and sulfuric acid was used. After adjusting the pH to 2.7, the hydrogen peroxide shown in Table 5 was mixed dropwise at the time shown in Table 5. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the mixture was filtered and the remaining soil was measured for odor and TPH. The results are shown in Table 5. A significant reduction in odor and decomposition of TPH were observed.

Figure 2006247483
Figure 2006247483

比較例2
実施例2で使用したと同じ油汚染土壌の100gに対して、硫酸第一鉄7水塩と、必要に応じて瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表6に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表6に示した水あるいは過酸化水素を表6に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、濾別し、残った土壌について臭気とTPHを測定した。結果を表6に示した。実施例2と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 2
For 100 g of the same oil-contaminated soil used in Example 2, ferrous sulfate heptahydrate and 20 wt% water slurry liquid of bituminous coal-based activated carbon (average particle size 100 μm) as necessary are shown in Table 6. After adding and mixing at the indicated concentrations and adjusting the pH to 2.7 with sulfuric acid, water or hydrogen peroxide shown in Table 6 was added dropwise at the times shown in Table 6. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the mixture was filtered and the remaining soil was measured for odor and TPH. The results are shown in Table 6. Compared to Example 2, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例3:活性炭の原料の種類
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、硫酸第一鉄7水塩と、種々の活性炭(平均粒子径100μm)の粉末を表7に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表7に示した過酸化水素を表7に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表7に示した。臭いの大幅な低減とTPHの分解が認められた。
Example 3: Type of activated carbon raw material 10 g of A heavy oil was added to 10 kg of horticultural culture soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, ferrous sulfate heptahydrate and various activated carbon (average particle size 100 μm) powders were added and mixed at the concentrations shown in Table 7, and the pH was adjusted to 2.7 with sulfuric acid. Then, the hydrogen peroxide shown in Table 7 was mixed while being dropped at the time shown in Table 7. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 7. A significant reduction in odor and decomposition of TPH were observed.

Figure 2006247483
Figure 2006247483

比較例3
実施例3で使用したと同じ油汚染土壌の100gに対して、硫酸第一鉄7水塩と、必要に応じて瀝青炭系活性炭(平均粒子径100μm)の粉末を表8に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表8に示した水あるいは過酸化水素を表8に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表8に示した。実施例3と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 3
For 100 g of the same oil-contaminated soil used in Example 3, ferrous sulfate heptahydrate and, if necessary, powder of bituminous coal-based activated carbon (average particle size 100 μm) were added at the concentrations shown in Table 8. After mixing and adjusting the pH to 2.7 with sulfuric acid, water or hydrogen peroxide shown in Table 8 was added dropwise for the time shown in Table 8. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 8. Compared to Example 3, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例4:活性炭の粒径
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、硫酸第一鉄7水塩と、表9に示した平均粒径の瀝青炭系活性炭の粉末を表9に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表9に示した過酸化水素を表9に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表9に示した。平均粒径が小さいほど臭いの大幅な低減とTPHの分解が認められた。
Example 4 Particle Size of Activated Carbon 10 g of A heavy oil was added to 10 kg of horticultural culture soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, ferrous sulfate heptahydrate and bituminous charcoal activated carbon powder having the average particle size shown in Table 9 were added and mixed at the concentrations shown in Table 9, and the pH was adjusted with sulfuric acid. After adjusting to 2.7, the hydrogen peroxide shown in Table 9 was mixed while being dropped at the time shown in Table 9. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 9. The smaller the average particle size, the greater the reduction in odor and the decomposition of TPH.

Figure 2006247483
Figure 2006247483

比較例4
実施例4で使用したと同じ油汚染土壌の100gに対して、硫酸第一鉄7水塩と、表10に示した平均粒径の瀝青炭系活性炭の粉末を表10に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表10に示した水を表10に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表10に示した。実施例4と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 4
To 100 g of the same oil-contaminated soil used in Example 4, ferrous sulfate heptahydrate and bituminous coal-based activated carbon powder having the average particle size shown in Table 10 were added and mixed at the concentrations shown in Table 10 Then, after adjusting the pH to 2.7 with sulfuric acid, the water shown in Table 10 was mixed while being dropped at the time shown in Table 10. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 10. Compared to Example 4, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例5:金属類
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、表11に示した金属塩ないし金属粉末と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表11に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表11に示した過酸化水素を表11に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表11に示した。大幅な低減とTPHの分解が認められた。
Example 5: Metals 10 g of heavy oil A was added to 10 kg of horticultural soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, a metal salt or metal powder shown in Table 11 and a 20 wt% water slurry solution of bituminous coal-based activated carbon (average particle size 100 μm) are added and mixed at the concentrations shown in Table 11. After adjusting the pH to 2.7 with sulfuric acid, the hydrogen peroxide shown in Table 11 was mixed while being dropped for the time shown in Table 11. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 11. Significant reduction and TPH degradation was observed.

Figure 2006247483
Figure 2006247483

比較例5
実施例5で使用したと同じ油汚染土壌の100gに対して、表12に示した金属塩ないし金属粉末を表12に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表12に示した過酸化水素を表12に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムでpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。実施例5と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 5
After adding and mixing the metal salt or metal powder shown in Table 12 in the concentration shown in Table 12 to 100 g of the same oil-contaminated soil used in Example 5, the pH was adjusted to 2.7 with sulfuric acid. The hydrogen peroxide shown in Table 12 was mixed while being dropped at the time shown in Table 12. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with sodium hydroxide, followed by filtration, and the remaining soil was measured for odor and TPH. Compared to Example 5, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例6:pH
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表13に示した濃度で添加混合し、硫酸でpHを表13に示した値に調整した後、表13に示した過酸化水素を表13に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表13に示した。大幅な低減とTPHの分解が認められた。
Example 6: pH
10 g of heavy oil A was added to 10 kg of horticultural culture soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, ferrous sulfate heptahydrate and bituminous charcoal-based activated carbon (average particle size 100 μm) 20 wt% water slurry liquid were added and mixed at the concentrations shown in Table 13, After adjusting the pH to the value shown in Table 13, the hydrogen peroxide shown in Table 13 was mixed while dropping at the time shown in Table 13. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 13. Significant reduction and TPH degradation was observed.

Figure 2006247483
Figure 2006247483

比較例6
実施例6で使用したと同じ油汚染土壌の100gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表13に示した濃度で添加混合し、硫酸でpHを表13に示した値に調整した後、表13に示した過酸化水素を表13に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、消石灰でpHを中性とした後、濾別し、残った土壌について臭気とTPHを測定した。結果を表14に示した。実施例6と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 6
For 100 g of the same oil-contaminated soil used in Example 6, ferrous sulfate heptahydrate and 20 wt% water slurry liquid of bituminous coal-based activated carbon (average particle size 100 μm) at the concentrations shown in Table 13 The mixture was added and mixed, and the pH was adjusted to the value shown in Table 13 with sulfuric acid, and then the hydrogen peroxide shown in Table 13 was added dropwise at the time shown in Table 13. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the pH was neutralized with slaked lime, followed by filtration, and the remaining soil was measured for odor and TPH. The results are shown in Table 14. Compared to Example 6, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例7:坦体の添加
A重油を1gと表15に示した園芸用の培養土(含水率16%に調整したもの)を混合し、種々の油濃度の模擬汚染土壌を作成した。このモデル油汚染土壌に対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表15に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表15に示した過酸化水素を表15に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後、濾別し、残った土壌について臭気とTPHを測定した。結果を表15に示した。同一量の油に対して、培養土の量が多いほど、臭いの大幅な低減とTPHの分解が認められた。
Example 7: Addition of carrier 1 g of A heavy oil and horticultural culture soil shown in Table 15 (adjusted to a moisture content of 16%) were mixed to prepare simulated contaminated soils having various oil concentrations. To this model oil-contaminated soil, ferrous sulfate heptahydrate and bituminous charcoal-based activated carbon (average particle size 100 μm) 20 wt% water slurry solution are added and mixed at the concentrations shown in Table 15, and pH is adjusted with sulfuric acid. After adjusting to 2.7, the hydrogen peroxide shown in Table 15 was mixed dropwise at the time shown in Table 15. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, the mixture was filtered and the remaining soil was measured for odor and TPH. The results are shown in Table 15. For the same amount of oil, a greater reduction in odor and decomposition of TPH was observed as the amount of culture soil increased.

Figure 2006247483
Figure 2006247483

比較例7
A重油を1gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表16に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、表16に示した過酸化水素を表16に示した時間で滴下しながら混合した。処理温度は20℃とした。過酸化水素の滴下終了後に、臭気とTPHを測定した。結果を表16に示した。実施例7と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 7
Add 1 g of A heavy oil to 1 g of ferrous sulfate heptahydrate and 20 wt% water slurry of bituminous coal-based activated carbon (average particle size 100 μm) at the concentrations shown in Table 16, and adjust the pH to 2 with sulfuric acid. After adjusting to 0.7, the hydrogen peroxide shown in Table 16 was mixed while being dropped for the time shown in Table 16. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, odor and TPH were measured. The results are shown in Table 16. Compared to Example 7, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

実施例8:浸出水の循環
園芸用の培養土を含水率16%に調整したもの10kgへA重油を10g添加し模擬汚染土壌を作成した。このモデル油汚染土壌の100gに対して、硫酸第一鉄7水塩と、瀝青炭系活性炭(平均粒子径100μm)の20重量%水スラリー液を表5に示した濃度で添加混合し、硫酸でpHを2.7に調整した後、底部にグラスウールを充填した直径3cmの円筒容器に充填し、100gの水を上部より注ぎ込み、底部から抜け出た水を再度上部から注ぎ込む形で、液を循環させた。その時の循環速度は0.1L/時間とした。この循環水へ、表17に示した過酸化水素を表17に示した時間で添加した。処理温度は20℃とした。過酸化水素の滴下終了後、水酸化ナトリウムを液に加えて、pHを中性とした後、液を除去し、残った土壌について臭気とTPHを測定した。結果を表17に示した。土壌を混合せずとも、臭いの大幅な低減とTPHの分解が認められた。
Example 8: Circulation of leachate 10 g of A heavy oil was added to 10 kg of horticultural culture soil adjusted to a moisture content of 16% to prepare simulated contaminated soil. To 100 g of this model oil-contaminated soil, ferrous sulfate heptahydrate and 20 wt% water slurry of bituminous coal-based activated carbon (average particle size 100 μm) were added and mixed at the concentrations shown in Table 5, and sulfuric acid was used. After adjusting the pH to 2.7, the liquid is circulated in such a manner that a cylindrical container with a diameter of 3 cm filled with glass wool at the bottom is poured, 100 g of water is poured from the top, and water that has come out from the bottom is poured again from the top. It was. The circulation speed at that time was 0.1 L / hour. Hydrogen peroxide shown in Table 17 was added to this circulating water for the time shown in Table 17. The treatment temperature was 20 ° C. After completion of the dropwise addition of hydrogen peroxide, sodium hydroxide was added to the solution to neutralize the pH, the solution was removed, and the remaining soil was measured for odor and TPH. The results are shown in Table 17. Even without mixing the soil, a significant reduction in odor and decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

比較例8
実施例8と同様の実験系で、35重量%過酸化水素の替わりに、水を同量使用して試験を行った。結果を表18に示した。実施例8と比較して、臭いの大幅な低減やTPHの分解は認められなかった。
Comparative Example 8
In the same experimental system as in Example 8, a test was conducted using the same amount of water instead of 35 wt% hydrogen peroxide. The results are shown in Table 18. Compared to Example 8, no significant reduction in odor or decomposition of TPH was observed.

Figure 2006247483
Figure 2006247483

Claims (8)

難分解性有機物で汚染された土壌に金属塩、過酸化水素分解能力を有する活性炭および酸化剤を添加することを特徴とする汚染土壌の処理方法。   A method for treating contaminated soil, comprising adding a metal salt, activated carbon having an ability to decompose hydrogen peroxide, and an oxidizing agent to soil contaminated with a hardly decomposable organic matter. 金属が鉄、銅またはマンガンである請求項1記載の汚染土壌の処理方法。   The method for treating contaminated soil according to claim 1, wherein the metal is iron, copper or manganese. 酸化剤が過酸化水素である請求項1記載の汚染土壌の処理方法。   The method for treating contaminated soil according to claim 1, wherein the oxidizing agent is hydrogen peroxide. 処理開始時のpHを5以下に調整することを特徴とする請求項1記載の汚染土壌の処理方法。   The method for treating contaminated soil according to claim 1, wherein the pH at the start of treatment is adjusted to 5 or less. 活性炭が、温度27℃、過酸化水素濃度0.5重量%の水溶液において、活性炭を0.5重量%添加した時の60分後の過酸化水素分解率が5%以上の過酸化水素分解能を有するものであることを特徴とする請求項1記載の汚染土壌の処理方法。   In an aqueous solution with an activated carbon temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight, the hydrogen peroxide decomposition rate after 5 minutes of addition of 0.5% by weight of activated carbon is 5% or more. The method for treating contaminated soil according to claim 1, comprising: 活性炭が、瀝青炭、廃菌体又はポリアクリロニトリルを原料とする請求項1記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1, wherein the activated carbon is made from bituminous coal, waste cells or polyacrylonitrile. 活性炭が、1000μm以下の微粉末であることを特徴とする請求項1記載の汚染土壌の処理方法。   The method for treating contaminated soil according to claim 1, wherein the activated carbon is a fine powder of 1000 μm or less. 活性炭が、1000μm以下の微粉末の懸濁液であることを特徴とする請求項1記載の汚染土壌の処理方法。   2. The method for treating contaminated soil according to claim 1, wherein the activated carbon is a suspension of fine powder of 1000 μm or less.
JP2005065114A 2005-03-09 2005-03-09 Treatment method of contaminated soil Pending JP2006247483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065114A JP2006247483A (en) 2005-03-09 2005-03-09 Treatment method of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065114A JP2006247483A (en) 2005-03-09 2005-03-09 Treatment method of contaminated soil

Publications (2)

Publication Number Publication Date
JP2006247483A true JP2006247483A (en) 2006-09-21
JP2006247483A5 JP2006247483A5 (en) 2008-11-13

Family

ID=37088518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065114A Pending JP2006247483A (en) 2005-03-09 2005-03-09 Treatment method of contaminated soil

Country Status (1)

Country Link
JP (1) JP2006247483A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136196A1 (en) * 2010-04-30 2011-11-03 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
JP2012201765A (en) * 2011-03-24 2012-10-22 Daiwa House Industry Co Ltd Soil-modifying composition and method for modifying soil
JP2012232248A (en) * 2011-04-28 2012-11-29 Japan Organo Co Ltd Cleaning method of contaminated soil
CN109607822A (en) * 2018-12-25 2019-04-12 河海大学 A kind of Eco-friendly river and lake arsenic improvement composite material and preparation method and application in situ
CN111872099A (en) * 2020-07-08 2020-11-03 西安建筑科技大学 Oil-absorbing iron catalyst and method for directly oxidizing large amount of crude oil in soil by using same
CN114214071A (en) * 2021-11-15 2022-03-22 南京大学 Composition for treating chlorinated hydrocarbon in polluted soil and application thereof
CN115770550A (en) * 2022-11-21 2023-03-10 安徽嘉瑞环保科技有限公司 Modified activated carbon and clay mixed decolorant and application thereof in refining crude oil of lubricating oil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564789A (en) * 1991-06-14 1993-03-19 Mitsubishi Gas Chem Co Inc Treatment of waste fluid containing water polluting organic matter
JP2001269673A (en) * 1999-08-09 2001-10-02 Nippon Shokubai Co Ltd Method for processing liquid containing dioxins
JP2002514498A (en) * 1998-05-14 2002-05-21 ユー.エス. エンバイロメンタル プロテクション エージェンシー Oxidation by pollutant adsorption and Fenton reaction
JP2003080275A (en) * 2001-09-13 2003-03-18 Nippon Shokubai Co Ltd Method for treating organic halogen compound in water
JP2003245678A (en) * 2002-02-26 2003-09-02 Mitsubishi Gas Chem Co Inc Waste liquid treatment method by catalyst
JP2004042011A (en) * 2002-07-15 2004-02-12 Toru Ueda Early purification method for petroleum-contaminated soil using burnt lime, and greening method
JP2004074088A (en) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc Treatment method for waste liquid containing chemical polishing liquid
JP2004277288A (en) * 2003-03-12 2004-10-07 Mitsubishi Gas Chem Co Inc Method for utilizing active carbon in plant cultivation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564789A (en) * 1991-06-14 1993-03-19 Mitsubishi Gas Chem Co Inc Treatment of waste fluid containing water polluting organic matter
JP2002514498A (en) * 1998-05-14 2002-05-21 ユー.エス. エンバイロメンタル プロテクション エージェンシー Oxidation by pollutant adsorption and Fenton reaction
JP2001269673A (en) * 1999-08-09 2001-10-02 Nippon Shokubai Co Ltd Method for processing liquid containing dioxins
JP2003080275A (en) * 2001-09-13 2003-03-18 Nippon Shokubai Co Ltd Method for treating organic halogen compound in water
JP2003245678A (en) * 2002-02-26 2003-09-02 Mitsubishi Gas Chem Co Inc Waste liquid treatment method by catalyst
JP2004042011A (en) * 2002-07-15 2004-02-12 Toru Ueda Early purification method for petroleum-contaminated soil using burnt lime, and greening method
JP2004074088A (en) * 2002-08-21 2004-03-11 Mitsubishi Gas Chem Co Inc Treatment method for waste liquid containing chemical polishing liquid
JP2004277288A (en) * 2003-03-12 2004-10-07 Mitsubishi Gas Chem Co Inc Method for utilizing active carbon in plant cultivation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136196A1 (en) * 2010-04-30 2011-11-03 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
CN102869743A (en) * 2010-04-30 2013-01-09 三菱瓦斯化学株式会社 Peroxide activator and process for purifying soil and/or ground water
JP5846117B2 (en) * 2010-04-30 2016-01-20 三菱瓦斯化学株式会社 Peroxide activator and soil and / or groundwater purification method
KR101823171B1 (en) * 2010-04-30 2018-01-29 미츠비시 가스 가가쿠 가부시키가이샤 Peroxide activator and process for purifying soil and/or ground water
JP2012201765A (en) * 2011-03-24 2012-10-22 Daiwa House Industry Co Ltd Soil-modifying composition and method for modifying soil
JP2012232248A (en) * 2011-04-28 2012-11-29 Japan Organo Co Ltd Cleaning method of contaminated soil
CN109607822A (en) * 2018-12-25 2019-04-12 河海大学 A kind of Eco-friendly river and lake arsenic improvement composite material and preparation method and application in situ
CN109607822B (en) * 2018-12-25 2022-03-08 河海大学 Eco-friendly composite material for in-situ treatment of arsenic in rivers and lakes and preparation method and application thereof
CN111872099A (en) * 2020-07-08 2020-11-03 西安建筑科技大学 Oil-absorbing iron catalyst and method for directly oxidizing large amount of crude oil in soil by using same
CN114214071A (en) * 2021-11-15 2022-03-22 南京大学 Composition for treating chlorinated hydrocarbon in polluted soil and application thereof
CN115770550A (en) * 2022-11-21 2023-03-10 安徽嘉瑞环保科技有限公司 Modified activated carbon and clay mixed decolorant and application thereof in refining crude oil of lubricating oil

Similar Documents

Publication Publication Date Title
Rathna et al. Recent developments and prospects of dioxins and furans remediation
Zhang et al. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review
US10737959B2 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
Kuppusamy et al. Ex-situ remediation technologies for environmental pollutants: a critical perspective
ES2754812T5 (en) Compositions for the removal of hydrocarbons and halogenated hydrocarbons from contaminated environments
Kulkarni et al. Dioxins sources and current remediation technologies—a review
AU690637B2 (en) Method for rendering waste substances harmless
JP2006247483A (en) Treatment method of contaminated soil
AU2017259118B2 (en) Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
JP2007215552A (en) Method of treating organohalogen compound
US12017938B2 (en) Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
JP2011161218A (en) Detoxification method of solid containing organohalogen compound
KR102665404B1 (en) Method of organic contaminant in soil using the persulfate ion and micro-sized activated carbon particle
KR20230159168A (en) Method of treatment of polluted groundwater using nano activated carbon and dual oxidants
JP3811705B2 (en) Exhaust gas treatment method and equipment
JP2003285043A (en) Method for cleaning material polluted with chemical substance
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2004305235A (en) Method for rendering object to be treated contaminated with organic halogen compound harmless
JP2006075773A (en) Purification method of soil ground water polluted by hardly decomposable organic compound
Olasupo et al. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants
JP2006223969A (en) Purification method of contaminated soil
JP2009240980A (en) Cleaning method of contaminated soil and cleaning treatment system
JP2012200377A (en) Method for detoxification processing of pcb-containing oil
JP2005081280A (en) Catalyst for decomposing halogenated organic compound, and water dispersion thereof for decomposing organohalogenated compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101201