JP2006075773A - Purification method of soil ground water polluted by hardly decomposable organic compound - Google Patents

Purification method of soil ground water polluted by hardly decomposable organic compound Download PDF

Info

Publication number
JP2006075773A
JP2006075773A JP2004264460A JP2004264460A JP2006075773A JP 2006075773 A JP2006075773 A JP 2006075773A JP 2004264460 A JP2004264460 A JP 2004264460A JP 2004264460 A JP2004264460 A JP 2004264460A JP 2006075773 A JP2006075773 A JP 2006075773A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
activated carbon
ground water
soil ground
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264460A
Other languages
Japanese (ja)
Inventor
Masaru Tazaki
賢 田崎
Yasushi Hiramatsu
靖史 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004264460A priority Critical patent/JP2006075773A/en
Publication of JP2006075773A publication Critical patent/JP2006075773A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil ground water purification method which enables short-time purification by remarkably reducing time required for soil ground water purification using hydrogen peroxide as a usual oxidizing agent, and enables purification of heavily polluted soil ground water. <P>SOLUTION: In a method for decomposing and purifying soil ground water polluted with hardly decomposable organic compounds by hydrogen peroxide in presence of activated carbon having hydrogen peroxide-decomposing capacity, when 0.5 wt% activate carbon is added to 0.5 wt% hydrogen peroxide aqueous solution at 27°C, the activated carbon has such a performance that the decomposition rate of hydrogen peroxide after 60 minutes is ≥30%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

従来の酸化剤として過酸化水素を用いる土壌地下水浄化に要する時間を大きく短縮し、短期間で浄化可能であり、高濃度汚染に対しても浄化可能な土壌地下水浄化方法に関する。   The present invention relates to a soil groundwater purification method that can significantly reduce the time required for soil groundwater purification using hydrogen peroxide as a conventional oxidizing agent, can be purified in a short period of time, and can be purified even for high concentration pollution.

土壌地下水中の有機物汚染が環境に大きく影響を与えることが明らかとなり、様々な規制が整備されてくるとともに、これまで蓄積、放置されていた汚染の浄化が必要となっている。ここでの有機物とは、主に生物による分解が困難な難分解性有機物をいい、農薬、防腐剤、石油及びその留分に含まれる芳香族化合物、塩素化有機物などが該当する。この有機物汚染に対し、物理的、化学的、生物的な様々な浄化方法が試みられている。物理的な浄化方法では、汚染場所の浄化は可能であるが、除去された汚染物質の2次的な処理が必要となるという欠点がある。生物的な浄化方法では周辺環境に影響の少ない方法であるが、高濃度の汚染に対して適用が難しいという欠点がある。これらに対し化学的な浄化方法は対象汚染物質を分解する為、2次的な処理の必要が無く、高濃度の汚染に対しても、適用が可能であるという特徴をもつ。   It has become clear that organic contamination in soil and groundwater has a significant impact on the environment, and various regulations have been established, and it has become necessary to purify the contamination that has been accumulated and left to date. The organic matter here refers to a hardly decomposable organic matter that is difficult to be decomposed by living organisms, and includes agricultural chemicals, preservatives, aromatic compounds contained in petroleum and its fractions, chlorinated organic matter, and the like. Various physical, chemical and biological purification methods have been tried against this organic contamination. Although the physical purification method can purify the contaminated area, it has a drawback in that it requires secondary treatment of the removed contaminant. Although the biological purification method has little influence on the surrounding environment, it has a drawback that it is difficult to apply to high-concentration pollution. On the other hand, the chemical purification method decomposes the target pollutant, so there is no need for secondary treatment, and it can be applied to high-concentration contamination.

過酸化水素と、触媒として鉄イオンを供給可能な化合物(例:硫酸第一鉄・七水和物等)として添加することによって、ヒドロキシラジカルを発生させ、このラジカルと有機物を反応させることによって、有機物を酸化分解するFenton法が知られている。このFenton法を応用し、難分解性有機化合物で汚染された土壌を浄化することが試みられている(特許文献1参照)。触媒となる鉄イオン濃度は酸化分解反応に大きく寄与する事が知られており、反応速度の向上のために、鉄イオンを添加する方法が提案されている。また過酸化水素分解反応に対して触媒作用のある金属(鉄や銅など)をゼオライトや粘土鉱物に担持させたものに汚染水を接触させる方法も提案されている(特許文献2参照)。他にも、吸着剤を用い、その表面において有機物を濃縮し、酸化剤を用いて酸化分解する方法も考案されている(特許文献3参照)。   By adding hydrogen peroxide and a compound that can supply iron ions as a catalyst (eg, ferrous sulfate, heptahydrate, etc.), a hydroxyl radical is generated, and by reacting this radical with an organic substance, A Fenton method for oxidatively decomposing organic substances is known. By applying this Fenton method, attempts have been made to purify soil contaminated with persistent organic compounds (see Patent Document 1). It is known that the concentration of iron ions serving as a catalyst greatly contributes to the oxidative decomposition reaction, and a method of adding iron ions has been proposed to improve the reaction rate. In addition, a method has been proposed in which contaminated water is brought into contact with a metal or metal having a catalytic action on hydrogen peroxide decomposition reaction (such as iron or copper) supported on zeolite or clay mineral (see Patent Document 2). In addition, a method of using an adsorbent, concentrating organic substances on the surface, and oxidatively decomposing using an oxidizing agent has been devised (see Patent Document 3).

現在の土壌汚染は様々な形態で存在しており、浄化を行う場合もそれにより、様々な条件下で実施せざるを得ない。たとえば、建屋直下や稼働中の設備の敷地内やその周辺地域における汚染土壌の処理は、当該汚染土壌をそれが存在する地中の領域から移動することが不可能であり、このような場合、原位置処理を行いたいという要請が存在するのである。   Current soil contamination exists in various forms, and even when purification is performed, it must be carried out under various conditions. For example, treatment of contaminated soil directly under the building or in the vicinity of the facility in operation or in the surrounding area is not possible to move the contaminated soil from the underground area where it exists, There is a desire to perform in-situ processing.

原位置浄化を行う場合、上記記載の触媒作用のある金属を土壌地下水に添加する方法では地下水流下流側での金属成分の流出などが問題となる可能性がある。また、吸着剤を用いて濃縮、分解浄化を行う場合、実施方法としては反応障壁として使用するため、施工において使用不可能な条件が発生する可能性がある。
特開平7−75772号公報 特開平11−262780号公報 特表2002−514498号公報
When in-situ purification is performed, the above-described method of adding a catalytic metal to soil groundwater may cause problems such as outflow of metal components downstream of the groundwater flow. In addition, when concentration and decomposition / purification are performed using an adsorbent, since it is used as a reaction barrier as an implementation method, conditions that cannot be used in construction may occur.
JP 7-77772 A Japanese Patent Laid-Open No. 11-262780 JP-T-2002-514498

本発明は、上述した様な従来技術の各種問題点に鑑みて提案されたもので、汚染土壌を環境その他に悪影響を与えること無く、原位置における浄化処理に簡便に応用でき、しかも安全に且つ効果的に短期間で、高濃度汚染に対しても浄化処理することが可能な土壌浄化方法の提供を目的としている。   The present invention has been proposed in view of various problems of the prior art as described above, and can be easily applied to in-situ purification treatment without adversely affecting the contaminated soil to the environment and the like, and can be safely performed. The purpose of the present invention is to provide a soil remediation method that can effectively purify high-concentration pollution in a short period of time.

本発明者等は、種々研究の結果、過酸化水素の汚染場所への注入を行えば、土壌地下水中に存在する鉄により、ヒドロキシラジカルが発生し、汚染物質が分解無害化されることを確認し、さらに過酸化水素分解能を持つ活性炭を同時に存在させた場合、その化学反応速度が著しく増加することを見いだし、発明に至った。すなわち本発明は、難分解性有機化合物による汚染土壌地下水を、過酸化水素分解能を有する活性炭の存在下で過酸化水素により浄化する方法において、活性炭が温度27℃、過酸化水素濃度0.5重量%の水溶液に活性炭を0.5重量%添加したときの60分後の過酸化水素分解率が30%以上の性能を有するものであることを特徴とする土壌地下水の浄化方法に関するものである。   As a result of various studies, the present inventors have confirmed that if hydrogen peroxide is injected into a contaminated place, hydroxy radicals are generated by iron present in the soil groundwater and the pollutants are decomposed and detoxified. In addition, when activated carbon having hydrogen peroxide decomposing ability is present at the same time, it has been found that the chemical reaction rate is remarkably increased, leading to the invention. That is, the present invention relates to a method of purifying soil groundwater contaminated with a hardly decomposable organic compound with hydrogen peroxide in the presence of activated carbon having hydrogen peroxide decomposability, wherein the activated carbon has a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight. The present invention relates to a method for purifying soil groundwater, wherein the decomposition rate of hydrogen peroxide after 60 minutes when 0.5% by weight of activated carbon is added to a 30% aqueous solution has a performance of 30% or more.

本発明の作用効果を以下に列挙する。
(1) 土壌中の汚染化合物を原位置にて迅速に処理することが出来る。
(2) 土壌の汚染が上述した様な稼働中の各種施設において生じた場合にも、当該施設の稼働に影響を及ぼすこと無く、急速に浄化することが出来る。
(3) 汚染土壌を地上にまで取り出して処理する必要が無く、汚染土壌を掘削することによる揮発性汚染化合物の大気への蒸散、汚染土壌の運搬による汚染物質の飛散、その他による2次的な汚染が防止される。
(4) 処理に際して、更に有害な化合物を発生することが無い。
(5) 一度処理が行われれば安全性が永続するので、汚染物質の流出或いは漏洩を経時的に監視する必要も無い。
(6) 洗浄後の排水処理を行う必要が無い。
(7) 多種類の汚染物質を大量に処理することが出来る。
(8) 生態系の変化という問題が防止される。
(9) 修復期間を短くできる。
The effects of the present invention are listed below.
(1) Contaminant compounds in the soil can be quickly treated in situ.
(2) Even when soil contamination occurs in various operating facilities as described above, it can be rapidly purified without affecting the operation of the facility.
(3) There is no need to take the contaminated soil to the ground and treat it, and the volatile pollutant compounds are evaporated to the atmosphere by excavating the contaminated soil, the pollutants are scattered by transporting the contaminated soil, and other secondary causes. Contamination is prevented.
(4) No further harmful compounds are generated during the treatment.
(5) Since the safety is permanent once the treatment is performed, it is not necessary to monitor the outflow or leakage of the pollutant over time.
(6) There is no need to perform wastewater treatment after washing.
(7) A large amount of various types of pollutants can be treated.
(8) The problem of ecosystem change is prevented.
(9) The repair period can be shortened.

本発明では過酸化水素、活性炭および触媒を用いる。触媒となるFeは、地下水土壌中に存在している為添加する必要は無いが、浄化期間によっては添加することにより、効果を向上させ、短期間にすることも可能である。鉄塩としては例えば硫酸第一鉄、塩化第一鉄などが挙げられるが、価格、汎用性の点から硫酸第一鉄が好ましい。過酸化水素、鉄塩の使用量には特に制限はなく、必要とされる廃液の処理レベルにより適宜選択される。一般的には、過酸化水素は、地下水流量に対して0.5〜6重量%、鉄塩は硫酸第一鉄に換算して、地下水流量に対して0〜0.1重量%である。   In the present invention, hydrogen peroxide, activated carbon and a catalyst are used. Fe as a catalyst does not need to be added because it exists in the groundwater soil, but depending on the purification period, the effect can be improved and the effect can be shortened. Examples of the iron salt include ferrous sulfate and ferrous chloride. Ferrous sulfate is preferred from the viewpoint of cost and versatility. There is no restriction | limiting in particular in the usage-amount of hydrogen peroxide and an iron salt, According to the processing level of the waste liquid required, it selects suitably. Generally, hydrogen peroxide is 0.5 to 6% by weight with respect to the groundwater flow rate, and iron salt is 0 to 0.1% by weight with respect to the groundwater flow rate in terms of ferrous sulfate.

本発明で使用する活性炭は、過酸化水素分解能力を有するものであればよく、その由来は特に限定されないが、通常、木材、セルロース、のこくず、木炭、ヤシガラ炭、パーム核炭、素灰などの植物質を原料としたもの、泥炭、亜炭、褐炭、瀝青炭、無煙炭などの石炭系鉱物質を原料としたもの、石油残渣、硫酸スラッジ、オイルカーボンなどの石油系鉱物質を原料としたもの。蛋白質を原料としたもの、蛋白質を含有する汚泥もしくは廃棄物を出発原料としたもの、発酵生産の廃菌体を原料としたもの、ポリアクリロニトリル(PAN)を原料としたもの、などが好適に使用される。また、これら活性炭に処理を加えることにより、過酸化水素分解能力を付与する、或いは向上させて使用することもできる。   The activated carbon used in the present invention is not limited as long as it has hydrogen peroxide decomposing ability, and its origin is not particularly limited, but usually wood, cellulose, sawdust, charcoal, coconut husk charcoal, palm kernel charcoal, uncoated ash Using plant materials such as peat, lignite, lignite, bituminous coal, anthracite and other coal-based minerals, petroleum residue, sulfate sludge, oil carbon and other petroleum-based minerals . Suitable for use with protein as raw material, sludge or waste containing protein as starting material, fermented waste cell as raw material, polyacrylonitrile (PAN) as raw material Is done. Moreover, by adding a treatment to these activated carbons, the ability to decompose hydrogen peroxide can be imparted or used.

本発明に使用する活性炭の過酸化水素分解能力は、温度27℃、過酸化水素濃度0.5重量%の水溶液において、活性炭を0.5重量%添加し、60分間放置後、残存過酸化水素濃度を測定し、下式(1)で算出される過酸化水素分解率で表される。
過酸化水素分解能力=(0.5−残存過酸化水素濃度(%))/0.5 × 100 (1)
The activated carbon used in the present invention has the ability to decompose hydrogen peroxide in an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight. The concentration is measured and expressed by the hydrogen peroxide decomposition rate calculated by the following formula (1).
Hydrogen peroxide decomposition ability = (0.5−residual hydrogen peroxide concentration (%)) / 0.5 × 100 (1)

本発明においては、上記過酸化水素分解率が5%以上、好ましくは20%以上の活性炭を用いる。過酸化水素分解活性が高いほど、廃液中有機物の分解が効率的に進み、活性炭使用量を少なく、処理時間を短くでき有利である。過酸化水素分解率5%以下では大量の活性炭が必要とされる或いは非常に長い処理時間が必要となり、本発明の目的を達することができない。   In the present invention, activated carbon having the hydrogen peroxide decomposition rate of 5% or more, preferably 20% or more is used. The higher the hydrogen peroxide decomposing activity, the more efficient the decomposition of organic substances in the waste liquid, and the less the amount of activated carbon used and the shorter the treatment time, the more advantageous. When the hydrogen peroxide decomposition rate is 5% or less, a large amount of activated carbon is required or a very long treatment time is required, and the object of the present invention cannot be achieved.

また、使用する活性炭は微粉末であるほどその効果が大きく、100μm以下の微粉末を使用することで、その効果を高めることができる。これは微粉末とすることにより拡散性が良くなり、もって過酸化水素分解率が上がることに由来すると考えられる。粒径が100μm以上であっても、過酸化水素分解能力があれば本発明の目的は達することができるが、使用量が多くなり、或いは処理時間を長くする必要がある。活性炭の添加量は、添加する過酸化水素に対して0.01〜10重量%である。   Moreover, the effect is so large that the activated carbon used is a fine powder, The effect can be heightened by using a fine powder of 100 micrometers or less. This is considered to be derived from the fact that the fine powder improves the diffusibility, thereby increasing the decomposition rate of hydrogen peroxide. Even if the particle size is 100 μm or more, the object of the present invention can be achieved as long as it has the ability to decompose hydrogen peroxide, but the amount used is increased or the treatment time needs to be lengthened. The amount of activated carbon added is 0.01 to 10% by weight with respect to hydrogen peroxide to be added.

活性炭は、通常水分吸着などによりその吸着能力を減ずるが、本発明においては、活性炭を水などの分散媒中に懸濁して使用することができる。廃液への活性炭の供給方法には特に制限は無く、固体の活性炭をそのまま供給してもよいが、懸濁液をポンプなどで供給しても良い。工業的には、粉塵発生抑制、操作性の点で懸濁液としての供給の方が有利であり、懸濁液の流動性、操作性の点から、100μm以下の粉末の懸濁液として供給することが好ましい。   Activated carbon usually reduces its adsorption capacity by moisture adsorption or the like, but in the present invention, activated carbon can be used suspended in a dispersion medium such as water. The method for supplying activated carbon to the waste liquid is not particularly limited, and solid activated carbon may be supplied as it is, but the suspension may be supplied by a pump or the like. Industrially, it is more advantageous to supply as a suspension in terms of dust generation suppression and operability. From the viewpoint of suspension fluidity and operability, supply as a suspension of powder of 100 μm or less. It is preferable to do.

実施例1
難分解性有機化合物としてトリクロロエチレン(TCE)を使用し、TCE濃度49 mg/Lの模擬汚染水の浄化試験を行った。その際、全ての試料に過酸化水素2000mg/L、触媒として15mg-Fe/LのFeSO4・7H2Oを添加した。使用した活性炭は微粉末(粒径:2μm程度)にしたものを16wt%水スラリーとしたものである。経過時間ごとにこれらの試料のTCE濃度を測定し、その結果を下記表1に示した。
Example 1
Trichlorethylene (TCE) was used as a hardly decomposable organic compound, and a purification test of simulated contaminated water with a TCE concentration of 49 mg / L was conducted. At that time, 2000 mg / L of hydrogen peroxide and 15 mg-Fe / L of FeSO 4 .7H 2 O as a catalyst were added to all the samples. The activated carbon used is a fine powder (particle size: about 2 μm) made into a 16 wt% water slurry. The TCE concentrations of these samples were measured at each elapsed time, and the results are shown in Table 1 below.

Figure 2006075773
Figure 2006075773

過酸化水素と鉄イオンの存在下では、活性炭を添加しない比較例1に比べ、活性炭を添加した本発明例(実施例1)の試料ではヒドロキシラジカル等の活性なラジカルの発生が促進され、TCE分解が迅速に進行し、TCE濃度低下が顕著であることが示された。   In the presence of hydrogen peroxide and iron ions, generation of active radicals such as hydroxy radicals was promoted in the sample of the present invention example (Example 1) to which activated carbon was added, compared to Comparative Example 1 in which activated carbon was not added, and TCE. Degradation proceeded rapidly, indicating a significant decrease in TCE concentration.

実施例2
揮発性有機化合物としてトリクロロエチレン(TCE)を使用して、TCE濃度84mg/Lの模擬汚染水の浄化試験を行った。その際、全ての試料に過酸化水素2000mg/L、触媒として15mg-Fe/LのFeSO4・7H2Oを添加した。活性炭は74mg/Lとなるよう添加した。活性炭の過酸化水素分解能による効果を確認した。(過酸化水素分解能は請求項に示す性能を有するものである。)経過時間においてこれらの試料のTCE濃度を測定し、その結果を下記表2に示した。
Example 2
Trichlorethylene (TCE) was used as a volatile organic compound, and a purification test of simulated contaminated water with a TCE concentration of 84 mg / L was conducted. At that time, 2000 mg / L of hydrogen peroxide and 15 mg-Fe / L of FeSO 4 .7H 2 O as a catalyst were added to all the samples. Activated carbon was added to 74 mg / L. The effect of activated carbon on hydrogen peroxide resolution was confirmed. (The hydrogen peroxide resolution has the performance indicated in the claims.) The TCE concentrations of these samples were measured over time, and the results are shown in Table 2 below.

Figure 2006075773
Figure 2006075773

活性炭の過酸化水素分解能によりTCEの分解能が大きく異なり、過酸化水素分解能が高い活性炭の場合にTCE濃度の低下が顕著であることが示された。   The resolution of TCE varies greatly depending on the hydrogen peroxide resolution of activated carbon, and it was shown that the decrease in TCE concentration is significant in the case of activated carbon with high hydrogen peroxide resolution.

実施例3
揮発性有機化合物としてトリクロロエチレン(TCE)を使用して、TCE濃度83mg/Lの模擬汚染水の浄化試験を行った。その際、全ての試料に過酸化水素2000mg/L、触媒として15mg-Fe/LのFeSO4・7H2Oを添加した。使用した活性炭は微粉末(粒径:2μm程度)にしたものを16wt%水スラリーとしたものであり、その添加濃度の効果を確認した。経過時間ごとにこれらの試料のTCE濃度を測定し、その結果を下記表3に示した。
Example 3
Trichlorethylene (TCE) was used as a volatile organic compound, and a purification test of simulated contaminated water with a TCE concentration of 83 mg / L was conducted. At that time, 2000 mg / L of hydrogen peroxide and 15 mg-Fe / L of FeSO 4 .7H 2 O as a catalyst were added to all the samples. The activated carbon used was a fine powder (particle size: about 2 μm) made into a 16 wt% water slurry, and the effect of the added concentration was confirmed. The TCE concentrations of these samples were measured at each elapsed time, and the results are shown in Table 3 below.

Figure 2006075773
Figure 2006075773

TCEの減少量は添加する活性炭添加量に依存しており、活性炭添加量の増加によりTCE濃度低下が顕著であることが示された。   The amount of decrease in TCE was dependent on the amount of activated carbon added, and it was shown that the decrease in TCE concentration was marked by the increase in the amount of activated carbon added.

Claims (3)

難分解性有機化合物による汚染土壌地下水を、過酸化水素分解能を有する活性炭の存在下で過酸化水素により浄化する方法において、活性炭が温度27℃、過酸化水素濃度0.5重量%の水溶液に活性炭を0.5重量%添加したときの60分後の過酸化水素分解率が30%以上の性能を有するものであることを特徴とする土壌地下水の浄化方法。   In a method for purifying contaminated soil groundwater with persistent organic compounds with hydrogen peroxide in the presence of activated carbon having hydrogen peroxide decomposability, the activated carbon is converted into an aqueous solution having a temperature of 27 ° C. and a hydrogen peroxide concentration of 0.5% by weight. A method for purifying soil groundwater, characterized in that the hydrogen peroxide decomposition rate after 60 minutes when 0.5% by weight is added has a performance of 30% or more. 活性炭が100μm以下の微粉末であることを特徴とする請求項1記載の土壌地下水の浄化方法。   2. The method for purifying soil groundwater according to claim 1, wherein the activated carbon is a fine powder of 100 μm or less. 活性炭が100μm以下の微粉末の懸濁液であることを特徴とする請求項1記載の土壌地下水の浄化方法。   2. The method for purifying soil groundwater according to claim 1, wherein the activated carbon is a suspension of fine powder of 100 μm or less.
JP2004264460A 2004-09-10 2004-09-10 Purification method of soil ground water polluted by hardly decomposable organic compound Pending JP2006075773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264460A JP2006075773A (en) 2004-09-10 2004-09-10 Purification method of soil ground water polluted by hardly decomposable organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264460A JP2006075773A (en) 2004-09-10 2004-09-10 Purification method of soil ground water polluted by hardly decomposable organic compound

Publications (1)

Publication Number Publication Date
JP2006075773A true JP2006075773A (en) 2006-03-23

Family

ID=36155673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264460A Pending JP2006075773A (en) 2004-09-10 2004-09-10 Purification method of soil ground water polluted by hardly decomposable organic compound

Country Status (1)

Country Link
JP (1) JP2006075773A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332774A (en) * 2013-07-10 2013-10-02 四川师范大学 Method used for processing high-concentration degradation-resistant organic wastewater
CN108529735A (en) * 2017-03-03 2018-09-14 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
JP2019214004A (en) * 2018-06-11 2019-12-19 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment method, and water treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245678A (en) * 2002-02-26 2003-09-02 Mitsubishi Gas Chem Co Inc Waste liquid treatment method by catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245678A (en) * 2002-02-26 2003-09-02 Mitsubishi Gas Chem Co Inc Waste liquid treatment method by catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332774A (en) * 2013-07-10 2013-10-02 四川师范大学 Method used for processing high-concentration degradation-resistant organic wastewater
CN103332774B (en) * 2013-07-10 2015-08-05 四川师范大学 A kind of method processing high concentration hard-degraded organic waste water
CN108529735A (en) * 2017-03-03 2018-09-14 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
CN108529735B (en) * 2017-03-03 2021-07-23 三菱化学水解决方案株式会社 Water treatment method and water treatment apparatus
JP2019214004A (en) * 2018-06-11 2019-12-19 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment method, and water treatment device

Similar Documents

Publication Publication Date Title
US9878301B1 (en) Method and composition for the remediation of contaminants
Tsai et al. Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: a laboratory feasibility study
Jianlong et al. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass
CA2776666C (en) In-situ subsurface decontamination of sodic soil, clay and ground water
JP2015511152A (en) Decomposition of non-volatile halogenated organic compounds
Tsai et al. Remediation of fuel oil-contaminated soils by a three-stage treatment system
JP2007215552A (en) Method of treating organohalogen compound
JP2006247483A (en) Treatment method of contaminated soil
JP3862394B2 (en) Detoxification method of soil
KR100341957B1 (en) Method of purifying soil contaminated with oil and an apparatus thereof
JP4167052B2 (en) Purification method for organic compound contamination
US20030092583A1 (en) In situ stablization of persistent hydrophobic organic contaminants in sediments using coal-and wood derived carbon sorbents
JP4751512B2 (en) Pollutant adsorption and oxidation by Fenton reaction
Adipah Remediation of petroleum hydrocarbons contaminated soil by fenton’s oxidation
KR101796239B1 (en) Remediation method for oil-contaminated soil
JP2006075773A (en) Purification method of soil ground water polluted by hardly decomposable organic compound
JP2005040649A (en) Underground contamination restoration method
JP5612820B2 (en) Purification method for organic chlorine chemical contamination
JP2003245678A (en) Waste liquid treatment method by catalyst
JPH08257570A (en) Purification of polluted underground water
KR20090025486A (en) Remediation method of contaminated soil by the treatment of hydrogen peroxide and sodium hydroxide
JP3784654B2 (en) Purification method for chemical contaminants
KR101351941B1 (en) DETOXIFICATION METHOD OF PAHs-POLLUTED SOIL
Liu et al. Use of manganese/silicon tailing waste for coking wastewater treatment: evaluation of phenol and phenylamine removal efficiencies
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100428