JP3862394B2 - Detoxification method of soil - Google Patents
Detoxification method of soil Download PDFInfo
- Publication number
- JP3862394B2 JP3862394B2 JP36717797A JP36717797A JP3862394B2 JP 3862394 B2 JP3862394 B2 JP 3862394B2 JP 36717797 A JP36717797 A JP 36717797A JP 36717797 A JP36717797 A JP 36717797A JP 3862394 B2 JP3862394 B2 JP 3862394B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- iron powder
- weight
- contaminated
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、有機塩素系化合物で汚染された土壌の浄化技術に関する。
【0002】
【従来の技術】
半導体工場や金属加工工場等において脱脂溶剤として過去より多量に使用され、使用後排出されあるいは投棄されてきたトリクロロエチレン等有機塩素系化合物が、土壌または地下水を汚染した状態で蓄積され、工場跡地の再利用や周辺地域の土地開発に障害をもたらし、また、その蓄積有機塩素系化合物による地下水の汚染がこの地下水利用上の障害になる等大きな社会問題となっている。
【0003】
このような有機塩素系化合物による汚染水を鉄系金属還元剤で処理し、汚染物質を分解させ無害化する方法については、例えば、特公平2−49158号公報、特公平2−49798号公報、特許第2636171号公報、特表平5−501520号公報および特表平6−506631号公報に開示されている。
【0004】
特公平2−49158号公報の方法は、被処理水即ち難分解性ハロゲン化炭化水素含有水をpH6.5〜9.5に調整したのち鉄等卑金属系還元剤により還元処理する方法であり、特公平2−49798号公報の方法は、有機化合物を有する被処理水を金属系還元剤により無害化処理するにあたり、予め被処理水をpH6.5以上とし、還元性物質により酸化還元電位を下げて酸化性物質を除去しておく方法であり、特許第2636171号公報の方法は、有機ハロゲン化合物を含有する汚染水に水素を供給して溶存酸素を除いた後、鉄等金属を担持した活性炭等担体物質に接触させて還元処理を行う方法である。
【0005】
また、特表平5−501520号公報の方法は、ハロゲン有機汚染物質による汚染地下水の浄化方法として、酸素が遮断された環境の下で、汚染地下水を鉄粒子等金属体からなる透過性の地中層に通して汚染物質の分解を行わせる方法であり、さらに、特表平6−506631号公報の方法は、同様の汚染地下水の浄化方法として、汚染地下水を地中に形成した活性炭等吸着物質と鉄ヤスリ屑等金属粒子からなる混合物による透過性の層を通過させることで、汚染物質の吸着・分解を行わせる方法である。
【0006】
その他、汚染地下水については、この汚染地下水を土壌外に抽出して無害化処理する真空抽出法や揚水曝気法等があり、また、土壌については、土壌を掘削して加熱処理によって無害化する熱脱着法および熱分解法が知られ、さらにまた、土壌または地下水中の汚染物質を分解して無害化する方法として、微生物を利用したバイオレメディエーション法による浄化法が知られている。
【0007】
【発明が解決しようとする課題】
しかしながら、特公平2−49158号公報、特公平2−49798号公報および特許第2636171号公報の発明方法は、いずれも用水あるいは工場排水を処理対象としているもので、汚染地下水の処理には面倒な汚染水の排水作業が前提となり、また、汚染水についてpH調整および他の還元物質や水素ガスの供給等による溶存酸素の除去操作を必要としているので、汚染された土壌または地下水の原位置処理には適用し難く、さらに、鉄還元剤を活性炭等に担持させて用いる等コストの点からも不利な面が多い。
【0008】
また特表平5−501520号と特表平6−506631号の発明方法は、地下水を対象とした原位置処理法でもあるが、汚染地域を流れる地下水流による下流域への汚染拡散防止を主な目的としており、汚染地域自体の無害化を目的としたものではない。さらに、金属還元剤を活性炭による吸着剤と併用する、また鉄の層が地下水中の炭酸塩イオンと反応して生成した炭酸鉄(FeCO3 )により閉塞し、そのため定期的に交換を必要とする等コストの点から不利な面が多い。即ち、有機塩素系化合物で汚染された土壌および土壌中の汚染水の無害化処理に関して、従来の技術の場合、次のような問題があった。
【0009】
(1) 真空抽出・揚水ばっき等で汚染物質を含む土壌ガス・地下水を地中より抽出、揚水する方法では、土壌ガス、抽出水について汚染物質除去および分解のため活性炭や分解剤を使用するにあたり地上に設備を設け、抽出、揚水して発生した汚染物質を無害化処理を行う等、高コストな別途処理を必要としている。また、土壌そのものを浄化するものでないので、前記したような土地開発上の障害を除く等の目的は達成できず、十分な無害化処理方法とはいえない。
【0010】
(2) 鉄等金属系還元剤による地下水浄化法は、飽くまでも地下水を対象とするものであり、汚染地下水の拡散は防げても、土壌自体の汚染を浄化するものではなく、したがって、地下水の水位以上の不飽和帯あるいは掘削後の土壌の浄化に適用できないので、上記方法と同様に十分な無害化処理方法とはいえない。
また、本法は地下水の通過姓を良くし、かつ上述したような閉塞の問題を避けるために、粒度の大きい鉄を使用する。そのため反応性が悪く使用量も多くなるためコスト面でも不利がある。
【0011】
(3) 掘削土壌を高温で熱分解する方法では、土壌を加熱処理する大がかりな設備が必要であり、かつ土壌粒子自体が熱により変質し、例えば、構造物を支持する、生物を生息させるといった土壌の機能が著しく損なわれるため、処理後の土壌の再利用が難しくなる。
【0012】
(4) バイオレメディエーション法では、各々の土壌のもつ特性により全ての土壌に適応可能なわけではなく、又、可能であったとしても微生物作用によるため反応が遅く、長期の処理期間を必要としている。
【0013】
従って、本発明は、地下水水位以上の不飽和帯の土壌を処理対象とすることができ、有機塩素系化合物で汚染された土壌について比較的安価な鉄材のみの還元剤により、短期間で、且つ、常温で汚染物質を分解できる土壌の無害化処理方法の提供を目的とする。
【0014】
【課題を解決するための手段】
この目的を達成するため、本発明は、地下水水位より浅部に位置する土壌であり且つ有機塩素系化合物で汚染された土壌に、鉄粉を添加・混合することにより、前記有機塩素系化合物を分解して前記土壌を浄化する土壌の無害化処理方法を、また、前記鉄粉は、0.1重量%以上望ましくは0.2重量%以上の炭素を含み且つ500cm2/g以上望ましくは2000cm2/g以上の比表面積を有すると共に50重量%以上が150μmのふるいを通過する粒度を有し、前記土壌に対して0.1〜10重量%の範囲内で添加されることを特徴とする第1記載の土壌の無害化処理方法を、そしてまた、前記鉄粉は海綿状鉄粉であることを特徴とする第1または2に記載の土壌の無害化処理方法を提供する。
【0015】
【発明の実施の形態】
本発明は、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、1,3−ジクロロプロペンなどの揮発性有機塩素系化合物や、PCB、ダイオキシン類などの有機塩素系化合物により汚染された土壌を浄化の対象とし、これらの有機塩素系化合物を、脱塩素あるいは脱塩化水素作用により分解させ無害化することを特徴としている。
【0016】
汚染土壌の浄化に用いる鉄粉は、炭素量が0.1重量%以上であり、殆どの普通鋼成分及び普通鋳鉄成分のものが含まれる。炭素量が0.1重量%より低いと汚染物質の分解速度が遅くなり実用的ではない。また、鉄粉の粒度は目開き150μmのふるいを全体の50重量%以上が通過するように調整されたものを用いる。これより粗い粒度の鉄粉を用いれば、汚染物質の分解速度が低下すると共に、鉄粉の利用効率が低下し、より多くの鉄粉添加量を強いられるため、経済的に不利となる。
【0017】
土壌に添加する鉄粉の形状としては、汚染物質との接触面積を大として反応効率を高める点から比表面積が500cm2 /g以上のものが用いられるが、このような比表面積の大きいものは海綿状鉄(スポンジ鉄)によって容易に得ることができる。また、同時に鉄粉としては、汚染物質との反応性を高める点で、結晶成長度が低く、結晶構造としてパーライト組織が存在するものが望ましい。
土壌への鉄粉の添加量は、土壌の湿重量に対して、0.1〜10重量%の範囲とする。0.1重量%よりも添加量が少ないときには分解速度が著しく低下し、10重量%以上の多量の添加量では、経済的に不利となる。
【0018】
鉄粉を土壌に添加して混合するには、原位置処理の場合、空気または水等による高圧媒体を利用して地中に散布する方法または地盤改良工事で利用される土木機械を用いて機械的に掘削混合する方法がとられる。掘削処理の場合は、ニーダー、ミキサー、ブレンダー等の混合装置の利用も可能である。
【0019】
なお、鉄粉は表面が酸化されることで徐々に不働態化して反応力が低下するので、鉄粉による汚染物質の分解作用を助けるために、鉄粉を混合した後の土壌に対して新たな酸素あるいは酸化性物質の供給が行われないように注意する必要がある。即ち、原位置処理または掘削後処理において、土壌表面が新たな外気と直接接触しないようにすることが望ましい。
【0020】
以上のような土壌処理を行うことにより、2〜3か月で土壌の汚染に係る環境基準(平成3年8月23日環告、改正、平5環告19、平6環告5・環告25、平成7年環告19)以下まで土壌を無害化することができる。
【0021】
【実施例】
実施例1〜4のサンプルの調整は、内径100mm×高さ500mmの塩化ビニル製の光を透さない容器に、トリクロロエチレンで汚染された土壌と所定割合の鉄粉とを混合して作成した試料を封入し、容器下部から150mmまで蒸留水を添加し上部350mmに地下水水位以上の土壌に相当する不飽和帯を再現した。
【0022】
試料は、前もって予定されるサンプルの数だけ容器を用意して作成し、所定期間常温で放置した後、各容器ごとにサンプリングを行った。サンプルは筒型のサンプラーを用いて容器最上部から最下部まで棒状に採取したので、サンプル中には、飽和帯土壌と不飽和帯土壌の両方が含まれている。
鉄粉は同和鉄粉工業(株)製、海綿状鉱石還元鉄粉(E−200)を原料として還元精製、焼結、粉砕、ふるい分けの操作により所定の物性値に調整したものを用いた。
【0023】
トリクロロエチレンの分析方法について、今回は当該鉄粉が有機塩素化合物を分解している状況をより完全に把握するため環境基準に準拠した方法ではなく、土壌中の水分含有量を測定し、土壌乾量に対するトリクロロエチレン濃度を求める方法によった(本方法は、社団法人日本環境測定分析協会発行「環境と測定技術」Vol.16,No.15,1989,31-34に記載の方法に準ずる)。
【0024】
尚、土壌環境基準は土壌重量の10倍量の水への溶出値(mg/l)で示される。よって、土壌環境基準値(mg/l)の10倍値以下の含有量値(mg/kg)であれば土壌環境基準を満たすと判断できる。
【0025】
[実施例1]
鉄粉の粒度を変えて土壌中のトリクロロエチレンの分解状況を調べた。
鉄粉には、炭素含有量が0.2重量%、比表面積が2,000cm2 /gのものを用い、土壌に対する添加量を0.2重量%とし、土壌に鉄粉を加えなかった場合と、土壌に50重量%以上が300μmのふるいを通過する粒度の鉄粉を加えた場合と、土壌に50重量%以上が150μmのふるいを通過する粒度の鉄粉を加えた場合とについてトリクロロエチレンの分解状況を調べた。
結果を表1に示した。
【0026】
【表1】
この結果から、鉄粉の粒度は50重量%以上が150μmのふるいを通過する微粒側の粒子であることが望ましいことがわかる。
【0027】
〔実施例2〕
鉄粉の土壌への添加割合を変えてトリクロロエチレンの分解状況を調べた。
鉄粉は、炭素含有量が0.2重量%、比表面積は2,000cm2 /gのものとし、粒度としては、50重量%以上が150μmのふるいを通過するものを用い、鉄粉を土壌に添加しない場合と、鉄粉を0.03重量%、0.1重量%及び1.0重量%の割合で添加した場合についてトリクロロエチレンの分解状況を調べた。
結果を表2に示した。
【0028】
【表2】
この結果から、鉄粉の土壌への添加割合としては少なくとも0.1重量%の場合が望ましいことがわかる。
【0029】
〔実施例3〕
鉄粉の炭素含有量を変えてトリクロロエチレンの分解状況を調べた。
鉄粉には、比表面積が2,000cm2 /gのものを用い、土壌に対する添加割合を0.2重量%とし、粒度としては50重量%以上が150μmのふるいを通過するものを用い、炭素含有量が0.005重量%、0.05重量%、0.1重量%及び0.2重量%の鉄粉について、トリクロロエチレンの分解状況を調べた。
結果を表3に示した。
【0030】
【表3】
この結果から、鉄粉としては炭素含有量が0.1重量%以上のものが望ましいことがわかる。
【0031】
〔実施例4〕
単位重量当たりの表面積即ち比表面積の異なる鉄粉についてトリクロロエチレンの分解状況を調べた。
鉄粉には、炭素含有量が0.2重量%で、粒度としては50重量%以上が150μmのふるいを通過する粒度分布のものを用い、土壌への添加割合は0.2重量%とし、鉄粉の比表面積を300cm2 /g、500cm2 /gおよび2,000cm2 /gとした場合のトリクロロエチレンの分解状況を調べた。
結果を表4に示した。
【0032】
【表4】
この結果から、鉄粉の比表面積は少なくとも2,000cm2 /gのものにおいて顕著な効果が得られることがわかる。
【0033】
以上のように、有機塩素化合物分解に必要な鉄粉とは、鉄粉中の炭素含有量が0.1重量%以上で、150μmのふるいを50重量%以上が通過する粒度分布を有し、比表面積としては500cm2 /g以上特には2,000cm2 /g以上で、且つ、土壌に対して土壌の0.1重量%乃至10重量%の割合で添加することにより従来には見られない顕著な効果を得ることができたものである。
【0034】
〔実施例5〕
土壌の含水率(%)の違いによるトリクロロエチレンの分解状況
乾燥状態の異なる不飽和帯土壌を再現した試験を行った。
100mlガラスバイアルびんに、乾燥土壌:40g、トリクロロエチレン4g、鉄粉E−200:1gおよび添加量を変化させて水を加え混合した後放置し、ヘッドスペース中のTCE濃度変化を測定した。
【0035】
【表5】
上記試験結果より、飽和帯の存在しない系でも土壌中の水分量が5%以上あれば当該方法によるトリクロロエチレンの分解が効果的に進行することが判明した。
【0036】
【発明の効果】
以上のように、本発明によれば従来方法では処理対象外となっていた有機塩素系化合物で汚染された土壌について、地下水水位以上の不飽和帯の土壌を対象とし、鉄粉の炭素成分、形状、寸法を規制し、また、土壌への添加量を規制するのみで、比較的安価で、かつ従来と比較して少量の鉄粉単味の添加混合という簡便な常温処理方法により、短期間で環境への影響のない状況にまで汚染物質を分解し無害化できるという効果が得られる。さらに、鉄粉として海綿状鉄粉を利用することで、前記効果を容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification technique for soil contaminated with an organochlorine compound.
[0002]
[Prior art]
Organochlorine compounds such as trichlorethylene, which have been used in large amounts as a degreasing solvent in semiconductor factories and metal processing factories from the past, and discharged or dumped after use, accumulate in a contaminated state of soil or groundwater. There are obstacles to use and land development in the surrounding area, and contamination of groundwater by accumulated organochlorine compounds has become a major social problem, such as the obstacle to the use of groundwater.
[0003]
About the method of treating contaminated water with such an organic chlorine-based compound with an iron-based metal reducing agent and decomposing and detoxifying the pollutants, for example, Japanese Patent Publication No. 2-49158, Japanese Patent Publication No. 2-49798, This is disclosed in Japanese Patent No. 2636171, Japanese Patent Application Laid-Open No. 5-501520, and Japanese Patent Application Laid-Open No. 6-506631.
[0004]
The method of Japanese Examined Patent Publication No. 2-49158 is a method in which water to be treated, that is, water containing hardly decomposable halogenated hydrocarbon is adjusted to pH 6.5 to 9.5 and then reduced with a base metal reducing agent such as iron, In the method of Japanese Patent Publication No. 2-49798, the water to be treated having an organic compound is detoxified with a metal reducing agent, the water to be treated is adjusted to pH 6.5 or more in advance, and the redox potential is lowered with a reducing substance. The method disclosed in Japanese Patent No. 2636171 is a method in which hydrogen is supplied to contaminated water containing an organic halogen compound to remove dissolved oxygen, and then activated carbon carrying a metal such as iron. In this method, the reduction treatment is performed by contacting with an equivalent carrier substance.
[0005]
In addition, the method disclosed in Japanese Patent Application Laid-Open No. 5-501520 is a method for purifying contaminated groundwater with halogen organic pollutants in a permeable ground made of metal such as iron particles in an environment where oxygen is blocked. It is a method of allowing the pollutant to decompose through the middle layer, and the method disclosed in Japanese Patent Publication No. Hei 6-506631 is an adsorbent such as activated carbon in which contaminated groundwater is formed in the ground as a similar method for purifying contaminated groundwater. In this method, the contaminants are adsorbed and decomposed by passing through a permeable layer made of a mixture of metal particles such as iron scrap and metal particles.
[0006]
In addition, for contaminated groundwater, there are vacuum extraction methods and pumping aeration methods that extract the contaminated groundwater out of the soil and render it harmless. A desorption method and a thermal decomposition method are known, and a purification method using a bioremediation method using microorganisms is known as a method for decomposing and detoxifying contaminants in soil or groundwater.
[0007]
[Problems to be solved by the invention]
However, the invention methods disclosed in Japanese Patent Publication No. 2-49158, Japanese Patent Publication No. 2-49798, and Japanese Patent No. 2636171 all deal with irrigation water or factory effluent, which is troublesome for the treatment of contaminated groundwater. It is premised on the drainage work of contaminated water, and it is necessary to remove dissolved oxygen by adjusting the pH of the contaminated water and supplying other reducing substances and hydrogen gas. Is difficult to apply, and has many disadvantages in terms of cost, such as using an iron reducing agent supported on activated carbon or the like.
[0008]
In addition, the method of the invention of Tokuhei Hei 5-501520 and Tokuhei Hei 6-506631 is also an in-situ treatment method for groundwater, but it mainly prevents the diffusion of contamination to the downstream area by the groundwater flow through the contaminated area. It is not intended to detoxify the contaminated area itself. In addition, a metal reducing agent is used in combination with an adsorbent made of activated carbon, and the iron layer is clogged with iron carbonate (FeCO 3 ) produced by reaction with carbonate ions in groundwater, and therefore needs to be replaced periodically. There are many disadvantages in terms of equal costs. That is, in the case of the conventional technology, there has been the following problem with respect to the detoxification treatment of soil contaminated with organochlorine compounds and contaminated water in the soil.
[0009]
(1) In the method of extracting and pumping soil gas and groundwater containing pollutants from the ground by vacuum extraction / pumping, etc., activated carbon and a decomposing agent are used to remove and decompose pollutants in the soil gas and extracted water. In addition, high-cost separate processing is required, such as installing facilities on the ground and detoxifying the pollutants generated by extraction and pumping. Moreover, since it does not purify the soil itself, the purpose of removing the obstacles in land development as described above cannot be achieved, and it cannot be said that it is a sufficient detoxification method.
[0010]
(2) The groundwater purification method using a metal-based reducing agent such as iron is intended for groundwater until it gets tired, and even though it prevents diffusion of contaminated groundwater, it does not purify the contamination of the soil itself. Since it cannot be applied to the above unsaturated zone or soil after excavation, it cannot be said that it is a sufficient detoxification treatment method as in the above method.
Also, this method uses large-grain iron to improve the passage of groundwater and avoid the blockage problem described above. For this reason, the reactivity is poor and the amount of use increases, which is disadvantageous in terms of cost.
[0011]
(3) The method of pyrolyzing excavated soil at a high temperature requires a large facility for heat-treating the soil, and the soil particles themselves are altered by heat, for example, supporting structures and inhabiting living organisms. Since the function of the soil is significantly impaired, it becomes difficult to reuse the treated soil.
[0012]
(4) The bioremediation method is not adaptable to all soils due to the characteristics of each soil, and even if possible, the reaction is slow due to microbial action, requiring a long treatment period. .
[0013]
Therefore, the present invention can treat soil in an unsaturated zone above the groundwater level, and in a short period of time, using a relatively inexpensive iron-only reducing agent for soil contaminated with organochlorine compounds, and The purpose is to provide a soil detoxification method that can decompose pollutants at room temperature.
[0014]
[Means for Solving the Problems]
In order to achieve this object, the present invention adds the above-mentioned organochlorine compound by adding and mixing iron powder to soil that is shallower than the groundwater level and contaminated with the organochlorine compound. A method for detoxifying the soil by decomposing and purifying the soil; and the iron powder contains 0.1% by weight or more, preferably 0.2% by weight or more of carbon and 500 cm 2 / g or more, preferably 2000 cm. It has a specific surface area of 2 / g or more, and 50% by weight or more has a particle size passing through a 150 μm sieve, and is added in a range of 0.1 to 10% by weight with respect to the soil. The soil detoxification method according to the first aspect, and also the soil detoxification method according to the first or second aspect, wherein the iron powder is spongy iron powder.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, Soil contaminated with volatile organochlorine compounds such as 1,3-dichloropropene and organochlorine compounds such as PCBs and dioxins is subject to purification, and these organochlorine compounds are dechlorinated or dechlorinated. It is characterized by decomposing and detoxifying by the action of hydrogen.
[0016]
The iron powder used for the purification of contaminated soil has a carbon content of 0.1% by weight or more and includes most ordinary steel components and ordinary cast iron components. If the amount of carbon is lower than 0.1% by weight, the decomposition rate of the pollutant becomes slow, which is not practical. The particle size of the iron powder is adjusted so that 50% by weight or more of the whole passes through a sieve having an opening of 150 μm. If iron powder having a coarser particle size is used, the decomposition rate of pollutants is reduced, the utilization efficiency of iron powder is reduced, and a larger amount of iron powder is added, which is economically disadvantageous.
[0017]
As the shape of the iron powder to be added to the soil, one having a specific surface area of 500 cm 2 / g or more is used from the viewpoint of increasing the contact efficiency with the pollutant and increasing the reaction efficiency. It can be easily obtained with spongy iron (sponge iron). At the same time, as the iron powder, it is desirable that the degree of crystal growth is low and a pearlite structure exists as a crystal structure in terms of enhancing reactivity with contaminants.
The amount of iron powder added to the soil is in the range of 0.1 to 10% by weight with respect to the wet weight of the soil. When the addition amount is less than 0.1% by weight, the decomposition rate is remarkably reduced, and when the addition amount is more than 10% by weight, it is economically disadvantageous.
[0018]
In order to add and mix iron powder into the soil, in the case of in-situ treatment, use a high-pressure medium such as air or water, or use a civil engineering machine used in ground improvement work. A method of excavating and mixing is taken. In the case of excavation processing, a mixing device such as a kneader, a mixer or a blender can be used.
[0019]
Since iron powder is gradually passivated due to oxidation of its surface and its reaction power decreases, in order to aid the decomposition action of pollutants by iron powder, it is newly added to the soil after mixing iron powder. Care must be taken not to supply oxygen or oxidizing substances. That is, it is desirable to prevent the soil surface from coming into direct contact with fresh outside air during in-situ processing or post-digging processing.
[0020]
By performing soil treatment as described above, environmental standards related to soil contamination in 2 to 3 months (August 23, 1991 notification, amendment, Heisei 5 notice 19, Heisei 6 notice 5, ring It is possible to detoxify the soil up to Notification 25, 1995 Notification 19).
[0021]
【Example】
Samples prepared in Examples 1 to 4 were prepared by mixing soil contaminated with trichlorethylene and iron powder in a predetermined ratio into a container made of vinyl chloride that does not transmit light with an inner diameter of 100 mm and a height of 500 mm. Was added, and distilled water was added from the bottom of the container to 150 mm, and an unsaturated zone corresponding to the soil above the groundwater level was reproduced in the top 350 mm.
[0022]
Samples were prepared by preparing containers as many as the number of samples planned in advance, and were allowed to stand at room temperature for a predetermined period, and then sampled for each container. Since the sample was collected in a rod shape from the top to the bottom of the container using a cylindrical sampler, the sample contains both saturated and unsaturated soil.
The iron powder used was Dowa Iron Powder Industry Co., Ltd., spongy ore reduced iron powder (E-200), which had been adjusted to predetermined physical property values by operations of reduction purification, sintering, pulverization, and sieving.
[0023]
As for the analysis method of trichlorethylene, this time, it is not a method that complies with the environmental standards in order to grasp the situation where the iron powder is decomposing organochlorine compounds. (This method is based on the method described in “Environment and Measurement Technology” Vol. 16, No. 15, 1989, 31-34, published by the Japan Environmental Measurement and Analysis Association).
[0024]
The soil environment standard is indicated by an elution value (mg / l) of water 10 times the soil weight. Therefore, it can be determined that the soil environment standard is satisfied if the content value (mg / kg) is 10 times or less the soil environment standard value (mg / l).
[0025]
[Example 1]
The decomposition state of trichlorethylene in soil was investigated by changing the particle size of iron powder.
When iron powder with a carbon content of 0.2% by weight and a specific surface area of 2,000 cm 2 / g is used, the amount added to the soil is 0.2% by weight, and no iron powder is added to the soil. And when the iron powder having a particle size of 50% by weight or more passing through a 300 μm sieve is added to the soil and the iron powder having a particle size of 50% by weight or more passing through a 150 μm sieve is added to the soil. The decomposition situation was investigated.
The results are shown in Table 1.
[0026]
[Table 1]
From this result, it can be seen that it is desirable that the iron powder has a particle size of 50% by weight or more passing through a 150 μm sieve.
[0027]
[Example 2]
The decomposition state of trichlorethylene was investigated by changing the ratio of iron powder added to the soil.
The iron powder has a carbon content of 0.2% by weight, a specific surface area of 2,000 cm 2 / g, and a particle size of 50% by weight or more that passes through a 150 μm sieve. The decomposition state of trichlorethylene was investigated for the case where the iron powder was not added to the iron and the case where the iron powder was added at a ratio of 0.03% by weight, 0.1% by weight and 1.0% by weight.
The results are shown in Table 2.
[0028]
[Table 2]
From this result, it can be seen that the addition ratio of iron powder to the soil is preferably at least 0.1% by weight.
[0029]
Example 3
The decomposition state of trichlorethylene was investigated by changing the carbon content of iron powder.
The iron powder has a specific surface area of 2,000 cm 2 / g, the addition ratio to the soil is 0.2% by weight, and the particle size is 50% by weight or more passing through a 150 μm sieve. About the iron powder whose content is 0.005 weight%, 0.05 weight%, 0.1 weight%, and 0.2 weight%, the decomposition | disassembly condition of trichlorethylene was investigated.
The results are shown in Table 3.
[0030]
[Table 3]
From this result, it is understood that the iron powder preferably has a carbon content of 0.1% by weight or more.
[0031]
Example 4
The decomposition state of trichlorethylene was investigated about the iron powder from which the surface area per unit weight, ie, a specific surface area, differs.
The iron powder has a carbon content of 0.2% by weight and a particle size distribution of 50% by weight or more passing through a 150 μm sieve, and the addition ratio to the soil is 0.2% by weight. the specific surface area of 300 cm 2 / g of iron powder, was examined degradation status of trichlorethylene in the case of a 500 cm 2 / g and 2,000 cm 2 / g.
The results are shown in Table 4.
[0032]
[Table 4]
From this result, it can be seen that a remarkable effect is obtained when the specific surface area of the iron powder is at least 2,000 cm 2 / g.
[0033]
As described above, the iron powder necessary for the decomposition of the organic chlorine compound has a particle size distribution in which the carbon content in the iron powder is 0.1% by weight or more and 50% by weight or more passes through a 150 μm sieve, in a specific surface area 500 cm 2 / g or more and particularly 2,000 cm 2 / g or more and not found in the prior art by the addition in a proportion of 0.1 wt% to 10 wt% of the soil with respect to the soil A remarkable effect was obtained.
[0034]
Example 5
Tests were conducted to reproduce unsaturated zone soils with different dry conditions of trichlorethylene degradation due to differences in soil moisture content (%).
In a 100 ml glass vial bottle, dry soil: 40 g, trichlorethylene 4 g, iron powder E-200: 1 g and water were added after changing the addition amount, and the mixture was allowed to stand, and the change in TCE concentration in the headspace was measured.
[0035]
[Table 5]
From the above test results, it was found that even in a system without a saturated zone, if the water content in the soil is 5% or more, the decomposition of trichlorethylene by the method proceeds effectively.
[0036]
【The invention's effect】
As described above, according to the present invention, for soil contaminated with organochlorine compounds that have not been treated in the conventional method, for soil in an unsaturated zone above the groundwater level, the carbon component of iron powder, By simply regulating the shape and dimensions, and also regulating the amount added to the soil, it is relatively inexpensive, and a simple room-temperature treatment method of adding and mixing a small amount of iron powder compared to the conventional method for a short period of time. In this way, the effect can be obtained that the pollutants can be decomposed and rendered harmless even in a situation that does not affect the environment. Furthermore, the said effect can be acquired easily by utilizing spongy iron powder as iron powder.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36717797A JP3862394B2 (en) | 1997-12-19 | 1997-12-25 | Detoxification method of soil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-365260 | 1997-12-19 | ||
JP36526097 | 1997-12-19 | ||
JP36717797A JP3862394B2 (en) | 1997-12-19 | 1997-12-25 | Detoxification method of soil |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003433379A Division JP2004154778A (en) | 1997-12-19 | 2003-12-26 | Detoxifying treatment of soil |
JP2006160127A Division JP4482678B2 (en) | 1997-12-19 | 2006-06-08 | Detoxification method of soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11235577A JPH11235577A (en) | 1999-08-31 |
JP3862394B2 true JP3862394B2 (en) | 2006-12-27 |
Family
ID=26581651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36717797A Expired - Lifetime JP3862394B2 (en) | 1997-12-19 | 1997-12-25 | Detoxification method of soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3862394B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222870A (en) * | 1998-11-17 | 2007-09-06 | Dowa Holdings Co Ltd | Method for detoxifying soil |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000029137A1 (en) * | 1998-11-17 | 2000-05-25 | Dowa Mining Co., Ltd. | Method for detoxification treatment of soil |
JP3931610B2 (en) | 2000-11-15 | 2007-06-20 | Jfeスチール株式会社 | Method for purifying soil, water and / or gas and iron powder for dehalogenation of organic halogen compounds |
JP4843776B2 (en) * | 2001-09-10 | 2011-12-21 | Dowaエコシステム株式会社 | Metal powder for organic halogen decomposition and method for producing the same |
JP4586325B2 (en) * | 2001-09-27 | 2010-11-24 | 東ソー株式会社 | Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same |
KR100582474B1 (en) | 2002-06-26 | 2006-05-23 | 가부시키가이샤 고베 세이코쇼 | Iron-Based cleaning powder |
JP2005232285A (en) * | 2004-02-19 | 2005-09-02 | Ishihara Sangyo Kaisha Ltd | Soil modifying material |
WO2006101246A1 (en) | 2005-03-25 | 2006-09-28 | Dowa Eco-System Co., Ltd. | Agent for decomposing organic halogen-containing compound |
JP5082040B2 (en) * | 2005-03-25 | 2012-11-28 | Dowaエコシステム株式会社 | Method for producing organohalogen compound decomposing agent |
JP4670570B2 (en) * | 2005-10-04 | 2011-04-13 | パナソニック株式会社 | Purification method for contaminated soil |
US7718843B2 (en) | 2006-11-14 | 2010-05-18 | Tosoh Corporation | Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same |
JP5076246B2 (en) * | 2009-11-02 | 2012-11-21 | Dowaエコシステム株式会社 | Method for producing organohalogen compound decomposing agent |
CA2805128C (en) | 2010-07-15 | 2021-08-31 | Hoganas Ab (Publ) | Iron copper compositions for fluid purification |
JP5690106B2 (en) | 2010-09-24 | 2015-03-25 | Dowaエコシステム株式会社 | Decomposing agent for organic halogen compounds containing iron particles and method for producing the same |
JP5721255B2 (en) | 2011-01-17 | 2015-05-20 | Dowaエコシステム株式会社 | Method for producing iron powder for treating organohalogen compounds, and purification method for soil / groundwater contamination |
-
1997
- 1997-12-25 JP JP36717797A patent/JP3862394B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222870A (en) * | 1998-11-17 | 2007-09-06 | Dowa Holdings Co Ltd | Method for detoxifying soil |
Also Published As
Publication number | Publication date |
---|---|
JPH11235577A (en) | 1999-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3862394B2 (en) | Detoxification method of soil | |
JP4069174B2 (en) | Detoxification method of soil | |
US20030083195A1 (en) | Iron powder for remediation and method for remediating soil, water, or gas | |
Chen et al. | Constructing the active surface soil layer with ZVI-biochar amendment for simultaneous immobilization of As and Zn in both contaminated soil and groundwater: Continuous versus intermittent infiltration mode | |
JP4377657B2 (en) | Organochlorine compound removing agent and organochlorine compound removing method | |
JP4482678B2 (en) | Detoxification method of soil | |
JP2010221184A (en) | Method of purifying soil and/or groundwater | |
JP2006272118A (en) | Method for cleaning substance contaminated by organic chlorine compound | |
JP2005021748A (en) | Wall for preventing diffusion of volatile organic compound, method for constructing wall, and method for purifying volatile organic compound | |
JP2005185870A (en) | Additive used for restoration of contaminated soil, ground water or bottom deposit | |
JP4127102B2 (en) | Detoxification method for workpieces contaminated with organic halogen compounds | |
JP2004154778A (en) | Detoxifying treatment of soil | |
JP2004305235A (en) | Method for rendering object to be treated contaminated with organic halogen compound harmless | |
JP5109036B2 (en) | Detoxification method of soil | |
JP4660958B2 (en) | Purification of soil, water and gas contaminated with organochlorine compounds | |
JP2002159960A (en) | Detoxicating treating method of soil and iron powder material for decomposing organic halogen compound | |
JP4786936B2 (en) | Organohalogen compound treatment material | |
JP4126347B2 (en) | Purification method of contaminated soil or contaminated water | |
JP2005013969A (en) | Purifying method of volatile organic compounds | |
JP2005349266A (en) | Method for treating contaminated soil | |
JP2002166171A (en) | Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless | |
JP2004283650A (en) | Soil or ground water purifying method and method for treating contaminated water | |
Kim et al. | Hazardous waste treatment technologies | |
JP2005144404A (en) | Soil pollution restoration method | |
JP2006043493A (en) | Heavy-metal contaminated-soil cleaning agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031226 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040206 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040730 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040913 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060926 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101006 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111006 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131006 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |