JP2002166171A - Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless - Google Patents

Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless

Info

Publication number
JP2002166171A
JP2002166171A JP2000362602A JP2000362602A JP2002166171A JP 2002166171 A JP2002166171 A JP 2002166171A JP 2000362602 A JP2000362602 A JP 2000362602A JP 2000362602 A JP2000362602 A JP 2000362602A JP 2002166171 A JP2002166171 A JP 2002166171A
Authority
JP
Japan
Prior art keywords
iron powder
organic halogen
halogen compound
graphite
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000362602A
Other languages
Japanese (ja)
Inventor
Hiroki Nakamaru
裕樹 中丸
Haruhiko Miyazawa
晴彦 宮澤
Yoshihide Kato
嘉英 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000362602A priority Critical patent/JP2002166171A/en
Publication of JP2002166171A publication Critical patent/JP2002166171A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iron powder for decomposing organic halogen compounds which is excellent in decomposition rate of organic halogen compounds and is highly safe. SOLUTION: At the surface of this iron powder for decomposing organic halogen compounds, there is graphite in a high concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機ハロゲン化合
物分解用鉄粉ならびに汚染された土壌、地下水、ガスの
無害化方法に関し、より詳しくは有機ハロゲン化合物の
分解速度が速く、かつ、安全性の高い有機ハロゲン化合
物分解用鉄粉ならびに該鉄粉を用いた汚染された土壌、
地下水、ガスの無害化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to iron powder for decomposing organic halogen compounds and a method for detoxifying contaminated soil, groundwater and gas. High organic halogen compound decomposition iron powder and contaminated soil using the iron powder,
Detoxification of groundwater and gas.

【0002】[0002]

【従来の技術】近年、半導体工場、金属加工工場等にお
いて脱脂溶剤として、以前から多量に使用され、使用
後、排出され、投棄されてきたトリクロロエチレン(T
CE)等の有機ハロゲン系化合物等による地下水や土壌
の汚染が、大きな社会問題となっている。従来、これら
の汚染を解決する方法として、地下水については、汚染
された地下水を土壌外に抽出して無害化処埋する真空抽
出法や揚水曝気法等がある。また、土壌については、汚
染された土壌を掘削して加熱処理によって無害化する熱
脱着法や熱分解法が知られている。更には、地下水中ま
たは土壌中の汚染物質を分解して無害化する方法とし
て、微生物を利用したバイオレメディエーション法によ
る浄化法が知られている。
2. Description of the Related Art In recent years, trichlorethylene (T) which has been used in large quantities as a degreasing solvent in semiconductor factories and metal processing factories, and has been discharged and discarded after use, has been used.
Contamination of groundwater and soil by organic halogen compounds such as CE) is a major social problem. Conventionally, as a method of solving these pollutions, there are a vacuum extraction method, a pumping aeration method, and the like, in which contaminated groundwater is extracted outside the soil and detoxified and buried. As for soil, a thermal desorption method and a thermal decomposition method in which contaminated soil is excavated and made harmless by heat treatment are known. Further, as a method of decomposing and detoxifying contaminants in groundwater or soil, a purification method by a bioremediation method using microorganisms is known.

【0003】しかしながら、真空抽出法、揚水曝気法等
の方法は、汚染物質を含む地下水や土壌ガスを地中より
揚水・抽出した後、汚染物質を除去したり分解したりす
るために活性炭や分解剤を使用するにあたり、地上に設
備を設け、更に、発生した汚染物質に無害化処埋を施す
など、高コストな別途処理を必要とする。また、掘削土
壌を高温で熱分解する方法は、土壌を加熱処理する大が
かりな設備が必要であり、かつ、土壌粒子自体が熱によ
り変質し、例えば、生物を生息させるという土壌の機能
が著しく損なわれるため、処理後の土壌の再利用が難し
い。更に、バイオレメディエーション法は、土壌特性の
違いから、すべての土壌に適用できるものではなく、ま
た、適用できる場合でも、微生物作用によるため反応が
遅く、長期の処理期間を必要とする。
[0003] However, methods such as a vacuum extraction method and a pumping aeration method use a method in which activated carbon or decomposition gas is used to remove or decompose pollutants after pumping and extracting groundwater or soil gas containing pollutants from the ground. Use of the agent requires high-cost separate treatment, such as installing equipment on the ground and detoxifying and embedding generated contaminants. In addition, the method of pyrolyzing excavated soil at a high temperature requires a large-scale facility for heat-treating the soil, and the soil particles themselves are deteriorated by heat, and for example, the function of the soil to inhabit living organisms is significantly impaired. Therefore, it is difficult to reuse the soil after treatment. Furthermore, the bioremediation method cannot be applied to all soils due to differences in soil characteristics, and even when applicable, the reaction is slow due to the action of microorganisms and requires a long treatment period.

【0004】上記のような従来の地下水や土壌の汚染対
策の問題点を克服するべく、含ハロゲン有機汚染物質を
鉄と反応させて、還元的に脱ハロゲン化し、無害化する
方法が種々提案されており、注目されつつある。例え
ば、特表平5−501520号公報には、地下水の流路
に溝を掘り、粒状、切片状、繊維状等の形状の鉄を充填
し、含ハロゲン有機汚染物質と接触させることで、還元
的に脱ハロゲン化し、無害化する方法が記載されてい
る。また、特表平6−506631号公報には、原理的
には特表平5−501520号公報の方法と同様である
が、金属鉄に活性炭を混合して用いる方法が記載されて
いる。更に、特開平11−235577号公報には、地
下水水位以上の不飽和帯の土壌や、掘削後の土壌に含ま
れる有機ハロゲン系化合物を0. 1%以上のCを含有す
る鉄粉による還元作用で無害化する方法が記載されてお
り、鉄粉の結晶構造としてはパーライト組織が存在する
ものが望ましいと記載されている。更に、特開2000
−5740号公報には、銅含有鉄粉の使用が記載されて
いる。
In order to overcome the above-mentioned problems of the conventional countermeasures against pollution of groundwater and soil, various methods have been proposed in which halogen-containing organic contaminants are reacted with iron to reductively dehalogenate and detoxify them. And is gaining attention. For example, Japanese Unexamined Patent Publication No. Hei 5-501520 discloses that a groove is formed in a flow path of groundwater, and iron having a granular shape, a piece shape, a fibrous shape, or the like is filled and brought into contact with a halogen-containing organic pollutant. It describes a method of dehalogenating and detoxifying it. Japanese Patent Publication No. 6-506631 describes a method which is similar in principle to the method disclosed in Japanese Patent Publication No. 5-501520 and uses a mixture of metallic iron and activated carbon. Further, Japanese Patent Application Laid-Open No. 11-235577 discloses that an organic halogen-based compound contained in an unsaturated zone soil at a groundwater level or higher or an excavated soil is reduced by iron powder containing 0.1% or more of C. The method of detoxifying the iron powder is described, and it is described that the crystal structure of the iron powder preferably has a pearlite structure. Further, Japanese Patent Application Laid-Open
JP-5740 discloses the use of copper-containing iron powder.

【0005】[0005]

【発明が解決しようとする課題】しかし、特表平5−5
01520号公報、特表平6−506631号公報およ
び特開平11−235577号公報に記載の方法は、い
ずれも有機ハロゲン化合物の分解速度が遅いという問題
を有していた。また、特開2000−5740号公報に
記載の方法は、銅自体が有害元素であり、二次汚染の原
因となるおそれがあるという問題を有していた。
SUMMARY OF THE INVENTION However, Japanese Patent Publication No.
All of the methods described in JP-A No. 01520, JP-A-6-506631 and JP-A-11-235577 have a problem that the decomposition rate of the organic halogen compound is low. Further, the method described in JP-A-2000-5740 has a problem that copper itself is a harmful element, which may cause secondary contamination.

【0006】したがって、本発明は、有機ハロゲン化合
物の分解速度が速く、かつ、安全性の高い有機ハロゲン
化合物分解用鉄粉ならびに該鉄粉を用いた汚染された土
壌、地下水、ガスの無害化方法を提供することを目的と
する。
Accordingly, the present invention provides a highly safe iron powder for decomposing organic halogen compounds, which has a high decomposition rate, and a method for detoxifying contaminated soil, groundwater and gas using the iron powder. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究を行い、本発明を完成した。即ち、
本発明は、表面に黒鉛が濃化して存在する有機ハロゲン
化合物分解用鉄粉を提供する。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems, and completed the present invention. That is,
The present invention provides an iron powder for decomposing an organic halogen compound in which graphite is concentrated on the surface.

【0008】前記黒鉛の前記表面における存在確率Pad
が、0.001〜0.9であるのが好ましい。
[0008] Probability P ad of the graphite on the surface
Is preferably from 0.001 to 0.9.

【0009】下記式(1)で表される反応活性サイトの
存在確率係数Kp(reactive site)が、0.05以上であ
るのが好ましい。 Kp(reactive site)=(0.04π×n×Pad1/2 (1) ただし、nは、有機ハロゲン化合物分解用鉄粉の表面1
00μm2 あたりに存在する黒鉛の粒子の数を表し、P
adは黒鉛の有機ハロゲン化合物分解用鉄粉の表面におけ
る存在確率を表す。
It is preferable that the reaction active site existence probability coefficient K p (reactive site) represented by the following formula (1 ) is 0.05 or more. K p (reactive site) = (0.04π × n × P ad ) 1/2 (1) where n is the surface 1 of the iron powder for decomposing the organic halogen compound.
Represents the number of graphite particles present per 00 μm 2 ,
ad represents the existence probability of graphite on the surface of the iron powder for decomposing an organic halogen compound.

【0010】また、上記した有機ハロゲン化合物分解用
鉄粉を、有機ハロゲン化合物で汚染された土壌、地下水
およびガスのうち少なくとも一つと接触させて、有機ハ
ロゲン化合物を分解することを特徴とする汚染された土
壌、地下水、ガスの無害化方法を提供する。好ましく
は、前記した接触させる方法が、下記(a)、(b)、
(c)、(d)および(e)のうち少なくともいずれか
一つである。 (a)有機ハロゲン化合物で汚染された地下水中に、該
有機ハロゲン化合物分解用鉄粉を戴置する方法。 (b)有機ハロゲン化合物で汚染された地下水をくみ上
げ、該有機ハロゲン化合物分解用鉄粉に接触させる方
法。 (c)有機ハロゲン化合物で汚染された土壌中に、該有
機ハロゲン化合物分解用鉄粉を添加する方法。 (d)有機ハロゲン化合物で汚染された土壌を掘削し、
該掘削された土壌と該有機ハロゲン化合物分解用鉄粉を
混合する方法。 (e)有機ハロゲン化合物で汚染された土壌および/ま
たは地下水から吸引して得られたガスと該有機ハロゲン
化合物分解用鉄粉とを接触させる方法。
In addition, the above-mentioned iron powder for decomposing an organic halogen compound is brought into contact with at least one of soil, groundwater and gas contaminated with the organic halogen compound to decompose the organic halogen compound. To provide detoxification methods for soil, groundwater and gas. Preferably, the above-mentioned contacting method includes the following (a), (b),
It is at least one of (c), (d) and (e). (A) A method of placing the iron powder for decomposing an organic halogen compound in groundwater contaminated with the organic halogen compound. (B) A method in which groundwater contaminated with an organic halogen compound is pumped and brought into contact with the iron powder for decomposing the organic halogen compound. (C) adding iron powder for decomposing the organic halogen compound to soil contaminated with the organic halogen compound. (D) excavating soil contaminated with organohalogen compounds,
A method of mixing the excavated soil with the iron powder for decomposing an organic halogen compound. (E) A method in which a gas obtained by suction from soil and / or groundwater contaminated with an organic halogen compound is brought into contact with the iron powder for decomposing the organic halogen compound.

【0011】[0011]

【発明の実施の形態】以下、本発明の有機ハロゲン化合
物分解用鉄粉について、詳細に説明する。本発明の有機
ハロゲン化合物分解用鉄粉は、表面に黒鉛が濃化して存
在することを特徴とする。即ち、黒鉛が鉄粉内部より鉄
粉表面に多量に存在する。後述するように、有機ハロゲ
ン化合物は黒鉛に吸着されやすく、黒鉛と地鉄との境界
部において分解される。本発明の有機ハロゲン化合物分
解用鉄粉は、表面に黒鉛が濃化して存在するので、有機
ハロゲン化合物が黒鉛に接触して吸着される確率が高
く、その結果、有機ハロゲン化合物の分解速度が速くな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the iron powder for decomposing an organic halogen compound of the present invention will be described in detail. The iron powder for decomposing an organic halogen compound of the present invention is characterized in that graphite is present on the surface in a concentrated state. That is, graphite is present in a larger amount on the surface of the iron powder than inside the iron powder. As described later, the organic halogen compound is easily adsorbed by graphite and is decomposed at the boundary between graphite and ground iron. The iron powder for decomposing an organic halogen compound of the present invention has a high probability that the organic halogen compound contacts and is adsorbed on the graphite because the graphite is concentrated on the surface, and as a result, the decomposition rate of the organic halogen compound is high. Become.

【0012】表面の黒鉛の確認方法としては、例えば、
AES(オージェ電子分光法)分析を用いることができ
る。以下、具体的に説明する。FE−AES分析装置に
付属するSEMで鉄粉表面のBSE像(反射電子像)を
観察し(図1)、コントラストから析出物と推測される
部分にビームを絞ってサーベイスキャンを行うと、地鉄
部ではFe、C、O等が検出され(図2)、黒鉛ではわ
ずかにOが検出されるもののFeは検出されず、ほとん
どがCとなる(図3)。なお、上記方法は、同一のサン
プルについて行ったX線回折分析、および、同一のサン
プルを断面埋め込み研磨したサンプルについて行った断
面観察によっても黒鉛の存在が同様に確認されているこ
とから、表面の黒鉛の確認方法として用いることができ
る。
As a method of checking graphite on the surface, for example,
AES (Auger electron spectroscopy) analysis can be used. Hereinafter, a specific description will be given. Observing a BSE image (reflection electron image) of the iron powder surface with a SEM attached to the FE-AES analyzer (FIG. 1), and conducting a survey scan by focusing the beam on a portion presumed to be a precipitate from the contrast, Fe, C, O, etc. are detected in the iron part (FIG. 2), and in the graphite, O is slightly detected but Fe is not detected, and almost all is C (FIG. 3). In the above method, the presence of graphite was also confirmed by X-ray diffraction analysis performed on the same sample and cross-sectional observation performed on a sample obtained by embedding and polishing the same sample. It can be used as a method for confirming graphite.

【0013】ここで、X線回折分析は、S/N比の問題
があるため、表面の黒鉛の量が極少量である場合には、
用いることができない。また、断面観察による方法は、
断面埋め込み研磨処理を必要とするため容易な方法とは
いえない。これに対して、AES分析を用いて表面の黒
鉛を確認する方法は、表面の黒鉛の量が極少量である場
合にも用いることができ、かつ、測定も容易であるた
め、好適に用いられる。
Here, the X-ray diffraction analysis has a problem of the S / N ratio. Therefore, when the amount of graphite on the surface is extremely small,
Can not be used. Also, the method by cross-section observation is
This method cannot be said to be an easy method because a cross-section embedding polishing process is required. On the other hand, the method of confirming graphite on the surface using AES analysis can be used even when the amount of graphite on the surface is extremely small, and the measurement is easy. .

【0014】本発明の有機ハロゲン化合物分解用鉄粉に
おいては、黒鉛の厚さは、0.01〜5μmであるのが
好ましく、0.1〜3μmであるのがより好ましい。黒
鉛の厚さは、例えば、断面観察により測定することがで
きる。
In the iron powder for decomposing an organic halogen compound of the present invention, the thickness of the graphite is preferably 0.01 to 5 μm, more preferably 0.1 to 3 μm. The thickness of the graphite can be measured by, for example, cross-sectional observation.

【0015】また、本発明の有機ハロゲン化合物分解用
鉄粉においては、黒鉛の表面における存在確率Padが、
0.001〜0.9であるのが好ましい。上記範囲であ
ると、有機ハロゲン化合物の分解速度が速くなる。Pad
は、0.01〜0.8であるのがより好ましく、0.2
〜0.6であるのが更に好ましい。ここで、黒鉛の表面
における存在確率Padは、鉄粉表面全体の面積に対する
黒鉛の総面積の割合(黒鉛の面積率)である。黒鉛の面
積率の測定は、上述したAES分析により倍率1000
〜10000倍で鉄粉表面のBSE像を撮影し、市販の
画像解析ソフトウェア(例えば、住友金属テクノロジー
社製の粒子解析ソフト(バージョン1.0))を用い
て、表面100μm2 (例えば、一辺10μmの正方形
領域)あたりの黒鉛の総面積Sgraphite(単位:μm)
を測定し、Pad=Sgraphite/100から、Padを求め
る。上記測定は、視野を変えて複数箇所、例えば、10
箇所で行うのが好ましく、その場合にはPadとして平均
値を用いる。
[0015] In the organic halogen compound-decomposing iron powder for the present invention, the presence probability P ad on the surface of the graphite,
It is preferably 0.001 to 0.9. Within the above range, the decomposition rate of the organic halogen compound is increased. P ad
Is more preferably 0.01 to 0.8, and 0.2
More preferably, it is 0.6. Here, the existence probability P ad at the surface of the graphite, the ratio of the total area of the graphite relative to the total area of the iron powder surface (area ratio of graphite). The area ratio of graphite was measured at a magnification of 1000 by the AES analysis described above.
A BSE image of the surface of the iron powder is photographed at a magnification of 10000 to 10000, and the surface is 100 μm 2 (for example, 10 μm per side) using commercially available image analysis software (for example, particle analysis software (version 1.0) manufactured by Sumitomo Metal Technology Co., Ltd.) Total area S graphite per square area) (unit: μm)
Was measured, from P ad = S graphite / 100, obtains the P ad. The measurement is performed at a plurality of locations, for example, 10
It is preferably performed at a point, in which case an average value is used as Pad .

【0016】また、本発明の有機ハロゲン化合物分解用
鉄粉においては、下記式(1)で表される反応活性サイ
トの存在確率係数Kp(reactive site)が、0.05以上
であるのが好ましく、0.05〜3.0であるのがより
好ましく、0.1〜1.0であるのが更に好ましい。 Kp(reactive site)=(0.04π×n×Pad1/2 (1) ただし、nは、有機ハロゲン化合物分解用鉄粉の表面1
00μm2 あたりに存在する黒鉛の粒子の数を表し、P
adは黒鉛の有機ハロゲン化合物分解用鉄粉の表面におけ
る存在確率を表す。Kp(reactive site)が上記範囲であ
ると、黒鉛の粒子が表面で分散しており、多くの反応活
性サイトが表面に存在するので、有機ハロゲン化合物の
分解速度が速くなる。
Further, in the iron powder for decomposing an organic halogen compound of the present invention, the reaction probability site existence probability coefficient K p (reactive site) represented by the following formula (1 ) is 0.05 or more. Preferably, it is 0.05 to 3.0, more preferably 0.1 to 1.0. K p (reactive site) = (0.04π × n × P ad ) 1/2 (1) where n is the surface 1 of the iron powder for decomposing the organic halogen compound.
Represents the number of graphite particles present per 00 μm 2 ,
ad represents the existence probability of graphite on the surface of the iron powder for decomposing an organic halogen compound. When Kp (reactive site) is in the above range, graphite particles are dispersed on the surface, and many reaction active sites are present on the surface, so that the decomposition rate of the organic halogen compound is increased.

【0017】Kp(reactive site)について説明する。図
4は、本発明の有機ハロゲン化合物分解用鉄粉の表面の
一部を表す模式図である。黒鉛1と地鉄部2との間に
は、幅Wの境界部分3が存在する。本発明者は、本発明
の有機ハロゲン化合物分解用鉄粉によるTCE等の有機
ハロゲン化合物の分解においては、境界部分3が反応活
性サイトになると推定した。鉄粉表面における反応活性
サイトの存在確率は、鉄粉表面全体の面積に対する反応
活性サイトの面積の割合(反応活性サイトの面積率)で
ある。ここで、溶液中の有機ハロゲン化合物の分解につ
いて考えると、反応活性サイトと推定される境界部分3
の幅Wは溶液の比導電率に依存して変化する値であり、
高々0.1μm程度のオーダーであると推定されるの
で、表面100μm2 あたりに存在するすべての黒鉛の
粒子の周長の総和(単位:μm)とW(単位:μm)と
の積を100μm2 で除した値に近似することができ
る。更に、すべての黒鉛の粒子の形状が円であり、か
つ、大きさが同一であると仮定すると、下記式(2)が
導かれる。 (反応活性サイトの面積率)=n×W×2πr/100 (2) ただし、nは、有機ハロゲン化合物分解用鉄粉の表面1
00μm2 あたりに存在する黒鉛の粒子の数を表し、r
は黒鉛が円であると仮定した場合の黒鉛の半径(単位:
μm)を表す。
The Kp (reactive site) will be described. FIG. 4 is a schematic diagram showing a part of the surface of the iron powder for decomposing an organic halogen compound of the present invention. A boundary portion 3 having a width W exists between the graphite 1 and the ground iron portion 2. The present inventor has estimated that in the decomposition of the organic halogen compound such as TCE by the iron powder for decomposing an organic halogen compound of the present invention, the boundary portion 3 becomes a reaction active site. The existence probability of the reaction active site on the iron powder surface is the ratio of the area of the reaction active site to the entire area of the iron powder surface (area ratio of the reaction active site). Here, considering the decomposition of the organic halogen compound in the solution, the boundary portion 3 assumed to be a reaction active site is considered.
Is a value that varies depending on the specific conductivity of the solution,
Since it is estimated to be on the order of at most 0.1 μm, the product of the sum of the perimeters of all graphite particles present per 100 μm 2 of the surface (unit: μm) and W (unit: μm) is 100 μm 2. Can be approximated. Further, assuming that all the graphite particles are circular and have the same size, the following equation (2) is derived. (Area ratio of reaction active site) = n × W × 2πr / 100 (2) where n is the surface 1 of the iron powder for decomposing an organic halogen compound.
Represents the number of graphite particles present per 00 μm 2 , r
Is the radius of graphite assuming that the graphite is a circle (unit:
μm).

【0018】nの測定は、上述したAES分析により倍
率1000〜10000倍で鉄粉表面のBSE像を撮影
し、市販の画像解析ソフトウェア(例えば、住友金属テ
クノロジー社製の粒子解析ソフト(バージョン1.
0))を用いて、または目視で、表面100μm2 (例
えば、一辺10μmの正方形領域)あたりの黒鉛の粒子
の数を測定する。上記測定は、視野を変えて複数箇所、
例えば、10箇所で行うのが好ましく、その場合にはn
として平均値を用いる。
In the measurement of n, a BSE image of the iron powder surface is photographed at a magnification of 1,000 to 10,000 times by the above-mentioned AES analysis, and commercially available image analysis software (for example, particle analysis software manufactured by Sumitomo Metal Technology Co., Ltd. (version 1.
Using 0)) or visually, the number of graphite particles per 100 μm 2 surface (for example, a square area of 10 μm on a side) is measured. The above measurement is performed at multiple locations by changing the field of view,
For example, it is preferably performed at 10 places, in which case n
Is used as the average value.

【0019】ここで、上記仮定より、 Pad=n×π×r2 /100 と考えられるので、 r=10×(Pad/(n×π))1/2 (3) である。したがって、上記式(2)および(3)より、 (反応活性サイトの面積率)=n×W×2πr/100
=(0.04π×n×Pad1/2 ×W となる。
[0019] Here, from the above assumption, it is considered that P ad = n × π × r 2/100, which is r = 10 × (P ad / (n × π)) 1/2 (3). Therefore, from the above equations (2) and (3), (area ratio of reaction active site) = n × W × 2πr / 100
= (0.04π × n × P ad ) 1/2 × W.

【0020】ここで、 (0.04π×n×Pad1/2 =Kp(reactive site) (1) と定義することにより、鉄粉固有の条件である、表面1
00μm2 あたりに存在する黒鉛の粒子の数(n)およ
び黒鉛の有機ハロゲン化合物分解用鉄粉の表面における
存在確率(Pad)にのみ依存し、溶液の条件である反応
活性サイトの幅(W)に依存しない係数K
p(reactive site)が求められる。本発明者は、この反応
活性サイトの存在確率係数Kp(reactive site)が、特定
の範囲であると有機ハロゲン化合物の分解速度が速いこ
とを見出し、本発明の好適条件としたのである。
Here, by defining (0.04π × n × P ad ) 1/2 = K p (reactive site) (1), the surface 1 which is a condition unique to iron powder is defined.
It depends only on the number (n) of graphite particles present per 00 μm 2 and the probability of presence (P ad ) of graphite on the surface of the iron powder for decomposing organic halogen compounds, and the width of reaction active site (W ) Independent coefficient K
p (reactive site) is required. The present inventor has found that when the presence probability coefficient K p (reactive site) of the reaction active site is within a specific range, the decomposition rate of the organic halogen compound is high, and thus the present invention has been determined as preferable conditions of the present invention.

【0021】本発明の有機ハロゲン化合物分解用鉄粉
は、平均粒径が10μm〜5mmであるのが好ましい。
また、本発明の有機ハロゲン化合物分解用鉄粉は、土壌
等との混合が容易となる点で、形状がほぼ球形であるの
が好ましい。
The iron powder for decomposing organic halogen compounds of the present invention preferably has an average particle size of 10 μm to 5 mm.
Further, the iron powder for decomposing an organic halogen compound of the present invention preferably has a substantially spherical shape in that it can be easily mixed with soil or the like.

【0022】本発明の有機ハロゲン化合物分解用鉄粉の
製造方法は、鉄粉表面に黒鉛が濃化して存在するように
することができれば、特に限定されない。鉄粉表面に黒
鉛を濃化して存在させる方法としては、例えば、鉄粉表
面に黒鉛を析出させる方法が挙げられる。即ち、本発明
の好適な態様の一つは、表面に黒鉛を析出させることに
より、鉄粉表面に黒鉛を濃化して存在する有機ハロゲン
化合物分解用鉄粉である。表面に黒鉛を析出させて本発
明の有機ハロゲン化合物分解用鉄粉を製造する方法とし
ては、例えば、(1)銑鉄または炭素含有量3質量%以
上の溶鋼(例えば、溶鋼成分:4質量%C−0.025
質量%Si−0.4質量%Mn−0.17質量%P)を
水アトマイズ法により急冷凝固させて鉄粉とした後、水
素気流中で700℃、1時間の条件で仕上還元処理を行
い、更に不活性ガス中で100〜600℃の熱処理を加
えることで、過飽和に固溶した炭素を表面に黒鉛として
析出させる方法、(2)ミルスケールをコークス還元し
て得られた海綿鉄粉(還元鉄粉)に、黒鉛粉末を添加
し、不活性ガス雰囲気中で600℃、1時間の条件で熱
処理を行うことで、黒鉛粉末を部分的に拡散させ、鉄粉
表面に黒鉛粒子を析出させる方法が挙げられる。上記
(1)の方法は、析出した黒鉛が微細に分散し、結果と
してKp(reactive site)が望ましい範囲に入りやすい点
で好ましい。
The method for producing iron powder for decomposing organic halogen compounds of the present invention is not particularly limited as long as graphite can be concentrated and present on the surface of iron powder. As a method of causing graphite to be concentrated on the surface of iron powder, for example, a method of depositing graphite on the surface of iron powder can be mentioned. That is, one preferred embodiment of the present invention is an iron powder for decomposing an organic halogen compound which is present by enriching graphite on the surface of iron powder by depositing graphite on the surface. As a method for producing the iron powder for decomposing an organic halogen compound of the present invention by depositing graphite on the surface, for example, (1) molten iron having a pig iron or carbon content of 3% by mass or more (for example, molten steel component: 4% by mass C -0.025
Mass% Si-0.4 mass% Mn-0.17 mass% P) was rapidly solidified by a water atomization method to obtain iron powder, and then subjected to a finish reduction treatment in a hydrogen stream at 700 ° C. for 1 hour. A method of depositing supersaturated solid solution carbon as graphite on the surface by further applying a heat treatment at 100 to 600 ° C. in an inert gas; (2) a sponge iron powder obtained by coke-reducing a mill scale ( Graphite powder is added to the reduced iron powder) and heat-treated at 600 ° C. for 1 hour in an inert gas atmosphere to partially diffuse the graphite powder and precipitate graphite particles on the surface of the iron powder. Method. The above method (1) is preferable because the deposited graphite is finely dispersed, and as a result, Kp (reactive site) tends to be in a desired range.

【0023】上述したように、特表平6−506631
号公報には、有機ハロゲン化合物による汚染水を活性炭
と鉄のヤスリ屑とからなる透過性混合物に通すことによ
り処理する方法が記載されているが、これは活性炭に汚
染物質を吸着させて、汚染物質が透過性混合物を通過す
る時間を長くするためであり、鉄の表面に吸着させるも
のではない。そのため、透過性混合物においては、活性
炭と鉄のヤスリ屑が単に混合されているだけであり、反
応活性サイトとして働くと考えられる活性炭と鉄との接
触部分は極めて小さいのであって、有機ハロゲン化合物
の分解速度は本発明の有機ハロゲン化合物分解用鉄粉に
比べて遅い。また、特開平11−235577号公報に
は、地下水水位以上の不飽和帯の土壌や、掘削後の土壌
に含まれる有機ハロゲン系化合物を0. 1%以上のCを
含有する鉄粉による還元作用で無害化する方法が記載さ
れており、鉄粉の結晶構造としてはパーライト組織が存
在するものが望ましいと記載されている。パーライト組
織とはα−Fe相とFe3 C相とが混在した組織であ
る。したがって、前記公報に記載された鉄粉は、表面に
黒鉛(グラファイト)が存在するものではなく、有機ハ
ロゲン化合物の分解速度は本発明の有機ハロゲン化合物
分解用鉄粉に比べて遅い。
As described above, JP-A-6-506661
In Japanese Patent Application Publication No. 2000-205, a method is described in which water contaminated by an organic halogen compound is treated by passing the water through a permeable mixture consisting of activated carbon and iron file shavings. This is to increase the time for the substance to pass through the permeable mixture and not to adsorb on the iron surface. Therefore, in the permeable mixture, the activated carbon and the file of iron are simply mixed, and the contact portion between the activated carbon and iron, which is considered to function as a reaction active site, is extremely small. The decomposition rate is lower than that of the organic halogen compound decomposition iron powder of the present invention. Japanese Patent Application Laid-Open No. H11-235577 discloses that an organic halogen-based compound contained in soil in an unsaturated zone above groundwater level or excavated soil is reduced by iron powder containing 0.1% or more of C. The method of detoxifying the iron powder is described, and it is described that the crystal structure of the iron powder preferably has a pearlite structure. The pearlite structure is a structure in which the α-Fe phase and the Fe 3 C phase are mixed. Therefore, the iron powder described in the above publication does not have graphite (graphite) on the surface, and the decomposition rate of the organic halogen compound is slower than that of the iron powder for decomposing an organic halogen compound of the present invention.

【0024】従来、黒鉛を有する鉄粉として、鋳鉄粉
(ダライコ)が知られている。図5は、(a)鋳鉄粉と
(b)本発明の有機ハロゲン化合物分解用鉄粉の断面模
式図である。鋳鉄粉20においては鉄粉全体にわたって
黒鉛1がほぼ均一に存在しており、表面に露出している
黒鉛1はわずかであるのに対し、本発明の有機ハロゲン
化合物分解用鉄粉10においては内部にも黒鉛1が少量
存在するものの、表面に黒鉛1が濃化して存在してい
る。したがって、鋳鉄粉20を有機ハロゲン化合物の分
解に用いた場合、表面に露出している黒鉛1が反応活性
サイトとなりうるが、その黒鉛1は表面に濃化したもの
ではないため、黒鉛1の面積率は本発明の有機ハロゲン
化合物分解用鉄粉10と比べると小さく、したがって、
有機ハロゲン化合物の分解速度も遅い。
Conventionally, cast iron powder (Daliko) has been known as an iron powder having graphite. FIG. 5 is a schematic cross-sectional view of (a) cast iron powder and (b) iron powder for decomposing an organic halogen compound of the present invention. In the cast iron powder 20, the graphite 1 is present almost uniformly over the entire iron powder, and the amount of the graphite 1 exposed on the surface is very small. Although a small amount of graphite 1 is present, graphite 1 is concentrated on the surface. Therefore, when the cast iron powder 20 is used for decomposing the organic halogen compound, the graphite 1 exposed on the surface can be a reaction active site, but the graphite 1 is not concentrated on the surface. The ratio is smaller than the iron powder 10 for decomposing an organic halogen compound of the present invention, and therefore,
The decomposition rate of organic halogen compounds is also slow.

【0025】本発明の有機ハロゲン化合物分解用鉄粉
は、土壌、地下水、ガスなどの有機ハロゲン化合物の濃
度が高い場所、例えば、有機ハロゲン化合物を含有する
溶剤などが漏れ出して、汚染されている土壌、地下水、
ガスなどに適用できる。即ち、本発明の有機ハロゲン化
合物分解用鉄粉を、土壌、地下水、ガスと接触させるこ
とで、有機ハロゲン化合物を分解して、土壌、地下水、
ガスを無害化できる。
The iron powder for decomposing an organic halogen compound according to the present invention is contaminated by leaking a place where the concentration of the organic halogen compound is high, such as soil, groundwater or gas, for example, a solvent containing the organic halogen compound. Soil, groundwater,
Applicable to gas and the like. That is, the organic halogen compound-decomposing iron powder of the present invention is brought into contact with soil, groundwater, and gas to decompose the organic halogen compound, and the soil, groundwater,
Gas can be made harmless.

【0026】具体的には、下記の(a)、(b)、
(c)、(d)および(e)を例示できる。 (a)有機ハロゲン化合物で汚染された地下水中に、該
有機ハロゲン化合物分解用鉄粉を戴置する方法。 (b)有機ハロゲン化合物で汚染された地下水をくみ上
げ、該有機ハロゲン化合物分解用鉄粉に接触させる方
法。 (c)有機ハロゲン化合物で汚染された土壌中に、該有
機ハロゲン化合物分解用鉄粉を添加する方法。 (d)有機ハロゲン化合物で汚染された土壌を掘削し、
該掘削された土壌と該有機ハロゲン化合物分解用鉄粉を
混合する方法。 (e)有機ハロゲン化合物で汚染された土壌および/ま
たは地下水から吸引して得られたガスと該有機ハロゲン
化合物分解用鉄粉とを接触させる方法。
Specifically, the following (a), (b),
(C), (d) and (e) can be exemplified. (A) A method of placing the iron powder for decomposing an organic halogen compound in groundwater contaminated with the organic halogen compound. (B) A method in which groundwater contaminated with an organic halogen compound is pumped and brought into contact with the iron powder for decomposing the organic halogen compound. (C) adding iron powder for decomposing the organic halogen compound to soil contaminated with the organic halogen compound. (D) excavating soil contaminated with organohalogen compounds,
A method of mixing the excavated soil with the iron powder for decomposing an organic halogen compound. (E) A method in which a gas obtained by suction from soil and / or groundwater contaminated with an organic halogen compound is brought into contact with the iron powder for decomposing the organic halogen compound.

【0027】本発明の方法の対象となる汚染の原因とな
る有機ハロゲン化合物は、塩素原子などのハロゲンを有
する有機化合物であれば、特に限定されない。例えば、
トリクロロエチレン(TCE)、テトラクロロエチレ
ン、1,1−ジクロロエチレン、cis−1,2−ジク
ロロエチレン、trans−1,2−ジクロロエチレ
ン、塩化ビニル、1,1,1−トリクロロエタン、1,
1,2−トリクロロエタン、ジクロロエタン、ジクロロ
メタン、四塩化炭素、ポリ塩化ビフェニル(PCB)、
ダイオキシンが挙げられる。
The organic halogen compound which causes contamination in the method of the present invention is not particularly limited as long as it is an organic compound having a halogen such as a chlorine atom. For example,
Trichloroethylene (TCE), tetrachloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, vinyl chloride, 1,1,1-trichloroethane, 1,
1,2-trichloroethane, dichloroethane, dichloromethane, carbon tetrachloride, polychlorinated biphenyl (PCB),
Dioxin.

【0028】有機ハロゲン化合物は鉄粉により還元され
て、非ハロゲン化合物のような無害な化合物とハロゲン
化水素に変わる。例えば、TCEは鉄粉表面で電子を受
け取り(還元され)、β脱離によりクロロアセチレンな
どの中間体を経由して、アセチレンのような塩素を含ま
ない化合物に変化して無害化される。あるいは、更に還
元が進む場合もあるが、いずれにしても鉄粉表面で電子
を受け取る(還元される)ことを契機として反応が進
み、結果として無害な化合物に変化する。
The organic halogen compound is reduced by the iron powder and converted into a harmless compound such as a non-halogen compound and hydrogen halide. For example, TCE receives (reduced) electrons on the surface of iron powder, and is converted to a chlorine-free compound such as acetylene through β-elimination via an intermediate such as chloroacetylene, thereby rendering it harmless. Alternatively, the reduction may further proceed, but in any case, the reaction proceeds upon receiving (reducing) electrons on the surface of the iron powder, and as a result, the compound changes to a harmless compound.

【0029】[0029]

【実施例】以下に実施例を示して本発明を具体的に説明
するが、本発明はこれらに限られるものではない。 1.各種鉄粉の調製 (実施例1)炭素含有量4.3質量%の溶鋼(溶鋼成
分:4.3質量%C−0.3質量%Si−0.3質量%
Mn−0.12質量%P)を水アトマイズ法により急冷
凝固させて鉄粉とした後、水素気流中で700℃、1時
間の条件で仕上還元処理を行い、更に不活性ガス中で5
00℃の熱処理を加えることで、過飽和に固溶した炭素
を表面に黒鉛として析出させ、本発明の有機ハロゲン化
合物分解用鉄粉を得た。この有機ハロゲン化合物分解用
鉄粉の平均粒径は、60μmであった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. 1. Preparation of Various Iron Powders (Example 1) Molten steel having a carbon content of 4.3% by mass (molten steel component: 4.3% by mass C-0.3% by mass Si-0.3% by mass)
Mn-0.12 mass% P) was quenched and solidified by a water atomizing method to obtain iron powder, which was then subjected to a finish reduction treatment in a hydrogen stream at 700 ° C. for 1 hour, and further treated in an inert gas at 5 ° C.
By applying a heat treatment at 00 ° C., carbon dissolved in supersaturation was precipitated as graphite on the surface, to obtain iron powder for decomposing organic halogen compounds of the present invention. The average particle size of the iron powder for decomposing organic halogen compounds was 60 μm.

【0030】(実施例2、3、7、8および10〜1
3)用いた溶鋼中のC、Si、Mnの含有量を変えた以
外は、実施例1と同様の方法により、本発明の有機ハロ
ゲン化合物分解用鉄粉を得た。これらの有機ハロゲン化
合物分解用鉄粉の平均粒径は、50〜200μmであっ
た。
(Examples 2, 3, 7, 8 and 10-1
3) An iron powder for decomposing an organic halogen compound of the present invention was obtained in the same manner as in Example 1 except that the contents of C, Si, and Mn in the molten steel used were changed. The average particle size of these iron powders for decomposing organic halogen compounds was 50 to 200 μm.

【0031】(実施例4)ミルスケールをコークス還元
して得られた海綿鉄粉に、黒鉛粉末を添加し、不活性ガ
ス雰囲気中で600℃、1時間の条件で熱処理を行うこ
とで、黒鉛粉末を部分的に拡散させ、鉄粉表面に黒鉛を
析出させ、本発明の有機ハロゲン化合物分解用鉄粉を得
た。この有機ハロゲン化合物分解用鉄粉の平均粒径は、
2000μmであった。
Example 4 Graphite powder was added to sponge iron powder obtained by coke reduction of a mill scale and heat-treated at 600 ° C. for 1 hour in an inert gas atmosphere to obtain graphite. The powder was partially diffused, and graphite was precipitated on the surface of the iron powder to obtain the iron powder for decomposing an organic halogen compound of the present invention. The average particle size of the iron powder for decomposing organic halogen compounds is
It was 2000 μm.

【0032】(実施例5、6および9)用いた黒鉛粉末
の添加量を変えた以外は、実施例4と同様の方法によ
り、本発明の有機ハロゲン化合物分解用鉄粉を得た。こ
れらの有機ハロゲン化合物分解用鉄粉の平均粒径は、8
0〜2500μmであった。
(Examples 5, 6 and 9) Iron powder for decomposing organic halogen compounds of the present invention was obtained in the same manner as in Example 4 except that the amount of the graphite powder used was changed. The average particle size of these iron powders for decomposing organic halogen compounds is 8
It was 0 to 2500 μm.

【0033】(比較例1)炭素含有量1質量%の溶鋼
(溶鋼成分:1質量%C−0.05質量%Si−0.1
5質量%Mn−0.02質量%P)を水アトマイズ法に
より急冷凝固させて、比較例1の鉄粉を得た。この鉄粉
の平均粒径は、80μmであった。
Comparative Example 1 Molten steel having a carbon content of 1% by mass (molten steel component: 1% by mass C-0.05% by mass Si-0.1)
5 mass% Mn-0.02 mass% P) was rapidly solidified by a water atomizing method to obtain an iron powder of Comparative Example 1. The average particle size of the iron powder was 80 μm.

【0034】(比較例2)ミルスケールをコークス還元
して得られた海綿鉄粉(還元鉄粉)を水素気流中で70
0℃、1時間の条件で仕上還元処理を行い、比較例2の
鉄粉を得た。この鉄粉の平均粒径は、80μmであっ
た。
(Comparative Example 2) A sponge iron powder (reduced iron powder) obtained by coke reduction of a mill scale was reduced to 70% in a hydrogen stream.
A finish reduction treatment was performed at 0 ° C. for 1 hour to obtain an iron powder of Comparative Example 2. The average particle size of the iron powder was 80 μm.

【0035】(比較例3)炭素含有量1質量%の溶鋼
(溶鋼成分:1質量%C−0.05質量%Si−0.1
5質量%Mn−0.02質量%P)を水アトマイズ法に
より急冷凝固させた後、水素気流中で700℃、1時間
の条件で仕上還元処理を行い、比較例3の鉄粉を得た。
この鉄粉の平均粒径は、80μmであった。
Comparative Example 3 Molten steel having a carbon content of 1% by mass (molten steel component: 1% by mass C-0.05% by mass Si-0.1)
5% by mass Mn-0.02% by mass P) was rapidly solidified by a water atomizing method, and then subjected to a finish reduction treatment in a hydrogen stream at 700 ° C. for 1 hour to obtain an iron powder of Comparative Example 3. .
The average particle size of the iron powder was 80 μm.

【0036】(比較例4)平均粒径1μmの黒鉛粉末を
比較例4とした。
(Comparative Example 4) A graphite powder having an average particle size of 1 μm was used as Comparative Example 4.

【0037】2.鉄粉の性状 黒鉛の表面における存在確率Padおよび反応活性サイト
の存在確率係数Kp(re active site)の測定を行った。上
記で得られた鉄粉および黒鉛粉末について、AES分析
により倍率10000倍で表面のBSE像を撮影し、市
販の画像解析ソフトウェア(住友金属テクノロジー社製
の粒子解析ソフト(バージョン1.0))を用いて、一
辺10μmの正方形領域(100μm2 )あたりの黒鉛
の総面積Sgraphite(単位:μm)および該正方形領域
あたりに存在する黒鉛の粒子の数nを測定し、Pad=S
graphi te/100および上記式(1)から、Padおよび
p(reactive site)を求めた。上記測定は視野を変えて
10箇所で行い、PadおよびKp(reactive site)として
平均値を求め、これらを第1表に示した。
2. Properties of iron powder The existence probability Pad and the existence probability coefficient Kp ( reactive site) of the reaction active site on the graphite surface were measured. For the iron powder and graphite powder obtained above, a BSE image of the surface was taken at a magnification of 10,000 by AES analysis, and commercially available image analysis software (particle analysis software (version 1.0) manufactured by Sumitomo Metal Technology Co., Ltd.) was used. Then, the total area S graphite (unit: μm) per square area (100 μm 2 ) of 10 μm on each side and the number n of graphite particles existing per square area were measured, and Pad = S
Graphi te / 100 and from the equation (1) to determine the P ad and K p (reactive site). The above measurement was carried out at 10 points by changing the field of view, the average value as the P ad and K p (reactive site), shows these in Table 1.

【0038】3.有機ハロゲン化合物分解試験 上記で得られた各鉄粉および黒鉛粉末を有機ハロゲン化
合物としてTCEを用いた有機ハロゲン化合物分解試験
に供した。 (1)実験 100mL容のガラスバイアル瓶に、CaCO3 濃度が
40mg/L、Na2SO3 濃度が80mg/L、TC
E濃度が5mg/Lである水溶液50mLおよび、鉄粉
または黒鉛粉末5gを入れ、テフロンシール付きのブチ
ルゴム栓とアルミキャップを用いて封入した。ついで、
23±2℃に管理した恒温室の中で、バイアル瓶の鉛直
軸方向に、180rpmで振とうした。振とう開始から
6時間後、24時間後、48時間後、96時間後および
168時間後に、バイアル瓶内部のヘッドスペース部の
ガス中のTCE濃度をガス検知管を用いて測定し、ヘン
リーの法則により水溶液中のTCE濃度に換算した。な
お、上記測定には複数のサンプルを用意し、各時間経過
後の測定は異なるサンプルについて行った。
3. Organic halogen compound decomposition test Each of the iron powder and graphite powder obtained above was subjected to an organic halogen compound decomposition test using TCE as an organic halogen compound. (1) Experiment In a 100 mL glass vial, CaCO 3 concentration was 40 mg / L, Na 2 SO 3 concentration was 80 mg / L, TC
50 mL of an aqueous solution having an E concentration of 5 mg / L and 5 g of iron powder or graphite powder were put therein, and sealed using a butyl rubber stopper with a Teflon seal and an aluminum cap. Then
In a constant temperature room controlled at 23 ± 2 ° C., the vial was shaken at 180 rpm in the vertical axis direction. Six hours, 24 hours, 48 hours, 96 hours, and 168 hours after the start of shaking, the TCE concentration in the gas in the headspace inside the vial was measured using a gas detector tube, and Henry's law was used. To TCE concentration in the aqueous solution. Note that a plurality of samples were prepared for the above measurement, and the measurement after each time elapsed was performed for different samples.

【0039】(2)実験結果の解析 水溶液中のTCEは鉄粉との反応で分解されるため、水
溶液中のTCE濃度は経時的に減少する。この反応の反
応速度式は、一般に溶液中のTCE濃度に対して1次の
反応速度定数を持つと考えられており、以下のような式
で表される。
(2) Analysis of Experimental Results Since TCE in an aqueous solution is decomposed by reaction with iron powder, the TCE concentration in the aqueous solution decreases with time. The reaction rate equation for this reaction is generally considered to have a first-order reaction rate constant with respect to the TCE concentration in the solution, and is expressed by the following equation.

【0040】 C:溶液中のTCE濃度 t:反応時間(h) Kobs :みかけの反応速度定数(1/h) Ksa:固有の反応速度定数(L/(m2 ・h)) a:鉄粉の総表面積(m2 ) V:溶液の量(L)[0040] C: TCE concentration in solution t: Reaction time (h) K obs : Apparent reaction rate constant (1 / h) K sa : Specific reaction rate constant (L / (m 2 · h)) a: Iron powder Total surface area (m 2 ) V: amount of solution (L)

【0041】 ただし、a=Sa ・Wp (5) Sa :比表面積(m2 /kg) Wp :使用する鉄粉の量(kg)Where, a = S a · W p (5) S a : specific surface area (m 2 / kg) W p : amount of iron powder used (kg)

【0042】水溶液中のTCE濃度の分析値(Ct )を
初期濃度(Ci )で割った値(Ct/Ci )の対数を縦
軸に、反応時間tを横軸にプロットし、その傾きから上
記式(4)のKobs を求めた。ただし、Kobs の値は種
々の実験条件に依存して変化するので、実験条件によら
ず鉄粉に固有の定数となるKsaを用いて鉄粉の特性を評
価することが一般に行われている。そこで、本実施例に
おいても、各鉄粉および黒鉛粉末について上記式(4)
および(5)からKsaを求め、TCEの分解速度の指標
とした。
[0042] on the vertical axis the logarithm of the analytical values of TCE concentration in the aqueous solution (C t) and divided by the initial concentration (C i) values (C t / C i), plotting the response time t on the horizontal axis, from the slope to determine the K obs of the above formula (4). However, since the value of K obs changes depending on various experimental conditions, it is generally performed to evaluate the characteristics of iron powder using K sa which is a constant specific to iron powder regardless of the experimental conditions. I have. Therefore, also in the present embodiment, the above formula (4) is used for each iron powder and graphite powder.
K sa was determined from (5) and used as an index of the decomposition rate of TCE.

【0043】鉄粉および黒鉛粉末の性状ならびに有機ハ
ロゲン化合物分解試験の結果を第1表に示す。実施例1
〜13で得られた本発明の有機ハロゲン化合物分解用鉄
粉は、断面観察とPadの値から表面に黒鉛が濃化して存
在するものであることが分かり、また、Ksaの値が大き
く、TCEの分解速度が速いことが分かる。これに対し
て、表面に黒鉛を有しない比較例1〜3の鉄粉は、Ksa
の値が小さく、分解速度が遅い。また、比較例4の黒鉛
粉末は、TCEを分解しない。
Table 1 shows the properties of the iron powder and graphite powder and the results of the organic halogen compound decomposition test. Example 1
Organic halogen compound-decomposing iron powder for the present invention obtained in -13 was found to be graphite surface from the value of the cross-section observation and P ad is those present in concentrated, and the value of K sa large It can be seen that the decomposition rate of TCE was high. On the other hand, the iron powders of Comparative Examples 1 to 3 having no graphite on the surface had a K sa
And the decomposition rate is slow. Further, the graphite powder of Comparative Example 4 does not decompose TCE.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明の有機ハロゲン化合物分解用鉄粉
は、有機ハロゲン化合物の分解速度が速く、かつ、銅等
の金属を用いないので安全性が高い。したがって、有機
ハロゲン化合物を含有する土壌、地下水、ガスに対する
処理に好適に用いられる。特に、本発明の汚染された土
壌、地下水、ガスの無害化方法は、好適に用いられる。
The iron powder for decomposing an organic halogen compound according to the present invention has a high safety because the decomposition rate of the organic halogen compound is high and a metal such as copper is not used. Therefore, it is suitably used for treating soil, groundwater and gas containing an organic halogen compound. In particular, the method for detoxifying contaminated soil, groundwater, and gas of the present invention is suitably used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の有機ハロゲン化合物分解用鉄粉の一
例の表面の約10000倍のBSE像をもとに作成した
模式図である。
FIG. 1 is a schematic diagram of a surface of an example of iron powder for decomposing an organic halogen compound of the present invention, which is created based on a BSE image of about 10,000 times of the surface.

【図2】 本発明の有機ハロゲン化合物分解用鉄粉の一
例の表面の地鉄部についてAES分析を行った結果を示
すグラフである。
FIG. 2 is a graph showing the results of AES analysis of a ground iron portion on the surface of an example of the iron powder for decomposing an organic halogen compound of the present invention.

【図3】 本発明の有機ハロゲン化合物分解用鉄粉の一
例の表面の黒鉛についてAES分析を行った結果を示す
グラフである。
FIG. 3 is a graph showing the results of AES analysis of graphite on the surface of an example of the iron powder for decomposing an organic halogen compound of the present invention.

【図4】 本発明の有機ハロゲン化合物分解用鉄粉の表
面の一部を表す模式図である。
FIG. 4 is a schematic diagram showing a part of the surface of the iron powder for decomposing an organic halogen compound of the present invention.

【図5】 鋳鉄粉と本発明の有機ハロゲン化合物分解用
鉄粉の断面模式図である。(a)は鋳鉄粉、(b)は本
発明の有機ハロゲン化合物分解用鉄粉の断面模式図であ
る。
FIG. 5 is a schematic sectional view of a cast iron powder and an iron powder for decomposing an organic halogen compound of the present invention. (A) is a cross-sectional schematic diagram of cast iron powder, and (b) is an iron powder for decomposing an organic halogen compound of the present invention.

【符号の説明】[Explanation of symbols]

1 黒鉛 2 地鉄部 3 境界部分 10 本発明の有機ハロゲン化合物分解用鉄粉 20 鋳鉄粉 DESCRIPTION OF SYMBOLS 1 Graphite 2 Ground iron part 3 Boundary part 10 Iron powder for decomposition | disassembly of the organic halogen compound of this invention 20 Cast iron powder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/70 B01D 53/36 G 4H006 C07B 35/06 B09B 3/00 304K C07C 19/05 (72)発明者 加藤 嘉英 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4D002 AA21 AB03 DA22 DA41 4D004 AA41 AB06 CA37 CB21 CC11 4D048 AA11 AB03 BA05X BA36X BB01 4D050 AA01 AB19 BA02 CA20 4G069 AA03 BA08A BA08B BB02A BB02B BC66A BC66B CA02 CA05 CA10 CA19 EA01X EA01Y EB18Y EC27 4H006 AA05 AC13 BA19 BA32 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/70 B01D 53/36 G 4H006 C07B 35/06 B09B 3/00 304K C07C 19/05 (72) Invention Person Yoshihide Kato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in the Technical Research Laboratory, Kawasaki Steel Co., Ltd. BA08A BA08B BB02A BB02B BC66A BC66B CA02 CA05 CA10 CA19 EA01X EA01Y EB18Y EC27 4H006 AA05 AC13 BA19 BA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表面に黒鉛が濃化して存在する有機ハロゲ
ン化合物分解用鉄粉。
An iron powder for decomposing an organic halogen compound in which graphite is concentrated on the surface.
【請求項2】前記黒鉛の前記表面における存在確率Pad
が、0.001〜0.9である請求項1に記載の有機ハ
ロゲン化合物分解用鉄粉。
2. The existence probability Pad of the graphite on the surface.
The iron powder for decomposing an organic halogen compound according to claim 1, wherein is 0.001 to 0.9.
【請求項3】下記式(1)で表される反応活性サイトの
存在確率係数Kp(reactive site)が、0.05以上であ
る請求項1または2に記載の有機ハロゲン化合物分解用
鉄粉。 Kp(reactive site)=(0.04π×n×Pad1/2 (1) ただし、nは、有機ハロゲン化合物分解用鉄粉の表面1
00μm2 あたりに存在する黒鉛の粒子の数を表し、P
adは黒鉛の有機ハロゲン化合物分解用鉄粉の表面におけ
る存在確率を表す。
3. The iron powder for decomposing an organic halogen compound according to claim 1, wherein the reaction active site existence probability coefficient K p (reactive site) represented by the following formula (1) is 0.05 or more. . K p (reactive site) = (0.04π × n × P ad ) 1/2 (1) where n is the surface 1 of the iron powder for decomposing the organic halogen compound.
Represents the number of graphite particles present per 00 μm 2 ,
ad represents the existence probability of graphite on the surface of the iron powder for decomposing an organic halogen compound.
【請求項4】請求項1〜3のいずれかに記載の有機ハロ
ゲン化合物分解用鉄粉を、有機ハロゲン化合物で汚染さ
れた土壌、地下水およびガスのうち少なくとも一つと接
触させて、有機ハロゲン化合物を分解することを特徴と
する汚染された土壌、地下水、ガスの無害化方法。
4. The iron powder for decomposing an organic halogen compound according to any one of claims 1 to 3 is brought into contact with at least one of soil, groundwater and gas contaminated with the organic halogen compound to remove the organic halogen compound. A method for detoxifying contaminated soil, groundwater and gas, which is characterized by decomposing.
JP2000362602A 2000-11-29 2000-11-29 Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless Withdrawn JP2002166171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362602A JP2002166171A (en) 2000-11-29 2000-11-29 Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362602A JP2002166171A (en) 2000-11-29 2000-11-29 Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless

Publications (1)

Publication Number Publication Date
JP2002166171A true JP2002166171A (en) 2002-06-11

Family

ID=18833851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362602A Withdrawn JP2002166171A (en) 2000-11-29 2000-11-29 Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless

Country Status (1)

Country Link
JP (1) JP2002166171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
JP2004082106A (en) * 2002-06-26 2004-03-18 Kobe Steel Ltd Iron-based cleaning powder
US20090191084A1 (en) * 2008-01-25 2009-07-30 John Jude Liskowitz Reactive atomized zero valent iron enriched with sulfur and carbon to enhance corrosivity and reactivity of the iron and provide desirable reduction products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
JP4586325B2 (en) * 2001-09-27 2010-11-24 東ソー株式会社 Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP2004082106A (en) * 2002-06-26 2004-03-18 Kobe Steel Ltd Iron-based cleaning powder
US20090191084A1 (en) * 2008-01-25 2009-07-30 John Jude Liskowitz Reactive atomized zero valent iron enriched with sulfur and carbon to enhance corrosivity and reactivity of the iron and provide desirable reduction products

Similar Documents

Publication Publication Date Title
CA2362002C (en) Remediation method of media and iron powder for dehalogenation of hydrogenated hydrocarbons
US20030083195A1 (en) Iron powder for remediation and method for remediating soil, water, or gas
JP3862394B2 (en) Detoxification method of soil
US20070241063A1 (en) Process for treating water using atomized ferrous powders containing 0.25 to 4 wt% carbon and 1 to 6 wt% oxygen
EP0675748B1 (en) Process for the chemical decomposition of halogenated organic compounds
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JP2002161263A (en) Iron power for decomposing organic halogen compound, method for producing the same and method for making contaminated soil and/or contaminated underground water harmless
KR101780850B1 (en) Organic halogen compound decomposition agent containing iron particles, and process for production thereof
JP2002166171A (en) Iron powder for decomposing organic halogen compound and method for making contaminated soil, ground water, and gas harmless
JP4377657B2 (en) Organochlorine compound removing agent and organochlorine compound removing method
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP4482678B2 (en) Detoxification method of soil
JP2005131570A (en) Soil cleaning agent
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP4786936B2 (en) Organohalogen compound treatment material
JP4126347B2 (en) Purification method of contaminated soil or contaminated water
JP2005111311A (en) Soil cleaning agent and soil cleaning method
JP2005111312A (en) Soil cleaning agent and soil cleaning method
JP2002159960A (en) Detoxicating treating method of soil and iron powder material for decomposing organic halogen compound
Mu Degradation of Chlorinated Hydrocarbon Contaminants by Sulfidated Nanoscale Zerovalent Iron: Impact of Particle Sulfidation Extent
JP2010131542A (en) Cleaning method of organic halide
JP2005087924A (en) Method for treating soil or ash containing chlorinated aromatic compound
JP4622154B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and treatment method using the same
JP2004160458A (en) Method of purifying ground water contaminated with chlorinated organic compound

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205