JP2010194451A - Organic halide cleaning agent and cleaning method using the same - Google Patents

Organic halide cleaning agent and cleaning method using the same Download PDF

Info

Publication number
JP2010194451A
JP2010194451A JP2009041744A JP2009041744A JP2010194451A JP 2010194451 A JP2010194451 A JP 2010194451A JP 2009041744 A JP2009041744 A JP 2009041744A JP 2009041744 A JP2009041744 A JP 2009041744A JP 2010194451 A JP2010194451 A JP 2010194451A
Authority
JP
Japan
Prior art keywords
nickel
powder
iron
partial alloy
organic halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041744A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節夫 吉田
Hiroshi Okaniwa
宏 岡庭
Toshiki Shimizu
要樹 清水
Yasuyuki Nagai
康行 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009041744A priority Critical patent/JP2010194451A/en
Publication of JP2010194451A publication Critical patent/JP2010194451A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve decomposition velocity even if large amounts of water soluble metal salts not are mixed, when the water soluble metal salts are mixed in the decomposition of an organic halide with iron powder. <P>SOLUTION: The organic halide is decomposed and purified for a short time by supplying a mixture of an extremely minute amount of nickel sulfate and/or nickel chloride and a partial alloy powder having a partial alloy phase of iron and nickel inside and/or on a surface of the iron powder to a soil contaminated with the organic halide, wastewater, or underwater. Less than 0.1 wt.% of nickel sulfate and/or nickel chloride to the amount of partial alloy powder is used. It is preferable that the mixed amount of the iron powder is in a scope of 0.1-10 wt.% to the soil. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機ハロゲン化物で汚染された土壌、排水又は地下水中の無害化処理剤及びそれを用いた無害化処理方法に関するものである。   The present invention relates to a detoxifying agent in soil, drainage or groundwater contaminated with an organic halide, and a detoxifying treatment method using the same.

近年、TCE(トリクロロエチレン)、PCE(テトラクロロエチレン)、ジクロロメタン、PCB(ポリ塩化ビフェニル)及びダイオキシン類等の有機ハロゲン化合物による環境汚染問題が大きな問題となっており、これら有機ハロゲン化物により汚染された土壌、排水、地下水等の無害化処理剤及びその浄化方法が検討されている。   In recent years, environmental pollution problems due to organic halogen compounds such as TCE (trichloroethylene), PCE (tetrachloroethylene), dichloromethane, PCB (polychlorinated biphenyl) and dioxins have become a major problem, soil contaminated by these organic halides, Detoxification treatment agents such as drainage and groundwater, and purification methods thereof are being studied.

従来、これらの汚染に対する浄化方法としては、土壌ガス吸引法、土壌掘削法、地下水揚水法等が知られている。土壌ガス吸引法は汚染物質を強制的に吸引する方法であり、ポンプで汚染物質を土壌ガスとして回収除去する方法である。土壌掘削法は汚染土壌を掘削し、乾燥、加熱処理などを施して回収除去する方法である。地下水揚水法は汚染地下水を揚水して汚染物質を除去する方法である。   Conventionally, a soil gas suction method, a soil excavation method, a groundwater pumping method, and the like are known as purification methods for these contaminations. The soil gas suction method is a method for forcibly sucking pollutants, and is a method for collecting and removing the pollutants as soil gas with a pump. The soil excavation method is a method in which contaminated soil is excavated, recovered and removed by drying, heat treatment, and the like. The groundwater pumping method is a method for removing pollutants by pumping contaminated groundwater.

しかし土壌ガス吸引法地下水揚水法では、広範囲の土壌を対象とする場合、複数の吸引井戸や大掛かりな地上設備が必要であり、土壌掘削法では、掘削した土壌の熱処理などが高コストである。これに対し、汚染土壌を直接浄化する方法として鉄を使用した原位置浄化法が提案されている。しかし通常、鉄粉を単独で使用した場合、汚染の浄化に長時間を要するという課題があった。   However, the soil gas suction method groundwater pumping method requires a plurality of suction wells and large ground facilities when a wide range of soil is targeted, and the soil excavation method is costly for heat treatment of the excavated soil. On the other hand, an in-situ purification method using iron has been proposed as a method for directly purifying contaminated soil. However, when iron powder is used alone, there is a problem that it takes a long time to purify the contamination.

それに対して鉄粉に異種金属であるNi又はCuを化学メッキして還元脱塩素処理する方法(例えば非特許文献1)、鉄粉と同時に水溶性金属塩を混合して用いる方法が提案されている(例えば特許文献1〜2)。また、金属粉粒子内に局部電池構造を構成させた鉄粉末を用いる方法が提案されている(例えば、特許文献3〜4)。しかし、いずれも大量の異種金属元素の添加が必要であり、また、有機ハロゲン化物の種類によっては分解に長時間を要する、或いは分解しない場合があり、十分な分解速度が得られないという問題があった。   On the other hand, a method of reducing and dechlorinating Ni or Cu, which is a different metal, on iron powder (for example, Non-Patent Document 1), and a method of using a mixture of a water-soluble metal salt simultaneously with iron powder have been proposed. (For example, Patent Documents 1 and 2). Moreover, the method of using the iron powder which comprised the local battery structure in the metal powder particle is proposed (for example, patent documents 3-4). However, it is necessary to add a large amount of different metal elements, and depending on the type of organic halide, the decomposition may take a long time or may not be decomposed, resulting in a problem that a sufficient decomposition rate cannot be obtained. there were.

一方、異種金属と鉄とで局部電池構造を構成させる際に部分合金化という手法を用いることによって少量の異種金属で分解性能を向上させる方法が提案されている(特許文献5〜12参照)。しかし、その様な方法では、完全合金を用いた場合には十分な性能では性能が低下するため、部分合金化に精密な制御が必要であった。さらに異種金属の含有量が0.1重量%未満では、部分合金化後に保存時に分解性能が低下(劣化)するという問題があった。   On the other hand, a method of improving the decomposition performance with a small amount of dissimilar metals by using a technique called partial alloying when a local battery structure is composed of dissimilar metals and iron has been proposed (see Patent Documents 5 to 12). However, in such a method, when a complete alloy is used, the performance deteriorates with sufficient performance. Therefore, precise control is required for partial alloying. Further, when the content of the different metal is less than 0.1% by weight, there is a problem that the decomposition performance deteriorates (deteriorates) during storage after partial alloying.

特開2005−111312JP-A-2005-113112 特開2004−249223JP 2004-249223 A 特開2002−309229JP 2002-309229 A 特開2005−118755JP 2005-118755 A 特開2003−136051JP2003-136051A 特開2004−57881JP 2004-57881 A 特開2004−305235JP 2004-305235 A 特開2004−305792JP 2004-305792 A 特開2005−95750JP 2005-95750 A 特開2006−22166JP 2006-22166 特開2008−142693JP2008-142893 特開2008−272644JP 2008-272644 A

先崎ら、工業用水、VOL391,(1991),29.Sakizaki et al., Industrial Water, VOL391, (1991), 29.

本発明は、複雑な工程や装置を必要とせず、なおかつ有機ハロゲン化物を極めて短時間に分解する方法を提供することを目的とする。   It is an object of the present invention to provide a method for decomposing an organic halide in a very short time without requiring a complicated process or apparatus.

本発明者等は、有機ハロゲン化物で汚染された土壌、排水又は地下水に対し、鉄粉の内部及び/又は表面に鉄とニッケルの部分合金相を有する部分合金粉末に極めて少量の硫酸ニッケル及び/又は塩化ニッケルを混合することにより、有機ハロゲン化物が短時間に分解できることを見出し、本発明を完成するに至ったものである。   The present inventors have found that a very small amount of nickel sulfate and / or a small amount of nickel sulfate and / or a partial alloy powder having a partial alloy phase of iron and nickel on and / or on the surface of iron powder with respect to soil, drainage or groundwater contaminated with organic halides. Alternatively, the inventors have found that the organic halide can be decomposed in a short time by mixing nickel chloride, and have completed the present invention.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明は、有機ハロゲン化物で汚染された土壌、排水又は地下水に対し、鉄粉の内部及び/又は表面に鉄とニッケルの部分合金相を有する部分合金粉末及び当該部分合金粉末に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを混合する有機ハロゲン化物の浄化方法である。   The present invention relates to a partial alloy powder having a partial alloy phase of iron and nickel on the inside and / or surface of iron powder and to a soil, wastewater or groundwater contaminated with an organic halide, and 0. This is a method for purifying organic halides by mixing less than 1% by weight of nickel sulfate and / or nickel chloride.

本発明における有機ハロゲン化物としては特に限定はないが、例えばテトラクロロエチレン、トリクロロエチレン、cis−1,2−ジクロロエチレン、trans−1,2−ジクロロエチレン、1,1−ジクロロエチレン、塩化ビニルなどの不飽和ハロゲン化炭化水素、1,1,2,2−テトラクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,2−ジクロロエタン、四塩化炭素、クロロホルム、ジクロロメタンなどの飽和ハロゲン化炭化水素が挙げられる。   The organic halide in the present invention is not particularly limited. For example, unsaturated halogenated carbonization such as tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethylene, vinyl chloride and the like. Saturated halogenated hydrocarbons such as hydrogen, 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, carbon tetrachloride, chloroform, dichloromethane, etc. Can be mentioned.

本発明の浄化方法では、有機ハロゲン化物の分解用処理剤として、部分合金粉末及び当該部分合金粉末に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを混合したものを用いる。   In the purification method of the present invention, as the organic halide decomposition treatment agent, a partial alloy powder and a mixture of nickel sulfate and / or nickel chloride of less than 0.1% by weight with respect to the partial alloy powder are used.

部分合金粉末はそのままでも有機ハロゲン化物に対して高い分解性能を有するが、その様な部分合金粉末に硫酸ニッケル及び/又は塩化ニッケルを混合して用いた場合、極めて少量の混合によりさらに分解性能が向上する。また部分合金粉末は、長期保存後の使用では分解性能が劣化してしまう場合があるが、その様な劣化した部分合金粉末に硫酸ニッケル及び/又は塩化ニッケルを本発明の範囲で混合して用いても、高い分解性能が得られるという利点がある。   Partial alloy powders have high decomposition performance against organic halides as they are, but when such partial alloy powders are mixed with nickel sulfate and / or nickel chloride, the decomposition performance is further improved by mixing a very small amount. improves. In addition, the partial alloy powder may deteriorate its decomposition performance after long-term storage, but nickel sulfate and / or nickel chloride is mixed with the deteriorated partial alloy powder within the scope of the present invention. However, there is an advantage that high decomposition performance can be obtained.

鉄粉末内及び/又は表面にニッケル成分が偏析した部分合金粉末は、鉄とニッケルの混合粉末を強粉砕によるメカニカルアロイング法によって得られる。完全合金化した場合、分解活性が低下するため、部分合金化(一部非合金が残存すること)したものを用いることが好ましい。   The partial alloy powder in which the nickel component is segregated in and / or on the surface of the iron powder is obtained by a mechanical alloying method by strongly pulverizing a mixed powder of iron and nickel. In the case of complete alloying, the decomposition activity is lowered, so that it is preferable to use a partially alloyed (partly non-alloy remains).

鉄粉末内および表面にニッケル成分が偏析した部分合金粉末は、鉄100重量部に対しニッケル0.01〜2重量部からなる混合物をメカニカルアロイング法により得た部分合金粉末を用いることが好ましい。   As the partial alloy powder in which the nickel component is segregated in the iron powder and on the surface, it is preferable to use a partial alloy powder obtained by mechanically alloying a mixture composed of 0.01 to 2 parts by weight of nickel with respect to 100 parts by weight of iron.

鉄とニッケルの部分合金の存在部位としては、合金部分が鉄粒子の表面全体を占めるものでなく、鉄粉表面においてニッケル部位および合金化部位が夫々存在することが好ましい。鉄粉表面全体を合金が覆っていると、局部電池作用が起こり難く、有機塩素化物の分解が起こり難い。部分合金化はEPMA(電子線マイクロアナライザ−)やTEM(透過型電子顕微鏡)を用いて、合金層(ニッケルの拡散層)を確認することができる。   As the existence site of the partial alloy of iron and nickel, the alloy part does not occupy the entire surface of the iron particles, and it is preferable that the nickel part and the alloying part exist respectively on the surface of the iron powder. If the alloy covers the entire surface of the iron powder, the local battery action hardly occurs and the organic chlorinated product does not easily decompose. For partial alloying, the alloy layer (nickel diffusion layer) can be confirmed by using EPMA (electron beam microanalyzer) or TEM (transmission electron microscope).

本発明の部分合金粉末中にはさらに鉄と炭素の合金部が存在することが望ましい。一般に鉄粉としては純鉄、鋼、鋳鉄、または銑鉄等を用いることができるが、これら鉄粉内に存在する鉄部分およびセメンタイト等の鉄炭素合金部分も活性点として作用し得る。鉄粉中の炭素量は、鋳鉄粉を用いた場合2〜3%、又還元鉄粉では0.01〜0.05%の範囲が例示できる。   It is desirable that an alloy part of iron and carbon is further present in the partial alloy powder of the present invention. In general, pure iron, steel, cast iron, pig iron, or the like can be used as the iron powder, but an iron portion existing in the iron powder and an iron-carbon alloy portion such as cementite can also act as active sites. The amount of carbon in the iron powder may be in the range of 2 to 3% when cast iron powder is used, and 0.01 to 0.05% in the case of reduced iron powder.

鉄粉末の形状は特に限定されるものではなく球形状、樹枝状、片状、針状、角状、積層状、ロッド状、板状、海綿状等が含まれる。また鉄粉の比表面積は0.05m/g以上、好ましくは0.2〜10m/gでは、分解反応速度や接触確率を向上させることができ、粗粒を用いる上で有効である。 The shape of the iron powder is not particularly limited, and includes a spherical shape, a dendritic shape, a piece shape, a needle shape, a square shape, a laminated shape, a rod shape, a plate shape, a sponge shape, and the like. When the specific surface area of the iron powder is 0.05 m 2 / g or more, preferably 0.2 to 10 m 2 / g, the decomposition reaction rate and the contact probability can be improved, which is effective in using coarse particles.

また、鉄粉末の粒度も特に限定されないが、粒度53μm未満が50重量%以上では危険物第2類に該当し、着火性等の危険性があるため、粒度53μm以上が40重量%未満で危険物第2類に該当しないものであることが好ましい。   Also, the particle size of the iron powder is not particularly limited, but if the particle size is less than 53 μm, it is classified as a dangerous substance type 2 if it is 50% by weight or more, and there is a risk such as ignitability. It is preferable that it does not correspond to thing 2nd kind.

本発明の硫酸ニッケル及び/又は塩化ニッケルの濃度は当該部分合金粉末に対して0.1wt%未満、特に0.01〜0.09重量%の範囲が好ましい。   The concentration of nickel sulfate and / or nickel chloride of the present invention is preferably less than 0.1 wt%, particularly preferably in the range of 0.01 to 0.09 wt% with respect to the partial alloy powder.

従来から報告されている水溶性金属塩を使用する方法では、鉄粉末に対して極めて多量に水溶性金属塩を混合しなければ効果が発揮されないが、水溶性金属塩を大量に使用することは環境に対する影響の面から問題があった。それに対して水溶性金属塩の中でも硫酸ニッケル及び/又は塩化ニッケルを用いた場合、鉄粉末に極めて少量、即ち0.1重量%未満の混合において有機ハロゲン化物を高度に分解することができる。   In the method using a water-soluble metal salt that has been reported so far, the effect is not exhibited unless a very large amount of the water-soluble metal salt is mixed with the iron powder, but using a large amount of the water-soluble metal salt is not possible. There was a problem in terms of environmental impact. On the other hand, when nickel sulfate and / or nickel chloride is used among water-soluble metal salts, the organic halide can be highly decomposed in a very small amount, ie, less than 0.1% by weight of the iron powder.

硫酸ニッケル及び/又は塩化ニッケルは、結晶または粉末の状態で使用しても良く、また、あらかじめ水に溶解したものを部分合金粉末に添加混合或いは部分合金粉末のスラリー中に添加使用しても良い。更に、水に溶解した硫酸ニッケル及び/又は塩化ニッケルを鉄粉末に添加混合した後、乾燥をおこなってから使用しても良い。硫酸ニッケル及び/又は塩化ニッケルは部分合金粉末と同時に用いられるため、ニッケルはほとんどが部分合金粉末に析出し、イオンとして溶出することがなく、環境に対する問題がない。   Nickel sulfate and / or nickel chloride may be used in the form of crystals or powder, and may be added to a partial alloy powder or previously added to a slurry of a partial alloy powder after being dissolved in water. . Further, nickel sulfate and / or nickel chloride dissolved in water may be added to and mixed with the iron powder and then used after drying. Since nickel sulfate and / or nickel chloride is used at the same time as the partial alloy powder, most of the nickel precipitates in the partial alloy powder and does not elute as ions, so there is no problem with the environment.

部分合金粉末末の混合量は土壌に対して0.1〜10重量%、特に1〜3重量%の範囲が好ましい。混合量が少なすぎると土壌との均一な混合が困難であり、混合量が多すぎても分解速度はある一定の速度で飽和し、また経済的でない。   The mixing amount of the partial alloy powder powder is preferably 0.1 to 10% by weight, particularly 1 to 3% by weight, based on the soil. If the mixing amount is too small, uniform mixing with the soil is difficult, and if the mixing amount is too large, the decomposition rate is saturated at a certain rate and is not economical.

本発明では、部分合金粉末にニッケルを含まない鉄粉及び/又は酸化鉄をさらに混合して用いることができる。   In the present invention, the partial alloy powder can be used by further mixing iron powder and / or iron oxide not containing nickel.

本発明において浄化する対象が土壌の場合、土壌中には水が存在することが必要である。土壌中の水分量としては、土壌100重量部に対して10重量部以上、特に20〜60重量部の範囲が好ましい。   In the present invention, when the object to be purified is soil, it is necessary that water be present in the soil. The amount of water in the soil is preferably 10 parts by weight or more, particularly preferably in the range of 20 to 60 parts by weight with respect to 100 parts by weight of the soil.

本発明の浄化方法は地下水揚水法などで集めた汚染水や、河川の水などの処理にも適用することができるが、土壌または地下水に注入する方法に対して特に好ましく適用することができる。本発明の方法は、複雑な処理工程や設備を必要とせず、汚染源を直接簡便に浄化することが可能である。   The purification method of the present invention can be applied to the treatment of contaminated water collected by the groundwater pumping method, river water, etc., but can be particularly preferably applied to the method of pouring into soil or groundwater. The method of the present invention does not require complicated processing steps and equipment, and can easily and directly purify the contamination source.

本発明の浄化方法は、実質的に極めて少量の硫酸ニッケル及び/又は塩化ニッケルを部分合金粉末と混合して用いることにより、有機ハロゲン化物を短期間に分解することができる。   The purification method of the present invention can decompose an organic halide in a short time by using a substantially very small amount of nickel sulfate and / or nickel chloride mixed with a partial alloy powder.

実施例及び比較例の方法によるパークロロエチレンの分解性能向上を示す図である。It is a figure which shows the decomposition performance improvement of the perchlorethylene by the method of an Example and a comparative example. 実施例及び比較例の方法によるトリクロロエチレンの分解性能向上を示す図である。It is a figure which shows the decomposition performance improvement of the trichlorethylene by the method of an Example and a comparative example. 実施例及び比較例の方法によるシス―1,2―ジクロロエチレンの分解性能向上を示す図である。It is a figure which shows the decomposition performance improvement of cis-1, 2- dichloroethylene by the method of an Example and a comparative example. 比較例の方法によるパークロロエチレンの分解性能を示す図である。It is a figure which shows the decomposition | disassembly performance of perchlorethylene by the method of a comparative example. 比較例の方法によるトリクロロエチレンの分解性能を示す図である。It is a figure which shows the decomposition | disassembly performance of the trichlorethylene by the method of a comparative example. 比較例の方法によるシス―1,2―ジクロロエチレンの分解性能を示す図である。It is a figure which shows the decomposition | disassembly performance of cis-1, 2- dichloroethylene by the method of a comparative example.

次に、本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

実施例1
鋳鉄粉(炭素2.3重量%含有)にNiを0.1重量%混合し、振動ミル(中央化工機(株)製、商品名V−MILL,BM−3、1200vpm,6.6Lポット)を用いて、部分合金粉末を得た(振動数600vpm、窒素ガス流量40ml/分、粉砕時間2時間)。得られた粉末が部分合金であることをEPMAによって確認した。
Example 1
Cast iron powder (containing 2.3% by weight of carbon) is mixed with 0.1% by weight of Ni, and vibration mill (manufactured by Chuo Kako Co., Ltd., trade name: V-MILL, BM-3, 1200 vpm, 6.6L pot) Was used to obtain a partial alloy powder (frequency: 600 vpm, nitrogen gas flow rate: 40 ml / min, grinding time: 2 hours). It was confirmed by EPMA that the obtained powder was a partial alloy.

次に、パークロロエチレン(PCE)、トリクロロエチレン(TCE)、及びシス―1,2−ジクロロエチレン(cis−1,2−DCE)をそれぞれ5mg/L含有する水溶液を調製し、当該水溶液100mLをバイアル瓶に分取した。部分合金粉末に対し表1〜3に示した範囲で硫酸ニッケルを混合し、さらに等量の水を加え5分間放置しスラリーを調合した。Niが0.02重量%、0.035%は、硫酸ニッケルとして0.053重量%、0.092重量%に相当する。   Next, an aqueous solution containing 5 mg / L each of perchlorethylene (PCE), trichlorethylene (TCE), and cis-1,2-dichloroethylene (cis-1,2-DCE) was prepared, and 100 mL of the aqueous solution was added to a vial. Sorted into Nickel sulfate was mixed in the range shown in Tables 1 to 3 with respect to the partial alloy powder, and further an equal amount of water was added and left for 5 minutes to prepare a slurry. Ni of 0.02% by weight and 0.035% correspond to 0.053% by weight and 0.092% by weight of nickel sulfate.

当該スラリー2gを先の有機ハロゲン化物を分取したバイアル瓶中に添加し20℃に保持された恒温水槽中に投入後、1分間に160ストロークで揺動させた。残ったスラリーをろ過、洗浄し、濾液中のニッケル成分をICPで定量したところニッケルは検出されなかった。また、部分合金粉末をXPSで解析したところ、最外表面はニッケル酸化物が形成され内部はニッケル金属であった。   2 g of the slurry was added to a vial bottle from which the organic halide was separated, and the mixture was placed in a constant temperature water bath maintained at 20 ° C., and then rocked at 160 strokes per minute. The remaining slurry was filtered and washed, and the nickel component in the filtrate was quantified by ICP, and nickel was not detected. Further, when the partial alloy powder was analyzed by XPS, nickel oxide was formed on the outermost surface, and the inside was nickel metal.

一定期間経過後の有機ハロゲン化物の濃度を公定法(環境省告示第46号及び第18号)に準拠し測定した。   The concentration of the organic halide after a certain period of time was measured according to the official method (Ministry of the Environment Notification Nos. 46 and 18).

PCE、TCE及びcis−1,2−DCEの濃度変化を表1〜3及び図1〜3に示す。   Changes in the concentrations of PCE, TCE and cis-1,2-DCE are shown in Tables 1 to 3 and FIGS.

部分合金粉末を少量の硫酸ニッケルで処理すると、いずれの有機ハロゲン化物も短期間に分解され、PCEは6日で、TCEは4日で、また、cis−1,2−DCEは3日で環境基準値となった。   When the partial alloy powder is treated with a small amount of nickel sulfate, any organic halide is decomposed in a short period of time. PCE takes 6 days, TCE takes 4 days, and cis-1,2-DCE takes 3 days. It became the reference value.

Figure 2010194451
Figure 2010194451

Figure 2010194451
Figure 2010194451

Figure 2010194451
Figure 2010194451

比較例1
ニッケルの部分合金鉄粉の代わりに実施例1の鋳鉄粉を用い、実施例1と同様の条件で有機ハロゲン化物の分解挙動を測定した。また、ニッケル成分として0.09重量%に相当する濃度も測定した。
Comparative Example 1
Using the cast iron powder of Example 1 in place of the nickel partial alloy iron powder, the decomposition behavior of the organic halide was measured under the same conditions as in Example 1. Moreover, the density | concentration corresponded to 0.09 weight% as a nickel component was also measured.

結果を表4〜6及び図4〜6に示す。   The results are shown in Tables 4-6 and FIGS.

部分合金粉末を用いた実施例1に比較し、鉄粉を用いた場合は有機ハロゲン化物の分解速度に長時間を要した。   Compared with Example 1 using the partial alloy powder, when iron powder was used, it took a long time to decompose the organic halide.

Figure 2010194451
Figure 2010194451

Figure 2010194451
Figure 2010194451

Figure 2010194451
Figure 2010194451

Claims (5)

有機ハロゲン化物で汚染された土壌、排水又は地下水に対し、鉄粉の内部及び/又は表面に鉄とニッケルの部分合金相を有する部分合金粉末及び当該部分合金粉末に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを混合する有機ハロゲン化物の浄化方法。 Less than 0.1% by weight with respect to soil, wastewater or groundwater contaminated with organic halides, with partial alloy powder having a partial alloy phase of iron and nickel in and / or on the surface of the iron powder. For purifying organic halides by mixing nickel sulfate and / or nickel chloride. 部分合金粉末が、鉄とニッケルをメカニカルアロイング法によって部分合金化されたニッケル含有量が0.01〜2重量%である請求項1に記載の有機ハロゲン化物浄化剤。 2. The organic halide purifier according to claim 1, wherein the partial alloy powder has a nickel content of 0.01 to 2 wt% when iron and nickel are partially alloyed by a mechanical alloying method. 硫酸ニッケル及び/又は塩化ニッケルを粉末或いは水の存在下で部分合金粉末と混合する請求項1乃至2に記載の浄化方法。 The purification method according to claim 1, wherein nickel sulfate and / or nickel chloride is mixed with the partial alloy powder in the presence of powder or water. 部分合金粉末の混合量が土壌、排水又は地下水に対して0.1〜10重量%の範囲である請求項1乃至3に記載の浄化方法。 The purification method according to any one of claims 1 to 3, wherein the mixed amount of the partial alloy powder is in the range of 0.1 to 10% by weight with respect to soil, drainage or groundwater. ニッケルを含まない鉄粉及び/又は酸化鉄をさらに混合してなる請求項1乃至4に記載の浄化方法。 The purification method according to any one of claims 1 to 4, wherein iron powder and / or iron oxide not containing nickel are further mixed.
JP2009041744A 2009-02-25 2009-02-25 Organic halide cleaning agent and cleaning method using the same Pending JP2010194451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041744A JP2010194451A (en) 2009-02-25 2009-02-25 Organic halide cleaning agent and cleaning method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041744A JP2010194451A (en) 2009-02-25 2009-02-25 Organic halide cleaning agent and cleaning method using the same

Publications (1)

Publication Number Publication Date
JP2010194451A true JP2010194451A (en) 2010-09-09

Family

ID=42819749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041744A Pending JP2010194451A (en) 2009-02-25 2009-02-25 Organic halide cleaning agent and cleaning method using the same

Country Status (1)

Country Link
JP (1) JP2010194451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026518A (en) * 2009-07-28 2011-02-10 Jfe Mineral Co Ltd Decomposition material for organic halogen compound and method for producing the same
JP6953606B1 (en) * 2020-10-08 2021-10-27 Dowaエコシステム株式会社 Organic halogen compound decomposing agent, its manufacturing method, and soil or groundwater purification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026518A (en) * 2009-07-28 2011-02-10 Jfe Mineral Co Ltd Decomposition material for organic halogen compound and method for producing the same
JP6953606B1 (en) * 2020-10-08 2021-10-27 Dowaエコシステム株式会社 Organic halogen compound decomposing agent, its manufacturing method, and soil or groundwater purification method

Similar Documents

Publication Publication Date Title
JPH11235577A (en) Detoxicating treatment of soil
JP2003080074A (en) Iron powder for dehalogenation decomposition of organic halogen compound and method for cleaning soil, water and/or gas
KR100913615B1 (en) Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby
JP4377657B2 (en) Organochlorine compound removing agent and organochlorine compound removing method
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP4009739B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound, its production method and detoxification treatment method using the same
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP2010194450A (en) Method for cleaning organic halide
JP4637649B2 (en) Iron powder for purification
JP2011241373A (en) Organic halide cleaning agent and cleaning method using the same
JP2010131542A (en) Cleaning method of organic halide
JP4586325B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP4833505B2 (en) Iron powder for purification
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP2004305235A (en) Method for rendering object to be treated contaminated with organic halogen compound harmless
JP2011026524A (en) Treating agent for decomposing organic halide, and method of treatment by using the same
JP2006142285A (en) Noble metal-carrying iron composite for purifying soil/ground water, purifying agent containing noble metal-carrying iron composite and method for purifying soil/ground water
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2004305792A (en) Detoxication method for object to be treated contaminated with organic halogen compound
JP2010110497A (en) Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same
KR100582474B1 (en) Iron-Based cleaning powder
JP4904309B2 (en) Organic halogen compound treatment material and organic halogen compound treatment method
JP2010000301A (en) Iron-containing slurry and method of detoxifying substance contaminated with organohalogen compound using the same