JP2008142693A - Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same - Google Patents

Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same Download PDF

Info

Publication number
JP2008142693A
JP2008142693A JP2007109051A JP2007109051A JP2008142693A JP 2008142693 A JP2008142693 A JP 2008142693A JP 2007109051 A JP2007109051 A JP 2007109051A JP 2007109051 A JP2007109051 A JP 2007109051A JP 2008142693 A JP2008142693 A JP 2008142693A
Authority
JP
Japan
Prior art keywords
iron powder
decomposition
weight
organic chlorinated
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109051A
Other languages
Japanese (ja)
Inventor
Toshiki Shimizu
要樹 清水
Yasuyuki Nagai
康之 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007109051A priority Critical patent/JP2008142693A/en
Publication of JP2008142693A publication Critical patent/JP2008142693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of being required for an iron powder for decomposition having a high decomposition performance of organic chlorinated compounds in a solid such as in soil and also having a low Ni content. <P>SOLUTION: The iron powder for decomposition of the organic chlorinated compounds comprising less than 40 wt.% of a particle size of less than 53 μm, 0.1 to 0.5 wt.% of the amount of Ni and 0.005 to 5 wt.% of the amount of carbon is used. It is particularly preferable that Ni, carbon and iron are partially alloyed. When the iron powder for decomposition and an Ni-free iron powder are mixed and used, the total Ni content can be reduced without a reduction in decomposition performance of organic chlorinated compounds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機塩素化物で汚染された土壌、産業廃棄物、汚泥、スラッジ、排水、地下水等の被処理物に対する無害化処理剤及びそれを用いた無害化処理方法に関するものである。   TECHNICAL FIELD The present invention relates to a detoxifying agent for an object to be treated such as soil, industrial waste, sludge, sludge, drainage, groundwater, etc. contaminated with an organic chlorinated product, and a detoxifying treatment method using the same.

近年、TCE(トリクロロエチレン)、PCE(テトラクロロエチレン)、ジクロロメタン、PCB(ポリ塩化ビフェニル)及びダイオキシン類等の有機ハロゲン化合物による環境汚染問題が大きな問題となっており、これら有機ハロゲン化合物により汚染された土壌、排水、地下水等に対する無害化用処理剤およびその処理方法が検討されている。   In recent years, environmental pollution problems due to organic halogen compounds such as TCE (trichloroethylene), PCE (tetrachloroethylene), dichloromethane, PCB (polychlorinated biphenyl) and dioxins have become a major problem, soil contaminated by these organic halogen compounds, Treatment agents for detoxification of drainage, groundwater, etc. and treatment methods thereof are being studied.

例えば、汚染された排水、用水をFe粉末や、NiまたはCu化学メッキFe粉末により還元脱塩素処理する技術が報告(例えば、非特許文献1)されている。しかし、これら処理剤自体の経時的性能劣化を抑制するためには汚染排水、用水中の溶存酸素を除去することが必要であり、さらに活性を示すニッケルメッキ量の範囲が多くなければ効果が得られなかった。   For example, a technique for reducing and dechlorinating contaminated waste water and water with Fe powder, Ni or Cu chemical plating Fe powder has been reported (for example, Non-Patent Document 1). However, it is necessary to remove dissolved oxygen from contaminated wastewater and irrigation water in order to suppress the deterioration of performance over time of these treatment agents themselves, and the effect can be obtained unless the range of nickel plating amount showing activity is large. I couldn't.

汚染土壌、スラッジ、汚泥等の処理法の場合、特に化学的処理として、限定範囲の汚染土壌に炭素を含有する鉄系処理剤を添加、処理する方法(例えば、特許文献1)、またはFeとNi、Cu、炭素を組み合わせた金属系処理剤を使用する処理法(例えば、特許文献2、3)が報告されている。しかし、分解能はまだ十分とは言えなかった。   In the case of treatment methods for contaminated soil, sludge, sludge, etc., particularly as a chemical treatment, a method of adding and treating an iron-based treatment agent containing carbon to a limited range of contaminated soil (for example, Patent Document 1), or Fe A treatment method (for example, Patent Documents 2 and 3) using a metal-based treatment agent in which Ni, Cu, and carbon are combined has been reported. However, the resolution was still not sufficient.

他にもFeと異種元素を組み合わせた金属系処理剤の有機塩素化合物の分解が報告されている(例えば、特許文献4、5)。しかし強粉砕の手法により50μm以下の微粒子の比率が多い高活性な鉄粉では、着火性等の安全性に問題があった。さらに微細な鉄粉では、水溶液では性能が高いが、土壌等の固体物と均一に混合することが難しく、十分な特性が発揮されなかった。   In addition, decomposition of organochlorine compounds, which are metal processing agents combining Fe and different elements, has been reported (for example, Patent Documents 4 and 5). However, a highly active iron powder having a large proportion of fine particles of 50 μm or less by a strong pulverization technique has a problem in safety such as ignition. Furthermore, although fine iron powder has high performance in aqueous solution, it is difficult to uniformly mix with solid materials such as soil, and sufficient characteristics are not exhibited.

これまで、Ni又は炭素を含有した有機塩素化合物分解鉄粉は知られていたが、土壌の様な固体(固液混合系)では分解速度が遅く、水溶液中であっても難分解性のPCE等の分解に長時間がかかるものしかなく、それらの性能を十分なものとするためにはNiの含有量を多くすることが必要であった。(特許文献6〜12)
先崎ら、工業用水、VOL391,(1991),29. 特開平11−235577号 特開2000−5740 特開2002−20806 特開2003−80220 特開2003−136051 特開2003−105313 特開2004−577881 特開2004−305235 特開2004−305792 特開2005−95750 特開2005−34696 特開2005−118755
So far, organochlorine compound-decomposed iron powder containing Ni or carbon has been known, but the degradation rate is slow for solids such as soil (solid-liquid mixed system), and it is difficult to decompose even in aqueous solution. However, it is necessary to increase the Ni content in order to achieve sufficient performance. (Patent Documents 6 to 12)
Sakizaki et al., Industrial Water, VOL391, (1991), 29. Japanese Patent Laid-Open No. 11-235577 JP 2000-5740 A JP2002-20806 JP 2003-80220 A JP2003-136051A JP 2003-105313 A JP 2004-577881 A JP 2004-305235 A JP 2004-305792 A JP 2005-95750 A JP 2005-34696 A JP 2005-118755 A

有機ハロゲン化合物で汚染された土壌、産業廃棄物、汚泥、スラッジ、排水、地下水等を無害化処理する剤として、Niや炭素等の異種元素を含有する鉄系分解剤が知られていが、より高速に有機塩素化合物を分解浄化できる鉄系分解剤が求められていた。従来の微細粒子を多くして活性を高めた剤では、土壌等の固体(固液混合系)に用いた場合には、十分な分解特性が得られず、また着火性等の危険性があった。   As an agent for detoxifying soil, industrial waste, sludge, sludge, drainage, groundwater, etc. contaminated with organic halogen compounds, iron-based decomposing agents containing different elements such as Ni and carbon are known. There has been a demand for an iron-based decomposition agent that can decompose and purify organic chlorine compounds at high speed. With conventional agents with increased activity by increasing the number of fine particles, when used for solids such as soil (solid-liquid mixed system), sufficient decomposition characteristics cannot be obtained, and there is a risk such as ignitability. It was.

さらに従来のNi含有の分解用鉄粉では、分解能を高めるためにはNiの含有量を高めることが必要であった。そこで、特に土壌の様な固体に対して浄化性能が高く、なおかつNiの含有量が少ない分解用鉄粉が求められていた。   Furthermore, in the conventional Ni-containing iron powder for decomposition, it is necessary to increase the Ni content in order to increase the resolution. Accordingly, there has been a demand for iron powder for decomposition that has a high purification performance especially for soil-like solids and that has a low Ni content.

本発明者等は、土壌中の有機塩素化合物の分解浄化について鋭意検討を重ねた結果、粗粒の鉄粉、特に粒度53μm(280メッシュアンダー)が40重量%未満で、Ni含有量が従来よりも少ない分解用鉄粉で、特に土壌処理において有機塩素化合物の分解性に優れる分解用鉄粉を見出した。   As a result of intensive studies on the decomposition and purification of organochlorine compounds in the soil, the present inventors have found that coarse iron powder, in particular, a particle size of 53 μm (280 mesh under) is less than 40% by weight, and the Ni content is higher than before. We have found iron powder for decomposition that is excellent in degradability of organochlorine compounds, especially in soil treatment.

本発明の有機塩素化合物分解用鉄粉は、難分解性のPCEの分解能も高く、またNiを含有しない鉄粉や酸化鉄と混合して用いても高い有機塩素化合物の分解能を示し、トータルNi量を低減できることを見出した。   The iron powder for decomposing organochlorine compounds of the present invention has a high resolution of hardly decomposable PCE, and exhibits a high resolution of organochlorine compounds even when used in combination with iron powder not containing Ni or iron oxide. It has been found that the amount can be reduced.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の有機塩素化合物分解用鉄粉(以下「分解用鉄粉」という)は粒度53μm未満が40重量%未満の粗粒を主成分とするものである。従来の分解用鉄粉は活性な微粒子が多いものであり、粗粒が多いものでも53μm未満が50重量%程度のものであった。その様な鉄粉では、排水等の溶液では高い性能が発揮されるものもあるが、土壌等の固形分に用いた場合、性能が発揮されなかった。   The organochlorine compound decomposing iron powder of the present invention (hereinafter referred to as “decomposing iron powder”) is mainly composed of coarse particles having a particle size of less than 53 μm and less than 40% by weight. Conventional iron powder for decomposition has a large amount of active fine particles, and even a large amount of coarse particles is less than 53 μm and is about 50% by weight. Some iron powders exhibit high performance in solutions such as wastewater, but when used for solids such as soil, performance was not achieved.

従来の分解用鉄粉の粒度は危険物第2類に該当する粒度53μm未満が50重量%以上で着火性等の危険性があった。本発明の分解用鉄粉は、粒度53μm以上が40重量%未満で当該規制値以下の粒度であり、危険物第2類に該当しないものである。   The particle size of the conventional iron powder for decomposition is 50% by weight or more when the particle size is less than 53 μm, which corresponds to the second class of hazardous materials, and there is a risk such as ignitability. The iron powder for decomposition of the present invention has a particle size of 53 μm or more and less than 40% by weight and less than the regulation value, and does not fall under the category of hazardous materials.

本発明の分解用鉄粉は、上記の様な粗粒分布において高速に有機塩素化合物を分解するものであり、Ni量が0.1〜0.5重量%、炭素量が0.005〜5重量%である。有機塩素化合物の分解用鉄粉は、鉄と鉄の表面に存在する異種金属類が形成する局部電池が分解性能に寄与すると考えられているが、本発明者の鉄粉の粒径範囲における鉄粉の有効表面積においては、本発明の組成範囲で特に性能が優れ、優れた局部電池のマクロ構造を形成できるものと考えられる。   The iron powder for decomposition of the present invention decomposes an organic chlorine compound at a high speed in the coarse particle distribution as described above, and the Ni amount is 0.1 to 0.5% by weight and the carbon amount is 0.005 to 5. % By weight. The iron powder for decomposition of organochlorine compounds is thought to contribute to the decomposition performance by local batteries formed by iron and dissimilar metals present on the surface of the iron. In terms of the effective surface area of the powder, it is considered that the performance is particularly excellent within the composition range of the present invention, and an excellent macro structure of a local battery can be formed.

本発明の分解用鉄粉はそれ単独においてNi量が0.1重量%未満では分解能が低下し、また0.5重量%を越えると部分合金化が困難となり局部電池作用は低下してしまう。炭素量が0.005重量%未満のものは分解能が低く、入手が困難であり、また5重量%を越えても分解性能の向上は見られない。   When the iron content for decomposition of the present invention alone is less than 0.1% by weight of Ni, the resolution is lowered, and when it exceeds 0.5% by weight, partial alloying becomes difficult and the local battery action is lowered. When the carbon content is less than 0.005% by weight, the resolution is low and it is difficult to obtain, and even if it exceeds 5% by weight, no improvement in decomposition performance is observed.

本発明の分解用鉄粉は、Niと鉄が部分合金化していることが好ましい。Niが鉄粉上に単に点在した状態(非合金化)では局部電池作用が弱いため好ましくない。部分合金化することにより局部電池作用効果は増大し、かつ安定性を発揮する。一方、完全合金化した場合、有効な局部電池が形成されず、本発明の効果は得られ難い。また鉄とNiが分離して還元作用低下を抑制する観点からも部分合金化は効果がある。   In the iron powder for decomposition of the present invention, Ni and iron are preferably partially alloyed. A state where Ni is simply scattered on the iron powder (non-alloyed) is not preferable because the local battery action is weak. By partial alloying, the local battery action effect is increased and stability is exhibited. On the other hand, when completely alloyed, an effective local battery is not formed, and it is difficult to obtain the effects of the present invention. Also, partial alloying is effective from the viewpoint of separation of iron and Ni to suppress reduction in reduction action.

FeとNiの部分合金の存在部位としては、合金部分が鉄粒子の表面全体を占めるものでなく、鉄粉表面においてNi部位および合金化部位が夫々存在することが好ましい。鉄粉表面全体を合金が覆っていると、局部電池作用が起こり難く、有機塩素化物の分解が起こり難い。部分合金化はEPMA(電子線マイクロアナライザ−)やTEM(透過型電子顕微鏡)を用いて、合金層(Niの拡散層)を確認することができる。   As the existence site of the partial alloy of Fe and Ni, it is preferable that the alloy part does not occupy the entire surface of the iron particles, and that the Ni site and the alloying site exist on the surface of the iron powder. If the alloy covers the entire surface of the iron powder, the local battery action hardly occurs and the organic chlorinated product does not easily decompose. For partial alloying, the alloy layer (Ni diffusion layer) can be confirmed using EPMA (electron beam microanalyzer) or TEM (transmission electron microscope).

本発明の分解用鉄粉の炭素は、Niと同様に、炭素単独部位と鉄と炭素の合金部が存在することが望ましい。一般に鉄粉としては純鉄、鋼、鋳鉄、または銑鉄等を用いることができるが、これら鉄粉内に存在する鉄部分およびセメンタイト等の鉄炭素合金部分も活性点として作用し得る。   The carbon of the iron powder for decomposition of the present invention desirably has a single carbon part and an alloy part of iron and carbon like Ni. In general, pure iron, steel, cast iron, pig iron, or the like can be used as the iron powder, but an iron portion existing in the iron powder and an iron-carbon alloy portion such as cementite can also act as active sites.

分解用鉄粉の粉末形状は特に限定するものではなく、球形状、樹枝状、片状、針状、角状、積層状、ロッド状、板状、海綿状等が含まれる。また分解用鉄粉の比表面積は0.05m/g以上、好ましくは0.2〜10m/gでは、分解反応速度や接触確率を向上させることができ、粗粒を用いる上で有効であり、難分解性のCis−DCE、MC、PCEをも、より短時間に分解することができる。 The powder shape of the iron powder for decomposition is not particularly limited, and includes a spherical shape, a dendritic shape, a piece shape, a needle shape, a square shape, a laminated shape, a rod shape, a plate shape, a sponge shape, and the like. Moreover, when the specific surface area of the iron powder for decomposition is 0.05 m 2 / g or more, preferably 0.2 to 10 m 2 / g, the decomposition reaction rate and the contact probability can be improved, which is effective in using coarse particles. Yes, difficult-to-decompose Cis-DCE, MC, and PCE can be decomposed in a shorter time.

本発明ではその効果を損なわない程度に他の添加剤を含んでいてもよい。添加剤としては特に限定するものではなく、例えば、酸化防止剤、反応促進剤、分散剤、pH調整剤、脱酸素処理剤等があげられる。酸化防止剤としては亜硫酸ナトリウム、硫酸第一鉄、硫化鉄、アスコルビン酸等、反応促進剤としては塩化ナトリウム、硫酸ナトリウム等、分散剤としては、活性炭素、アルミナ、ゼオライト、シリカゲル、シリカ−アルミナ、鉄粉等があげられる。   In the present invention, other additives may be included to such an extent that the effect is not impaired. The additive is not particularly limited, and examples thereof include an antioxidant, a reaction accelerator, a dispersant, a pH adjuster, and a deoxygenating agent. Sodium sulfite, ferrous sulfate, iron sulfide, ascorbic acid and the like as the antioxidant, sodium chloride and sodium sulfate as the reaction accelerator, activated carbon, alumina, zeolite, silica gel, silica-alumina, Examples include iron powder.

本発明では、分解用鉄粉をNiを含有しない鉄粉及び/又は酸化鉄と混合したもの(以下「混合鉄粉」という)を用いてもよい。この様な混合鉄粉でも、有機塩素化物の分解能を低減することがない上、土壌に投入されるトータルのNi量をさらに低減できる。   In the present invention, iron powder for decomposition mixed with iron powder not containing Ni and / or iron oxide (hereinafter referred to as “mixed iron powder”) may be used. Even with such a mixed iron powder, the resolution of the organic chlorinated product is not reduced, and the total amount of Ni put into the soil can be further reduced.

本発明の混合鉄粉における分解用鉄粉と、Niを含有しない鉄粉及び/又は酸化鉄の混合比率としては、分解用鉄粉の比率が30重量%以上であることが好ましい。分解用鉄粉が30重量%未満では、分解能が低下し易い。   As a mixing ratio of the iron powder for decomposition in the mixed iron powder of the present invention and iron powder not containing Ni and / or iron oxide, the ratio of the iron powder for decomposition is preferably 30% by weight or more. If the iron powder for decomposition is less than 30% by weight, the resolution tends to decrease.

本発明で用いる酸化鉄は特に限定されないが、酸化第一鉄、酸化第二鉄、マグネタイト、ベルドライト等、さらに具体的には一般的に入手が容易な砂鉄、鉄鉱物が用いられる。   The iron oxide used in the present invention is not particularly limited, and ferrous oxide, ferric oxide, magnetite, verdolite, and more specifically, iron iron and iron minerals that are generally easily available are used.

土壌中に投入する鉄粉の量が少な過ぎると土壌との均一混合、均一接触が困難となり、有機塩素化合物の分解能が低下する。本発明の分解用鉄粉も添加量が少なくなると分解能が低下する傾向がある。しかし、本発明の分解用鉄粉を混合鉄粉の態様で用いると、単位重量当りの土壌に添加する分解用鉄粉の量が少ないにもかかわらず、高い分解性能が発揮される。   If the amount of iron powder put into the soil is too small, uniform mixing and uniform contact with the soil becomes difficult, and the resolution of the organochlorine compound decreases. The resolution of the iron powder for decomposition of the present invention tends to decrease as the addition amount decreases. However, when the iron powder for decomposition of the present invention is used in the form of mixed iron powder, high decomposition performance is exhibited even though the amount of iron powder for decomposition added to the soil per unit weight is small.

Niを含まない有機塩素化合物の分解能が低い鉄粉及び/又は酸化鉄を含有している混合鉄粉が、分解用鉄粉の場合と同様の分解性能を発揮する原因は定かではないが、分解用鉄粉とNiを含有しない鉄粉及び/又は酸化鉄が接触して土壌中又は水溶液中でネットワークを形成することによって、Niを含有しない鉄粉及び/又は酸化鉄の表面が分解能の高い分解用鉄粉と同様の電池作用を発現することが考えられる。   The reason why the mixed iron powder containing low-resolution iron powder and / or iron oxide containing the organic chlorine compound not containing Ni exhibits the same decomposition performance as in the case of the iron powder for decomposition is not clear, The surface of iron powder and / or iron oxide not containing Ni is decomposed with high resolution by forming a network in soil or aqueous solution by contacting iron powder and / or iron oxide not containing Ni with the iron powder for use. It is considered that the same battery action as that of iron powder is developed.

本発明の混合鉄粉のトータルのNi含有量は、0.03重量%から0.5重量%であることが好ましく、さらには0.03重量%から0.1重量%未満であることが好ましい。   The total Ni content of the mixed iron powder of the present invention is preferably 0.03% by weight to 0.5% by weight, more preferably 0.03% by weight to less than 0.1% by weight. .

本発明の混合鉄粉の粒度は特に限定されるものではないが、分解用鉄粉と同様の理由により、全体として粒度53μm未満が40重量%未満であることが好ましい。   The particle size of the mixed iron powder of the present invention is not particularly limited, but for the same reason as the iron powder for decomposition, it is preferable that the total particle size is less than 53 μm and less than 40% by weight.

本発明の分解用鉄粉又は混合鉄粉(以下併せて「処理剤」という)は、従来品より特に土壌中における有機塩素化物の分解能が高いものであり、室温において、トリクロルエチレン(TCE)を10ppm、水分20重量%以上の土壌中に処理剤を1重量%添加混合した場合において環境基準(0.03ppm)までのトリクロルエチレンの分解速度定数が0.32/日以上、特に0.35/日以上、さらには0.8/日以上であることが好ましい。   The iron powder for decomposition or mixed iron powder of the present invention (hereinafter also referred to as “treatment agent”) has a higher resolution of organic chlorinated products in soil than conventional products, and trichloroethylene (TCE) is used at room temperature. When 1 wt% of the treatment agent is added to and mixed with soil of 10 ppm and moisture of 20 wt% or more, the decomposition rate constant of trichlorethylene up to the environmental standard (0.03 ppm) is 0.32 / day or more, especially 0.35 / day. It is preferable that it is not less than days, more preferably not less than 0.8 / day.

土壌中に含まれる水分が多い方が有機塩素化物は分解し易いことはよく知られているが、土壌中の水分が10重量%以上、特に15%以上あれば処理剤の持つ分解性能は十分に発揮され、分解速度は飽和する。本発明の分解速度定数は、これらの分解性能が十分に発揮される水分20重量%以上の土壌において、室温、処理剤を1重量%添加にした場合のものである。   It is well known that organic chlorinated substances are more easily decomposed when there is more water in the soil, but if the moisture in the soil is 10% by weight or more, especially 15% or more, the decomposition performance of the treatment agent is sufficient. Degradation rate is saturated. The degradation rate constants of the present invention are those obtained when 1% by weight of a treatment agent is added at room temperature in soil having a water content of 20% by weight or more where the degradation performance is sufficiently exhibited.

分解速度の関係は一般に下記の速度式で表される。   The relationship of decomposition speed is generally expressed by the following speed equation.

ln(C/C)=−k・t
:トリクロルエチレンの到達濃度(ppm)
:トリクロルエチレンの初期濃度(ppm)
k:速度定数(/日、又は/時間)
t:時間(日、又は時間)
土壌中での有機塩素化物分解において、分解速度定数が0.32/日、0.35/日、0.8/日は例えば10ppmのトリクロルエチレンに汚染された土壌を環境基準(0.03ppm)まで浄化するのに要する日数がそれぞれ、18日、17日、7日に相当する。
ln (C 1 / C 0 ) = − k · t
C 1 : Achievable concentration of trichloroethylene (ppm)
C 0 : Initial concentration (ppm) of trichloroethylene
k: Rate constant (/ day or / hour)
t: Time (day or time)
In the decomposition of organic chlorides in soil, the degradation rate constant is 0.32 / day, 0.35 / day, 0.8 / day, for example, soil contaminated with 10 ppm trichlorethylene is the environmental standard (0.03 ppm) It takes 18 days, 17 days and 7 days, respectively, to clean up.

本発明の処理剤の分解速度定数の上限は限定されないが、活性が高過ぎて一気に分解ガスが発生すると危険性であるため、分解速度定数は2以下が好ましい。分解速度定数が2は環境基準までの分解に要する日数として約3日に相当する。   The upper limit of the decomposition rate constant of the treatment agent of the present invention is not limited, but the decomposition rate constant is preferably 2 or less because it is dangerous if the activity is too high and decomposition gas is generated at once. A degradation rate constant of 2 corresponds to about 3 days as the number of days required for degradation to the environmental standard.

本発明の処理剤の分解速度定数は、水溶液中での有機塩素化物の分解性能にも優れている。特に難分解性のテトラクロロエチレン(PCE)を10ppm含有する水溶液中に、室温、処理剤を1重量%添加混合した場合における環境基準(0.01ppm)までのテトラクロルエチレンの分解速度定数が0.9/日以上、特に1.1以上が好ましい。上述した理由により、上限はやはり2/日以下である。   The decomposition rate constant of the treatment agent of the present invention is excellent in the decomposition performance of organic chlorinated products in an aqueous solution. In particular, the decomposition rate constant of tetrachloroethylene up to the environmental standard (0.01 ppm) in the case of adding 1 wt% of a treatment agent at room temperature to an aqueous solution containing 10 ppm of hardly decomposable tetrachloroethylene (PCE) is 0.9. / Day or more, particularly 1.1 or more is preferable. For the reasons described above, the upper limit is still 2 / day or less.

土壌に添加する処理剤の量を増やせば分解は速くなることは良く知られている。土壌中への処理剤の添加量が著しく少ない場合、又は多すぎる場合を除き、通常用いられる0.5〜3重量%の添加量の範囲では、添加量と分解速度定数の間には概ね以下の経験式に従った相関性が得られる。そのため、異なる添加量の試験結果から算出される分解速度定数から、異なる条件下で評価された処理剤間の性能を比較することも可能である。   It is well known that degradation increases as the amount of treatment agent added to the soil is increased. Except when the amount of the treatment agent added to the soil is extremely small or too large, the range between the amount of addition and the decomposition rate constant is generally below in the range of 0.5 to 3% by weight usually used. The correlation according to the empirical formula is obtained. Therefore, it is also possible to compare the performance between the treatment agents evaluated under different conditions from the decomposition rate constant calculated from the test results of different addition amounts.

ka=kb(a/b)1/2
ka:汚染物中に分解剤をa重量%添加した場合の速度定数
kb:汚染物中に分解剤をb重量%添加した場合の速度定数
次に分解用鉄粉の製造方法について説明する。
ka = kb (a / b) 1/2
ka: Rate constant when a decomposing agent is added to a contaminant by a weight% kb: Rate constant when a decomposing agent is added by b weight% in the contaminant Next, a method for producing iron powder for decomposition will be described.

本発明では前記の鉄、Ni及び炭素を本発明の範囲に調整し、これら原料をNiと炭素を主に粒子表面で鉄と部分合金化させるために機械的に粉砕処理する。   In the present invention, the above-mentioned iron, Ni, and carbon are adjusted within the scope of the present invention, and these raw materials are mechanically pulverized to partially alloy Ni and carbon with iron mainly on the particle surface.

粉砕の方法としては、一般的なボ−ルミルの中で特に、振動ミルのバッチ式または連続式粉砕機を使用することができるが、特に原料が合金化する程度の機械的強度の高いものが好ましい。   As a pulverization method, a batch type or continuous type pulverizer of a vibration mill can be used, particularly among general ball mills, but those having high mechanical strength to the extent that raw materials are alloyed can be used. preferable.

一方、粉砕は得られる分解用鉄粉が本発明の粒度を満足する範囲で部分合金化が進む条件で行うことが必要である。例えば、鉄粉とNi粉、炭素粉の混合物1重量部に対して、鋼球等の粉砕メディアを2〜10倍の仕込み割合、振動数600〜2000vpmの条件が例示できる。   On the other hand, the pulverization needs to be performed under the condition that the partial alloying proceeds as long as the obtained iron powder for decomposition satisfies the particle size of the present invention. For example, for a 1 part by weight of a mixture of iron powder, Ni powder, and carbon powder, a grinding media such as a steel ball can be charged 2 to 10 times, and the frequency can be 600 to 2000 vpm.

Ni及び炭素がいずれも0.1重量%より多い場合には、加工時間は5時間未満が好ましいのに対し、Ni及び炭素含有量いずれかが0.1重量%、特に0.05重量%より少ない場合には加工時間を5〜10時間とすることが好ましい。   When both Ni and carbon are more than 0.1% by weight, the processing time is preferably less than 5 hours, whereas either Ni or carbon content is more than 0.1% by weight, especially 0.05% by weight. When the amount is small, the processing time is preferably 5 to 10 hours.

従来、Niの部分合金化については加工時間が長くなると、合金化が進みすぎ(即ち部分合金でなくなる)、分解性能が低下することが知られていた。本発明では、Ni量と炭素量によって高性能となる加工条件が全く異なることを見出した。従来、Niや炭素の含有量が少ない場合、合金化が進み過ぎない様に加工時間は短いほうがよいと考えられていたが、本発明の組成範囲で特に合金化されるNi或いは炭素が少ない場合には、加工時間が上述の範囲で活性が向上することを見出した。   Conventionally, it has been known that as the partial alloying of Ni becomes longer, the alloying proceeds too much (that is, the alloy is not a partial alloy), and the decomposition performance decreases. In the present invention, it has been found that the processing conditions for high performance are completely different depending on the amount of Ni and the amount of carbon. Conventionally, when the content of Ni or carbon is small, it has been thought that the processing time should be short so that alloying does not proceed too much, but especially when there is little Ni or carbon alloyed within the composition range of the present invention Has found that the activity is improved within the above-mentioned processing time.

本発明の混合鉄粉は、上述の方法で得られた分解用鉄粉とNiを含有しない鉄粉/又は酸化鉄を均一に混合して製造することができる。   The mixed iron powder of the present invention can be produced by uniformly mixing the iron powder for decomposition obtained by the above-described method and iron powder / Ni containing no Ni.

混合方法は特に限定されないが、V型ミキサー、スクリュー式ミキサー、ボールミル、振動ミル等を用いることができる。混合が不均一であると、混合鉄粉の性能が十分発揮されないため、分解用鉄粉とNiを含有しない鉄粉/又は酸化鉄を均一に混合することが好ましい。   A mixing method is not particularly limited, and a V-type mixer, a screw-type mixer, a ball mill, a vibration mill, or the like can be used. If the mixing is not uniform, the performance of the mixed iron powder is not sufficiently exhibited. Therefore, it is preferable to uniformly mix the iron powder for decomposition and the iron powder / or iron oxide not containing Ni.

次に、本発明の処理剤(分解用鉄粉又は混合鉄粉)を用いた有機ハロゲン化物の無害化処理方法を説明する。   Next, an organic halide detoxification method using the treating agent (decomposing iron powder or mixed iron powder) of the present invention will be described.

本発明の無害化処理方法としては、1)掘削した土壌に本発明の処理剤を添加し、ドラム型スクラバ−、改質ミキサ−、振動型ミキサー、ニ−ダ−等による連続均一混合処理する方法や振動型ミキサー、バックホウ等による回分混合処理後埋め戻す方法、2)汚染土壌中に縦または横井戸を堀り、処理剤を高圧空気または高圧水で注入する原位置処理法、3)処理剤および必要に応じ分散剤、反応促進剤、pH調整剤等と共にスラリ−状にして土壌に注入する原位置型処理方法、4)汚染地下水の周辺の処理剤を含む浄化壁を形成し浄化する方法、5)汚染地下水位置より低い部分に処理剤の層を設けた浄化ピット法等がある。   As the detoxification treatment method of the present invention, 1) the treatment agent of the present invention is added to excavated soil, and a continuous and uniform mixing treatment is performed using a drum scrubber, a reforming mixer, a vibration mixer, a kneader, or the like. Method, refilling after batch mixing with vibration mixer, backhoe, etc. 2) In-situ treatment method in which vertical or horizontal well is dug in contaminated soil and treatment agent is injected with high-pressure air or high-pressure water, 3) Treatment In-situ treatment method in which slurry is added to the soil together with an agent and, if necessary, a dispersant, a reaction accelerator, a pH adjuster, etc. 4) A purification wall containing a treatment agent around contaminated groundwater is formed and purified. Method 5) There is a purification pit method in which a layer of treatment agent is provided in a portion lower than the contaminated groundwater position.

処理剤の添加量は、浄化対象である被処理物の汚染濃度等により変動するが、本発明の処理剤では非常に高活性であることから、従来剤に比較し、少ない添加量で各有機塩素化物に対応する環境基準値以下へ浄化することができる。本発明の処理剤を用いる場合に、その分解活性及び経済性を考慮すると、湿体土壌や地下水等の被処理物に対して0.1〜10重量%、特に均質混合性を考慮すると1〜3重量%であることが好ましい。   The amount of treatment agent to be added varies depending on the contamination concentration of the object to be purified, but the treatment agent of the present invention is very highly active. It can be purified to below the environmental standard value corresponding to chlorinated substances. When using the treatment agent of the present invention, considering its decomposition activity and economy, it is 0.1 to 10% by weight with respect to an object to be treated such as wet soil or groundwater, and 1 to 1 in particular when considering homogeneous mixing. It is preferably 3% by weight.

本発明の処理剤は、土壌等の固形分だけでなく、有機塩素化合物を含む地下水、排水に対しても同様に高い分解性能(分解速度)を発揮するものである。   The treatment agent of the present invention exhibits high decomposition performance (decomposition rate) not only for solids such as soil but also for groundwater and wastewater containing organic chlorine compounds.

本発明の処理剤(分解用鉄粉又は混合鉄粉)は、粒度53μm(280メッシュアンダー)が40重量%未満で発火性に危険がなく、土壌等の固形物(固液混合物)との反応性に優れ、なおかつ少ないNi含有量で効果的に局部電池を形成したものであり、従来よりも土壌中での有機塩素化合物の分解速度が速く、汚染を短期間で浄化することができる。   The treatment agent (decomposition iron powder or mixed iron powder) of the present invention has a particle size of 53 μm (280 mesh under) less than 40% by weight and is not dangerous for ignition, and reacts with solids such as soil (solid-liquid mixture). In addition, the local battery is effectively formed with a low Ni content, and the decomposition rate of the organochlorine compound in the soil is faster than before, so that the contamination can be purified in a short period of time.

次に、本発明を実施例にさらに具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by these.

実施例1〜5および比較例1〜4
有機塩素化合物を含有する汚染土壌における無害化処理剤の評価試験を行った。
Examples 1-5 and Comparative Examples 1-4
An evaluation test of a detoxifying agent in a contaminated soil containing an organic chlorine compound was conducted.

分解用鉄粉の原料鉄粉として実施例1〜2では、還元鉄粉(炭素量0.05%)、実施例3〜5では鋳鉄粉(炭素量3〜5%)、比較例1、3、4は還元鉄粉(炭素量0.8%)、比較例2は純鉄粉(炭素量0.01%)を用いた。また原料Ni粉として、カルボニルニッケル(純度99%、粒径4〜7μm)を用いた。   In Examples 1-2, reduced iron powder (carbon content 0.05%) is used as raw iron powder for decomposition iron powder, in Examples 3-5, cast iron powder (carbon content 3-5%), and Comparative Examples 1, 3 4 used reduced iron powder (carbon content 0.8%), and Comparative Example 2 used pure iron powder (carbon content 0.01%). Carbonyl nickel (purity 99%, particle size 4-7 μm) was used as the raw material Ni powder.

分解用鉄粉の粉砕条件として、実施例1〜5及び比較例1〜4は所定の炭素量を含有するFe粉末とNi粉末を所定量混合し、振動ミル(中央化工機(株)製、商品名V−MILL,BM−3、1200vpm,6.6Lポット)を用いて、該混合物1重量部に対して粉砕メディアを6倍の仕込み割合、振動数600vpmの条件下で処理した。加工中の窒素ガス流量は40ml/分とした。加工時間は全て2時間とした。   As pulverization conditions for the iron powder for decomposition, Examples 1 to 5 and Comparative Examples 1 to 4 were mixed with a predetermined amount of Fe powder and Ni powder containing a predetermined amount of carbon, and a vibration mill (manufactured by Chuo Kako Co., Ltd., (Trade name V-MILL, BM-3, 1200 vpm, 6.6 L pot) was used under the conditions of 6 times charge ratio and vibration frequency of 600 vpm with respect to 1 part by weight of the mixture. The nitrogen gas flow rate during processing was 40 ml / min. All processing times were 2 hours.

10ppmのTCE汚染土壌1kg(含水率33重量%)、メタノ−ルに溶解した内標ベンゼン、そして処理剤を10g(対土壌1重量%)を入れて、振動型混合機で1分間、均質混合処理した。反応条件として、処理土壌約30gを125mlバイアル瓶に密封し、20℃、静置状態で反応させ、定期的に気層部分をガスクロで分析し、TCE濃度の経時変化を調査した。なお、土壌中の含水調整に用いた水は脱溶存酸素処理、pH調整は行
わなかった。
10 kg of TCE-contaminated soil (water content: 33% by weight), internal standard benzene dissolved in methanol, and 10 g of treatment agent (1% by weight of soil) were added, and mixed homogeneously for 1 minute with a vibration mixer. Processed. As reaction conditions, about 30 g of treated soil was sealed in a 125 ml vial, reacted at 20 ° C. in a stationary state, the gas layer was periodically analyzed by gas chromatography, and the change with time in the TCE concentration was investigated. The water used for adjusting the water content in the soil was not subjected to de-dissolved oxygen treatment and pH adjustment.

次に、今回用いた分解用鉄粉の組成、粒度および分解速度定数を表1に示す。   Next, Table 1 shows the composition, particle size, and decomposition rate constant of the iron powder for decomposition used this time.

Figure 2008142693
Figure 2008142693

実施例1〜5より、TCE汚染土壌中に分解用鉄粉1重量%添加、混合処理することにより6〜11日でTCE濃度が環境基準0.03ppm未満となった。また、分解生成物はエチレンが主成分であり、環境基準項目の有機塩素系化合物は生成していなかった。   From Examples 1 to 5, by adding 1% by weight of iron powder for decomposition into TCE-contaminated soil and mixing it, the TCE concentration was less than 0.03 ppm in the environmental standard in 6 to 11 days. Moreover, ethylene was the main component of the decomposition product, and no organic chlorine-based compound as an environmental standard item was produced.

比較例1はNiを含有しておらず、4ケ月経ても環境基準以下にはならなかった。比較例2は鉄粉中の炭素量が少ない鉄剤で処理時間が2時間では、分解に23日要した。比較剤3はNiが過剰に入った剤であるが、分解能の効果は顕著には現れず浄化に21日要した。比較例4はNi量、炭素量は本発明の分解用鉄粉の範囲内にあるが、粒度が280メッシュアンダー(53μm)が65%有り、非常に微細な鉄粉である。分解日数も19日であり、鉄粉が微細なため混合がうまく進まないことが原因と考えられた。   Comparative Example 1 did not contain Ni and did not fall below the environmental standard even after 4 months. Comparative Example 2 was an iron agent with a small amount of carbon in the iron powder and took 23 days for decomposition when the treatment time was 2 hours. The comparative agent 3 is an agent in which Ni is excessively contained, but the effect of resolution does not appear remarkably, and it took 21 days for purification. In Comparative Example 4, the amount of Ni and the amount of carbon are within the range of the iron powder for decomposition of the present invention, but the particle size is 280 mesh under (53 μm), 65%, which is a very fine iron powder. The decomposition days were 19 days, and it was considered that the mixing was not successful because the iron powder was fine.

本発明の実施例1〜5の分解用鉄粉では、土壌中のTCEをはじめその他のVOCも分解する能力が顕著であり、短期間に法的規制値をクリアすることができる。   In the iron powder for decomposition | disassembly of Examples 1-5 of this invention, the capability to decompose | disassemble other VOCs including TCE in soil is remarkable, and a legal regulation value can be cleared in a short time.

実施例5の分解用鉄粉を同様の条件で同様の土壌に2重量%添加した場合、約2.7日で環境基準まで到達した。   When 2% by weight of the iron powder for decomposition of Example 5 was added to the same soil under the same conditions, the environmental standard was reached in about 2.7 days.

実施例6〜10および比較例5〜7
本発明の分解用鉄粉の評価をPCE含有汚染水溶液に対しても同様に行った。
Examples 6-10 and Comparative Examples 5-7
The evaluation of the iron powder for decomposition of the present invention was similarly performed on the PCE-containing contaminated aqueous solution.

125mlバイアル瓶に10ppmのPCE水溶液を100ml、メタノ−ルに溶解した内標ベンゼン、そして処理剤1g(対水溶液1重量%)を添加後、密封した。反応条件として20℃、200rpm振とうした。尚、この水溶液は脱溶存酸素処理、pH調整は行わなかった。   To a 125 ml vial, 100 ml of 10 ppm PCE aqueous solution, internal standard benzene dissolved in methanol, and 1 g of treating agent (1 wt% of aqueous solution) were added and sealed. The reaction conditions were 20 ° C. and 200 rpm shaking. This aqueous solution was not subjected to de-dissolved oxygen treatment and pH adjustment.

PCE濃度の分析方法としては、JIS K 0125(用水、排水中の揮発性有機化合物試験方法)に基づいたヘッドスペース法を用い、PCE濃度を経時的に定量分析し、PCE濃度が環境基準値未満になった分解日数を求めた。これらの結果を表2に示した。   As a PCE concentration analysis method, the headspace method based on JIS K 0125 (test method for volatile organic compounds in water and wastewater) is used, and the PCE concentration is quantitatively analyzed over time. The PCE concentration is less than the environmental standard value. The number of decomposition days was calculated. These results are shown in Table 2.

Figure 2008142693
Figure 2008142693

実施例6〜10はPCE濃度が7日以内に環境基準値0.01ppm未満であり、所定のNi量、炭素量を含む本発明の分解用鉄粉は粗粒であるにもかかわらず高分解能であった。   In Examples 6 to 10, the PCE concentration is less than the environmental standard value of 0.01 ppm within 7 days, and the iron powder for decomposition according to the present invention containing the predetermined Ni amount and carbon amount is coarse, but has high resolution. Met.

また、本発明の実施例において,分解生成物はエチレンが主成分であり、環境基準項目の有機塩素系化合物は生成していなかった。   Further, in the examples of the present invention, the decomposition products were mainly composed of ethylene, and no organic chlorinated compounds as environmental standard items were generated.

一方、比較例5はNiを含有しない鉄粉末であり、3ヶ月経過しても環境基準0.01ppm未満になることはなかった。また分解生成物はエチレンの他に環境基準項目に挙げられているTCE、cis−DCEが検出された。   On the other hand, Comparative Example 5 is an iron powder not containing Ni, and it did not become less than 0.01 ppm of the environmental standard even after 3 months. In addition to ethylene, TCE and cis-DCE listed as environmental standard items were detected in addition to ethylene.

比較例6は炭素(0.01%)が少ない剤に対して処理時間が短い分解剤では、分解に16日要した。   Comparative Example 6 required 16 days for decomposition with a decomposition agent having a short processing time compared to an agent with less carbon (0.01%).

比較例7はNi過剰であり、分解に15日を要し、本発明の分解用鉄粉に比べて性能が十分ではなかった。   In Comparative Example 7, Ni was excessive, and it took 15 days for decomposition, and the performance was not sufficient as compared with the iron powder for decomposition of the present invention.

従って、実施例6〜10の分解用鉄粉を用いれば汚染地下水で多くの事例のあるPCEをはじめ各有機塩素化合物を分解する能力は顕著であり、短期間に法的規制値をクリアすることができる。   Therefore, if the iron powder for decomposition of Examples 6 to 10 is used, the ability to decompose organic chlorinated compounds including PCE, which has many cases in contaminated groundwater, is remarkable, and the legal regulation value must be cleared within a short period of time. Can do.

実施例11
実施例5の分解用鉄粉(図1中実施例5鉄粉と表記)にNiを含有しない鉄粉(鋳鉄粉と記載:炭素量3%)をV型ミキサーボールミルで0.5時間混合し、混合比率を変えた混合鉄粉を合成した。
Example 11
Iron powder not containing Ni (described as cast iron powder: 3% carbon content) was mixed with the iron powder for decomposition in Example 5 (denoted as Example 5 iron powder in FIG. 1) for 0.5 hour using a V-type mixer ball mill. Then, mixed iron powders with different mixing ratios were synthesized.

125mlバイアル瓶に10ppmのTCE水溶液を100ml、メタノ−ルに溶解した内標ベンゼン、そして処理剤1g(対水溶液1重量%)を添加後、密封した。反応条件として20℃、200rpm振とうした。尚、この水溶液は脱溶存酸素処理、pH調整は行わなかった。   To a 125 ml vial, 100 ml of 10 ppm TCE aqueous solution, internal standard benzene dissolved in methanol, and 1 g of treating agent (1 wt% of aqueous solution) were added and sealed. The reaction conditions were 20 ° C. and 200 rpm shaking. This aqueous solution was not subjected to de-dissolved oxygen treatment and pH adjustment.

TCE濃度の分析方法としては、JIS K 0125(用水、排水中の揮発性有機化合物試験方法)に基づいたヘッドスペース法を用い、TCE濃度を経時的に定量分析し、TCE濃度が環境基準値未満になった分解日数を求めた。これらの結果を図1に示した。   As a method for analyzing the TCE concentration, a headspace method based on JIS K 0125 (Test method for volatile organic compounds in water and wastewater) is used, and the TCE concentration is quantitatively analyzed over time. The TCE concentration is less than the environmental standard value. The number of decomposition days was calculated. These results are shown in FIG.

分解用鉄粉が30重量%以上の混合鉄粉では、100%分解用鉄粉と同程度の分解性能が発揮された。この場合の混合鉄粉のNi含有量は0.033重量%であった。   In the mixed iron powder having the iron powder for decomposition of 30% by weight or more, the decomposition performance comparable to that of the iron powder for decomposition of 100% was exhibited. The Ni content of the mixed iron powder in this case was 0.033% by weight.

実施例12
実施例11と同様に実施例5の分解用鉄粉(図1中実施例5鉄粉と表記)にNiを含有しない鉄粉(鋳鉄粉と記載:炭素量3%)をV型ミキサーボールミルで0.5時間混合し、混合比率を変えた混合鉄粉を合成した。
Example 12
In the same manner as in Example 11, iron powder not containing Ni (described as cast iron powder: 3% carbon content) was added to the iron powder for decomposition in Example 5 (indicated as Example 5 iron powder in FIG. 1) with a V-type mixer ball mill. The mixed iron powder was mixed for 0.5 hour and the mixing ratio was changed.

10ppmのTCE汚染土壌1kg(含水率33重量%)、メタノ−ルに溶解した内標ベンゼン、そして処理剤を10g(対土壌1重量%)を入れて、振動型混合機で1分間、均質混合処理した。反応条件として、処理土壌約30gを125mlバイアル瓶に密封し、20℃、静置状態で反応させ、定期的に気層部分をガスクロで分析し、TCE濃度の経時変化を調査した。なお、土壌中の含水調整に用いた水は脱溶存酸素処理、pH調整は行わなかった。結果を図2に示した。   1kg of 10ppm TCE contaminated soil (water content 33% by weight), internal standard benzene dissolved in methanol, and 10g of treatment agent (1% by weight of soil) are put in, and it is mixed homogeneously for 1 minute with a vibratory mixer. Processed. As reaction conditions, about 30 g of treated soil was sealed in a 125 ml vial, reacted at 20 ° C. in a stationary state, the gas layer was periodically analyzed by gas chromatography, and the change with time in the TCE concentration was investigated. The water used for adjusting the water content in the soil was not subjected to de-dissolved oxygen treatment and pH adjustment. The results are shown in FIG.

分解用鉄粉が30重量%以上の混合鉄粉では、土壌中においても100%分解用鉄粉と同程度の分解性能が発揮された。   In the mixed iron powder having the iron powder for decomposition of 30% by weight or more, the decomposition performance similar to that of the iron powder for decomposition of 100% was exhibited even in the soil.

実施例13、14
分解鉄粉の粉砕条件において、加工時間を6時間とし、Ni0.3%、炭素0.006%とすること以外は実施例1と同様の条件で分解用鉄粉を製造した。トリクロルエチレンを10ppm含有する土壌中、及び水溶液中での1重量%添加時のTCE分解挙動を表3に示す。
Examples 13 and 14
Decomposing iron powder was produced under the same conditions as in Example 1 except that the processing time was 6 hours, Ni 0.3%, and carbon 0.006% under the pulverization conditions of the decomposed iron powder. Table 3 shows the TCE decomposition behavior when 1 wt% is added in a soil containing 10 ppm of trichloroethylene and in an aqueous solution.

低炭素鉄粉を用いても高い分解速度が得られた。   Even when low carbon iron powder was used, a high decomposition rate was obtained.

実施例15
Ni0.3%、炭素3%を含有した部分合金化した分解用鉄粉に、酸化鉄(砂鉄)をブレンドし、水溶液中のトリクロルエチレン(TCE)を分解した。
Example 15
Iron oxide (sand iron) was blended with the partially alloyed iron powder containing 0.3% Ni and 3% carbon to decompose trichlorethylene (TCE) in the aqueous solution.

10ppmのTCE水溶液に分解用鉄粉と酸化鉄の1:2混合処理剤1g(対水溶液1重量%。分解用鉄粉単独では0.33重量%相当)を添加した他は実施例11と同様の条件の処理(実施例15)において、環境基準まで7日で達した。   Example 1 except that 1 g of a 1: 2 mixture treatment agent for iron powder for decomposition and iron oxide (1% by weight of the aqueous solution, equivalent to 0.33% by weight of the iron powder for decomposition alone) was added to a 10 ppm TCE aqueous solution. In the processing under the conditions (Example 15), the environmental standard was reached in 7 days.

実施例16
10ppmのTCE汚染土壌(含水率20重量%)に実施例15と同様の混合処理剤を1重量%(実施例16)の添加したところ、環境基準まで18日で到達した。
Example 16
When 1 wt% (Example 16) of the same mixed treatment agent as Example 15 was added to 10 ppm TCE-contaminated soil (water content 20 wt%), the environmental standard was reached in 18 days.

それ自身では分解能がない酸化鉄と混合することによって、分解鉄粉の使用量が少ないにもかかわらず、短時間で分解が進行し、TCEに対する分解活性のある分解用鉄粉単位重量当たりの分解効率も向上した。   Decomposition per unit weight of iron powder for decomposition that has decomposition activity against TCE even though the amount of decomposed iron powder used is small by mixing with iron oxide, which itself has no resolution. Efficiency has also improved.

Figure 2008142693
Figure 2008142693

分解用鉄粉とNiを含有しない鉄粉の混合鉄粉による水溶液中のTCE分解性能。TCE decomposition performance in aqueous solution with mixed iron powder of iron powder for decomposition and iron powder not containing Ni. 分解用鉄粉とNiを含有しない鉄粉の混合鉄粉による土壌中のTCE分解性能。TCE decomposition performance in soil by mixed iron powder of iron powder for decomposition and iron powder not containing Ni.

Claims (13)

粒度53μm未満が40重量%未満、Ni量が0.1〜0.5重量%、炭素量が0.005〜5重量%を含んでなる有機塩素化物分解用鉄粉。 An iron powder for decomposing an organic chlorinated compound, comprising a particle size of less than 53 μm, less than 40% by weight, Ni content of 0.1 to 0.5% by weight, and carbon content of 0.005 to 5% by weight. Niが鉄と部分合金化している請求項1に記載の有機塩素化物分解用鉄粉。 The iron powder for decomposing organic chlorides according to claim 1, wherein Ni is partially alloyed with iron. 請求項1〜2に記載の有機塩素化物分解用鉄粉とNiを含有しない鉄粉を含んでなる有機塩素化物分解用鉄粉。 An iron powder for decomposing an organic chlorinated product, comprising the iron powder for decomposing an organic chlorinated product according to claim 1 and an iron powder not containing Ni. 請求項1〜2に記載の有機塩素化物分解用鉄粉と酸化鉄を含んでなる有機塩素化物分解用鉄粉。 An iron powder for decomposing an organic chlorinated product, comprising the iron powder for decomposing an organic chlorinated product according to claim 1 and iron oxide. 請求項1〜2に記載の有機塩素化物分解用鉄粉を30重量%以上含んでなる請求項3〜4に記載の有機塩素化物分解用鉄粉。 The iron powder for organic chlorinated decomposition according to claim 3, comprising 30% by weight or more of the organic chlorinated decomposition iron powder according to claim 1. Ni含有量が0.03重量%以上0.5重量%未満である請求項3〜5に記載の有機塩素化物分解用鉄粉。 The iron powder for decomposing an organic chlorinated product according to claims 3 to 5, wherein the Ni content is 0.03% by weight or more and less than 0.5% by weight. Ni含有量が0.03重量%以上0.1重量%未満である請求項3〜6に記載の有機塩素化物分解用鉄粉。 The iron content for organic chlorinated decomposition according to claim 3, wherein the Ni content is 0.03% by weight or more and less than 0.1% by weight. 粒度53μm未満が40重量%未満である請求項3〜7に記載の有機塩素化物分解用鉄粉。 The iron powder for decomposing organochlorides according to claims 3 to 7, wherein the particle size is less than 53 µm and less than 40 wt%. トリクロルエチレン10ppm、水分20重量%以上を含有する土壌中、室温、1重量%添加混合した際にトリクロルエチレンの環境基準(0.03ppm)到達までの分解速度定数が0.32/日以上である請求項1〜8に記載の有機塩素化物分解用鉄粉。 In soil containing 10 ppm trichlorethylene and 20% by weight or more of water, the decomposition rate constant until reaching the environmental standard (0.03 ppm) of trichlorethylene is 0.32 / day or more when added and mixed at room temperature and 1% by weight. The iron powder for organic chlorinated decomposition | disassembly of Claims 1-8. テトラクロロエチレンを10ppm含有する水溶液中に、室温、1重量%添加混合した場合におけるテトラクロルエチレンの環境基準(0.01ppm)到達までの分解速度定数が0.9/日以上である請求項1〜9に記載の有機塩素化物分解用鉄粉。 10. A decomposition rate constant for reaching an environmental standard (0.01 ppm) of tetrachlorethylene in an aqueous solution containing 10 ppm of tetrachlorethylene at room temperature and 1 wt% is 0.9 / day or more. Iron powder for decomposing organic chlorides as described in 1. Fe100重量部とNi0.1〜0.5重量部、炭素0.005〜5重量部を含んでなる混合物を、粒度53μm未満が40重量%未満まで粉砕することを特徴とする請求項1〜2に記載の有機塩素化物分解用鉄粉の製造方法。 A mixture comprising 100 parts by weight of Fe, 0.1 to 0.5 parts by weight of Ni, and 0.005 to 5 parts by weight of carbon is pulverized to a particle size of less than 53 µm and less than 40% by weight. The manufacturing method of the iron powder for organic chlorinated decomposition | disassembly described in 2. 有機塩素化物で汚染された被処理物を請求項1〜10記載の有機塩素化物分解用鉄粉で処理することを特徴とする有機塩素化物の無害化処理方法。 A method for detoxifying an organic chlorinated product, comprising treating the object to be treated contaminated with the organic chlorinated product with the iron powder for decomposing the organic chlorinated product according to claim 1. 有機塩素化物分解用鉄粉の添加量が被処理物に対し0.1〜10重量%である請求項12記載の処理方法。 The processing method according to claim 12, wherein the amount of the iron powder for decomposing the organic chlorinated product is 0.1 to 10% by weight based on the object to be processed.
JP2007109051A 2006-04-20 2007-04-18 Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same Pending JP2008142693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109051A JP2008142693A (en) 2006-04-20 2007-04-18 Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006117129 2006-04-20
JP2006307853 2006-11-14
JP2007109051A JP2008142693A (en) 2006-04-20 2007-04-18 Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same

Publications (1)

Publication Number Publication Date
JP2008142693A true JP2008142693A (en) 2008-06-26

Family

ID=39603460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109051A Pending JP2008142693A (en) 2006-04-20 2007-04-18 Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same

Country Status (2)

Country Link
JP (1) JP2008142693A (en)
TW (1) TW200823154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110497A (en) * 2008-11-07 2010-05-20 Tosoh Corp Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same
JP2012106191A (en) * 2010-11-18 2012-06-07 Kajima Corp Method for purifying groundwater
JP2015098010A (en) * 2013-11-20 2015-05-28 Jfeスチール株式会社 Iron powder for purifying ground water, and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481568B (en) * 2013-08-16 2015-04-21 Nat Univ Chung Hsing Treatment method includes chemical reduction sites of the pollutants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020806A (en) * 2000-07-04 2002-01-23 Kawasaki Steel Corp Method for producing iron powder for removing contamination
JP2004057881A (en) * 2002-07-25 2004-02-26 Tosoh Corp Agent for making material polluted with organic halogen compound harmless, method of producing the agent, and method of making harmless using the agent
JP2004305235A (en) * 2003-04-01 2004-11-04 Tosoh Corp Method for rendering object to be treated contaminated with organic halogen compound harmless

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020806A (en) * 2000-07-04 2002-01-23 Kawasaki Steel Corp Method for producing iron powder for removing contamination
JP2004057881A (en) * 2002-07-25 2004-02-26 Tosoh Corp Agent for making material polluted with organic halogen compound harmless, method of producing the agent, and method of making harmless using the agent
JP2004305235A (en) * 2003-04-01 2004-11-04 Tosoh Corp Method for rendering object to be treated contaminated with organic halogen compound harmless

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110497A (en) * 2008-11-07 2010-05-20 Tosoh Corp Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same
JP2012106191A (en) * 2010-11-18 2012-06-07 Kajima Corp Method for purifying groundwater
JP2015098010A (en) * 2013-11-20 2015-05-28 Jfeスチール株式会社 Iron powder for purifying ground water, and production method thereof

Also Published As

Publication number Publication date
TW200823154A (en) 2008-06-01

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
Lee et al. Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins
US7718843B2 (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP4009739B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound, its production method and detoxification treatment method using the same
JP2008272644A (en) Iron powder for decomposing organic chlorine compounds and method of detoxifying using the same
JP2004082102A (en) Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide
JP2006102675A (en) Cleaning agent for cleaning soil/ground water, manufacturing method therefor, and cleaning method for soil/ground water
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4433173B2 (en) Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
JP4127102B2 (en) Detoxification method for workpieces contaminated with organic halogen compounds
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP2004305235A (en) Method for rendering object to be treated contaminated with organic halogen compound harmless
JP2011104462A (en) Detoxifying agent for halogenated organic compound, method for producing the agent and detoxifying method using the agent
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP2010110497A (en) Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same
JP4786936B2 (en) Organohalogen compound treatment material
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2002248458A (en) Method for detoxifying soil
JP2010000301A (en) Iron-containing slurry and method of detoxifying substance contaminated with organohalogen compound using the same
JP2011026524A (en) Treating agent for decomposing organic halide, and method of treatment by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121114