JP2013208527A - Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound - Google Patents

Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound Download PDF

Info

Publication number
JP2013208527A
JP2013208527A JP2012079515A JP2012079515A JP2013208527A JP 2013208527 A JP2013208527 A JP 2013208527A JP 2012079515 A JP2012079515 A JP 2012079515A JP 2012079515 A JP2012079515 A JP 2012079515A JP 2013208527 A JP2013208527 A JP 2013208527A
Authority
JP
Japan
Prior art keywords
particle powder
soil
iron composite
groundwater
composite particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079515A
Other languages
Japanese (ja)
Inventor
Makoto Mifuji
真 美藤
Toshiki Matsui
敏樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2012079515A priority Critical patent/JP2013208527A/en
Publication of JP2013208527A publication Critical patent/JP2013208527A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a purifying agent capable of efficiently, sustainably, and economically decomposing/insolubilizing aliphatic organic halogen compounds, aromatic organohalogen compounds, and heavy metal such as cadmium, lead, chromium, arsenic, selenium, cyanide, etc., included in soil, ground water, and waste water.SOLUTION: Iron composite particle powder is made of α-Fe and magnetite used for purification of soil, ground water, and waste water contaminated by organic halogen compounds. In a X-ray diffraction spectrum of the iron composite particle powder, intensity ratio ( D/(D+D)) between diffraction intensity Dof an α-Fe surface (110) and diffraction intensity Dof a magnetite surface (311) is 0.30-0.95, an Al content is 0.10-1.50 wt.%, an S content is 3,500-7,000 ppm, and the content of Ni and/or Cu is 0.1-3.0 wt.%.

Description

本発明は、土壌、地下水及び廃水中に含まれるジクロロメタン、四塩化炭素、1、2−ジクロロエタン、1、1−ジクロロエチレン、シス−1、2−ジクロロエチレン、1、1、1−トリクロロエタン、1、1、2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン及び1、3−ジクロロプロペン等の脂肪族有機ハロゲン化合物、ダイオキシン類、PCB等の芳香族有機ハロゲン化合物、カドミウム、鉛、クロム、砒素、セレン、シアン等の重金属等を効率よく、持続的に、しかも経済的に分解・不溶化できる浄化剤を提供するものである。   The present invention relates to dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1, 1 contained in soil, groundwater and wastewater. Aliphatic organic halogen compounds such as 2-trichloroethane, trichloroethylene, tetrachloroethylene and 1,3-dichloropropene, aromatic organic halogen compounds such as dioxins and PCB, heavy metals such as cadmium, lead, chromium, arsenic, selenium and cyanide The present invention provides a cleaning agent that can be decomposed and insolubilized efficiently, continuously and economically.

トリクロロエチレン、テトラクロロエチレン等の脂肪族有機ハロゲン化合物は、半導体工場での洗浄用や金属加工金属の脱脂用として幅広く用いられている。   Aliphatic organic halogen compounds such as trichlorethylene and tetrachloroethylene are widely used for cleaning in semiconductor factories and for degreasing metalworking metals.

また、都市ごみや産業廃棄物を焼却するごみ焼却炉から発生する排ガスや飛灰、主灰中には、微量ではあるが人体に対して極めて強い毒性を持つ芳香族有機ハロゲン化合物であるダイオキシン類が含まれている。ダイオキシン類は、ジベンゾ−p−ジオキシン、ジベンゾフラン等の水素が塩素で置換された化合物の総称である。排ガスや飛灰はごみ焼却炉周辺に滞留し周辺地域の土壌中にダイオキシン類が残存することとなる。   Dioxins, which are aromatic organic halogen compounds that are extremely toxic to the human body, even in trace amounts, are contained in exhaust gas, fly ash, and main ash generated from incinerators that incinerate municipal waste and industrial waste. It is included. Dioxins are a general term for compounds in which hydrogen is substituted with chlorine, such as dibenzo-p-dioxin and dibenzofuran. Exhaust gas and fly ash stay around the waste incinerator and dioxins remain in the surrounding soil.

更に、PCB(ポリ塩化ビフェニル)は化学的、熱的に安定であり、電気絶縁性にも優れており、トランス、コンデンサーの絶縁油、可塑剤、熱媒体として多用されていたが、有害であることから製造及び使用が禁止されている。しかしながら、過去において使用されていたPCBの有効な処理方法は確立されておらず、大部分が処理されずにそのまま保存されている。   In addition, PCB (polychlorinated biphenyl) is chemically and thermally stable, has excellent electrical insulation properties, and has been frequently used as an insulating oil, plasticizer, and heat medium for transformers and capacitors, but is harmful. Therefore, production and use are prohibited. However, an effective processing method for PCBs used in the past has not been established, and most of them are stored without being processed.

脂肪族有機ハロゲン化合物及び芳香族有機ハロゲン化合物等の有機ハロゲン化合物は難分解性である上に発癌性物質又は強い毒性を有する物質であるため、土壌・地下水の有機ハロゲン化合物による汚染が深刻な環境問題になっている。   Organohalogen compounds such as aliphatic organohalogen compounds and aromatic organohalogen compounds are difficult to decompose and are also carcinogenic or highly toxic. It is a problem.

即ち、前記有機ハロゲン化合物が排出された場合、有機ハロゲン化合物は難分解性であるため、排出された土壌中に蓄積され有機ハロゲン化合物で汚染された状態となり、また、地下水も有機ハロゲン化合物によって汚染されることとなる。更に、地下水は汚染土壌以外の周辺地域についても広がるため、広範な領域で有機ハロゲン化合物による汚染が問題となる。   That is, when the organic halogen compound is discharged, the organic halogen compound is hardly decomposable, so it accumulates in the discharged soil and becomes contaminated with the organic halogen compound, and the groundwater is also contaminated with the organic halogen compound. Will be. Furthermore, since groundwater spreads also in surrounding areas other than contaminated soil, the contamination by organic halogen compounds becomes a problem in a wide area.

有機ハロゲン化合物によって汚染された土壌では土地の再利用・再開発を行うことができないため、有機ハロゲン化合物によって汚染された土壌・地下水の浄化処理方法として様々な技術手段の提案がなされているが、有機ハロゲン化合物は難分解性であり、しかも、多量の土壌・地下水が処理対象となるため、効率的、且つ、経済的な浄化技術は未だ十分に確立されていない。   Since soil cannot be reused or redeveloped in soil contaminated with organohalogen compounds, various technical means have been proposed as purification methods for soil and groundwater contaminated with organohalogen compounds. Since organic halogen compounds are hardly decomposable and a large amount of soil and groundwater are to be treated, an efficient and economical purification technology has not yet been sufficiently established.

有機ハロゲン化合物によって汚染された土壌の浄化方法として、各種触媒を用いて浄化処理する方法、有機ハロゲン化合物の揮発性を利用して吸引除去する方法、土壌を掘削して加熱処理によって無害化する熱分解法、微生物を利用する方法等が知られている。また、有機ハロゲン化合物によって汚染された地下水の浄化方法として、汚染地下水を土壌外に抽出して無害化する方法、地下水を揚水することによって有機ハロゲン化合物を除去する方法等が知られている。   As a purification method for soil contaminated with organohalogen compounds, a purification method using various catalysts, a suction removal method using the volatility of organohalogen compounds, and heat that is detoxified by excavating the soil and heat treatment Degradation methods, methods using microorganisms, and the like are known. Further, as a method for purifying groundwater contaminated with organic halogen compounds, a method for extracting contaminated groundwater from the soil to render it harmless, a method for removing organic halogen compounds by pumping groundwater, and the like are known.

有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化方法として提案されている技術手段のうち、有機ハロゲン化合物で汚染された土壌・地下水・廃水と鉄系粒子を用いた浄化剤とを混合接触させて無害化する技術手段が提案されている(特許文献1〜10)。   Of the technical means proposed as a purification method for soil, groundwater and wastewater contaminated with organic halogen compounds, mixed contact of soil, groundwater and wastewater contaminated with organic halogen compounds and a purification agent using iron-based particles Technical means for making them harmless have been proposed (Patent Documents 1 to 10).

特開2000−5740号公報JP 2000-5740 A 特開2002−161263号公報JP 2002-161263 A 特開2003−105313号公報JP 2003-105313 A 特開2003−136051号公報Japanese Patent Laid-Open No. 2003-136051 特開2004−83860号公報JP 2004-83860 A 特開2006−326561号公報JP 2006-326561 A 特開2010−194450号公報JP 2010-194450 A 特開2010−194451号公報JP 2010-194451 A 特開2011−26524号公報JP 2011-26524 A 特開2011−46985号公報JP2011-46985A

土壌、地下水又は廃水中に含まれる有機ハロゲン化合物類を効率よく、経済的に分解できる浄化剤は、現在最も要求されているところであるが、未だ得られていない。   A purification agent capable of efficiently and economically decomposing organohalogen compounds contained in soil, groundwater or wastewater is currently most demanded, but has not yet been obtained.

即ち、前出特許文献1には銅を含有した鉄粉を用いて土壌中の有機ハロゲン化合物を無害化する技術が開示されているが、有機ハロゲン化合物の分解に長時間を必要とするため効率よく有機ハロゲン化合物を無害化できるとは言い難いものである。   That is, the above-mentioned patent document 1 discloses a technique for detoxifying organic halogen compounds in soil using iron powder containing copper. However, since it takes a long time to decompose organic halogen compounds, it is efficient. It is difficult to say that organic halogen compounds can be rendered harmless.

また、前出特許文献2には、ニッケル、銅、コバルト及びモリブデンから選ばれる金属が表面に付着し、付着金属以外の表面が鉄酸化被膜で覆われている有機ハロゲン化合物分解用鉄粉が記載されているが、ミルスケールで得られた鉄粉や溶鋼を水アトマイズした鉄粉を用いており、記載されている鉄粉の比表面積から、鉄粉の粒子サイズが大きいと思われ、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   In addition, the aforementioned Patent Document 2 describes an iron powder for decomposing an organic halogen compound in which a metal selected from nickel, copper, cobalt and molybdenum adheres to the surface and the surface other than the adhered metal is covered with an iron oxide film. However, the iron powder obtained by mill scale and the iron powder obtained by water atomization of the molten steel are used. From the specific surface area of the iron powder described, the particle size of the iron powder seems to be large. It is difficult to say that the compound can be sufficiently reduced.

また、前出特許文献3には、黒鉛とFe−Niから成り、黒鉛含有量が1〜20重量%、Ni含有量が0.1〜15重量%である有機ハロゲン化合物の無害化処理剤が記載されているが、粒子サイズが大きいと思われ、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   Further, in the aforementioned Patent Document 3, an organic halogen compound detoxifying treatment agent comprising graphite and Fe—Ni, having a graphite content of 1 to 20% by weight and an Ni content of 0.1 to 15% by weight. Although it is described, it seems that the particle size is large, and it cannot be said that the organic halogen compound can be sufficiently reduced.

また、前出特許文献4には、鉄を主成分とする相を母材金属相とし、ニッケルを主成分とする相を付着金属相としたニッケル付着鉄粒子からなる有機ハロゲン化合物分解用金属粉が記載されているが、粒子径が1〜500μmと大きく、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   Further, in the aforementioned Patent Document 4, metal powder for decomposing organohalogen compounds comprising nickel-adhered iron particles in which a phase containing iron as a main component is a base metal phase and a phase containing nickel as a main component is an adhering metal phase. However, it is difficult to say that the particle size is as large as 1 to 500 μm and the organic halogen compound can be sufficiently reduced.

また、前出特許文献5には、α−Feとマグネタイトとからなる鉄複合粒子粉末を有機ハロゲン化合物で汚染された土壌・地下水に用いて浄化処理を行うことが記載されているが、少量の添加量で短期間に効率よく分解するためには未だ十分とは言い難いものであった。   In addition, in the above-mentioned Patent Document 5, it is described that the iron composite particle powder composed of α-Fe and magnetite is used for soil / groundwater contaminated with an organic halogen compound, but a small amount of it is described. It was still not enough to efficiently decompose in a short time with the added amount.

また、前出特許文献6には、鉄を主成分とする鉄粉の表面に、平均粒径1〜50nmのNi微粒子を付着させた浄化用鉄系粉末が記載されているが、鉄系粒子の平均粒子径が65μmと大きく、有機ハロゲン化合物を十分に低減できるとは言い難いものである。   Further, in the above-mentioned Patent Document 6, iron-based particles for purification are described in which Ni fine particles having an average particle diameter of 1 to 50 nm are attached to the surface of iron powder containing iron as a main component. It is difficult to say that the average particle diameter is as large as 65 μm and the organic halogen compound can be sufficiently reduced.

また、前出特許文献7には、鉄粉末及び当該鉄粉に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを有機ハロゲン化物で汚染された土壌、排水又は地下水に混合する有機ハロゲン化物の浄化方法が記載されており、前出特許文献8には、鉄粉の内部及び/又は表面に鉄とニッケルの部分合金相を有する部分合金粉末と当該部分合金粉末に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを有機ハロゲン化物で汚染された土壌、排水又は地下水に混合する有機ハロゲン化物の浄化方法が記載されている。しかしながら、上記鉄粉末および部分合金粉末の粒子径が比較的大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。   In addition, in the above-mentioned Patent Document 7, an organic powder that mixes iron powder and nickel sulfate and / or nickel chloride of less than 0.1% by weight with respect to the iron powder is mixed with soil, drainage, or groundwater contaminated with an organic halide. A method for purifying halides is described, and the above-mentioned Patent Document 8 describes a partial alloy powder having a partial alloy phase of iron and nickel inside and / or on the surface of iron powder, and 0. An organic halide purification method is described in which less than 1% by weight of nickel sulfate and / or nickel chloride is mixed with soil, drainage or groundwater contaminated with organic halides. However, the particle diameters of the iron powder and the partial alloy powder are relatively large, and it cannot be said that the organic halogen compound can be sufficiently reduced with a small addition amount.

また、前出特許文献9には、ニッケル等の鉄より貴な金属で表面被覆した鉄粉からなる有機ハロゲン化合物の分解材が記載されているが、鉄粉粒子径が大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。   In addition, Patent Document 9 described above discloses a decomposition material for an organic halogen compound made of iron powder whose surface is coated with a noble metal such as nickel. However, the iron powder has a large particle size and a small amount of addition. Therefore, it is difficult to say that the organic halogen compound can be sufficiently reduced.

また、前出特許文献10には、鉄粉と水溶性ニッケル水溶液を粉砕、又は強攪拌することによって、表面にニッケルが析出し、さらに当該ニッケルを鉄と部分合金化した鉄粉からなる有機ハロゲン化物分解用処理剤が記載されているが、鉄粉粒子径が大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。   Further, in Patent Document 10 mentioned above, an organic halogen composed of iron powder in which nickel is precipitated on the surface by pulverizing or strongly stirring iron powder and a water-soluble nickel aqueous solution, and nickel is partially alloyed with iron. Although a chemical decomposition treatment agent is described, it is difficult to say that an organic halogen compound can be sufficiently reduced with a small amount of iron powder having a large iron powder particle size.

そこで、本発明は、土壌・地下水・廃水中に含まれる有機ハロゲン化合物を効率よく経済的に処理できる鉄複合粒子粉末およびそれを用いた浄化方法を提供することを技術的課題とする。   Then, this invention makes it a technical subject to provide the iron composite particle powder which can process the organic halogen compound contained in soil, groundwater, and wastewater efficiently and economically, and the purification method using the same.

前記技術的課題は以下の通りの本発明により達成できる。
即ち、本発明は、有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化処理に用いるα−Feとマグネタイトとからなる鉄複合粒子粉末であって、鉄複合粒子粉末のX線回折スペクトルにおいてα−Feの(110)面の回折強度D110とマグネタイトの(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30〜0.95であり、Al含有量が0.10〜1.50重量%であり、S含有量が3500〜7000ppmであり、Ni及び/又はCu含有量が0.1〜3.0重量%であることを特徴とする土壌・地下水・廃水の浄化処理用鉄複合粒子粉末である(本発明1)。
The technical problem can be achieved by the present invention as follows.
That is, the present invention is an iron composite particle powder composed of α-Fe and magnetite used for purification treatment of soil, groundwater, and wastewater contaminated with an organic halogen compound, and in the X-ray diffraction spectrum of the iron composite particle powder, α intensity ratio between the diffraction intensity D 311 of diffraction intensity D 110 and magnetite (311) plane of the (110) plane of -Fe (D 110 / (D 311 + D 110)) is 0.30 to 0.95, The Al content is 0.10 to 1.50% by weight, the S content is 3500 to 7000 ppm, and the Ni and / or Cu content is 0.1 to 3.0% by weight. This is an iron composite particle powder for purification treatment of soil, groundwater, and wastewater (Invention 1).

また、本発明は、前記鉄複合粒子粉末におけるNi及び/又はCuが、粒子表面近傍に金属状態で被覆・担持されている本発明1記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末である(本発明2)。   Further, the present invention provides the iron composite particle powder for purification treatment of soil, groundwater and wastewater according to the present invention 1, wherein Ni and / or Cu in the iron composite particle powder is coated and supported in a metal state near the particle surface. (Invention 2).

また、本発明は、平均粒子径が0.05〜0.50μmである本発明1又は2記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末である(本発明3)。   Further, the present invention is the iron composite particle powder for purification treatment of soil / groundwater / waste water according to the present invention 1 or 2 having an average particle size of 0.05 to 0.50 μm (present invention 3).

また、本発明は、本発明1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末を有効成分として含有する水懸濁液からなる土壌・地下水・廃水の浄化剤である(本発明4)。   Further, the present invention provides a soil, groundwater, wastewater purifier comprising a water suspension containing the iron composite particle powder for purification treatment of soil, groundwater, wastewater according to any one of the present invention 1 to 3 as an active ingredient. (Invention 4).

また、本発明は、本発明1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末と、ポリアクリル酸、ポリマレイン酸、ポリアスパラギン酸又はそれらの塩から選ばれる一種以上の添加剤を有効成分として含有する水懸濁液からなる土壌・地下水・廃水の浄化剤である(本発明5)。   Further, the present invention is a kind selected from iron composite particle powder for purification treatment of soil, groundwater, wastewater according to any one of the present inventions 1 to 3, and polyacrylic acid, polymaleic acid, polyaspartic acid or a salt thereof. It is a purification agent for soil, groundwater and wastewater comprising a water suspension containing the above additives as active ingredients (Invention 5).

また、本発明は、本発明1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末又は本発明4又は5記載の土壌・地下水・廃水の浄化剤と有機ハロゲン化合物で汚染された土壌・地下水・廃水とを混合接触させることを特徴とする土壌・地下水・廃水の浄化処理方法である(本発明6)。   In addition, the present invention provides an iron composite particle powder for purification treatment of soil, groundwater, wastewater according to any one of the present invention 1 to 3, or a soil, groundwater, wastewater purifier, and an organic halogen compound according to the present invention 4 or 5. This is a method for purifying soil, groundwater and wastewater mixed with soil, groundwater and wastewater contaminated with (Invention 6).

また、本発明は、有機ハロゲン化合物で汚染された土壌・地下水に対して、原位置で、本発明4又は5記載の土壌・地下水・廃水の浄化剤を直接、注入することを特徴とする土壌・地下水・廃水の浄化処理方法である(本発明7)。   Further, the present invention is a soil characterized by directly injecting the soil, groundwater, or waste water purifier according to the present invention 4 or 5 into the soil or groundwater contaminated with an organic halogen compound in situ. A method for purifying groundwater and wastewater (present invention 7).

本発明に係る浄化処理用鉄複合粒子粉末は、有機ハロゲン化合物を効率よく経済的に分解できるので、有機ハロゲン化合物によって汚染された土壌・地下水の浄化剤として好適である。   The iron composite particle powder for purification treatment according to the present invention can decompose organic halogen compounds efficiently and economically and is therefore suitable as a purification agent for soil and groundwater contaminated with organic halogen compounds.

本発明の構成を詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in detail as follows.

まず、本発明1乃至3に係る土壌・地下水・廃水の浄化処理用鉄複合粒子粉末(以下、「浄化処理用鉄複合粒子粉末」という)について述べる。   First, the iron composite particle powder for purification treatment of soil, groundwater and wastewater according to the first to third aspects of the present invention (hereinafter referred to as “iron composite particle powder for purification treatment”) will be described.

浄化処理用鉄複合粒子粉末の構成相はα−Fe相とともに、Fe相を含有する。Feの含有量は該鉄複合粒子粉末のX線回折スペクトルにおいて、α−Feの(110)面の回折強度D110とFeの(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30〜0.95である。製造直後の強度比が0.30未満の場合、α−Fe相の存在比率が低いため有機ハロゲン化合物の浄化性能が十分ではなく、本発明の目的とする効果を容易に得ることが困難となる。強度比が0.95を超える場合には、α−Fe相の存在比率は十分であるが本発明で生成されたFe相の存在比率が低くなり、触媒活性の早期劣化、持続性の低下を招く為、本発明の目的とする効果が得られない。好ましくは0.32〜0.95である。また、Feは浄化処理用鉄複合粒子粉末の粒子表面に存在することが好ましい。 The constituent phase of the iron composite particle powder for purification treatment contains an Fe 3 O 4 phase together with the α-Fe phase. In the X-ray diffraction spectrum of the iron composite particle powder, the content of Fe 3 O 4 is the diffraction intensity D 110 of the (110) plane of α-Fe and the diffraction intensity D 311 of the (311) plane of Fe 3 O 4 . The intensity ratio (D 110 / (D 311 + D 110 )) is 0.30 to 0.95. When the strength ratio immediately after production is less than 0.30, the α-Fe phase existing ratio is low, so the purification performance of the organic halogen compound is not sufficient, and it is difficult to easily obtain the intended effect of the present invention. . When the strength ratio exceeds 0.95, the abundance ratio of the α-Fe phase is sufficient, but the abundance ratio of the Fe 3 O 4 phase produced in the present invention is lowered, and the catalyst activity is prematurely deteriorated and sustained. Therefore, the intended effect of the present invention cannot be obtained. Preferably it is 0.32-0.95. Fe 3 O 4 is preferably present on the particle surface of the iron composite particle powder for purification treatment.

本発明に係る浄化処理用鉄複合粒子粉末のS含有量は3500〜7000ppmである。S含有量が3500ppm未満の場合には、有機ハロゲン化合物の浄化性能が十分ではなく本発明の目的とする効果が得られない。7000ppmを越える場合には、有機ハロゲン化合物の浄化性能はあるが、多量に含有しても効果が飽和し経済的ではない。好ましくは3800〜7000ppmであり、より好ましくは3800〜6500ppmである。   The S content of the iron composite particle powder for purification treatment according to the present invention is 3500 to 7000 ppm. When the S content is less than 3500 ppm, the purification performance of the organic halogen compound is not sufficient, and the intended effect of the present invention cannot be obtained. When it exceeds 7000 ppm, there is a purification performance of the organic halogen compound, but even if it is contained in a large amount, the effect is saturated and it is not economical. Preferably it is 3800-7000 ppm, More preferably, it is 3800-6500 ppm.

本発明に係る浄化処理用鉄複合粒子粉末のAl含有量は0.10〜1.50重量%である。Al含有量が0.10重量%未満の場合には、造粒物の体積収縮により硬い造粒物になり易い為、湿式粉砕を行う場合に労力を要する。1.50重量%を越える場合には、還元反応の進行が遅く、還元反応に長時間を要する。また結晶成長を十分に行うことができず、α−Fe相が不安定となり粒子表面に酸化皮膜が厚く形成され、また加熱還元時におけるFe相からα−Fe相への相変化が不十分のため、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることができない。好ましくは0.20〜1.20重量%である。 The Al content of the iron composite particle powder for purification treatment according to the present invention is 0.10 to 1.50% by weight. When the Al content is less than 0.10% by weight, it tends to be a hard granulated product due to volume shrinkage of the granulated product, and therefore labor is required when performing wet grinding. When the amount exceeds 1.50% by weight, the reduction reaction proceeds slowly and requires a long time for the reduction reaction. In addition, the crystal growth cannot be sufficiently performed, the α-Fe phase becomes unstable, and a thick oxide film is formed on the particle surface, and the phase change from the Fe 3 O 4 phase to the α-Fe phase during the heating reduction occurs. Since it is insufficient, it becomes difficult to increase the abundance ratio of the α-Fe phase, and the intended effect of the present invention cannot be obtained. Preferably it is 0.20 to 1.20% by weight.

本発明に係る浄化処理用鉄複合粒子粉末のNi及び/又はCu含有量は0.1〜3.0重量%である。Ni及び/又はCu含有量が0.10重量%未満の場合には、有機ハロゲン化合物の浄化活性が低く、有機ハロゲン化合物に対する該浄化処理用鉄複合粒子粉末の添加量を大過剰とする必要がある。3.0重量%を越える場合には、有機ハロゲン化合物の浄化活性は高いものの、該浄化処理用鉄複合粒子中のα−Fe相が水との反応による水素生成に多く消費されて、浄化性能の持続性が劣化しやすくなる。好ましくは0.5〜2.0重量%である。   The Ni and / or Cu content of the iron composite particle powder for purification treatment according to the present invention is 0.1 to 3.0% by weight. When the Ni and / or Cu content is less than 0.10% by weight, the purification activity of the organic halogen compound is low, and the amount of the iron composite particle powder for purification treatment added to the organic halogen compound needs to be excessively large. is there. When it exceeds 3.0% by weight, although the purification activity of the organic halogen compound is high, the α-Fe phase in the iron composite particles for purification treatment is largely consumed for hydrogen generation by reaction with water, and the purification performance Sustainability of is likely to deteriorate. Preferably it is 0.5 to 2.0% by weight.

本発明に係る浄化処理用鉄複合粒子粉末のNi及び/又はCuは、粒子表面近傍に金属状態で被覆・担持されていることによって、有機ハロゲン化合物に対する浄化活性が向上する。さらに、本発明におけるNi及び/又はCuは、鉄複合粒子の粒子表面に粒子状で存在することが好ましい。   Ni and / or Cu in the iron composite particle powder for purification treatment according to the present invention is coated and supported in the vicinity of the particle surface in a metal state, thereby improving the purification activity for the organic halogen compound. Furthermore, it is preferable that Ni and / or Cu in the present invention exist in the form of particles on the particle surface of the iron composite particles.

本発明に係る浄化処理用鉄複合粒子粉末の粒子形状は粒状が好ましい。本発明では紡錘状又は針状のゲータイト粒子粉末又はヘマタイト粒子をそのまま加熱還元処理するので、α−Fe相へ結晶変態する際、粒子形状が崩れ、等方的に成長する過程を経るので粒状形状となる。一方、球状では粒子サイズが同じであれば、BET比表面積が小さくなり触媒活性が低くなるため、球状粒子が存在しないことが好ましい。   The particle shape of the iron composite particle powder for purification treatment according to the present invention is preferably granular. In the present invention, the spindle-shaped or needle-shaped goethite particle powder or hematite particles are subjected to heat reduction treatment as they are, so that when undergoing crystal transformation to the α-Fe phase, the particle shape collapses and undergoes an isotropic growth process, so that the granular shape It becomes. On the other hand, if the particle size is the same in the spherical shape, the BET specific surface area is decreased and the catalytic activity is decreased.

本発明に係る浄化処理用鉄複合粒子粉末の平均粒子径は0.05〜0.50μmが好ましい。平均粒子径が0.05μm未満の場合にはα−Fe相が不安定であるため表面に厚い酸化被膜が形成され、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果が得られない。製造直後に0.50μmを越える場合にはα−Fe相の存在比率は高くできるが、相対的にFe相の存在比率が低くなり、触媒活性の早期劣化、維持性の低下を招く為、本発明の目的とする課題を容易に解決することができない。より好ましくは0.05〜0.30μmである。 The average particle diameter of the iron composite particle powder for purification treatment according to the present invention is preferably 0.05 to 0.50 μm. When the average particle size is less than 0.05 μm, the α-Fe phase is unstable, so that a thick oxide film is formed on the surface, making it difficult to increase the abundance ratio of the α-Fe phase. The effect is not obtained. If it exceeds 0.50 μm immediately after production, the abundance ratio of the α-Fe phase can be increased, but the abundance ratio of the Fe 3 O 4 phase is relatively lowered, leading to early deterioration of catalytic activity and deterioration of maintainability. For this reason, the object of the present invention cannot be easily solved. More preferably, it is 0.05-0.30 micrometer.

本発明に係る浄化処理用鉄複合粒子粉末の結晶子サイズ(α−Feの(110)面)は200〜400Åが好ましい。200Å未満の場合にはα−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることが困難となる。400Åを越える場合には、α−Fe相の存在比率は高くできるが、本発明で生成したFe相の存在比率を本発明の目的とする効果が得られる程度に保持することが困難となる。より好ましくは200〜350Åである。 The crystallite size (α-Fe (110) plane) of the iron composite particle powder for purification treatment according to the present invention is preferably 200 to 400 mm. If it is less than 200%, it is difficult to increase the abundance ratio of the α-Fe phase, and it becomes difficult to obtain the intended effect of the present invention. If it exceeds 400%, the abundance ratio of the α-Fe phase can be increased, but it is difficult to maintain the abundance ratio of the Fe 3 O 4 phase produced in the present invention to such an extent that the intended effect of the present invention can be obtained. It becomes. More preferably, it is 200-350cm.

本発明に係る浄化処理用鉄複合粒子粉末のBET比表面積値は5〜60m/gが好ましい。5m/g未満の場合には、接触面積が小さくなり触媒活性が発現しにくい。60m/gを越える場合には、α−Fe相の存在比率を高くすることが困難となり、本発明の目的とする効果を得ることが困難となる。より好ましくは7〜55m/gである。 The BET specific surface area value of the iron composite particle powder for purification treatment according to the present invention is preferably 5 to 60 m 2 / g. When it is less than 5 m 2 / g, the contact area is small, and the catalytic activity is hardly exhibited. When it exceeds 60 m 2 / g, it is difficult to increase the abundance ratio of the α-Fe phase, and it becomes difficult to obtain the intended effect of the present invention. More preferably, it is 7-55 m < 2 > / g.

本発明に係る浄化処理用鉄複合粒子粉末の飽和磁化値は85〜155Am/kg(85〜155emu/g)が好ましい。製造直後の浄化処理用鉄複合粒子粉末の飽和磁化値が85Am/kg未満の場合には、α−Fe相の存在比率が低いものであり、本発明の目的とする課題を容易に解決することができない。155Am/kgを越える場合にはα−Fe相の存在比率は高くできるが、本発明で得られるFe相の存在比率を本発明の目的とする効果が得られる程度に保持することが困難となる。結果相対的にFe相の存在比率が低くなり、触媒活性の早期劣化、維持性の低下を招く為、本発明の目的とする課題を容易に解決することができない。より好ましくは90〜155Am/kg(90〜155emu/g)である。 The saturation magnetization value of the iron composite particle powder for purification treatment according to the present invention is preferably 85 to 155 Am 2 / kg (85 to 155 emu / g). When the saturation magnetization value of the iron composite particle powder for purification treatment immediately after production is less than 85 Am 2 / kg, the abundance ratio of the α-Fe phase is low, and the object of the present invention is easily solved. I can't. When it exceeds 155 Am 2 / kg, the abundance ratio of the α-Fe phase can be increased, but the abundance ratio of the Fe 3 O 4 phase obtained by the present invention should be maintained to such an extent that the intended effect of the present invention can be obtained. It becomes difficult. As a result, the abundance ratio of the Fe 3 O 4 phase is relatively low, leading to early deterioration of catalyst activity and a decrease in maintainability. Therefore, the object of the present invention cannot be easily solved. More preferably, it is 90-155 Am < 2 > / kg (90-155 emu / g).

本発明に係る浄化処理用鉄複合粒子粉末のFeの含有量は全粒子粉末に対して75重量%以上が好ましい。製造直後のFeの含有量が75重量%未満の場合には触媒活性が低下するため、本発明の目的とする効果を容易に得ることが困難となる。より好ましくは75〜98重量%であり、更により好ましくは75〜90重量%である。   The Fe content of the iron composite particle powder for purification treatment according to the present invention is preferably 75% by weight or more based on the total particle powder. When the Fe content immediately after the production is less than 75% by weight, the catalytic activity is lowered, so that it is difficult to easily obtain the intended effect of the present invention. More preferably, it is 75 to 98% by weight, and still more preferably 75 to 90% by weight.

本発明に係る浄化処理用鉄複合粒子粉末は、Pb、Cd、As、Hg、Sn、Sb、Ba、Zn、Cr、Nb、Co、Bi等のFe、Ni、Cu以外の毒性のある金属は極力含有しないことが好ましい。   The iron composite particle powder for purification treatment according to the present invention is composed of Pb, Cd, As, Hg, Sn, Sb, Ba, Zn, Cr, Nb, Co, Bi, and other toxic metals other than Fe, Ni, and Cu. It is preferable not to contain as much as possible.

なお、浄化処理用鉄複合粒子粉末は、造粒物の形態であってもよい。   The iron composite particle powder for purification treatment may be in the form of a granulated product.

次に、本発明4又は5に係る有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化剤(以下、「浄化剤」という)について述べる。   Next, the purification agent (hereinafter referred to as “purifying agent”) of soil, groundwater and wastewater contaminated with the organic halogen compound according to the present invention 4 or 5 will be described.

本発明4又は5に係る浄化剤は、本発明1乃至3のいずれかに係る浄化処理用鉄複合粒子粉末を有効成分として含有する水懸濁液であり、浄化処理用鉄複合粒子粉末の水懸濁液中の含有量は10〜40重量%の範囲内で適宜選択することができ、より好ましくは10〜30重量部である。40重量%を越える場合、浄化剤が増粘するため、撹拌時の機械的負荷が伝わりにくく、均一に混合することが難しいため、濃度の調整が困難となる。 The purification agent according to the present invention 4 or 5 is a water suspension containing the iron composite particle powder for purification treatment according to any one of the present invention 1 to 3 as an active ingredient, and the water of the iron composite particle powder for purification treatment The content in the suspension can be appropriately selected within the range of 10 to 40% by weight, and more preferably 10 to 30 parts by weight. When the amount exceeds 40% by weight, the viscosity of the cleaning agent increases, so that the mechanical load during stirring is difficult to be transmitted, and it is difficult to uniformly mix, so it is difficult to adjust the concentration.

本発明5に係る浄化剤においては、ポリアクリル酸又はその塩、ポリアスパラギン酸又はその塩及びポリマレイン酸又はその塩から選ばれる1種以上の分散剤を含有させることによって、従来に比べて格段に土壌への浸透性を向上させることができる。マレイン酸又はその塩でも生分解性は有すが、特に、ポリアスパラギン酸又はその塩は、生分解性が非常に良好であり、土壌・地下水への注入後、微生物によって生分解を起こすため、環境に蓄積されることがほとんど認められないことから、原位置浄化処理用浄化剤の分散剤としてより好適である。   In the cleaning agent according to the fifth aspect of the present invention, by containing one or more dispersants selected from polyacrylic acid or a salt thereof, polyaspartic acid or a salt thereof, and polymaleic acid or a salt thereof, the purification agent is remarkably compared with the conventional one. It can improve the permeability to soil. Maleic acid or its salt is also biodegradable, but especially polyaspartic acid or its salt is very good in biodegradability and causes biodegradation by microorganisms after injection into soil / groundwater. Since it is hardly recognized that it accumulates in the environment, it is more suitable as a dispersant for the cleaning agent for in-situ purification treatment.

本発明に係る浄化剤の比重は1.2〜1.4が好ましい。1.2未満では浄化剤の輸送、土壌等への添加量を考えると固形分が少なく経済的でない。1.4を超える場合は本発明の一次粒子径、二次粒子径を考慮すると浄化剤が増粘し、工業的に製造するのは困難である。   The specific gravity of the purifier according to the present invention is preferably 1.2 to 1.4. If it is less than 1.2, solid content is small and not economical considering the transport of the cleaning agent and the amount added to the soil. In the case of exceeding 1.4, considering the primary particle size and secondary particle size of the present invention, the cleaning agent thickens, and it is difficult to produce it industrially.

次に、本発明に係る有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化処理用鉄複合粒子粉末の製造法について述べる。   Next, a method for producing iron composite particle powder for purification treatment of soil, groundwater, and wastewater contaminated with an organic halogen compound according to the present invention will be described.

本発明に係る浄化処理用鉄複合粒子粉末は、常法に従って、ゲータイト粒子を製造し、必要により加熱してヘマタイト粒子とした後、前記ゲータイト粒子又は前記ヘマタイト粒子を加熱還元して鉄粒子粉末とした後、該鉄粒子粉末を気相中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成して水中に取り出す又は該鉄粒子粉末を水中に取り出して水中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成してα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液を製造した後、水懸濁液中の鉄複合粒子の粒子表面にNi及び/又はCu金属を担持・被覆させた後、ろ過、水洗、乾燥して得ることができる。   The iron composite particle powder for purification treatment according to the present invention is produced by producing goethite particles according to a conventional method, heating to make hematite particles as necessary, and then heating and reducing the goethite particles or the hematite particles to obtain an iron particle powder. Then, the iron particle powder is taken out in water by forming a surface oxide film on the surface of the iron particle powder in the gas phase, or the iron particle powder is taken out in water and put on the particle surface of the iron particle powder in water. An aqueous suspension containing iron composite particles composed of α-Fe and magnetite is formed by forming a surface oxide film, and then Ni and / or Cu metal is supported on the particle surface of the iron composite particles in the aqueous suspension. -After coating, it can be obtained by filtration, washing with water and drying.

本発明におけるα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液は、平均長軸径が0.05〜0.50μmであってAl含有量が0.06〜1.00重量%であり、S含有量が2200〜5500ppmであるゲータイト粒子粉末又は平均長軸径が0.05〜0.50μmであってAl含有量が0.07〜1.13重量%であり、S含有量が2400〜8000ppmのヘマタイト粒子粉末を、350〜600℃の温度範囲で加熱還元して鉄粒子粉末とした後、該鉄粒子粉末を気相中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成して水中に取り出す又は該鉄粒子粉末を水中に取り出して水中で当該鉄粒子粉末の粒子表面に表面酸化被膜を形成することによって得ることができる。   The aqueous suspension containing iron composite particles composed of α-Fe and magnetite in the present invention has an average major axis diameter of 0.05 to 0.50 μm and an Al content of 0.06 to 1.00% by weight. The S content is from 2200 to 5500 ppm, and the average major axis diameter is from 0.05 to 0.50 μm, the Al content is from 0.07 to 1.13 wt%, and the S content is 2400-8000 ppm hematite particle powder is heated and reduced in the temperature range of 350-600 ° C. to form iron particle powder, and then the iron particle powder is coated with a surface oxide film on the surface of the iron particle powder in the gas phase. It can be obtained by forming and taking out in water, or taking out the iron particle powder into water and forming a surface oxide film on the particle surface of the iron particle powder in water.

ゲータイト粒子粉末は、常法に従って、例えば、第一鉄塩を含有する水溶液と、水酸化アルカリ、炭酸アルカリ又はアンモニアから選ばれる1種又は2種以上とを反応させて得られる鉄の水酸化物や炭酸鉄等の第一鉄含有沈殿物を含む懸濁液中に空気等の酸素含有ガスを通気することにより得ることができる。   The goethite particle powder is obtained by reacting, for example, an aqueous solution containing a ferrous salt with one or more selected from alkali hydroxide, alkali carbonate or ammonia according to a conventional method. It can be obtained by ventilating an oxygen-containing gas such as air through a suspension containing a ferrous iron-containing precipitate such as iron carbonate.

なお、不純物含有量の少ない浄化処理用鉄複合粒子粉末を得るためには、前記第一鉄塩を含有する水溶液として、重金属等の不純物を低減し、純度の高いものを使用することが好ましい。   In addition, in order to obtain the iron composite particle powder for purification processing with a small impurity content, it is preferable to use a high-purity one that reduces impurities such as heavy metals as the aqueous solution containing the ferrous salt.

第一鉄塩を含有する水溶液の不純物量を低減するためには、例えば、鋼板を硫酸で酸洗し、鋼板の表層に析出している不純物、防錆の油分等を溶解除去した後の不純物の少ない鋼板を溶解して得られた第一鉄塩水溶液を用いる方法がある。鉄以外の金属不純物の多い屑鉄やスクラップ鉄、耐蝕性を向上させる為に行なわれるめっき処理、リン酸塩処理及びクロム酸処理等を行った鋼板並びに防錆の油分を塗布した鋼板等の酸洗液を用いた場合には、鉄複合粒子粉末中に不純物が残存し、浄化する土壌・地下水に溶出する恐れがあり好ましくない。また、酸化チタン製造工程等から副生する硫酸第一鉄溶液に水酸化アルカリ等のアルカリを添加し、pH調整によりチタン、その他の不純物を水酸化物として不溶化して沈殿除去、限外ろ過除去等を行い使用する方法がある。不純物の少ない鋼板を硫酸溶解して使用するのが好ましく、引き続きpH調整による不純物除去を行うのが更に好ましい。何れの方法も工業的に問題が無く、経済的にも有利である。   In order to reduce the amount of impurities in the aqueous solution containing the ferrous salt, for example, the steel sheet is pickled with sulfuric acid, and impurities that have precipitated on the surface layer of the steel sheet and dissolved and removed rust preventive oil are removed. There is a method using an aqueous ferrous salt solution obtained by dissolving a steel sheet with a small amount of iron. Pickling of scrap iron and scrap iron with a lot of metal impurities other than iron, steel plates with plating treatment, phosphate treatment and chromic acid treatment to improve corrosion resistance, and steel plates with anti-rust oil applied When the liquid is used, impurities remain in the iron composite particle powder, and there is a possibility that it may elute into the soil or groundwater to be purified. Also, alkali such as alkali hydroxide is added to the ferrous sulfate solution by-produced from the titanium oxide production process, etc., and titanium and other impurities are insolubilized as hydroxides by pH adjustment to remove precipitates and ultrafiltration There is a method to use it. It is preferable to use a steel plate with few impurities dissolved in sulfuric acid, and it is further preferable to remove impurities by pH adjustment. Either method has no industrial problems and is economically advantageous.

ゲータイト粒子粉末の平均長軸径は0.05〜0.50μmであり、S含有量が2200〜5500ppmである。粒子形状は紡錘状又は針状のどちらでも良い。軸比は4〜30が好ましく、より好ましくは5〜25であり、BET比表面積は20〜200m/gが好ましく、より好ましくは25〜180m/gである。 The average major axis diameter of the goethite particle powder is 0.05 to 0.50 μm, and the S content is 2500 to 5500 ppm. The particle shape may be either spindle-shaped or needle-shaped. Axial ratio is preferably from 4 to 30, more preferably from 5 to 25, BET specific surface area is preferably 20 to 200 m 2 / g, more preferably 25~180m 2 / g.

本発明においては、前記ゲータイト粒子中にAlを含有させるか、又は、ゲータイト粒子にAl被覆することが重要である。Alを含有または被覆することによって造粒物の体積収縮を抑制することより造粒物の硬さを制御することができる。したがって湿式粉砕を行う場合の労力も小さくすることができる。また相対的に一次粒子の大きさを小さくすることができ、比表面積も相対的に大きくなり、性能が向上する。   In the present invention, it is important that the goethite particles contain Al or the goethite particles are coated with Al. The hardness of the granulated product can be controlled by suppressing the volume shrinkage of the granulated product by containing or coating Al. Therefore, the labor for wet pulverization can be reduced. Further, the size of the primary particles can be relatively reduced, the specific surface area is also relatively increased, and the performance is improved.

ゲータイト粒子粉末のAl含有量又はAl被覆量は0.06〜1.00重量%が好ましい。   The Al content or the Al coating amount of the goethite particle powder is preferably 0.06 to 1.00% by weight.

なお、ゲータイト粒子粉末は、常法に従って、造粒しておくことが好ましい。造粒することによって、固定層方式の還元炉を使用できるほか、鉄複合粒子とした場合でも還元条件によってはそのまま造粒物の形態を保つことが可能となり、カラム等に充填して使用する場合には好ましい。   The goethite particle powder is preferably granulated according to a conventional method. By granulating, a fixed bed type reduction furnace can be used, and even when iron composite particles are used, it is possible to maintain the shape of the granulated product as it is depending on the reducing conditions. Is preferred.

得られたゲータイト粒子粉末は250〜350℃の温度範囲で加熱脱水したヘマタイト粒子粉末にすることが好ましい。   The obtained goethite particle powder is preferably a hematite particle powder that has been heat-dehydrated in a temperature range of 250 to 350 ° C.

本発明におけるヘマタイト粒子粉末は、あらかじめS含有量が高いゲータイト粒子を用いるか、又は、S含有量が低いゲータイト粒子の場合には、ヘマタイト粒子粉末の水懸濁液に硫酸を添加することで、ヘマタイト粒子粉末のS含有量を制御する。   The hematite particle powder in the present invention uses goethite particles having a high S content in advance, or in the case of goethite particles having a low S content, by adding sulfuric acid to an aqueous suspension of the hematite particle powder, The S content of the hematite particle powder is controlled.

ヘマタイト粒子粉末の平均長軸径は0.05〜0.50μmであり、S含有量が2400〜8000ppmである。ヘマタイト粒子粉末のAl含有量又はAl被覆量は0.07〜1.13重量%が好ましい。   The average major axis diameter of the hematite particle powder is 0.05 to 0.50 μm, and the S content is 2400 to 8000 ppm. The Al content or the Al coating amount of the hematite particle powder is preferably 0.07 to 1.13% by weight.

前記ゲータイト粒子粉末又は前記ヘマタイト粒子粉末を350〜600℃の温度範囲で加熱還元することによって鉄粒子(α−Fe)粉末とする。   The goethite particle powder or the hematite particle powder is heated and reduced in a temperature range of 350 to 600 ° C. to obtain iron particle (α-Fe) powder.

加熱還元温度が350℃未満である場合には、還元反応の進行が遅く、還元反応に長時間を要する。また、BET比表面積を大きくすることができるが、結晶成長を十分に行うことができず、α−Fe相が不安定となり粒子表面に酸化被膜が厚く形成されたり、またFe相からα−Fe相への相変化が不十分のため、α−Fe相の存在比率を高くすることができない。600℃を超える場合には、還元反応が急激に進行して粒子及び粒子相互間の焼結が過度に促進され粒子径が大きくなり、BET比表面積も小さくなるため好ましくない。 When the heating reduction temperature is less than 350 ° C., the reduction reaction proceeds slowly and takes a long time for the reduction reaction. Moreover, although the BET specific surface area can be increased, crystal growth cannot be sufficiently performed, the α-Fe phase becomes unstable, and a thick oxide film is formed on the particle surface, or from the Fe 3 O 4 phase. Since the phase change to the α-Fe phase is insufficient, the abundance ratio of the α-Fe phase cannot be increased. When the temperature exceeds 600 ° C., the reduction reaction proceeds rapidly, the sintering between the particles and the particles is excessively promoted, the particle diameter is increased, and the BET specific surface area is also decreased.

なお、還元反応の昇温時の雰囲気は水素ガス、窒素ガス等が利用できるが、工業的には水素ガスが好ましい。   In addition, although hydrogen gas, nitrogen gas, etc. can utilize the atmosphere at the time of temperature increase of a reductive reaction, hydrogen gas is preferable industrially.

加熱還元後の鉄粒子粉末は冷却した後、該鉄粒子粉末を気相中でFeの表面酸化被膜を形成し、水中に取り出す、或いは水中に取り出して該鉄粒子粉末の粒子表面に表面酸化皮膜を形成する。 The iron particle powder after the heat reduction is cooled, and then the iron particle powder is formed with a surface oxide film of Fe 3 O 4 in the gas phase and taken out in water, or taken out into water and put on the particle surface of the iron particle powder. A surface oxide film is formed.

表面酸化被膜の形成方法は、還元後の雰囲気を一旦不活性ガスに置換した後、不活性ガス中の酸素含有量を徐々に増加させながら最終的に空気とする方法、酸素と水蒸気を混合したガスを使用して徐々に酸化する方法等により空気中に取り出すことができる。なお、気相中での表面酸化被膜の形成温度は、150℃以下が好ましいさらに、水中に取り出す時には100℃以下まで冷却されていることが好ましい。   The method of forming the surface oxide film is a method in which the atmosphere after reduction is once replaced with an inert gas, and then the oxygen content in the inert gas is gradually increased to air, and oxygen and water vapor are mixed. It can be taken out into the air by a method of gradually oxidizing using gas. In addition, the formation temperature of the surface oxide film in the gas phase is preferably 150 ° C. or lower, and is preferably cooled to 100 ° C. or lower when taken out in water.

一方、気相中で酸化被膜を形成することなく水中に取り出す場合には、100℃以下まで冷却されていることが好ましい。加熱還元した後、気相中で表面酸化被膜を形成することなく、直接、水中に取り出した場合、α−Feの触媒活性により水を分解して水素と酸素を生成し、発生した酸素によりα−Feが酸化され、粒子表面にFeからなる酸化被膜が形成されるものと推定している。 On the other hand, when taking out in water, without forming an oxide film in a gaseous phase, it is preferable to cool to 100 degrees C or less. After heat reduction, when taken directly into water without forming a surface oxide film in the gas phase, water is decomposed by the catalytic activity of α-Fe to generate hydrogen and oxygen, and α is generated by the generated oxygen. It is presumed that -Fe is oxidized and an oxide film composed of Fe 3 O 4 is formed on the particle surface.

なお、加熱還元後の冷却時の雰囲気は窒素又は水素のいずれでもよいが、最終的には窒素に切り替えることが好ましい。   In addition, although the atmosphere at the time of cooling after heat reduction may be either nitrogen or hydrogen, it is preferable to finally switch to nitrogen.

次いで、得られたα−Fe及びマグネタイトからなる鉄複合粒子粉末の水懸濁液を湿式粉砕装置を用いて粉砕・分散する。   Next, the obtained aqueous suspension of iron composite particle powder made of α-Fe and magnetite is pulverized and dispersed using a wet pulverizer.

湿式粉砕に用いる粉砕装置としては、メディアを用いる場合、転動ミル(ポットミル、チューブミル、コニカルミル)や振動ミル(ファイン・バイブレーションミル)等の容器駆動式、塔型(タワーミル)、攪拌槽型(アトライター)、流通管型(サンドグラインドミル)及びアニュラー型(アニュラーミル)等の媒体攪拌式を用いることができる。メディアを用いない場合、容器回転型(オングミル)、湿式高速回転型(コロイドミル、ホモミキサー、ラインミキサー)等のせん断・摩擦式を用いることができる。   As a pulverizer used for wet pulverization, when media is used, a container driven type such as a rolling mill (pot mill, tube mill, conical mill) or vibration mill (fine vibration mill), tower type (tower mill), stirring tank type ( Medium stirring types such as an attritor), a distribution pipe type (sand grind mill), and an annular type (annular mill) can be used. When the medium is not used, a shear / friction type such as a container rotation type (Ang mill) or a wet high-speed rotation type (colloid mill, homomixer, line mixer) can be used.

湿式粉砕時の懸濁液中の該鉄粒子濃度は20〜40重量%が好ましい。20重量%未満の場合は、粉砕時にせん断等の応力が掛かり難く所定の粉砕粒度が得られないか長時間を要し、また粉砕に必要なメディアが著しく摩耗する為好ましくない。40重量%を超える場合には、水懸濁液が増粘し、機械的な負荷が大きく工業的に製造するのは困難である。   The iron particle concentration in the suspension during wet pulverization is preferably 20 to 40% by weight. When the amount is less than 20% by weight, stress such as shearing is hardly applied during pulverization, and a predetermined pulverized particle size cannot be obtained or it takes a long time, and the media necessary for pulverization is significantly worn. If it exceeds 40% by weight, the aqueous suspension will thicken, and the mechanical load is large, making it difficult to produce industrially.

粉砕後のα−Fe及びマグネタイトからなる鉄複合粒子の粒子表面にNi及び/又はCu金属を担持・被覆させた後、濾過・水洗し、乾燥することによって、本発明に係る浄化処理用鉄複合粒子粉末を得る。   The iron composite particles for purification treatment according to the present invention are obtained by supporting and coating Ni and / or Cu metal on the surface of the iron composite particles composed of α-Fe and magnetite after pulverization, filtering, washing with water and drying. A particle powder is obtained.

α−Fe及びマグネタイトからなる鉄複合粒子の粒子表面へNi及び/又はCu金属を担持・被覆させる方法としては、該鉄複合粒子を含有する水懸濁液に、Ni金属塩及び/又はCu金属塩の水溶液を添加混合して、鉄複合粒子表面のFe0又はFe2+と金属イオンを置換めっきする方法等が挙げられる。   As a method for supporting and coating Ni and / or Cu metal on the surface of iron composite particles composed of α-Fe and magnetite, Ni metal salt and / or Cu metal is added to an aqueous suspension containing the iron composite particles. Examples include a method in which an aqueous solution of salt is added and mixed, and substitution plating is performed on Fe0 or Fe2 + and metal ions on the surface of the iron composite particles.

Ni及び/又はCu金属塩としては、硝酸塩、酢酸塩、塩化物等が使用できる。   As the Ni and / or Cu metal salt, nitrates, acetates, chlorides and the like can be used.

また、濾過・水洗後の乾燥雰囲気は、窒素、空気中、真空中等適宜選択できるが、温度は100℃以下が好ましい。   The drying atmosphere after filtration and washing with water can be selected as appropriate, such as nitrogen, air, or vacuum, but the temperature is preferably 100 ° C. or lower.

次に、本発明に係る土壌・地下水・廃水の浄化剤の製造法について述べる。   Next, a method for producing a purification agent for soil, groundwater and wastewater according to the present invention will be described.

本発明に係る土壌・地下水・廃水の浄化剤の製造法は、前記浄化処理用鉄複合粒子粉末の製造法において、該α−Fe及びマグネタイトからなる鉄複合粒子の粒子表面にNi及び/又はCu金属を担持・被覆させた後、デカンテーションによって水洗したものを、そのまま浄化処理用鉄複合粒子粉末を含有する水懸濁液からなる浄化剤とするものである。   The method for producing a purification agent for soil, groundwater, and wastewater according to the present invention is the method for producing the iron composite particle powder for purification treatment, wherein Ni and / or Cu is formed on the particle surface of the iron composite particles comprising the α-Fe and magnetite. What was washed and washed by decantation after supporting / coating the metal is used as a purification agent consisting of an aqueous suspension containing the iron composite particle powder for purification treatment as it is.

なお、本発明においては、前記製造法に従ってあらかじめα−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液を製造した後、該懸濁液を土壌・地下水の浄化処理を行う施工現場に輸送し、施工現場において、α−Fe及びマグネタイトからなる鉄複合粒子を含有する水懸濁液に対して前記方法に従って、鉄複合粒子にNi及び/又はCu金属を担持・被覆させることもできる。   In the present invention, after producing an aqueous suspension containing iron composite particles composed of α-Fe and magnetite in advance according to the production method, the suspension is applied to a construction site where the soil / groundwater is purified. The iron composite particles can be supported and coated with Ni and / or Cu metal according to the method described above with respect to the aqueous suspension containing the iron composite particles composed of α-Fe and magnetite at the construction site.

本発明に係る浄化剤は、必要により、ポリアクリル酸又はその塩、ポリアスパラギン酸又はその塩及びポリマレイン酸又はその塩から選ばれる1種以上の分散剤を含有させても良く、前記各分散剤は水溶性であるので、浄化処理用鉄複合粒子粉末を含有する水懸濁液中に、粉末或いは水溶液で添加し、攪拌混合すればよい。   The cleaning agent according to the present invention may contain one or more dispersants selected from polyacrylic acid or a salt thereof, polyaspartic acid or a salt thereof and polymaleic acid or a salt thereof, if necessary. Is water-soluble, it can be added as a powder or aqueous solution to an aqueous suspension containing the iron composite particle powder for purification treatment and stirred and mixed.

ポリマレイン酸としては、無水マレイン酸、マレイン酸の重合体又は無水マレイン酸、マレイン酸と他のモノマーとの共重合体(例えば、オレフィン・マレイン酸共重合体など)であり、前記重合体又は共重合体のナトリウム塩などのポリマレイン酸塩も用いることができる。ポリマレイン酸は、例えば、日本油脂株式会社、BASFジャパン株式会社等のメーカーが製造したポリマーを使用することができる。   Examples of the polymaleic acid include maleic anhydride, a polymer of maleic acid or a maleic anhydride, and a copolymer of maleic acid and another monomer (for example, an olefin / maleic acid copolymer). Polymerate salts such as sodium salts of polymers can also be used. As the polymaleic acid, for example, a polymer produced by a manufacturer such as Nippon Oil & Fat Co., Ltd. or BASF Japan Co., Ltd. can be used.

次に、本発明6又は7に係る有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化処理方法ついて述べる。   Next, the purification method for soil, groundwater, and wastewater contaminated with the organic halogen compound according to the present invention 6 or 7 will be described.

有機ハロゲン化合物で汚染された土壌・地下水の浄化処理は、一般的に、含有される汚染物質を直接地下で分解する原位置分解法と掘削又は抽出した土壌・地下水中の汚染物質を分解する原位置抽出法とがあり、本発明においてはいずれの方法でも行うことができるが、好ましくは原位置分解法である。   In general, purification of soil and groundwater contaminated with organic halogen compounds is generally performed by in-situ decomposition methods that decompose the contained pollutants directly in the ground, and raw materials that decompose excavated or extracted soil and groundwater. In the present invention, any method can be used, but the in-situ decomposition method is preferred.

原位置分解法においては、浄化処理用鉄複合粒子粉末又は浄化剤を高圧の空気、窒素等のガスあるいは水を媒体にしてそのまま浸透もしくはボーリング孔から地下に導入する方法が取られる。特に本発明の浄化剤は水懸濁液であるのでそのまま使用するか必要に応じて希釈すれば良い。   In the in-situ decomposition method, a method is adopted in which the iron composite particle powder for purification treatment or the purification agent is directly permeated or introduced into the basement through a borehole using a gas such as high-pressure air, nitrogen, or water as a medium. In particular, since the purification agent of the present invention is an aqueous suspension, it can be used as it is or diluted as necessary.

原位置抽出法においては、掘削した土壌と浄化処理用鉄複合粒子粉末又は浄化剤を、サンドミル、ヘンシェルミキサー、コンクリートミキサー、ナウターミキサー、一軸又は二軸式のニーダー型混合器等を用いて混合攪拌すれば良い。また、揚水した地下水においては浄化処理用鉄複合粒子粉末が充填されたカラム等に通水することができる。   In the in-situ extraction method, the excavated soil and the iron composite particle powder or cleaning agent for purification treatment are mixed using a sand mill, Henschel mixer, concrete mixer, Nauta mixer, uniaxial or biaxial kneader mixer, etc. What is necessary is just to stir. Further, the pumped ground water can be passed through a column or the like filled with the iron composite particle powder for purification treatment.

また、有機ハロゲン化合物で汚染された廃水の浄化処理方法は、有機性廃水、無機性廃水の中でも、重金属類、有機ハロゲン化合物類等を無害化するための化学的処理方法に関するものである。   The purification method for wastewater contaminated with an organic halogen compound relates to a chemical treatment method for detoxifying heavy metals, organic halogen compounds and the like in organic wastewater and inorganic wastewater.

廃水の化学的処理方法として、廃水を貯水槽に受け、浄化処理用鉄複合粒子粉末あるいは浄化剤を散布した後、浄化処理用鉄複合粒子粉末あるいは浄化剤が均一になるように攪拌混合した後、静置又は攪拌する方法、廃水の貯水槽の循環・ろ過系の配管に浄化用鉄複合粒子粉末又はその成形体をカラム状に詰めて、連続的に通水させ、浄化する方法を用いることができる。   As a chemical treatment method of wastewater, after receiving the wastewater in a storage tank, spraying the iron composite particle powder or purification agent for purification treatment, and then stirring and mixing so that the iron composite particle powder or purification agent for purification treatment is uniform , Use a method of standing or stirring, a method of packing and purifying iron composite particle powder for purification or a molded product thereof in a column in a circulation / filtration system pipe of a waste water tank, and continuously passing water through the column. Can do.

本発明に係る浄化剤は、土壌・地下水の浄化処理に用いる際に鉄複合粒子の固形分濃度が0.01〜20重量%となるように希釈することが好ましい。また、本発明においては、土壌への浸透性向上のために、希釈浄化剤中に炭酸水素ナトリウム、硫酸ナトリウム、炭酸ナトリウム、亜硫酸ナトリウム及び亜硫酸水素ナトリウム等を添加してもよい。   The purification agent according to the present invention is preferably diluted so that the solid content concentration of the iron composite particles is 0.01 to 20% by weight when used for the purification treatment of soil and groundwater. In the present invention, sodium hydrogen carbonate, sodium sulfate, sodium carbonate, sodium sulfite, sodium hydrogen sulfite and the like may be added to the diluted purification agent in order to improve the permeability to soil.

本発明に係る浄化剤の添加量は、土壌、地下水及び廃水中の有機ハロゲン化合物の濃度に応じて適宜選択することができるが、土壌中の有機ハロゲン化合物を対象とする場合、土壌中に含まれる有機塩素化合物の塩素モル数に対して、固形分の浄化処理用鉄複合粒子粉末中のα−Fe相のモル数が1.5倍〜500等量が好ましく、より好ましくは4倍〜200倍等量である。1.5倍等量未満の場合は、本発明の目的とする効果が充分得られない。500倍等量を超える場合には、浄化効果は向上するが経済的ではない。また、土壌を対象とする場合には、土壌中の間隙を希釈浄化剤で置換させるように注入するのが好ましいが、その際の希釈浄化剤中の浄化処理用鉄複合粒子粉末の固形分濃度は、0.2〜10g/lが好ましく、より好ましくは0.3〜5.0g/lである。0.2g/l未満の場合は、希釈浄化剤中の溶存酸素の影響により浄化処理用鉄複合粒子表面が有機ハロゲン化合物を浄化可能な還元状態に達しない。10g/lを超える場合には、浄化効果は向上するが経済的ではない。   The addition amount of the purifying agent according to the present invention can be appropriately selected according to the concentration of the organic halogen compound in the soil, groundwater and wastewater, but is included in the soil when the organic halogen compound in the soil is targeted. The number of moles of α-Fe phase in the solid composite iron composite particle powder is preferably 1.5 times to 500 equivalents, more preferably 4 times to 200 times, relative to the number of moles of the organic chlorine compound. Double equivalent. When the amount is less than 1.5 times equivalent, the intended effect of the present invention cannot be obtained sufficiently. If it exceeds 500 times equivalent, the purification effect is improved but it is not economical. In addition, in the case of soil, it is preferable to inject so that the gap in the soil is replaced with a diluted cleaning agent, but the solid content concentration of the iron composite particle powder for purification treatment in the diluted cleaning agent at that time Is preferably 0.2 to 10 g / l, more preferably 0.3 to 5.0 g / l. When it is less than 0.2 g / l, the surface of the iron composite particles for purification treatment does not reach a reduced state capable of purifying the organic halogen compound due to the influence of dissolved oxygen in the diluted purification agent. If it exceeds 10 g / l, the purification effect is improved, but it is not economical.

また、地下水及び廃水を対象とする場合の浄化剤の添加量は、地下水及び廃水中に含まれる有機塩素化合物の塩素モル数に対して、固形分の浄化処理用鉄複合粒子粉末中のα−Fe相のモル数が1.5倍〜500等量が好ましく、より好ましくは4倍〜200倍等量である。1.5倍等量未満の場合は、本発明の目的とする効果が充分得られない。500倍等量を超える場合には、浄化効果は向上するが経済的ではない。また、地下水及び廃水中の浄化処理用鉄複合粒子粉末の固形分濃度は、0.2〜10g/lになるように添加する好ましく、より好ましくは0.3〜5.0g/lである。0.2g/l未満の場合は、希釈浄化剤中の溶存酸素の影響により浄化処理用鉄複合粒子表面が有機ハロゲン化合物を浄化可能な還元状態に達しない。10g/lを超える場合には、浄化効果は向上するが経済的ではない。   In addition, the amount of the purification agent added to the groundwater and wastewater is α- in the solid composite iron composite particle powder for purification of solids relative to the number of moles of chlorine in the organic chlorine compound contained in the groundwater and wastewater. The number of moles of Fe phase is preferably 1.5 to 500 equivalents, more preferably 4 to 200 equivalents. When the amount is less than 1.5 times equivalent, the intended effect of the present invention cannot be obtained sufficiently. If it exceeds 500 times equivalent, the purification effect is improved but it is not economical. Moreover, it is preferable to add so that the solid content density | concentration of the iron composite particle powder for purification processing in groundwater and wastewater may be 0.2-10 g / l, More preferably, it is 0.3-5.0 g / l. When it is less than 0.2 g / l, the surface of the iron composite particles for purification treatment does not reach a reduced state capable of purifying the organic halogen compound due to the influence of dissolved oxygen in the diluted purification agent. If it exceeds 10 g / l, the purification effect is improved, but it is not economical.

本発明においては、前記鉄複合粒子粉末を浄化処理の現場にて、浄化処理直前に該鉄複合粒子と水とを混合してスラリー化、鉄複合粒子の分散を行ってもい。鉄複合粒子を含有する水懸濁液に、Ni金属塩及び/又はCu金属塩の水溶液を添加混合して、粒子表面にNi及び/又はCuを担持した鉄複合粒子を含有するスラリーを得ることができる。   In the present invention, the iron composite particle powder may be mixed into a slurry by mixing the iron composite particles and water immediately before the purification treatment, and the iron composite particles may be dispersed at the site of the purification treatment. An aqueous solution of Ni metal salt and / or Cu metal salt is added to and mixed with an aqueous suspension containing iron composite particles to obtain a slurry containing iron composite particles supporting Ni and / or Cu on the particle surface. Can do.

本発明においては、浄化処理の現場にて、浄化処理直前に鉄複合粒子粉末を粉砕及びスラリー化することよって、保存・貯蔵中及び浄化現場への運搬中における水と鉄複合粒子との酸化反応が生じることが無いので鉄複合粒子の特性劣化が抑制され、微細な粒子を保ったままで土壌中への浸透性がより向上するものである。しかも、鉄複合粒子粉末の状態で運搬できるので、スラリー化した場合に対し容量が小さくすることができ、保管場所も小さくすることができ、また、運搬コストも低減することができる。   In the present invention, at the site of the purification treatment, the iron composite particle powder is pulverized and slurried immediately before the purification treatment, so that the oxidation reaction between water and the iron composite particles during storage / storage and transportation to the purification site. Therefore, the deterioration of the properties of the iron composite particles is suppressed, and the permeability into the soil is further improved while maintaining the fine particles. And since it can be conveyed in the state of iron composite particle powder, a capacity | capacitance can be made small with respect to the case where it is made into a slurry, a storage place can also be made small, and a conveyance cost can also be reduced.

鉄複合粒子の凝集状態、性質(高活性)、大きさ、粉砕装置の能力(製品の粒度、粉砕量)及び最終形態を考慮すると、粉砕は湿式粉砕することが好ましい。   In consideration of the agglomeration state, properties (high activity), size, ability of the pulverizer (product particle size, pulverization amount) and final form of the iron composite particles, the pulverization is preferably wet pulverization.

本発明に用いる粉砕装置としては、メディアを用いる場合、転動ミル(ポットミル、チューブミル、コニカルミル)や振動ミル(ファイン・バイブレーションミル)等の容器駆動式、塔型(タワーミル)、攪拌槽型(アトライター)、流通管型(サンドグラインドミル)及びアニュラー型(アニュラーミル)等の媒体攪拌式を用いることができる。メディアを用いない場合、容器回転型(オングミル)、湿式高速回転型(コロイドミル、ホモミキサー、ラインミキサー)等のせん断・摩擦式を用いることができる。   As a pulverizer used in the present invention, in the case of using a medium, a container-driven type such as a rolling mill (pot mill, tube mill, conical mill) or vibration mill (fine vibration mill), tower type (tower mill), stirring tank type ( Medium stirring types such as an attritor), a distribution pipe type (sand grind mill), and an annular type (annular mill) can be used. When the medium is not used, a shear / friction type such as a container rotation type (Ang mill) or a wet high-speed rotation type (colloid mill, homomixer, line mixer) can be used.

好ましくは、複数のスリットを外周に入れて軸固定面部にカッター歯を設けた回転子と固定子を多段式に組み合わせた装置で、回転子の周速が10m/s以上のメディアレスであるラインミキサー等の連続せん断分散機を用いることができる。例えば、(株)美粒製の泡レスミキサーが特に好ましい。   Preferably, it is a device in which a plurality of slits are inserted in the outer periphery and a rotor and a stator in which shaft teeth are provided with cutter teeth are combined in a multistage manner, and the peripheral speed of the rotor is 10 m / s or more and is a mediumless line. A continuous shearing disperser such as a mixer can be used. For example, a foam-less mixer manufactured by Miki Co., Ltd. is particularly preferable.

また、好ましくは、円筒形のベッセル内にφ1〜φ3のメディアを充填率70〜80%で挿入し、ベッセル中心部に設置された回転軸に複数個の円板を取り付けて回転させることにより、メディアに急速旋回作用が起こり、その中を処理物が下から上に通過するサンドグラインドミル等のメディア式分散機を用いることができる。例えば、浅田鉄工(株)製のADミルが特に好ましい。   Moreover, preferably, by inserting a medium of φ1 to φ3 into a cylindrical vessel at a filling rate of 70 to 80%, and rotating by attaching a plurality of discs to a rotating shaft installed in the center of the vessel, It is possible to use a media type dispersing machine such as a sand grind mill in which a rapid swirling action occurs in the medium, and a processed material passes through the medium from the bottom to the top. For example, an AD mill manufactured by Asada Iron Works is particularly preferable.

また、好ましくは、短い円筒形粉砕部内が攪拌用ロータと外周のセパレータで構成され、その内部にφ0.3〜φ1.0のメディアが充填され、ロータを回転させると、遠心力とメディア間の強力な剪断力により均一な粉砕・分散が得られるメディア式分散機を用いることができる。例えば、日本コークス工業(株)製のSC−MILLが特に好ましい。   Preferably, the inside of the short cylindrical pulverizing section is composed of a stirring rotor and a separator on the outer periphery, and the inside is filled with a medium of φ0.3 to φ1.0. A media-type disperser that can obtain uniform crushing and dispersion with a strong shearing force can be used. For example, SC-MILL manufactured by Nippon Coke Kogyo Co., Ltd. is particularly preferable.

湿式粉砕時の水懸濁液の濃度は鉄複合粒子が20〜40重量%が好ましい。20重量%未満の場合は、粉砕時にせん断等の応力が掛かり難く所定の粉砕粒度が得られないか長時間を要し、また粉砕に必要なメディアが著しく摩耗する為好ましくない。40重量%を超える場合には、水懸濁液が増粘し、機械的な負荷が大きく工業的に製造するのは困難である。   The concentration of the aqueous suspension during wet pulverization is preferably 20 to 40% by weight of iron composite particles. When the amount is less than 20% by weight, stress such as shearing is hardly applied during pulverization, and a predetermined pulverized particle size cannot be obtained or it takes a long time, and the media necessary for pulverization is significantly worn. If it exceeds 40% by weight, the aqueous suspension will thicken, and the mechanical load is large, making it difficult to produce industrially.

<作用>
本発明において重要な点は、本発明に係る浄化処理用鉄複合粒子粉末あるいは浄化剤を用いることによって、土壌・地下水・廃水中の有機ハロゲン化合物を効率よく、経済的に分解処理できるという点である。
<Action>
The important point in the present invention is that the organic compound in the soil, groundwater and wastewater can be decomposed efficiently and economically by using the iron composite particle powder for purification treatment or the purification agent according to the present invention. is there.

本発明者は、土壌・地下水・廃水中の有機ハロゲン化合物を効果的に分解できる理由は未だ明らかではないが、下記のように推定している。   The present inventor has not yet clarified the reason why organic halogen compounds in soil, groundwater, and wastewater can be effectively decomposed, but estimates as follows.

即ち、本発明に係る浄化処理用鉄複合粒子による有機ハロゲン化合物の分解機構は、反応生成物の分析結果より、粒子のシェル層(Fe相)のS表面上が活性点となり、そこにトリクロロエチレン等の有機ハロゲン化合物が吸着してコア層(α−Fe相)と水との反応により生成した電子が供給され,有機ハロゲン化合物の脱塩素化が促進されると考えられるが、その反応において、鉄よりも貴な金属であるNi及び/又はCuが存在すると、α−Fe相と水との反応を触媒的に促進するものと思われる。その反応は、Ni及び/又はCuを経由してSに電子が供給されチオール化し、S表面上で有機ハロゲン化合物を吸着後、エタンチオール、硫化ジエチル等の中間体を経て、求核置換反応により脱塩素化すると思われる。 That is, the decomposition mechanism of the organic halogen compound by the purification-treated iron composite particles according to the present invention is based on the analysis result of the reaction product, and the S surface of the particle shell layer (Fe 3 O 4 phase) becomes the active point. It is thought that the organic halogen compound such as trichlorethylene is adsorbed on the surface and the electrons generated by the reaction between the core layer (α-Fe phase) and water are supplied to promote dechlorination of the organic halogen compound. In this case, the presence of Ni and / or Cu, which are noble metals than iron, seems to promote the reaction between the α-Fe phase and water catalytically. In the reaction, electrons are supplied to S via Ni and / or Cu to thiolate, adsorb an organic halogen compound on the S surface, and then pass through intermediates such as ethanethiol and diethyl sulfide. It seems to dechlorinate.

上記のように、浄化処理用鉄複合粒子中にSとNi及び/又はCuが特定量含有することにより、その相乗効果によって有機ハロゲン化合物に対する分解性能が著しく高くなり、土壌・地下水・廃水へ極微量添加しても分解反応を起こすことができる。即ち、従来の鉄系粒子の場合、有機ハロゲン化合物を含む地下水や廃水に対しては、その濃度が低濃度であっても、数g/l以上の大過剰量の鉄系粒子を添加しなければ、分解反応を起こすに十分な還元雰囲気を形成できなかった。一方、本発明に係る浄化処理用鉄複合粒子粉末を用いた場合は、0.2g/l以上の添加量で、十分な還元雰囲気を形成でき、有機ハロゲン化合物を分解可能となる。   As described above, when a specific amount of S and Ni and / or Cu is contained in the iron composite particles for purification treatment, the synergistic effect significantly increases the decomposition performance with respect to the organic halogen compound, and it is extremely useful for soil, groundwater and wastewater. Decomposition reaction can occur even if a small amount is added. That is, in the case of conventional iron-based particles, a large excess amount of iron-based particles of several g / l or more must be added to groundwater and wastewater containing an organic halogen compound even if the concentration is low. In this case, a reducing atmosphere sufficient to cause the decomposition reaction could not be formed. On the other hand, when the iron composite particle powder for purification treatment according to the present invention is used, a sufficient reducing atmosphere can be formed with an addition amount of 0.2 g / l or more, and the organic halogen compound can be decomposed.

本発明においては、浄化処理用鉄複合粒子粉末にAl化合物を特定量添加することによって、有機ハロゲン化合物の分解性能を向上させることができる。この理由は未だ明らかではないが、Alを含有することによって、一次粒子をより微細化することができ、しかも、鉄複合粒子粉末の凝集体の強度を従来に比較して小さくなるので、湿式粉砕に労力を要さず、同様に粉砕した場合より微細に粉砕することが可能となる。その結果、土壌中又は地下水中で容易に浸透・分散することができるので、鉄複合粒子が本来有する有機ハロゲン化合物に対する分解活性を十分に発揮できたことによるものと本発明者は推定している。   In the present invention, the decomposition performance of the organic halogen compound can be improved by adding a specific amount of Al compound to the iron composite particle powder for purification treatment. The reason for this is not yet clear, but by containing Al, the primary particles can be made finer, and the strength of the aggregates of the iron composite particle powder becomes smaller than before, so wet grinding. Therefore, it is possible to pulverize more finely than when pulverizing in the same manner. As a result, the present inventor presumes that the iron composite particles can sufficiently exhibit the decomposition activity for the organic halogen compounds inherent in the iron composite particles because they can easily penetrate and disperse in soil or groundwater. .

以上のように、触媒活性効果が高いため、効率的かつ経済的に短期間で浄化処理を行うことが可能となり、特に高濃度の有機ハロゲン化合物で汚染された土壌・地下水の浄化に好適である。   As described above, since the catalytic activity effect is high, it is possible to perform purification treatment efficiently and economically in a short period of time, and is particularly suitable for the purification of soil and groundwater contaminated with a high concentration of organic halogen compounds. .

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

ゲータイト粒子粉末の平均長軸径及び軸比は透過型電子顕微鏡写真で測定した。ヘマタイト粒子粉末及び鉄複合粒子粉末の平均粒子径は走査型電子顕微鏡写真を用いて測定した。   The average major axis diameter and axial ratio of the goethite particle powder were measured with a transmission electron micrograph. The average particle diameter of the hematite particle powder and the iron composite particle powder was measured using a scanning electron micrograph.

浄化処理用鉄複合粒子粉末のFe量及びAl量は、「誘導結合プラズマ発光分光分析装置SPS4000」(セイコー電子工業(株)製)を使用して測定した。   The Fe amount and the Al amount of the iron composite particle powder for purification treatment were measured using an “inductively coupled plasma emission spectroscopic analyzer SPS4000” (manufactured by Seiko Electronics Co., Ltd.).

各粒子粉末のS含有量は、「カーボン・サルファーアナライザー:EMIA−2200」(HORIBA製)を使用して測定した。   The S content of each particle powder was measured using “Carbon Sulfur Analyzer: EMIA-2200” (manufactured by HORIBA).

各粒子粉末の結晶相はX線回折によって10〜90°の範囲で測定して同定した。   The crystalline phase of each particle powder was identified by measuring in the range of 10 to 90 ° by X-ray diffraction.

浄化処理用鉄複合粒子粉末のピーク強度比は、前記の通りX線回折の結果から、α−Feの(110)面の回折強度D110及びマグネタイトの(311)面の回折強度D311を測定し、D110/(D311+D110)として強度比を求めた。 As described above, the peak intensity ratio of the iron composite particle powder for purification treatment was determined by measuring the diffraction intensity D 110 of the (110) plane of α-Fe and the diffraction intensity D 311 of the (311) plane of magnetite from the result of X-ray diffraction. and to determine the D 110 / (D 311 + D 110) as the intensity ratio.

浄化処理用鉄複合粒子粉末の結晶子サイズ(α−Feの(110)面)は、X線回折法で測定される結晶粒子の大きさを、各粒子の結晶面のそれぞれに垂直な方向における結晶粒子の厚さを表したものであり、各結晶面についての回折ピーク曲線から、下記シェラーの式を用いて計算した値で示したものである。   The crystallite size (α-Fe (110) plane) of the iron composite particle powder for purification treatment is the size of the crystal particle measured by the X-ray diffraction method in the direction perpendicular to the crystal plane of each particle. It represents the thickness of the crystal grain, and is a value calculated from the diffraction peak curve for each crystal plane using the following Scherrer equation.

結晶子サイズ=Kλ/βcosθ
但し、β=装置に起因する機械幅を補正した真の回折ピークの半値幅(ラジアン単位)。
K=シェラー定数(=0.9)。
λ=X線の波長(Cu Kα線 0.1542nm)。
θ=回折角(各結晶面の回折ピークに対応)。
Crystallite size = Kλ / βcosθ
Where β = half-value width (in radians) of the true diffraction peak corrected for machine width due to the device.
K = Scherrer constant (= 0.9).
λ = wavelength of X-ray (Cu Kα ray 0.1542 nm).
θ = Diffraction angle (corresponding to the diffraction peak of each crystal plane).

各粒子粉末の比表面積は、「モノソーブMS−11」(カンタクロム(株)製)を使用し、BET法により測定した値で示した。   The specific surface area of each particle powder was represented by a value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

浄化処理用鉄複合粒子粉末の飽和磁化値は、「振動試料磁力計VSM−3S−15」(東英工業(株)製)を使用し、外部磁場795.8kA/m(10kOe)で測定した。   The saturation magnetization value of the iron composite particle powder for purification treatment was measured using an “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Industry Co., Ltd.) with an external magnetic field of 795.8 kA / m (10 kOe). .

<模擬地下水・廃水中トリクロロエチレンの浄化処理評価>
<模擬汚地下水・廃水用検量線の作成:トリクロロエチレンの定量>
トリクロロエチレンの濃度は下記手順に従ってあらかじめ検量線を作成し、得られた検量線に基づいて濃度を算出した。
トリクロロエチレン(TCE:CHCl):分子量131.39
試薬特級(99.5%)、密度(20℃)1.461〜1.469g/ml
トリクロロエチレンを0.05μl、0.1μl及び1.0μlの3水準とし、褐色バイアル瓶50ml(実容積68ml)にイオン交換水30mlを添加し、次いで、トリクロロエチレンを各水準量注入し、直ちにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付ける。バイアル瓶を20℃、20分静置した後、ヘッドスペースのガスをシリンジで50μl分取し、「GC−MS−QP5050」(島津製製作所製)を用いてトリクロロエチレンを測定する。トリクロロエチレンは全く分解されないものとして、添加量とピーク面積との関係を求める。このときのカラムはキャピラリーカラム(DB−1:J&W Scientific社製、液相:ジメチルポリシロキサン)とし、キャリアガスにはHeガス(143l/min)を使用し、40℃、2分間保持した後、10℃/minの速度で250℃まで昇温してガスを分析する。
<Evaluation of purification treatment of simulated groundwater and wastewater trichlorethylene>
<Making calibration curves for simulated groundwater and wastewater: Determination of trichlorethylene>
The concentration of trichlorethylene was prepared in advance according to the following procedure, and the concentration was calculated based on the obtained calibration curve.
Trichlorethylene (TCE: C 2 HCl 3 ): molecular weight 131.39
Reagent grade (99.5%), density (20 ° C.) 1.461 to 1.469 g / ml
Trichlorethylene is made into three levels of 0.05 μl, 0.1 μl and 1.0 μl, 30 ml of ion-exchanged water is added to 50 ml of a brown vial (actual volume 68 ml), then each amount of trichlorethylene is injected, and immediately a fluororesin liner Cover with a rubber stopper and tighten it with an aluminum seal. After leaving the vial at 20 ° C. for 20 minutes, 50 μl of the headspace gas is taken with a syringe, and trichlorethylene is measured using “GC-MS-QP5050” (manufactured by Shimadzu Corporation). Assuming that trichlorethylene is not decomposed at all, the relationship between the amount added and the peak area is determined. The column at this time is a capillary column (DB-1: manufactured by J & W Scientific, liquid phase: dimethylpolysiloxane), He gas (143 l / min) is used as a carrier gas, and the temperature is maintained at 40 ° C. for 2 minutes. The gas is analyzed by raising the temperature to 250 ° C at a rate of ° C / min.

<試料調整>
褐色バイアル瓶50ml(実容積68ml)に浄化処理用鉄複合粒子0.075g又は0.15gあるいは浄化剤(浄化処理用鉄複合粒子0.075g又は0.15g相当)を入れ、さらにイオン交換水を浄化剤中の水量と合わせて30mlとなるように注入し、次いで、トリクロロエチレン1μlを添加し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Sample preparation>
Put 0.075g or 0.15g of purification iron composite particles or a purification agent (equivalent to 0.075g or 0.15g of purification iron composite particles) into 50ml brown vial (actual volume 68ml), and add ion exchange water. Inject to 30 ml together with the amount of water in the cleaning agent, then add 1 μl of trichlorethylene, immediately cover with a rubber stopper with a fluororesin liner, and tightly fasten with an aluminum seal from above, and let it stand for reaction .

<評価方法>
前記バイアル瓶を24℃で静置する。トリクロロエチレン残存量を、前記バイアル瓶を20℃、20分静置した後、ヘッドスペースからシリンジで50μlのガスを分取した。尚、ガスの分取は最大500時間まで、回分法によって所定時間におけるトリクロロエチレンの残存濃度を、前記「GC−MS−QP5050」(島津製作所社製)を用いて測定した。
<Evaluation method>
The vial is left at 24 ° C. The remaining amount of trichlorethylene was allowed to stand at 20 ° C. for 20 minutes, and then 50 μl of gas was collected from the headspace with a syringe. The residual concentration of trichlorethylene in a predetermined time was measured using the “GC-MS-QP5050” (manufactured by Shimadzu Corporation) by batch method up to 500 hours for gas separation.

得られた残存濃度から、下記式に基づいて見掛けの反応速度定数kobsを算出した。
ln(C/Co)=−k・t
Co:トリクロロエチレンの初期濃度
C:トリクロロエチレンの残存濃度
k:見掛けの反応速度定数(h−1
t:時間(h)
From the obtained residual concentration, an apparent reaction rate constant kobs was calculated based on the following formula.
ln (C / Co) = − k · t
Co: Initial concentration of trichlorethylene C: Residual concentration of trichlorethylene k: Apparent reaction rate constant (h −1 )
t: Time (h)

<浄化処理用鉄複合粒子粉末1及び浄化剤1の製造>
毎秒3.4cmの割合でNガスを流すことによって非酸化性雰囲気に保持された反応容器中に、1.16mol/lのNaCO水溶液704lを添加した後、Fe2+1.35mol/lを含む硫酸第一鉄水溶液296lを添加、混合(NaCO量は、Feに対し2.0倍当量に該当する。)し、温度47℃においてFeCOを生成させた。
<Manufacture of iron composite particle powder 1 for purification treatment and purification agent 1>
Into a reaction vessel maintained in a non-oxidizing atmosphere by flowing N 2 gas at a rate of 3.4 cm per second, 704 l of a 1.16 mol / l Na 2 CO 3 aqueous solution was added, and then Fe 2+ 1.35 mol / l. 296 l of ferrous sulfate aqueous solution containing l was added and mixed (the amount of Na 2 CO 3 corresponds to 2.0 times equivalent to Fe), and FeCO 3 was produced at a temperature of 47 ° C.

ここに得たFeCOを含む水溶液中に、引き続き、Nガスを毎秒3.4cmの割合で吹き込みながら、温度47℃で70分間保持した後、当該FeCOを含む水溶液中に、温度47℃において毎秒2.8cmの空気を5.0時間通気してゲータイト粒子を生成させた。なお、空気通気中におけるpHは8.5〜9.5であった。 In an aqueous solution containing FeCO 3 obtained here, subsequently, while blowing N 2 gas at a rate per second 3.4cm, it was held 70 minutes at temperature 47 ° C., in an aqueous solution containing the FeCO 3, temperature 47 ° C. At 2.8 cm, air of 2.8 cm / second was aerated for 5.0 hours to generate goethite particles. The pH during air ventilation was 8.5 to 9.5.

ここに得たゲータイト粒子を含有する懸濁液に、Al3+0.3mol/lを含む硫酸Al水溶液20lを添加、十分撹拌した後フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 To the suspension containing the goethite particles obtained here, 20 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added, stirred well, then washed with a filter press, and the resulting press cake was compressed with a compression molding machine. It was extruded using a molding plate having a pore diameter of 4 mm and dried at 120 ° C. to obtain a granulated product of goethite particles.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.30μm、軸比(長軸径/短軸径)12.5の紡錘状を呈した粒子であった。BET比表面積は85m/g、Al含有量は0.13重量%、S含有量は400ppmであった。 The goethite particles contained in the granulated product thus obtained were particles having a spindle shape with an average major axis diameter of 0.30 μm and an axial ratio (major axis diameter / minor axis diameter) of 12.5. The BET specific surface area was 85 m 2 / g, the Al content was 0.13% by weight, and the S content was 400 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子とし乾式粉砕する。その後水に邂逅し70%硫酸を10ml/kgの割合で添加し攪拌する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。   The granulated product is heated at 330 ° C. to form hematite particles and dry pulverized. Then, it is poured into water and 70% sulfuric acid is added at a rate of 10 ml / kg and stirred. Thereafter, it was dehydrated into a press cake, extruded using a molding plate having a pore diameter of 3 mm using a compression molding machine, and dried at 120 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.24μm、軸比(長軸径/短軸径)10.7の紡錘形を呈した粒子であった。S含有量は3300ppmであった。   The hematite particle powder constituting the granulated product obtained here was a spindle-shaped particle having an average major axis diameter of 0.24 μm and an axial ratio (major axis diameter / minor axis diameter) of 10.7. The S content was 3300 ppm.

前記へマタイト粒子粉末の造粒物1kgを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、イオン交換水3lを直接還元炉に導入し、そのまま鉄粒子粉末を含有する水懸濁液として取り出した。 1 kg of the granulated product of the hematite particle powder was introduced into a fixed bed reducing apparatus, and reduced to 450 ° C. for 180 minutes until it was completely α-Fe while aerated with H 2 gas. Next, after switching to N 2 gas and allowing it to cool to room temperature, 3 l of ion-exchanged water was directly introduced into the reduction furnace and taken out as it was as an aqueous suspension containing iron particle powder.

その水懸濁液を連続式せん断式分散機 泡レスミキサー((株)美粒製)に入れ、周速21m/sで46分間分散処理し、固形分濃度21重量%の水懸濁液3.8kgを得た。   The aqueous suspension was put into a continuous shearing disperser, a foam-less mixer (manufactured by Miki Co., Ltd.), dispersed at a peripheral speed of 21 m / s for 46 minutes, and an aqueous suspension 3 having a solid concentration of 21% by weight. .8 kg was obtained.

この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、0.1mol/lの硫酸ニッケル水溶液680mlを羽根攪拌下にて添加し、さらに30分間攪拌混合した後、デカンテーションにて上澄み液の伝導度が100μS/cm以下になるまで水洗して、固形分濃度25重量%の浄化剤3.2kgとした(浄化剤1とする)。   This aqueous suspension was transferred to a stainless steel beaker equipped with a baffle, and 680 ml of a 0.1 mol / l nickel sulfate aqueous solution was added under blade stirring, and further stirred and mixed for 30 minutes, and then the supernatant liquid was transferred by decantation. It was washed with water until the degree became 100 μS / cm or less to obtain 3.2 kg of a purification agent having a solid content concentration of 25 wt% (referred to as purification agent 1).

得られた浄化剤1中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.09μmであって軸比が1.4であった。   The iron composite particles contained in the resulting cleaning agent 1 were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a rice grain shape and an average major axis diameter of 0.09 μm. The axial ratio was 1.4.

次いで、濾過し、35℃で3時間、大気中で乾燥し、浄化処理用鉄複合粒子粉末1を得た。   Subsequently, it filtered, and it dried in air | atmosphere at 35 degreeC for 3 hours, and obtained the iron composite particle powder 1 for a purification process.

ここに得た用鉄複合粒子粉末1は、α−Feを主体としており、飽和磁化値132Am/kg(132emu/g)、BET比表面積27m/g、結晶子サイズ295Å、Fe含有量は82.9重量%、Al含有量は0.22重量%、S含有量は4000ppm、Ni含有量0.5重量%であった。X線回折の結果、α−FeのD110とFeのD311との強度比D110/(D110+D311)は0.84であった。 The obtained iron composite particle powder 1 is mainly composed of α-Fe, has a saturation magnetization value of 132 Am 2 / kg (132 emu / g), a BET specific surface area of 27 m 2 / g, a crystallite size of 295 mm, and an Fe content of The content was 82.9% by weight, the Al content was 0.22% by weight, the S content was 4000 ppm, and the Ni content was 0.5% by weight. As a result of X-ray diffraction, the intensity ratio D 110 / (D 110 + D 311 ) between D 110 of α-Fe and D 311 of Fe 3 O 4 was 0.84.

<模擬地下水・廃水中トリクロロエチレンの浄化処理評価結果>
前記評価方法によれば、前記浄化剤1を0.075g(0.25g/l)添加した場合のトリクロロエチレン浄化における見掛けの反応速度定数は0.020h−1であった。
<Evaluation results of purification treatment of simulated groundwater and wastewater trichlorethylene>
According to the evaluation method, the apparent reaction rate constant in the purification of trichlorethylene when 0.075 g (0.25 g / l) of the cleaning agent 1 was added was 0.020 h −1 .

<浄化処理用鉄複合粒子粉末2及び浄化剤2の製造>
毎秒3.4cmの割合でNガスを流すことによって非酸化性雰囲気に保持された反応容器中に、1.16mol/lのNaCO水溶液704lを添加した後、Fe2+1.35mol/lを含む硫酸第一鉄水溶液296lを添加、混合(NaCO量は、Feに対し2.0倍当量に該当する。)し、温度47℃においてFeCOを生成させた。
<Manufacture of iron composite particle powder 2 for purification treatment and purification agent 2>
Into a reaction vessel maintained in a non-oxidizing atmosphere by flowing N 2 gas at a rate of 3.4 cm per second, 704 l of a 1.16 mol / l Na 2 CO 3 aqueous solution was added, and then Fe 2+ 1.35 mol / l. 296 l of ferrous sulfate aqueous solution containing l was added and mixed (the amount of Na 2 CO 3 corresponds to 2.0 times equivalent to Fe), and FeCO 3 was produced at a temperature of 47 ° C.

ここに得たFeCOを含む水溶液中に、引き続き、Nガスを毎秒3.4cmの割合で吹き込みながら、温度47℃で70分間保持した後、当該FeCOを含む水溶液中に、温度47℃において毎秒2.8cmの空気を5.0時間通気してゲータイト粒子を生成させた。なお、空気通気中におけるpHは8.5〜9.5であった。 In an aqueous solution containing FeCO 3 obtained here, subsequently, while blowing N 2 gas at a rate per second 3.4cm, it was held 70 minutes at temperature 47 ° C., in an aqueous solution containing the FeCO 3, temperature 47 ° C. At 2.8 cm, air of 2.8 cm / second was aerated for 5.0 hours to generate goethite particles. The pH during air ventilation was 8.5 to 9.5.

ここに得たゲータイト粒子を含有する懸濁液に、Al3+0.3mol/lを含む硫酸Al水溶液20lを添加、十分撹拌した後フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 To the suspension containing the goethite particles obtained here, 20 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added, stirred well, then washed with a filter press, and the resulting press cake was compressed with a compression molding machine. It was extruded using a molding plate having a pore diameter of 4 mm and dried at 120 ° C. to obtain a granulated product of goethite particles.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.30μm、軸比(長軸径/短軸径)12.5の紡錘状を呈した粒子であった。BET比表面積は85m/g、Al含有量は0.13重量%、S含有量は400ppmであった。 The goethite particles contained in the granulated product thus obtained were particles having a spindle shape with an average major axis diameter of 0.30 μm and an axial ratio (major axis diameter / minor axis diameter) of 12.5. The BET specific surface area was 85 m 2 / g, the Al content was 0.13% by weight, and the S content was 400 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子とし乾式粉砕する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。   The granulated product is heated at 330 ° C. to form hematite particles and dry pulverized. Thereafter, it was dehydrated into a press cake, extruded using a molding plate having a pore diameter of 3 mm using a compression molding machine, and dried at 120 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.24μm、軸比(長軸径/短軸径)10.7の紡錘形を呈した粒子であった。S含有量は440ppmであった。   The hematite particle powder constituting the granulated product obtained here was a spindle-shaped particle having an average major axis diameter of 0.24 μm and an axial ratio (major axis diameter / minor axis diameter) of 10.7. The S content was 440 ppm.

前記へマタイト粒子粉末の造粒物1kgを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、イオン交換水3lを直接還元炉に導入し、そのまま鉄粒子粉末を含有する水懸濁液として取り出した。 1 kg of the granulated product of the hematite particle powder was introduced into a fixed bed reducing apparatus, and reduced to 450 ° C. for 180 minutes until it was completely α-Fe while aerated with H 2 gas. Next, after switching to N 2 gas and allowing it to cool to room temperature, 3 l of ion-exchanged water was directly introduced into the reduction furnace and taken out as it was as an aqueous suspension containing iron particle powder.

その水懸濁液を連続式せん断式分散機 泡レスミキサー((株)美粒製)に入れ、周速21m/sで46分間分散処理し、固形分濃度21重量%の水懸濁液3.8kgを得た。   The aqueous suspension was put into a continuous shearing disperser, a foam-less mixer (manufactured by Miki Co., Ltd.), dispersed at a peripheral speed of 21 m / s for 46 minutes, and an aqueous suspension 3 having a solid concentration of 21% by weight. .8 kg was obtained.

この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、0.1mol/lの硫酸ニッケル水溶液680mlを羽根攪拌下にて添加し、さらに30分間攪拌混合した後、デカンテーションにて上澄み液の伝導度が100μS/cm以下になるまで水洗して、固形分濃度25重量%の浄化剤3.2kgとした(浄化剤2とする)。   This aqueous suspension was transferred to a stainless steel beaker equipped with a baffle, and 680 ml of a 0.1 mol / l nickel sulfate aqueous solution was added under blade stirring, and further stirred and mixed for 30 minutes, and then the supernatant liquid was transferred by decantation. It was washed with water until the degree became 100 μS / cm or less to obtain 3.2 kg of a purification agent having a solid content concentration of 25% by weight (referred to as purification agent 2).

得られた浄化剤2中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.10μmであって軸比が1.3であった。   The iron composite particles contained in the obtained cleaning agent 2 were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a rice grain shape and an average major axis diameter of 0.10 μm. The axial ratio was 1.3.

次いで、濾過し、35℃で3時間、大気中で乾燥し、浄化処理用鉄複合粒子粉末2を得た。   Subsequently, it filtered, and it dried in air | atmosphere at 35 degreeC for 3 hours, and obtained the iron composite particle powder 2 for a purification process.

ここに得た用鉄複合粒子粉末2は、α−Feを主体としており、飽和磁化値130Am/kg(130emu/g)、BET比表面積26m/g、結晶子サイズ298Å、Fe含有量は82.5重量%、Al含有量は0.22重量%、S含有量は530ppm、Ni含有量0.5重量%であった。X線回折の結果、α−FeのD110とFeのD311との強度比D110/(D110+D311)は0.82であった。 The obtained iron composite particle powder 2 is mainly composed of α-Fe, a saturation magnetization value of 130 Am 2 / kg (130 emu / g), a BET specific surface area of 26 m 2 / g, a crystallite size of 298Å, and an Fe content of The content was 82.5 wt%, the Al content was 0.22 wt%, the S content was 530 ppm, and the Ni content was 0.5 wt%. As a result of X-ray diffraction, the intensity ratio D 110 / (D 110 + D 311 ) between D 110 of α-Fe and D 311 of Fe 3 O 4 was 0.82.

<模擬地下水・廃水中トリクロロエチレンの浄化処理評価結果>
前記評価方法によれば、前記浄化剤2を用いた場合のトリクロロエチレン浄化における見掛けの反応速度定数は0.005h−1であった。
<Evaluation results of purification treatment of simulated groundwater and wastewater trichlorethylene>
According to the evaluation method, the apparent reaction rate constant in trichlorethylene purification when the purification agent 2 was used was 0.005 h −1 .

<浄化処理用鉄複合粒子粉末3及び浄化剤3の製造>
毎秒3.4cmの割合でNガスを流すことによって非酸化性雰囲気に保持された反応容器中に、1.16mol/lのNaCO水溶液704lを添加した後、Fe2+1.35mol/lを含む硫酸第一鉄水溶液296lを添加、混合(NaCO量は、Feに対し2.0倍当量に該当する。)し、温度47℃においてFeCOを生成させた。
<Manufacture of iron composite particle powder 3 for purification treatment and purification agent 3>
Into a reaction vessel maintained in a non-oxidizing atmosphere by flowing N 2 gas at a rate of 3.4 cm per second, 704 l of a 1.16 mol / l Na 2 CO 3 aqueous solution was added, and then Fe 2+ 1.35 mol / l. 296 l of ferrous sulfate aqueous solution containing l was added and mixed (the amount of Na 2 CO 3 corresponds to 2.0 times equivalent to Fe), and FeCO 3 was produced at a temperature of 47 ° C.

ここに得たFeCOを含む水溶液中に、引き続き、Nガスを毎秒3.4cmの割合で吹き込みながら、温度47℃で70分間保持した後、当該FeCOを含む水溶液中に、温度47℃において毎秒2.8cmの空気を5.0時間通気してゲータイト粒子を生成させた。なお、空気通気中におけるpHは8.5〜9.5であった。 In an aqueous solution containing FeCO 3 obtained here, subsequently, while blowing N 2 gas at a rate per second 3.4cm, it was held 70 minutes at temperature 47 ° C., in an aqueous solution containing the FeCO 3, temperature 47 ° C. At 2.8 cm, air of 2.8 cm / second was aerated for 5.0 hours to generate goethite particles. The pH during air ventilation was 8.5 to 9.5.

ここに得たゲータイト粒子を含有する懸濁液に、Al3+0.3mol/lを含む硫酸Al水溶液20lを添加、十分撹拌した後フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 To the suspension containing the goethite particles obtained here, 20 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added, stirred well, then washed with a filter press, and the resulting press cake was compressed with a compression molding machine. It was extruded using a molding plate having a pore diameter of 4 mm and dried at 120 ° C. to obtain a granulated product of goethite particles.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.30μm、軸比(長軸径/短軸径)12.5の紡錘状を呈した粒子であった。BET比表面積は85m/g、Al含有量は0.13重量%、S含有量は400ppmであった。 The goethite particles contained in the granulated product thus obtained were particles having a spindle shape with an average major axis diameter of 0.30 μm and an axial ratio (major axis diameter / minor axis diameter) of 12.5. The BET specific surface area was 85 m 2 / g, the Al content was 0.13% by weight, and the S content was 400 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子とし乾式粉砕する。その後水に邂逅し70%硫酸を10ml/kgの割合で添加し攪拌する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。   The granulated product is heated at 330 ° C. to form hematite particles and dry pulverized. Then, it is poured into water and 70% sulfuric acid is added at a rate of 10 ml / kg and stirred. Thereafter, it was dehydrated into a press cake, extruded using a molding plate having a pore diameter of 3 mm using a compression molding machine, and dried at 120 ° C. to obtain a granulated product of hematite particles.

ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.24μm、軸比(長軸径/短軸径)10.7の紡錘形を呈した粒子であった。S含有量は3300ppmであった。   The hematite particle powder constituting the granulated product obtained here was a spindle-shaped particle having an average major axis diameter of 0.24 μm and an axial ratio (major axis diameter / minor axis diameter) of 10.7. The S content was 3300 ppm.

前記へマタイト粒子粉末の造粒物1kgを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、イオン交換水3lを直接還元炉に導入し、そのまま鉄粒子粉末を含有する水懸濁液として取り出した。 1 kg of the granulated product of the hematite particle powder was introduced into a fixed bed reducing apparatus, and reduced to 450 ° C. for 180 minutes until it was completely α-Fe while aerated with H 2 gas. Next, after switching to N 2 gas and allowing it to cool to room temperature, 3 l of ion-exchanged water was directly introduced into the reduction furnace and taken out as it was as an aqueous suspension containing iron particle powder.

その水懸濁液を連続式せん断式分散機 泡レスミキサー((株)美粒製)に入れ、周速21m/sで46分間分散処理し、固形分濃度21重量%の浄化剤3.8kgを得た(浄化剤3とする)。   The aqueous suspension was put into a continuous shearing disperser, a foam-less mixer (manufactured by Miki Co., Ltd.), dispersed for 46 minutes at a peripheral speed of 21 m / s, and 3.8 kg of a cleaning agent having a solid content concentration of 21% by weight. (Referred to as purification agent 3).

得られた浄化剤3中に含有する鉄複合粒子は、走査型電子顕微鏡(30000倍)で観察した結果、一次粒子の粒子形状は米粒状であって平均長軸径が0.09μmであって軸比が1.4であった。   The iron composite particles contained in the obtained purification agent 3 were observed with a scanning electron microscope (30000 times). As a result, the primary particles had a rice grain shape and an average major axis diameter of 0.09 μm. The axial ratio was 1.4.

次いで、濾過し、35℃で3時間、大気中で乾燥し、浄化処理用鉄複合粒子粉末3を得た。   Subsequently, it filtered, and it dried in air | atmosphere for 3 hours at 35 degreeC, and obtained the iron composite particle powder 3 for a purification process.

ここに得た用鉄複合粒子粉末3は、α−Feを主体としており、飽和磁化値134Am/kg(134emu/g)、BET比表面積27m/g、結晶子サイズ295Å、Fe含有量は83.0重量%、Al含有量は0.22重量%、S含有量は4000ppmであった。X線回折の結果、α−FeのD110とFeのD311との強度比D110/(D110+D311)は0.84であった。 The obtained iron composite particle powder 3 is mainly composed of α-Fe, has a saturation magnetization value of 134 Am 2 / kg (134 emu / g), a BET specific surface area of 27 m 2 / g, a crystallite size of 295 mm, and an Fe content of The content was 83.0 wt%, the Al content was 0.22 wt%, and the S content was 4000 ppm. As a result of X-ray diffraction, the intensity ratio D 110 / (D 110 + D 311 ) between D 110 of α-Fe and D 311 of Fe 3 O 4 was 0.84.

<模擬地下水・廃水中トリクロロエチレンの浄化処理評価結果>
前記評価方法によれば、前記浄化剤3を0.075g(0.25g/l)添加した場合のトリクロロエチレン浄化における見掛けの反応速度定数は0.001h−1以下であった。
<Evaluation results of purification treatment of simulated groundwater and wastewater trichlorethylene>
According to the evaluation method, the apparent reaction rate constant in the purification of trichlorethylene when 0.075 g (0.25 g / l) of the purification agent 3 was added was 0.001 h −1 or less.

<浄化処理用鉄複合粒子粉末4及び浄化剤4の製造>
Fe2+1.50mol/lを含む硫酸第一鉄水溶液12.8lと0.44NのNaOH水溶液30.2l(硫酸第一鉄水溶液中のFe2+に対し0.35当量に該当する。)とを混合し、pH6.7、温度38℃においてFe(OH)を含む硫酸第一鉄水溶液の生成を行なった。次いで、Fe(OH)を含む硫酸第一鉄水溶液に温度40℃において毎分130lの空気を3.0時間通気してゲータイト核粒子を生成させた。
<Production of iron composite particle powder 4 and purification agent 4 for purification treatment>
12.8 l of ferrous sulfate aqueous solution containing Fe 2+ 1.50 mol / l and 30.2 l of 0.44N NaOH aqueous solution (corresponding to 0.35 equivalent to Fe 2+ in ferrous sulfate aqueous solution). After mixing, a ferrous sulfate aqueous solution containing Fe (OH) 2 was produced at pH 6.7 and a temperature of 38 ° C. Next, 130 l of air per minute was passed through a ferrous sulfate aqueous solution containing Fe (OH) 2 at a temperature of 40 ° C. for 3.0 hours to generate goethite core particles.

前記ゲータイト核粒子を含む硫酸第一鉄水溶液(ゲータイト核粒子の存在量は生成ゲータイト粒子に対し35mol%に該当する。)に、5.4NのNaCO水溶液7.0l(残存硫酸第一鉄水溶液中のFe2+に対し1.5当量に該当する。)を加え、pH9.4、温度42℃において毎分130lの空気を4時間通気してゲータイト粒子粉末を生成させた。ここに得たゲータイト粒子を含有する懸濁液にAl3+0.3mol/lを含む硫酸Al水溶液を0.96lを添加、十分撹拌した後をフィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 The ferrous sulfate aqueous solution containing the goethite core particles (the amount of the goethite core particles corresponds to 35 mol% with respect to the produced goethite particles) was added to 7.0 l of 5.4N Na 2 CO 3 aqueous solution (residual ferrous sulfate). 1.5 equivalents of Fe 2+ in the aqueous iron solution) was added, and 130 liters of air was aerated for 4 hours at a pH of 9.4 and a temperature of 42 ° C. to produce goethite particle powder. 0.96 l of an aqueous solution of Al sulfate containing Al 3+ 0.3 mol / l was added to the suspension containing the goethite particles obtained here, and after sufficient stirring, the mixture was washed with a filter press and the resulting press cake was compressed. Extrusion molding was performed with a molding plate having a hole diameter of 4 mm using a molding machine and dried at 120 ° C. to obtain a granulated product of goethite particles.

ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.33μm、軸比(長軸径/短軸径)25.0の針状を呈した粒子であった。BET比表面積は70m/g、Al含有量は0.42重量%、S含有量は4000ppmであった。 The goethite particle powder contained in the granulated product thus obtained was a needle-like particle having an average major axis diameter of 0.33 μm and an axial ratio (major axis diameter / minor axis diameter) of 25.0. The BET specific surface area was 70 m 2 / g, the Al content was 0.42% by weight, and the S content was 4000 ppm.

前記造粒物を330℃で加熱しヘマタイト粒子粉末2の造粒物とした。ここに得た造粒物を構成するヘマタイト粒子粉末1は、平均長軸径0.25μm、軸比(長軸径/短軸径)21.4の針状を呈した粒子であった。S含有量は4500ppmであった。 The granulated product was heated at 330 ° C. to obtain a granulated product of hematite particle powder 2. The hematite particle powder 1 constituting the obtained granulated product was a needle-like particle having an average major axis diameter of 0.25 μm and an axial ratio (major axis diameter / minor axis diameter) of 21.4. The S content was 4500 ppm.

前記へマタイト粒子粉末の造粒物1kgを固定層還元装置に導入し、Hガスを通気させながら、450℃で180分間、完全にα−Feとなるまで還元した。次に、Nガスに切替え室温まで冷却させた後、窒素ガスに切り替えて90℃まで冷却し、次いで、酸素分圧を徐々に増加させて空気と同じ比率として粒子表面に安定な酸化被膜を形成し、浄化処理用鉄複合粒子粉末4を得た。 1 kg of the granulated product of the hematite particle powder was introduced into a fixed bed reducing apparatus, and reduced to 450 ° C. for 180 minutes until it was completely α-Fe while aerated with H 2 gas. Next, after switching to N 2 gas and cooling to room temperature, switching to nitrogen gas and cooling to 90 ° C., then gradually increasing the oxygen partial pressure to form a stable oxide film on the particle surface at the same ratio as air The resulting iron composite particle powder 4 for purification treatment was obtained.

ここに得た鉄複合粒子粉末は、α−Feを主体としており、飽和磁化値155Am/kg(155emu/g)、BET比表面積20m/g、結晶子サイズ298Å、Fe含有量は85.9重量%、Al含有量は0.68重量%、S含有量は5500ppmであった。X線回折の結果、α−FeとFeとが存在することが確認された。そのD110(α−Fe)とD311(Fe)との強度比D110/(D110+D311)は0.88であった。 The iron composite particle powder obtained here is mainly composed of α-Fe, has a saturation magnetization value of 155 Am 2 / kg (155 emu / g), a BET specific surface area of 20 m 2 / g, a crystallite size of 298Å, and an Fe content of 85. 9% by weight, Al content was 0.68% by weight, and S content was 5500 ppm. As a result of X-ray diffraction, it was confirmed that α-Fe and Fe 3 O 4 were present. The intensity ratio D 110 / (D 110 + D 311 ) between D 110 (α-Fe) and D 311 (Fe 3 O 4 ) was 0.88.

前記鉄複合粒子4 1.0kgと水3.1kgをメディア式分散機SC−MILL(日本コークス(株)製)に入れ、周速12m/s(メディアφ0.5ジルコニアビーズ)で5分間分散処理し、固形分濃度24.4重量%の鉄複合粒子含有水懸濁液とした。   1.0 kg of the iron composite particles 4 and 3.1 kg of water are placed in a media type dispersing machine SC-MILL (manufactured by Nippon Coke Co., Ltd.) and dispersed at a peripheral speed of 12 m / s (media φ0.5 zirconia beads) for 5 minutes. Then, an aqueous suspension containing iron composite particles having a solid content concentration of 24.4% by weight was obtained.

この水懸濁液をバッフルを取り付けたステンレスビーカーに移し、0.125mol/lの硫酸銅水溶液1lを羽根攪拌下にて添加し、さらに30分間攪拌混合した後、さらに、25%ポリマレイン酸水溶液(日本油脂(株)製ポリスターOM)を680g添加して10分間羽根攪拌することにより、固形分濃度17重量%の浄化剤5.8kgとした(浄化剤4とする)。   This aqueous suspension was transferred to a stainless beaker equipped with a baffle, and 1 liter of 0.125 mol / l copper sulfate aqueous solution was added under blade stirring, and further stirred and mixed for 30 minutes, and then further 25% aqueous polymaleic acid solution ( By adding 680 g of Polystar OM manufactured by Nippon Oil & Fats Co., Ltd. and stirring with a blade for 10 minutes, a purification agent having a solid content concentration of 17% by weight was made 5.8 kg (referred to as a purification agent 4).

<模擬地下水・廃水中トリクロロエチレンの浄化処理評価結果>
前記評価方法によれば、前記浄化剤4を0.075g(0.25g/l)添加した場合のトリクロロエチレン浄化における見掛けの反応速度定数は0.030h−1であった。
<Evaluation results of purification treatment of simulated groundwater and wastewater trichlorethylene>
According to the evaluation method, the apparent reaction rate constant in the purification of trichlorethylene when 0.075 g (0.25 g / l) of the cleaning agent 4 was added was 0.030 h −1 .

前述したとおり、Niを担持した鉄複合粒子粉末を用いた浄化剤1と2及びCuを担持した鉄複合粒子粉末を用いた浄化剤4では、反応速度定数が0.002h−1以上であり、Ni及びCuを担持していない浄化剤3に対して、浄化性能に優れることが確認された。 As described above, in the cleaning agents 1 and 2 using the iron composite particle powder supporting Ni and the cleaning agent 4 using the iron composite particle powder supporting Cu, the reaction rate constant is 0.002 h −1 or more, It was confirmed that the purification agent 3 that does not carry Ni and Cu is excellent in purification performance.

本発明に係る浄化処理用鉄複合粒子粉末は、有機ハロゲン化合物を効率よく経済的に分解できるので、有機ハロゲン化合物によって汚染された土壌・地下水の浄化剤として好適である。

The iron composite particle powder for purification treatment according to the present invention can decompose organic halogen compounds efficiently and economically and is therefore suitable as a purification agent for soil and groundwater contaminated with organic halogen compounds.

Claims (7)

有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化処理に用いるα−Feとマグネタイトとからなる鉄複合粒子粉末であって、鉄複合粒子粉末のX線回折スペクトルにおいてα−Feの(110)面の回折強度D110とマグネタイトの(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30〜0.95であり、Al含有量が0.10〜1.50重量%であり、S含有量が3500〜7000ppmであり、Ni及び/又はCu含有量が0.1〜3.0重量%であることを特徴とする土壌・地下水・廃水の浄化処理用鉄複合粒子粉末。 An iron composite particle powder composed of α-Fe and magnetite used for purification treatment of soil, groundwater, and wastewater contaminated with an organic halogen compound, and α-Fe (110) in the X-ray diffraction spectrum of the iron composite particle powder intensity ratio between the diffraction intensity D 311 of diffraction intensity D 110 and magnetite (311) plane of the surface (D 110 / (D 311 + D 110)) is from 0.30 to .95, Al content is 0. Soil / groundwater / wastewater characterized by 10 to 1.50% by weight, S content of 3500 to 7000 ppm, and Ni and / or Cu content of 0.1 to 3.0% by weight Iron composite particle powder for purification treatment. 前記鉄複合粒子粉末におけるNi及び/又はCuが、粒子表面近傍に金属状態で被覆・担持されている請求項1記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末。 2. The iron composite particle powder for purification treatment of soil, groundwater, and wastewater according to claim 1, wherein Ni and / or Cu in the iron composite particle powder is coated and supported in a metallic state in the vicinity of the particle surface. 平均粒子径が0.05〜0.50μmである請求項1又は2記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末。 The iron composite particle powder for purification treatment of soil, groundwater and wastewater according to claim 1 or 2, having an average particle size of 0.05 to 0.50 µm. 請求項1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末を有効成分として含有する水懸濁液からなる土壌・地下水・廃水の浄化剤。 A soil / groundwater / wastewater purification agent comprising a water suspension containing the iron composite particle powder for purification treatment of soil / groundwater / wastewater according to any one of claims 1 to 3 as an active ingredient. 請求項1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末と、ポリアクリル酸、ポリマレイン酸、ポリアスパラギン酸又はそれらの塩から選ばれる一種以上の添加剤を有効成分として含有する水懸濁液からなる土壌・地下水・廃水の浄化剤。 An iron composite particle powder for purification treatment of soil, groundwater and wastewater according to any one of claims 1 to 3, and one or more additives selected from polyacrylic acid, polymaleic acid, polyaspartic acid or salts thereof are effective. A soil, groundwater and wastewater purification agent consisting of a water suspension contained as an ingredient. 請求項1乃至3のいずれかに記載の土壌・地下水・廃水の浄化処理用鉄複合粒子粉末又は請求項4又は5記載の土壌・地下水・廃水の浄化剤と有機ハロゲン化合物で汚染された土壌・地下水・廃水とを混合接触させることを特徴とする土壌・地下水・廃水の浄化処理方法。 Iron composite particle powder for purification treatment of soil, groundwater, wastewater according to any one of claims 1 to 3, or soil contaminated with a soil, groundwater, wastewater purification agent and organic halogen compound according to claim 4 or 5. A method for purifying soil, groundwater and wastewater, characterized by mixing and contacting groundwater and wastewater. 有機ハロゲン化合物で汚染された土壌・地下水に対して、原位置で、請求項4又は5記載の土壌・地下水・廃水の浄化剤を直接、注入することを特徴とする土壌・地下水・廃水の浄化処理方法。
Purification of soil / groundwater / wastewater characterized in that the soil / groundwater / wastewater purification agent according to claim 4 or 5 is directly injected into soil / groundwater contaminated with an organic halogen compound. Processing method.
JP2012079515A 2012-03-30 2012-03-30 Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound Pending JP2013208527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079515A JP2013208527A (en) 2012-03-30 2012-03-30 Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079515A JP2013208527A (en) 2012-03-30 2012-03-30 Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound

Publications (1)

Publication Number Publication Date
JP2013208527A true JP2013208527A (en) 2013-10-10

Family

ID=49526943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079515A Pending JP2013208527A (en) 2012-03-30 2012-03-30 Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound

Country Status (1)

Country Link
JP (1) JP2013208527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231291A (en) * 2021-11-11 2022-03-25 江西省生态环境科学研究与规划院 In-situ remediation medicament and method for remedying copper-pyrethroid pesticide composite contaminated soil
CN114904904A (en) * 2022-02-23 2022-08-16 生态环境部南京环境科学研究所 In-situ oxidation remediation method for removing and controlling peculiar smell of pesticide-polluted soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231291A (en) * 2021-11-11 2022-03-25 江西省生态环境科学研究与规划院 In-situ remediation medicament and method for remedying copper-pyrethroid pesticide composite contaminated soil
CN114904904A (en) * 2022-02-23 2022-08-16 生态环境部南京环境科学研究所 In-situ oxidation remediation method for removing and controlling peculiar smell of pesticide-polluted soil
CN114904904B (en) * 2022-02-23 2023-02-03 生态环境部南京环境科学研究所 In-situ oxidation remediation method for removing and controlling peculiar smell of pesticide-polluted soil

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
EP1661864B1 (en) Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same
US20060081811A1 (en) Iron composite particles for purifying soil or ground water, purifying agent containing the iron composite particles, and method for purifying soil or ground water
US20060070958A1 (en) Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same
KR101107450B1 (en) Iron composite particles for purifying soil or ground water, process for producing the same, purifying agent containing the same, process for producing the purifying agent and method for purifying soil or ground water
JP4258622B2 (en) Purification agent for soil and groundwater contaminated with organic halogen compounds, its production method, and purification method for soil and groundwater contaminated with organic halogen compounds
JP2012210559A (en) Clarifying agent for clarification treatment of soil/ground water, method for producing the same, method for transporting the same and method for clarification treatment of soil/ground water
CN101181660A (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
JP4433173B2 (en) Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP7300656B2 (en) Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method
JP5479006B2 (en) Soil and groundwater purification methods
JP4479902B2 (en) Iron composite particle powder for purification treatment of waste water, its production method, purification agent containing the iron composite particle powder, its production method and waste water purification treatment method
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
JP4258623B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
JP4786936B2 (en) Organohalogen compound treatment material
JP2008272644A (en) Iron powder for decomposing organic chlorine compounds and method of detoxifying using the same
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water
JP2003230876A (en) Iron composite particle powder for cleaning organic halogen compound-containing soil and underground water, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method for cleaning organic halogen compound-containing soil and underground water
JP2011104462A (en) Detoxifying agent for halogenated organic compound, method for producing the agent and detoxifying method using the agent