JP2002020806A - Method for producing iron powder for removing contamination - Google Patents

Method for producing iron powder for removing contamination

Info

Publication number
JP2002020806A
JP2002020806A JP2000202191A JP2000202191A JP2002020806A JP 2002020806 A JP2002020806 A JP 2002020806A JP 2000202191 A JP2000202191 A JP 2000202191A JP 2000202191 A JP2000202191 A JP 2000202191A JP 2002020806 A JP2002020806 A JP 2002020806A
Authority
JP
Japan
Prior art keywords
iron
iron powder
powder
purification
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000202191A
Other languages
Japanese (ja)
Inventor
Hiroki Nakamaru
裕樹 中丸
Satoshi Uenosono
聡 上ノ薗
Akio Sonobe
秋夫 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000202191A priority Critical patent/JP2002020806A/en
Publication of JP2002020806A publication Critical patent/JP2002020806A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the optimum method in terms of production cost and contamination removing performance in a method in which a halogen-containing organic contaminant is brought into reaction with iron to reductively dehalogenate and detoxicate the same. SOLUTION: In ferrous powder metallurgy, ferrous waste such as iron powder obtainable by pulverizing a green compact below standards produced in compacting and iron powder leaked-out to the circumference of a die at the time of compacting which contain, by mass, 0.01 to 1.5% graphite and/or 0.01 to 4.0% nickel is subjected to heating treatment to produce the iron powder for removing contamination.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含ハロゲン有機汚
染物質による地下水や土壌の汚染を浄化するために用い
られる汚染浄化用鉄粉を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing iron powder for purifying pollution used for purifying groundwater and soil by halogen-containing organic pollutants.

【0002】[0002]

【従来の技術】近年、半導体工場、金属加工工場等にお
いて脱脂溶剤として、以前から多量に使用され、使用
後、排出され、投棄されてきたトリクロロエチレン等の
有機塩素系化合物等による地下水や土壌の汚染が、大き
な社会問題となっている。従来、これらの汚染を解決す
る方法として、地下水については、汚染された地下水を
土壌外に抽出して無害化処埋する真空抽出法や揚水曝気
法等があり、また、土壌については、汚染された土壌を
掘削して加熱処理によって無害化する熱脱着法や熱分解
法が知られており、更には、地下水中または土壌中の汚
染物質を分解して無害化する方法として、微生物を利用
したバイオレメディエーション法による浄化法が知られ
ている。
2. Description of the Related Art In recent years, groundwater and soil have been contaminated by organochlorine compounds such as trichloroethylene which have been used in large quantities as a degreasing solvent in semiconductor factories, metal processing factories, etc., and have been discharged and dumped after use. However, it has become a major social problem. Conventionally, as a method of solving these pollutions, there are a vacuum extraction method, a pumping aeration method, and the like, in which contaminated groundwater is extracted outside the soil and detoxified and treated, and the soil is contaminated. Thermal desorption and pyrolysis methods that excavate soil and make it harmless by heat treatment are known. Furthermore, microorganisms are used as a method to decompose and detoxify contaminants in groundwater or soil. A purification method using a bioremediation method is known.

【0003】しかしながら、真空抽出法、揚水曝気法等
の方法は、汚染物質を含む地下水や土壌ガスを地中より
揚水・抽出した後、汚染物質を除去したり分解したりす
るために活性炭や分解剤を使用するに当たり地上に設備
を設け、更に、発生した汚染物質に無害化処埋を施すな
ど、高コストな別途処理を必要とする。また、掘削土壌
を高温で熱分解する方法は、土壌を加熱処理する大がか
りな設備が必要であり、かつ、土壌粒子自体が熱により
変質し、例えば、生物を生息させるという土壌の機能が
著しく損なわれるため、処理後の土壌の再利用が難し
い。更に、バイオレメディエーション法は、土壌特性の
違いから、すべての土壌に適用できるものではなく、ま
た、適用できる場合でも、微生物作用によるため反応が
遅く、長期の処理期間を必要とする。
[0003] However, methods such as a vacuum extraction method and a pumping aeration method use activated carbon or decomposition to remove or decompose pollutants after pumping and extracting groundwater or soil gas containing pollutants from the ground. In order to use the agent, high-cost separate treatment is required, such as installing equipment on the ground and detoxifying and embedding generated contaminants. In addition, the method of pyrolyzing excavated soil at a high temperature requires a large-scale facility for heat-treating the soil, and the soil particles themselves are deteriorated by heat, and for example, the function of the soil to inhabit living organisms is significantly impaired. Therefore, it is difficult to reuse the soil after treatment. Furthermore, the bioremediation method cannot be applied to all soils due to differences in soil characteristics, and even when applicable, the reaction is slow due to the action of microorganisms and requires a long treatment period.

【0004】上記のような従来の地下水や土壌の汚染対
策の問題点を克服するべく、含ハロゲン有機汚染物質を
鉄と反応させて、還元的に脱ハロゲン化し、無害化する
方法が種々提案されており、注目されつつある。例え
ば、特表平5−501520号公報には、地下水の流路
に溝を掘り、粒状、切片状、繊維状等の形状の鉄を充填
し、含ハロゲン有機汚染物質と接触させることで、還元
的に脱ハロゲン化し、無害化する方法が記載されてい
る。ここで用いられる鉄は、特別に調整される必要はな
く、金属切断過程で生ずる廃棄物や、鉄鋳造過程で出て
くるような金属粉が使用される。また、特表平6−50
6631号公報には、原理的には特表平5−50152
0号公報の方法と同様であるが、金属鉄に活性炭を混合
して用いる方法が記載されている。これらは、いずれも
飽和帯を流れる地下水中の汚染物質を浄化する方法であ
る。
In order to overcome the above-mentioned problems of the conventional countermeasures against pollution of groundwater and soil, various methods have been proposed in which halogen-containing organic contaminants are reacted with iron to reductively dehalogenate and detoxify them. And is gaining attention. For example, Japanese Unexamined Patent Publication No. Hei 5-501520 discloses that a groove is formed in a flow path of groundwater, and iron having a granular shape, a piece shape, a fibrous shape, or the like is filled and brought into contact with a halogen-containing organic pollutant. It describes a method of dehalogenating and detoxifying it. The iron used here does not need to be specially adjusted, and wastes generated in a metal cutting process and metal powders generated in an iron casting process are used. In addition, Tokuhyo Heihei 6-50
No. 6631, in principle, JP-A-5-50152
The method is similar to the method of Japanese Patent Publication No. 0, but uses a method in which activated carbon is mixed with metallic iron. These are all methods of purifying pollutants in groundwater flowing in a saturated zone.

【0005】一方、特開平11−235577号公報に
は、地下水水位以上の不飽和帯の土壌や、掘削後の土壌
に含まれる有機塩素系化合物を鉄粉による還元作用で無
害化する方法が記載されている。この方法に用いられる
鉄粉は、0. 1%以上のCを含有し、0. 05m2 /g
以上の比表面積を有するとともに、50%以上は150
μmのふるいを通過する粒度を有する必要があり、海綿
状の鉄鉱石還元鉄粉などがよいとされる。
On the other hand, Japanese Patent Application Laid-Open No. 11-235577 discloses a method of detoxifying an organic chlorine-based compound contained in an unsaturated zone soil having a groundwater level or higher or a soil after excavation by a reducing action with iron powder. Have been. The iron powder used in this method contains 0.1% or more of C and 0.05 m 2 / g.
Having a specific surface area of at least 50%
It must have a particle size that passes through a sieve of μm, and sponge-like reduced iron ore powder is considered to be good.

【0006】[0006]

【発明が解決しようとする課題】上記のような含ハロゲ
ン有機汚染物質を鉄と反応させて、還元的に脱ハロゲン
化し無害化する方法は、いずれも特にコストパフォーマ
ンスの点で優れており、従来の地下水・土壌汚染対策と
一線を画するものである。しかしながら、これらの方法
において使用される鉄材は、必ずしもその用途に最適化
されたものではないという問題点がある。即ち、特表平
5−501520号公報の方法に用いられる鉄は金属切
断過程で生ずる廃棄物や、鉄鋳造過程で出てくるような
金属粉であり、これらは原料コストという観点からは優
れるが、含ハロゲン有機汚染物質との反応速度の点で不
十分である。また、特表平6−506631号公報の方
法は、鉄材に高価な活性炭を混合して用いることによ
り、鉄材が低コストであるというメリットが失われてい
る。更に、特開平11−235577号公報の方法で用
いられる鉄粉は、通常の鉱石還元法により得られる海綿
鉄粉であり、含ハロゲン有機汚染物質の脱ハロゲン化に
最適化されたものではないことから、反応性の面で不十
分であるとともに、鉄粉の製造コストという観点から、
廃棄物を用いる方法に比べて明らかに劣るものである。
したがって、含ハロゲン有機汚染物質を鉄と反応させ
て、還元的に脱ハロゲン化し無害化する方法において、
製造コストおよび汚染浄化能力の点で最適な方法が望ま
れている。
The above-mentioned methods of reacting a halogen-containing organic contaminant with iron to reductively dehalogenate and detoxify them are all particularly excellent in cost performance. And groundwater / soil pollution countermeasures. However, there is a problem that the iron material used in these methods is not necessarily optimized for the intended use. That is, iron used in the method disclosed in Japanese Patent Publication No. 5-501520 is waste generated in the metal cutting process and metal powder generated in the iron casting process. However, the reaction rate with halogen-containing organic contaminants is insufficient. In addition, the method disclosed in Japanese Patent Publication No. 6-506631 loses the merit that the cost of the iron material is low by mixing the iron material with expensive activated carbon. Furthermore, the iron powder used in the method of JP-A-11-235577 is sponge iron powder obtained by a usual ore reduction method, and is not optimized for dehalogenation of halogen-containing organic pollutants. From the point of view of the production cost of iron powder,
It is clearly inferior to the method using waste.
Therefore, in the method of reacting a halogen-containing organic contaminant with iron to reductively dehalogenate and render it harmless,
There is a need for an optimal method in terms of manufacturing cost and pollution remediation ability.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究を行い、本発明を完成した。即ち、
本発明は、鉄系粉末冶金において発生する鉄系廃棄物を
加熱処理することにより汚染浄化用鉄粉を製造すること
を特徴とする汚染浄化用鉄粉の製造方法を提供する。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems, and completed the present invention. That is,
The present invention provides a method for producing iron powder for contamination purification, which comprises producing iron powder for contamination purification by heating iron-based waste generated in iron-based powder metallurgy.

【0008】前記鉄系廃棄物が、プレス成形において発
生する規格外の圧粉体、該圧粉体を粉砕して得られる鉄
粉、およびプレス成形時に金型周囲に漏れ出した鉄粉か
らなる群より選ばれる少なくとも1種を含有することを
特徴とする前記いずれかの汚染浄化用鉄粉の製造方法を
提供する。
[0008] The iron-based waste comprises non-standard green compacts generated in press molding, iron powder obtained by pulverizing the green compacts, and iron powder leaking around the mold during press molding. The present invention provides a method for producing any of the above-mentioned iron powder for purification of contamination, comprising at least one selected from the group consisting of:

【0009】前記鉄系廃棄物が、黒鉛:0.01〜1.
5質量%、および/または、ニッケル:0.01〜4.
0質量%を含有する前記いずれかの汚染浄化用鉄粉の製
造方法を提供する。
The iron-based waste is graphite: 0.01-1.
5% by mass and / or nickel: 0.01 to 4.
The present invention provides a method for producing any of the above-mentioned iron powder for purification of contamination, which contains 0% by mass.

【0010】前記加熱処理が、不活性ガス雰囲気中、3
00〜900℃で行われる前記いずれかの汚染浄化用鉄
粉の製造方法を提供する。
The heat treatment is performed in an inert gas atmosphere,
The present invention provides a method for producing the iron powder for purification of any of the above, which is performed at 00 to 900 ° C.

【0011】更に粒度調整して、汚染浄化用鉄粉のふる
い分級法による粒度を10〜3000μmとする前記い
ずれかの汚染浄化用鉄粉の製造方法を提供する。
[0011] The present invention provides a method for producing any of the above-mentioned iron powders for purification, wherein the particle diameters of the iron powders for contamination purification are adjusted to 10 to 3000 µm by a sieve classification method.

【0012】また、本発明は、前記いずれかの汚染浄化
用鉄粉の製造方法により製造される汚染浄化用鉄粉を提
供する。
Further, the present invention provides an iron powder for purification produced by any one of the above-mentioned methods for producing iron powder for purification.

【0013】[0013]

【発明の実施の形態】初めに、鉄系粉末冶金において発
生する鉄系廃棄物について説明する。鉄系粉末冶金は、
鉄粉を混合し、これを金型に充填し、プレス成形して得
た圧粉体を加熱焼結して製品とする技術である。ここ
で、鉄系粉末冶金によって製造される金属製品は、一般
に厳格な寸法精度を要求されるものが多く、プレス成形
の段階で、寸法精度の点において数%程度の規格外品が
発生するのは避けられないのが現状である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, iron-based waste generated in iron-based powder metallurgy will be described. Iron-based powder metallurgy
This is a technique in which iron powder is mixed, the mixture is filled in a mold, and a green compact obtained by press molding is heated and sintered to produce a product. Here, many metal products manufactured by iron-based powder metallurgy generally require strict dimensional accuracy, and in the stage of press forming, non-standard products of about several percent in terms of dimensional accuracy are generated. Is inevitable at present.

【0014】このような規格外品は、まだ加熱焼結され
ていないため、粉砕して元の鉄粉と同等の粒度の鉄粉に
戻すこと自体はそれほど困難ではないが、産業廃棄物と
して処理されるのが通常である。この理由は、鉄系粉末
冶金においては、鉄粉製造メーカーから出荷された単一
規格の鉄粉がそのまま用いられるわけでなく、用途に応
じて様々な規格の鉄粉が混合されて用いられていること
にある。鉄粉の製造法には、酸化物還元法、水アトマイ
ズ法、カルボニル法等があり、同じ純鉄粉でもその製造
法によって、形状、組織、見掛け密度、圧縮性等の様々
な特性が異なる。また、鉄系粉末冶金では純鉄粉に黒鉛
を添加したものや、ニッケル、銅、モリブデン等を鉄粉
表面に拡散付着させたものなど、様々な成分のものが混
合されて使用されており、その混合の仕方も様々であ
る。更に、鉄粉としては、純鉄粉だけでなく、合金粉も
用いられる。したがって、鉄系粉末冶金のプレス成形に
おいて発生する規格外品は、たとえそこから鉄粉を回収
したとしても、種々の鉄粉を分離するなどして、再度、
鉄系粉末冶金用途に利用することは、実質的に不可能で
ある。そのため、産業廃棄物として処理されているので
ある。
Since such nonstandard products have not been heat-sintered yet, it is not so difficult to pulverize them back into iron powder having the same particle size as the original iron powder, but they are treated as industrial waste. It is usually done. The reason is that in iron-based powder metallurgy, iron powder of a single standard shipped from an iron powder manufacturer is not used as it is, but iron powder of various standards is mixed and used according to the application. Is to be. Iron powder production methods include an oxide reduction method, a water atomization method, a carbonyl method, and the like, and various properties such as shape, structure, apparent density, and compressibility of the same pure iron powder vary depending on the production method. In addition, in iron-based powder metallurgy, various components such as pure iron powder with graphite added, nickel, copper, molybdenum and the like diffused and adhered to the iron powder surface are mixed and used. There are various ways of mixing. Further, as the iron powder, not only pure iron powder but also alloy powder is used. Therefore, non-standard products generated in the press molding of iron-based powder metallurgy, even if iron powder is recovered therefrom, such as by separating various iron powder, again,
It is practically impossible to use it for iron-based powder metallurgy applications. Therefore, it is treated as industrial waste.

【0015】また、鉄系粉末冶金のプレス成形時に金型
周囲に漏れ出した鉄粉も、上述したのと同様の理由によ
り、産業廃棄物として処理されている。
[0015] Further, iron powder that has leaked out around the mold during press molding of iron-based powder metallurgy is also treated as industrial waste for the same reason as described above.

【0016】本発明者は、上述したような現状を踏ま
え、鉄系粉末冶金において発生する鉄系廃棄物は有用な
用途がなく安価で入手することができること、その中に
は黒鉛およびニッケルを含有する種々の鉄系廃棄物が含
まれていること、更にはプレス成形において発生する規
格外の圧粉体は、粉砕することにより容易に鉄粉に戻す
ことができることに着目して、汚染浄化への利用につい
て鋭意研究した結果、該鉄系廃棄物をそのまま汚染浄化
用に用いようとしても汚染浄化効果はほとんど発揮され
ないが、該鉄系廃棄物を加熱処理することにより、優れ
た効果を発揮する汚染浄化用鉄粉を得ることができるこ
とを見出し、本発明を完成したのである。
In view of the above-mentioned situation, the present inventor has found that iron-based waste generated in iron-based powder metallurgy has no useful use and can be obtained at low cost, and contains graphite and nickel. Focus on the fact that various types of iron-based waste are contained, and that non-standard green compacts generated during press molding can be easily returned to iron powder by grinding. As a result of diligent research on the use of iron, even if the iron-based waste is used for purification as it is, the pollution-purifying effect is hardly exhibited, but the heat-treated iron-based waste exhibits an excellent effect. The present inventors have found that iron powder for pollution purification can be obtained, and have completed the present invention.

【0017】以下、本発明の汚染浄化用鉄粉の製造方法
について、詳細に説明する。本発明の汚染浄化用鉄粉の
製造方法においては、原料として、鉄系粉末冶金におい
て発生する鉄系廃棄物を用いる。鉄系廃棄物としては、
上述したようなプレス成形において発生する規格外の圧
粉体、該圧粉体を粉砕して得られる鉄粉、およびプレス
成形時に金型周囲に漏れ出した鉄粉からなる群より選ば
れる少なくとも1種を含有するのが好ましい。これら
は、通常0. 5〜1. 5質量%前後の黒鉛を含有し、ニ
ッケルも一部含有するので、後述する鉄系廃棄物におけ
る黒鉛およびニッケルの含有量を好適範囲としやすいの
で好ましい。本発明に用いられる圧粉体は、プレス成形
後の規格外の圧粉体をそのまま用いることもできるが、
粉砕して得られる鉄粉を用いるのが好ましい。粉砕する
ことにより、後述するように、他の種類の鉄粉等と混合
して用いることが容易となるからである。圧粉体の粉砕
は、通常の鉄粉製造事業者であれば、新たな設備投資を
することなく、容易に行うことができる。このため、金
属切断過程で生ずる廃棄物や、鉄鋳造過程で出てくるよ
うな金属粉を使用する方法とほぼ同等の低コストの鉄粉
が得られるので、圧粉体を粉砕して得られる鉄粉は、本
発明に好適に用いられる。
Hereinafter, the method for producing the iron powder for purification of contamination of the present invention will be described in detail. In the method for producing iron powder for purification of contamination of the present invention, iron-based waste generated in iron-based powder metallurgy is used as a raw material. As iron-based waste,
At least one selected from the group consisting of non-standard green compacts generated in press molding as described above, iron powder obtained by pulverizing the green compact, and iron powder leaked around the mold during press molding. Preferably, it contains a species. These usually contain about 0.5 to 1.5% by mass of graphite and also partially contain nickel, so that the content of graphite and nickel in the iron-based waste described later is easily adjusted to a preferable range, and thus it is preferable. The green compact used in the present invention can be a non-standard green compact after press molding as it is,
It is preferable to use iron powder obtained by grinding. This is because by pulverization, as described later, it is easy to mix and use with other types of iron powder and the like. The pulverization of the green compact can be easily performed by a normal iron powder manufacturer without investing in new equipment. For this reason, waste generated in the metal cutting process and low-cost iron powder almost equivalent to a method using metal powder that appears in the iron casting process can be obtained. Iron powder is suitably used in the present invention.

【0018】圧粉体を粉砕して得られる鉄粉およびプレ
ス成形時に金型周囲に漏れ出した鉄粉の粒度(加熱処理
前粒度)は、ふるい分級法による粒度が10〜1000
μmであるのが好ましく、100〜300μmであるの
がより好ましい。鉄粉の粒度が10μm未満では、以降
の工程でのハンドリングが困難になる場合があり、10
00μmを超えると、その後の混合工程での黒鉛や合金
成分との均一性が損なわれる場合がある。粒度調整は、
ふるいによる分級などで行うことができる。
The particle size (particle size before heat treatment) of the iron powder obtained by pulverizing the green compact and the iron powder leaking around the mold at the time of press molding has a particle size of 10 to 1000 by a sieve classification method.
μm, more preferably 100 to 300 μm. If the particle size of the iron powder is less than 10 μm, it may be difficult to handle in the subsequent steps.
If it exceeds 00 μm, the uniformity with graphite and alloy components in the subsequent mixing step may be impaired. Particle size adjustment
The classification can be performed by sieving or the like.

【0019】本発明に用いられる鉄系廃棄物は、黒鉛お
よび/またはニッケルを含有するのが好ましく、これら
を表面に有するのがより好ましい。鉄系廃棄物の表面に
黒鉛が存在すると、含ハロゲン有機汚染物質を吸着する
とともにカソード反応サイトとして働くことによって、
還元的脱ハロゲン化反応を促進することができる。ま
た、鉄系廃棄物の表面にニッケルが存在するとニッケル
は水素発生触媒として働き、ニッケル表面で生成する水
素による還元反応が促進されることになる。これらの作
用の複合効果によって、表面に黒鉛およびニッケルを有
する鉄系廃棄物は、純粋な鉄系廃棄物に比べて、脱ハロ
ゲン化反応の反応速度が向上する。
The iron-based waste used in the present invention preferably contains graphite and / or nickel, and more preferably has these on the surface. When graphite is present on the surface of iron-based waste, it absorbs halogen-containing organic pollutants and acts as a cathode reaction site,
A reductive dehalogenation reaction can be promoted. Further, when nickel is present on the surface of the iron-based waste, nickel functions as a hydrogen generation catalyst, and the reduction reaction by hydrogen generated on the nickel surface is promoted. Due to the combined effect of these actions, the reaction rate of the dehalogenation reaction of iron-based waste having graphite and nickel on the surface is improved as compared with pure iron-based waste.

【0020】鉄系廃棄物における黒鉛の含有量は、0.
01〜1.5質量%であるのが好ましく、0. 1〜1.
0質量%であるのがより好ましい。黒鉛含有量が0.0
1質量%未満であると、反応速度定数が、黒鉛なしの鉄
系廃棄物と変わらなくなる場合があり、1.5質量%を
超えるとその効果が飽和する場合がある。鉄系廃棄物に
おけるニッケルの含有量は、0. 01〜4. 0質量%で
あるのが好ましく、0. 1〜1. 0質量%であるのがよ
り好ましい。ニッケル含有量が0.01質量%未満であ
ると、反応速度定数が、ニッケルなしの鉄系廃棄物と変
わらなくなる場合があり、4. 0質量%を超えると、そ
の効果が飽和する場合がある。また、現状の通常の粉末
冶金用部分合金化鉄粉のニッケル含有率は最大4〜5質
量%であるため、別途ニッケルを添加する必要がないの
で、コストパフォーマンスに優れる。
The graphite content in the iron-based waste is 0.1%.
It is preferably from 0.1 to 1.5% by mass, and from 0.1 to 1.
More preferably, it is 0% by mass. Graphite content is 0.0
If it is less than 1% by mass, the reaction rate constant may not be the same as that of an iron-based waste without graphite, and if it exceeds 1.5% by mass, the effect may be saturated. The content of nickel in the iron-based waste is preferably 0.01 to 4.0% by mass, and more preferably 0.1 to 1.0% by mass. If the nickel content is less than 0.01% by mass, the reaction rate constant may not be the same as that of an iron-based waste without nickel, and if it exceeds 4.0% by mass, the effect may be saturated. . In addition, since the nickel content of the current ordinary partially alloyed iron powder for powder metallurgy is a maximum of 4 to 5% by mass, there is no need to separately add nickel, so that the cost performance is excellent.

【0021】鉄系廃棄物における黒鉛およびニッケルの
含有量を上記の好適範囲にするには、上記好適範囲を満
足する鉄系廃棄物を単独で用いてもよく、種々の鉄系廃
棄物を混合して用いてもよい。上述したように、プレス
成形において発生する規格外の圧粉体、該圧粉体を粉砕
して得られる鉄粉、およびプレス成形時に金型周囲に漏
れ出した鉄粉は、通常0. 5〜1. 5質量%前後の黒鉛
を含有し、ニッケルも一部含有するので、鉄系廃棄物と
して、これらの単一種を単独で用いて上記範囲としても
よく、2種以上を混合して用いて上記範囲としてもよ
く、鉄系粉末冶金以外において発生する鉄系廃棄物、例
えば、鉄粉工場の鉄粉製造プロセスでの洩れ粉や集塵粉
と混合して上記範囲としてもよい。
In order to set the content of graphite and nickel in the iron-based waste within the above-mentioned preferred range, an iron-based waste satisfying the above-mentioned preferred range may be used alone, or various iron-based wastes may be mixed. You may use it. As described above, non-standard green compacts generated in press molding, iron powder obtained by pulverizing the green compact, and iron powder leaking around the mold during press molding are usually 0.5 to 0.5. Since it contains about 1.5% by mass of graphite and partly contains nickel, these single types may be used alone as iron-based waste in the above range, or a mixture of two or more types may be used. The above range may be adopted, or the above range may be mixed with iron-based waste generated other than iron-based powder metallurgy, for example, leakage powder or dust collection powder in an iron powder production process of an iron powder factory.

【0022】なお、鉄系廃棄物は、黒鉛およびニッケル
以外の成分(例えば、Cu)を含有してもよいが、有機
塩素化合物等を還元的に脱ハロゲン化するという目的に
対して顕著な影響は認められないため、その含有量は特
に限定されない。
The iron-based waste may contain components (eg, Cu) other than graphite and nickel, but has a remarkable effect on the purpose of reductively dehalogenating organic chlorine compounds and the like. Is not recognized, so its content is not particularly limited.

【0023】本発明の汚染浄化用鉄粉の製造方法は、上
述したように、原料として、鉄系粉末冶金において発生
する鉄系廃棄物を用いるものであるが、これを加熱処理
することにより汚染浄化用鉄粉を製造するところに本発
明の特徴がある。鉄系粉末冶金に用いられる鉄粉は、偏
析防止のために、種々の有機系バインダーで表面がコー
ティングされている。したがって、鉄系粉末冶金におい
て発生する鉄系廃棄物は、種々の有機系バインダーを含
有している。このため、鉄系粉末冶金において発生する
鉄系廃棄物をそのまま汚染浄化用に用いようとしても、
有機系バインダーを含有するため、反応性が小さく、用
いることができない。そこで、本発明においては、鉄系
廃棄物に加熱処理することにより、有機系バインダー成
分を熱分解させ、または揮発させて除去し、反応性の高
い汚染浄化用鉄粉を得るのである。
As described above, the method of the present invention for producing iron powder for purifying contamination uses iron-based waste generated in iron-based powder metallurgy as a raw material. There is a feature of the present invention in producing the iron powder for purification. The surface of iron powder used in iron-based powder metallurgy is coated with various organic binders to prevent segregation. Therefore, iron-based waste generated in iron-based powder metallurgy contains various organic binders. For this reason, even if the iron-based waste generated in iron-based powder metallurgy is used as it is for purification of pollution,
Since it contains an organic binder, it has low reactivity and cannot be used. Therefore, in the present invention, the iron-based waste is subjected to heat treatment to thermally decompose or volatilize and remove the organic binder component, thereby obtaining highly reactive iron powder for contamination purification.

【0024】加熱処理は、窒素雰囲気等の不活性ガス雰
囲気で行うのが好ましい。大気中で熱処理を行うと、鉄
系廃棄物の表面が酸化されるため、汚染浄化における反
応性が低くなるが、不活性ガス雰囲気ではそのようなこ
とはなく、反応性が高い。加熱処理の温度は、300〜
900℃であるのが好ましく、400〜600℃である
のがより好ましい。300℃未満であると、バインダー
を十分に除去することが困難となる場合があり、900
℃を超えると、黒鉛やニッケルが鉄粉内部に急速に拡散
してしまい、これらの効果が低下する場合がある。加熱
処理の時間は、30分〜4時間が好ましい。
The heat treatment is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere. When the heat treatment is performed in the air, the surface of the iron-based waste is oxidized, so that the reactivity in the purification of the pollution is reduced. However, the reactivity is high in an inert gas atmosphere. The temperature of the heat treatment is 300 ~
It is preferably 900 ° C, more preferably 400 to 600 ° C. If the temperature is lower than 300 ° C., it may be difficult to sufficiently remove the binder, and 900
When the temperature exceeds ℃, graphite and nickel are rapidly diffused into the iron powder, and these effects may be reduced. The time of the heat treatment is preferably 30 minutes to 4 hours.

【0025】本発明においては、加熱処理により凝集し
た鉄系廃棄物を粉砕して、汚染浄化用鉄粉を得るが、更
に粒度調整するのが好ましい。適切な粒度に調整するこ
とで、含ハロゲン有機汚染物質の脱ハロゲン化に最適な
汚染浄化用鉄粉を得ることができる。粒度調整は、ふる
いによる分級などで行うことができる。
In the present invention, the iron-based waste agglomerated by the heat treatment is pulverized to obtain iron powder for purification of contamination, but it is preferable to further adjust the particle size. By adjusting the particle size to an appropriate value, it is possible to obtain an iron powder for purification that is optimal for dehalogenation of halogen-containing organic contaminants. The particle size can be adjusted by sieving or the like.

【0026】汚染浄化用鉄粉の粒度(加熱処理後粒度)
は、一般にふるい分級法による粒度が10〜3000μ
mであるのが好ましいが、より好適な粒度は用途によっ
て異なる。地下水浄化に用いられる場合には、ふるい分
級法による粒度が200〜3000μmであるのが好ま
しく、300〜1000μmであるのがより好ましい。
地下水浄化の場合には、地下水の流路に汚染浄化用鉄粉
を配置するため、あまり粒度が細かくなると目詰まりを
起こし、地下水の流れを阻害してしまう危険性がある。
粒度が大きいと、汚染浄化用鉄粉の比表面積が小さくな
り、還元的脱ハロゲン化の効果が低下する。土壌浄化に
用いられる場合には、ふるい分級法による粒度が10〜
400μmであるのが好ましく、50〜200μmであ
るのがより好ましい。粒度が小さいと、粉体としてのハ
ンドリングが難しくなる場合があり、粒度が大きいと、
土壌との均一な混合が困難になる場合があり、また、汚
染浄化用鉄粉の比表面積が小さくなり、還元的脱ハロゲ
ン化の効果が低下する。
Particle size of iron powder for purification (particle size after heat treatment)
Generally has a particle size of 10 to 3000 μm by a sieve classification method.
m is preferred, but a more preferred particle size depends on the application. When used for groundwater purification, the particle size according to the sieve classification method is preferably from 200 to 3000 µm, more preferably from 300 to 1000 µm.
In the case of groundwater purification, since iron powder for pollution purification is arranged in the flow path of groundwater, if the particle size is too small, clogging occurs and there is a risk that the flow of groundwater is obstructed.
When the particle size is large, the specific surface area of the iron powder for purification becomes small, and the effect of reductive dehalogenation is reduced. When used for soil purification, the particle size by the sieve classification method is 10
It is preferably 400 μm, more preferably 50 to 200 μm. If the particle size is small, handling as a powder may be difficult, and if the particle size is large,
In some cases, uniform mixing with soil may be difficult, and the specific surface area of the iron powder for purifying pollution may be reduced, thereby reducing the effect of reductive dehalogenation.

【0027】本発明により製造される汚染浄化用鉄粉の
用途は、特に限定されないが、地下水や土壌の汚染浄化
に好適に用いられ、有用である。特に、トリクロロエチ
レン等の有機塩素系化合物による汚染に好適に用いられ
るが、6価クロムのような重金属による汚染に対しても
好適に用いられる。しかも、現在、産業廃棄物として処
理するしかない鉄系粉末冶金において発生する鉄系廃棄
物の有効利用という観点からも、本発明は極めて有用で
ある。
The use of the iron powder for purification of pollution produced according to the present invention is not particularly limited, but is preferably used and useful for purification of groundwater and soil. In particular, it is preferably used for contamination with an organic chlorine compound such as trichloroethylene, and also suitably used for contamination with heavy metals such as hexavalent chromium. Moreover, the present invention is extremely useful also from the viewpoint of effective utilization of iron-based waste generated in iron-based powder metallurgy which is currently only treated as industrial waste.

【0028】[0028]

【実施例】以下、実施例および比較例によって本発明を
より具体的に説明するが、本発明はこれらに限られるも
のではない。 1.汚染浄化用鉄粉の製造 (1)原料 原料1:黒鉛を1.5質量%含有する偏析防止粉(K
IP 310Aクリーンミックス粉、川崎製鉄社製、鉄
粉成分:Fe−0. 15質量%Mn−0. 005質量%
S−0. 12質量%O−0. 007質量%Cu)を成形
圧5t/cm2でプレス成形した後、粉砕したもの 原料2:表面にNiを有する部分合金化粉(KIP
シグマロイ粉、川崎製鉄社製、合金成分:Fe−4質量
%Ni−0. 5質量%Mo−1. 5質量%Cu)を成形
圧5t/cm2 でプレス成形した後、粉砕したもの
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. 1. Production of Iron Powder for Pollution Purification (1) Raw Material Raw Material 1: Anti-segregation powder containing 1.5 mass% of graphite (K
IP 310A clean mix powder, manufactured by Kawasaki Steel Corporation, iron powder component: Fe-0.15% by mass Mn-0.005% by mass
S-0.12% by mass O-0.007% by mass Cu) was press-molded at a molding pressure of 5 t / cm 2 and then pulverized. Material 2: Partially alloyed powder having Ni on the surface (KIP)
Sigma-alloy powder, manufactured by Kawasaki Steel Corporation, alloy component: Fe-4 mass% Ni-0.5 mass% Mo-1.5 mass% Cu) is press-molded at a molding pressure of 5 t / cm 2 and then pulverized.

【0029】(2)製造 上記原料1および2を第1表に示す質量比で混合した。
混合後の粒度(加熱処理前粒度)ならびに黒鉛およびニ
ッケルの含有率は、第1表に示した通りである。つぎ
に、窒素雰囲気下、第1表に示す加熱温度で1時間処理
し、その後粉砕して、汚染浄化用鉄粉を得た。加熱処理
後粒度は、第1表に示した通りである。
(2) Production The above raw materials 1 and 2 were mixed at the mass ratio shown in Table 1.
The particle size after mixing (particle size before heat treatment) and the contents of graphite and nickel are as shown in Table 1. Next, it was treated at a heating temperature shown in Table 1 for 1 hour in a nitrogen atmosphere, and then pulverized to obtain a contamination-purifying iron powder. The particle size after the heat treatment is as shown in Table 1.

【0030】2.汚染浄化用鉄粉の評価 容量100mLのガラスバイアル瓶に、脱イオン水を用
いて調整した電解質溶液(CaCO3 濃度:40mg/
L、Na2 SO3 濃度:80mg/ L)50mL、汚染
浄化用鉄粉10gおよびトリクロロエチレン(TCE)
標準溶液を封入した。TCE標準溶液の量は、TCE初
期濃度が5mg/ Lとなるようにした。つぎに、このガ
ラスバイアル瓶を23℃±1℃の恒温室中に設置した振
とう機にセットし、200rpmで振とうし、1、4、
10、24、48時間毎に検知管でTCE濃度を測定し
た。なお、同じサンプルビンを10本準備し、各時間毎
にn=2でTEC濃度を測定した。この結果から、TC
E濃度減少の反応速度定数を算出した。なお、比較例と
して、通常の海綿鉄粉(TKH80、川崎製鉄社製)、
活性炭(武田薬品社製)を混合した海面鉄粉、および鋳
鉄粉(試薬1級品、関東化学社製)を用いて、同様にT
CE濃度減少の反応速度定数を算出した。
2. Evaluation of Iron Powder for Pollution Purification In a glass vial having a capacity of 100 mL, an electrolyte solution (CaCO 3 concentration: 40 mg /
L, Na 2 SO 3 concentration: 80 mg / L) 50 mL, 10 g of iron powder for purification of contamination and trichloroethylene (TCE)
A standard solution was enclosed. The amount of the TCE standard solution was adjusted so that the initial concentration of TCE was 5 mg / L. Next, this glass vial was set on a shaker installed in a constant temperature room at 23 ° C. ± 1 ° C., and shaken at 200 rpm.
The TCE concentration was measured every 10, 24, and 48 hours using a detector tube. In addition, ten sample bottles were prepared, and the TEC concentration was measured at n = 2 every time. From this result, TC
The reaction rate constant for the E concentration decrease was calculated. As comparative examples, ordinary sponge iron powder (TKH80, manufactured by Kawasaki Steel Corporation),
Using sea-surface iron powder mixed with activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd.) and cast iron powder (first-class reagent, manufactured by Kanto Kagaku Co., Ltd.), T
The reaction rate constant for the decrease in CE concentration was calculated.

【0031】TCE濃度減少の反応速度定数は、以下の
ようにして算出した。TCE濃度は、時間の経過ととも
に指数関数的に減少した。一般に、鉄粉との反応で有機
塩素化合物が還元的に脱塩素化して分解する場合には、
有機塩素化合物濃度が指数関数的に減少することから、
反応速度は一般に下記式(1)に示すような、水溶液中
の反応物質濃度に対する擬一次式に従うと考えられてい
る。 dCt /dt=−k(obsd)・Ct (1) ここで、Ct :時間tにおける反応物質の濃度、k(o
bsd):見かけの反応速度定数である。
The reaction rate constant for decreasing the TCE concentration was calculated as follows. TCE concentrations decreased exponentially over time. In general, when an organic chlorine compound is reductively dechlorinated and decomposed in a reaction with iron powder,
Since the concentration of organochlorine compounds decreases exponentially,
It is generally believed that the reaction rate follows a pseudo-linear equation for the concentration of the reactants in the aqueous solution as shown in the following equation (1). dC t / dt = −k (obsd) · C t (1) where C t : concentration of the reactant at time t, k (o
bsd): Apparent reaction rate constant.

【0032】そこで、一定時間経過後のTCE濃度Ct
の初期濃度Ci に対する比の対数を縦軸にプロットし、
直線の傾きから、見かけの反応速度定数k(obsd)
を求めた。一般に、有機塩素化合物の還元的脱塩素反応
速度を議論する際には、見かけの反応速度定数k(ob
sd)を、その実験に用いた鉄粉の溶液単位体積当りの
全表面積で割り付けて規格化した値k(sa)で評価す
るので(例えば、Johnson−TL,Schere
r−MM,and Tratnyek−PG;Kine
tics of Halogenated Organ
ic Compound Degradation b
y Iron Metal,Environ.Sci.
Technol.(1996),30,2634−26
40)、k(obsd)からk(sa)を求めた。k
(sa)の値が大きいほど、有機塩素化合物の還元的脱
塩素反応の反応速度が大きいということになる。
Therefore, the TCE concentration C t after a certain time has elapsed
Plotting the logarithm of the ratio to the longitudinal axis of the initial concentration C i,
From the slope of the straight line, the apparent reaction rate constant k (obsd)
I asked. In general, when discussing the reductive dechlorination reaction rate of an organochlorine compound, an apparent reaction rate constant k (ob
sd) is evaluated by a value k (sa) normalized by dividing by the total surface area per unit volume of the solution of the iron powder used in the experiment (for example, Johnson-TL, Schema)
r-MM, and Trannyek-PG; Kine
tics of Halogenated Organ
ic Compound Degradation b
y Iron Metal, Environ. Sci.
Technol. (1996), 30, 2634-26.
40), k (sa) was determined from k (obssd). k
The larger the value of (sa), the higher the reaction rate of the reductive dechlorination reaction of the organic chlorine compound.

【0033】結果を第1表に示す。本発明により製造さ
れた汚染浄化用鉄粉は、いずれも比較例より大きな反応
速度定数を有することが分かる。即ち、本発明により製
造された汚染浄化用鉄粉は、有機塩素化合物を還元的に
脱塩素化する能力に優れている。
The results are shown in Table 1. It can be seen that the iron powder for purification of pollution produced according to the present invention has a larger reaction rate constant than the comparative example. That is, the iron powder for purification of pollution produced according to the present invention has an excellent ability to reductively dechlorinate organic chlorine compounds.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の汚染浄化用鉄粉の製造方法は、
含ハロゲン有機汚染物質を鉄と反応させて、還元的に脱
ハロゲン化し無害化する方法において、製造コストおよ
び汚染浄化能力の点で最適であり、かつ、鉄系粉末冶金
において発生する鉄系廃棄物を有効利用する方法である
ので、極めて有用である。また、本発明により製造され
る汚染浄化用鉄粉は、地下水や土壌の汚染浄化に好適に
用いられる。特に、トリクロロエチレン等の含ハロゲン
有機汚染物質に対する汚染浄化能力に優れるので、含ハ
ロゲン有機汚染物質で汚染された地下水や土壌の汚染浄
化に極めて有用である。
The method for producing iron powder for purification of pollution according to the present invention comprises:
A method of reacting halogen-containing organic contaminants with iron to reductively dehalogenate and detoxify it, which is optimal in terms of production cost and pollution purification ability, and iron-based waste generated in iron-based powder metallurgy This method is extremely useful because it is a method that effectively utilizes Moreover, the iron powder for purification of pollution produced by the present invention is suitably used for the purification of groundwater and soil. In particular, it is excellent in the ability to purify pollutants containing halogen-containing organic contaminants such as trichloroethylene, and thus is extremely useful for purifying groundwater and soil contaminated with halogen-containing organic pollutants.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園部 秋夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4D004 AA50 AB05 AC04 BA10 CA04 CA22 DA03 DA06 4G069 AA02 AA08 AA09 BA08A BA08B BB02A BB02B BB02C BC59B BC59C BC66A BC66B BC66C BC68A BC68B BC68C CA05 CA19 DA05 EA02Y EB18Y FA01 FB30 FC02 4K017 AA04 BA06 BB06 BB18 DA09 EK08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akio Sonobe 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term inside the Chiba Works, Chiba Works 4D004 AA50 AB05 AC04 BA10 CA04 CA22 DA03 DA06 4G069 AA02 AA08 AA09 BA08A BA08B BB02A BB02B BB02C BC59B BC59C BC66A BC66B BC66C BC68A BC68B BC68C CA05 CA19 DA05 EA02Y EB18Y FA01 FB30 FC02 4K017 AA04 BA06 BB06 BB18 DA09 EK08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄系粉末冶金において発生する鉄系廃棄物
を加熱処理することにより汚染浄化用鉄粉を製造するこ
とを特徴とする汚染浄化用鉄粉の製造方法。
1. A method for producing iron powder for purification, characterized by producing iron powder for purification by heat treatment of iron-based waste generated in iron-based powder metallurgy.
【請求項2】前記鉄系廃棄物が、プレス成形において発
生する規格外の圧粉体、該圧粉体を粉砕して得られる鉄
粉、およびプレス成形時に金型周囲に漏れ出した鉄粉か
らなる群より選ばれる少なくとも1種を含有することを
特徴とする請求項1に記載の汚染浄化用鉄粉の製造方
法。
2. The method according to claim 1, wherein the iron-based waste is a non-standard green compact generated in press molding, an iron powder obtained by pulverizing the green compact, and an iron powder leaking around a mold during press molding. The method for producing iron powder for purification according to claim 1, wherein the method further comprises at least one selected from the group consisting of:
【請求項3】前記鉄系廃棄物が、黒鉛:0.01〜1.
5質量%、および/または、ニッケル:0.01〜4.
0質量%を含有することを特徴とする請求項1または2
に記載の汚染浄化用鉄粉の製造方法。
3. The iron-based waste is graphite: 0.01-1.
5% by mass and / or nickel: 0.01 to 4.
3. The composition according to claim 1, which contains 0% by mass.
3. The method for producing iron powder for purification of pollution according to item 1.
JP2000202191A 2000-07-04 2000-07-04 Method for producing iron powder for removing contamination Withdrawn JP2002020806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202191A JP2002020806A (en) 2000-07-04 2000-07-04 Method for producing iron powder for removing contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202191A JP2002020806A (en) 2000-07-04 2000-07-04 Method for producing iron powder for removing contamination

Publications (1)

Publication Number Publication Date
JP2002020806A true JP2002020806A (en) 2002-01-23

Family

ID=18699753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202191A Withdrawn JP2002020806A (en) 2000-07-04 2000-07-04 Method for producing iron powder for removing contamination

Country Status (1)

Country Link
JP (1) JP2002020806A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
US6812197B2 (en) 2002-06-26 2004-11-02 Kobe Steel, Ltd. Iron-based cleaning powder
EP1925685A1 (en) * 2006-11-14 2008-05-28 Tosoh Corporation Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP2008142693A (en) * 2006-04-20 2008-06-26 Tosoh Corp Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
CN103351032A (en) * 2013-06-09 2013-10-16 叶文淡 Method for producing water treatment agent by using iron oxide scraps
CN106180735A (en) * 2016-08-19 2016-12-07 环境保护部环境规划院 The preparation of a kind of Modified Micron Zero-valent Iron and the application process in heavy metal pollution of soil is repaired thereof
CN111872402A (en) * 2020-07-29 2020-11-03 宝武环科武汉金属资源有限责任公司 Method for producing wet-grinding iron powder and reduced iron powder by using iron-containing smelting slag

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
JP4586325B2 (en) * 2001-09-27 2010-11-24 東ソー株式会社 Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
US6812197B2 (en) 2002-06-26 2004-11-02 Kobe Steel, Ltd. Iron-based cleaning powder
JP2008142693A (en) * 2006-04-20 2008-06-26 Tosoh Corp Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
EP1925685A1 (en) * 2006-11-14 2008-05-28 Tosoh Corporation Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
US7718843B2 (en) 2006-11-14 2010-05-18 Tosoh Corporation Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
CN103351032A (en) * 2013-06-09 2013-10-16 叶文淡 Method for producing water treatment agent by using iron oxide scraps
CN106180735A (en) * 2016-08-19 2016-12-07 环境保护部环境规划院 The preparation of a kind of Modified Micron Zero-valent Iron and the application process in heavy metal pollution of soil is repaired thereof
CN106180735B (en) * 2016-08-19 2017-11-03 环境保护部环境规划院 A kind of preparation of Modified Micron Zero-valent Iron and its application process in heavy metal pollution of soil reparation
CN111872402A (en) * 2020-07-29 2020-11-03 宝武环科武汉金属资源有限责任公司 Method for producing wet-grinding iron powder and reduced iron powder by using iron-containing smelting slag

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
EP1650168A1 (en) Iron composite particles for purifying soil or ground water, purifying agent containing the iron composite particles and method for purifying soil or ground water
EP1206949B1 (en) Remidiation method of media and iron powder for dehalogenation of halogenated hydrocarbons
US20030083195A1 (en) Iron powder for remediation and method for remediating soil, water, or gas
JP2002020806A (en) Method for producing iron powder for removing contamination
KR100913615B1 (en) Preparing method of purifying agent for purifying soil or ground water, and purifying agent prepared thereby
CN101181660A (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
JP4009739B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound, its production method and detoxification treatment method using the same
JP2004082102A (en) Purification agent and its production method for soil and groundwater polluted with organic halide, and purification method of soil and groundwater polluted with organic halide
JP4586325B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP2004058051A (en) Iron composite particle powder for cleaning soil and underground water containing aromatic halogen compound, its manufacturing method, cleaning agent containing the iron composite particle powder, its manufacturing method, and method of cleaning soil and underground water containing aromatic halogen compound
JP2002167602A (en) Iron powder, its production method and method for cleaning, contaminated soil, water and gas
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP4833505B2 (en) Iron powder for purification
JP4786936B2 (en) Organohalogen compound treatment material
JP2004331996A (en) Sponge iron for reducing agent, its production method and its application
JP4660958B2 (en) Purification of soil, water and gas contaminated with organochlorine compounds
JP4127102B2 (en) Detoxification method for workpieces contaminated with organic halogen compounds
JP4904309B2 (en) Organic halogen compound treatment material and organic halogen compound treatment method
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2006326561A (en) IRON-BASED POWDER FOR PURIFICATION AND ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF SPHERICAL METAL Ni PARTICULATE
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method
US6812197B2 (en) Iron-based cleaning powder
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904