JP2010110497A - Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same - Google Patents

Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same Download PDF

Info

Publication number
JP2010110497A
JP2010110497A JP2008286389A JP2008286389A JP2010110497A JP 2010110497 A JP2010110497 A JP 2010110497A JP 2008286389 A JP2008286389 A JP 2008286389A JP 2008286389 A JP2008286389 A JP 2008286389A JP 2010110497 A JP2010110497 A JP 2010110497A
Authority
JP
Japan
Prior art keywords
iron powder
slurry
iron
organic
layered clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008286389A
Other languages
Japanese (ja)
Inventor
Takashi Saeki
隆 佐伯
Toshiki Shimizu
要樹 清水
Yasuyuki Nagai
康行 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008286389A priority Critical patent/JP2010110497A/en
Publication of JP2010110497A publication Critical patent/JP2010110497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Catalysts (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when decomposing and removing an organic halogenated substance using iron powder in a form of slurry in which the iron powder is dispersed in water, the decomposition performance of the iron powder degrades. <P>SOLUTION: In a method of removing the organic halogenated substance by mixing the iron power and water if necessary with soil, waste water, or groundwater contaminated with the organic halogenated substance, by using the iron powder slurry containing an organic-layered clay structure compound, the iron powder and water, a low-viscosity and hardly settled slurry is obtained, and the decomposition activity of the iron powder is never degraded. As the organic-layered clay structure compound, smectite, montmorillonite, bentonite, and illite are desirable. It is desirable to use the iron powder slurry for removing the organic halogenated substance, having 10-1,000 mPas viscosity and ≤20 mm/min sedimentation velocity of the iron powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、汚染された土壌、排水又は地下水中の有機ハロゲン化物の分解浄化方法に関するものである。   The present invention relates to a method for decomposing and purifying organic halides in contaminated soil, wastewater or groundwater.

近年、TCE(トリクロロエチレン)、PCE(テトラクロロエチレン)、ジクロロメタン、PCB(ポリ塩化ビフェニル)及びダイオキシン類等の有機ハロゲン化合物による環境汚染問題が大きな問題となっており、これら有機ハロゲン化物により汚染された土壌、排水、地下水等の浄化方法が検討されている。   In recent years, environmental pollution problems due to organic halogen compounds such as TCE (trichloroethylene), PCE (tetrachloroethylene), dichloromethane, PCB (polychlorinated biphenyl) and dioxins have become a major problem, soil contaminated by these organic halides, Purification methods for drainage and groundwater are being studied.

土壌や地下水中の有機ハロゲン化物の分解には種々の方法が検討されており、特に異種金属を含有させ粒子内に局部電池構造を構成させ、有機ハロゲン化物を還元分解する方法が高性能となることが知られている(例えば非特許文献1、特許文献1〜3)。   Various methods for decomposing organic halides in soil and groundwater have been studied. Particularly, a method for reducing and decomposing organic halides by containing different metals and forming a local cell structure in the particles has high performance. It is known (for example, Non-Patent Document 1, Patent Documents 1 to 3).

有機ハロゲン化物の浄化に鉄粉を用いる場合、水に分散させてスラリー状にして用いることが一般的である(特許文献4参照)。しかし、鉄粉スラリーは、分散状態が高いものでは粘度が高くなりポンプで移送することが困難となり、粘度を下げると短時間に沈降してスラリー状態を維持することが困難であった。その様な問題を解決するために分散剤や界面活性剤を用いると、鉄粉の分解活性が低下するという問題があった。   When iron powder is used for purification of organic halides, it is generally dispersed in water and used as a slurry (see Patent Document 4). However, the iron powder slurry having a high dispersion state has a high viscosity and is difficult to transfer with a pump. When the viscosity is lowered, it is difficult to settle in a short time and maintain the slurry state. When a dispersant or a surfactant is used to solve such a problem, there is a problem that the iron powder decomposition activity is lowered.

先崎ら、工業用水、VOL391,(1991),29.Sakizaki et al., Industrial Water, VOL391, (1991), 29. 特開2003−80220JP 2003-80220 A 特開2003−136051JP2003-136051A 特開2003−105313JP 2003-105313 A 特開2001−198567JP 2001-198567 A

汚染された土壌、地下水、排水中の有機ハロゲン化物の分解浄化において、鉄粉を分解触媒として用いる際に鉄粉をスラリーとして用いる場合、分散性を重視すると高粘度化しハンドリング性が悪くなり、粘度を低下させると沈降して不均一となる、装置配管の詰まりという問題があった。さらにスラリー状態の制御のために分散剤を用いると、鉄粉の分解活性が低下するという問題があった。   When using iron powder as a slurry when decomposing and purifying organic halides in contaminated soil, groundwater, and wastewater, when using iron powder as a slurry, if the emphasis is on dispersibility, the viscosity will increase and handling will be poor, and the viscosity will be reduced. There is a problem of clogging of apparatus piping, which is settled and becomes non-uniform when the temperature is lowered. Furthermore, when a dispersant is used for controlling the slurry state, there is a problem that the decomposition activity of the iron powder decreases.

本発明者等は、有機ハロゲン化合物の分解浄化について鋭意検討を重ねた結果、鉄粉を分解用触媒として用いる場合、無機層状粘土構造化合物と鉄粉と水を含んでなる鉄粉スラリーでは低粘度でなおかつ鉄粉の沈降がなく、さらに鉄粉の本来有する有機ハロゲン化物の分解活性の低下がないことを見出し、本発明を完成するに到ったものである。   As a result of intensive studies on the decomposition and purification of organic halogen compounds, the present inventors have found that when iron powder is used as a catalyst for decomposition, an iron powder slurry comprising an inorganic layered clay structure compound, iron powder and water has a low viscosity. In addition, the present inventors have found that there is no sedimentation of iron powder and that there is no decrease in the decomposition activity of the organic halide inherent in the iron powder, and the present invention has been completed.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明は有機ハロゲン化物で汚染された土壌、排水又は地下水に対し、鉄粉及び必要に応じて水を混合することにより有機ハロゲン化物を浄化する方法において、無機層状粘土構造化合物と鉄粉と水を含んでなる鉄粉スラリーを用いるものである。   The present invention relates to an inorganic layered clay structure compound, iron powder and water in a method for purifying organic halide by mixing iron powder and water as required with soil, wastewater or groundwater contaminated with organic halide. An iron powder slurry comprising

本発明で浄化される有機ハロゲン化物は特に限定はないが、トリクロルエチレン、テトラクロルエチレン、ジクロルエチレン、トリクロロエタン、四塩化炭素等が例示され、さらに難分解性のPCBやダイオキシン類に対しても使用することができる。   The organic halide to be purified in the present invention is not particularly limited, and examples thereof include trichloroethylene, tetrachloroethylene, dichloroethylene, trichloroethane, carbon tetrachloride, and the like, and also for hardly decomposable PCBs and dioxins. Can be used.

用いる鉄粉には特に限定はなく、高純度の還元鉄粉、炭素を含有する鋳鉄粉、或いは鉄以外の金属と合金化した合金鉄が用いることができる。中でも、少量のニッケルを部分合金化した鉄では特に分解活性が高いため好ましい。   The iron powder to be used is not particularly limited, and high purity reduced iron powder, cast iron powder containing carbon, or alloy iron alloyed with a metal other than iron can be used. Among them, iron partially alloyed with a small amount of nickel is preferable because of its particularly high decomposition activity.

Ni等の異種金属と合金化した鉄粉を用いる場合、完全合金化した場合活性が低下するため、部分合金化(一部非合金が残存すること)したものを用いることが好ましい。その様な部分合金は、強粉砕によるメカニカルアロイング法によって得られる。   In the case of using iron powder alloyed with a dissimilar metal such as Ni, the activity decreases when it is completely alloyed. Therefore, it is preferable to use a partially alloyed (partly non-alloy remains). Such a partial alloy is obtained by a mechanical alloying method by strong pulverization.

FeとNiの部分合金の存在部位としては、合金部分が鉄粒子の表面全体を占めるものでなく、鉄粉表面においてNi部位および合金化部位が夫々存在することが好ましい。鉄粉表面全体を合金が覆っていると、局部電池作用が起こり難く、有機塩素化物の分解が起こり難い。部分合金化はEPMA(電子線マイクロアナライザ−)やTEM(透過型電子顕微鏡)を用いて、合金層(Niの拡散層)を確認することができる。   As the existence site of the partial alloy of Fe and Ni, the alloy part does not occupy the entire surface of the iron particles, and it is preferable that the Ni site and the alloying site exist on the surface of the iron powder. If the alloy covers the entire surface of the iron powder, the local battery action hardly occurs and the organic chlorinated product does not easily decompose. For partial alloying, the alloy layer (Ni diffusion layer) can be confirmed using EPMA (electron beam microanalyzer) or TEM (transmission electron microscope).

本発明の分解用鉄粉の炭素は、Niと同様に、炭素単独部位と鉄と炭素の合金部が存在することが望ましい。一般に鉄粉としては純鉄、鋼、鋳鉄、または銑鉄等を用いることができるが、これら鉄粉内に存在する鉄部分およびセメンタイト等の鉄炭素合金部分も活性点として作用し得る。鉄粉中の炭素量は、鋳鉄粉を用いた場合2〜3%、又還元鉄粉では0.01〜0.05%の範囲が例示できる。   The carbon of the iron powder for decomposition of the present invention desirably has a single carbon part and an alloy part of iron and carbon like Ni. In general, pure iron, steel, cast iron, pig iron, or the like can be used as the iron powder, but an iron portion existing in the iron powder and an iron-carbon alloy portion such as cementite can also act as active sites. The amount of carbon in the iron powder may be in the range of 2 to 3% when cast iron powder is used, and 0.01 to 0.05% in the case of reduced iron powder.

鉄粉の粉末形状は特に限定するものではなく、球形状、樹枝状、片状、針状、角状、積層状、ロッド状、板状、海綿状等が含まれる。また分解用鉄粉の比表面積は0.05m/g以上、好ましくは0.2〜10m/gでは、分解反応速度や接触確率を向上させることができ、粗粒を用いる上で有効である。 The powder shape of the iron powder is not particularly limited, and includes a spherical shape, a dendritic shape, a piece shape, a needle shape, a square shape, a laminated shape, a rod shape, a plate shape, a sponge shape, and the like. Moreover, when the specific surface area of the iron powder for decomposition is 0.05 m 2 / g or more, preferably 0.2 to 10 m 2 / g, the decomposition reaction rate and the contact probability can be improved, which is effective in using coarse particles. is there.

用いる鉄粉の粒度も特に限定されないが、粒度53μm未満が50重量%以上では危険物第2類に該当し、着火性等の危険性があるため、粒度53μm以上が40重量%未満で危険物第2類に該当しないものであることが好ましい。   The particle size of the iron powder to be used is not particularly limited, however, if the particle size is less than 53 μm, it is classified as dangerous substance type 2 if it is 50% by weight or more, and there is a danger such as ignitability. It is preferable that it does not correspond to a 2nd class.

鉄粉の使用量は汚染状況(浄化すべき有機ハロゲン化物の存在量)によって異なるため一概に決められないが、通常は浄化対象物質に対して0.1〜10重量%、特に1〜3重量%用いることが好ましい。   The amount of iron powder used varies depending on the contamination status (abundance of organic halide to be purified), but is not generally determined, but is usually 0.1 to 10% by weight, especially 1 to 3% by weight with respect to the substance to be purified. % Is preferably used.

本発明で用いる無機層状粘土構造化合物は特に限定はないが、例えばスメクタイト、モンモリロナイト、ベントナイト、イライト、の群から選ばれる少なくとも1種以上であることが好ましい。   The inorganic layered clay structure compound used in the present invention is not particularly limited, but is preferably at least one selected from the group consisting of smectite, montmorillonite, bentonite and illite.

スメクタイトは、サポナイト構造を有する無機高分子であり、天然粘土又は合成無機高分子によって得られるものである。合成品としてはクニミネ工業の「スメクトン」が知られている。   Smectite is an inorganic polymer having a saponite structure, and is obtained from natural clay or a synthetic inorganic polymer. Kumine Industries' “Smecton” is known as a synthetic product.

モンモリロナイトは、酸性白土、ベントナイトの主成分をなす主として含水珪酸アルミニウムと金属カチオンで構成される層状構造化合物である。   Montmorillonite is a layered structure compound mainly composed of hydrous aluminum silicate and metal cations, which are the main components of acid clay and bentonite.

イライトはスメクタイトの変質鉱物であり黒ボク土の成分が該当する。   Illite is a modified mineral of smectite and corresponds to the component of black mystery.

本発明の方法で用いる無機層状粘土構造化合物を含有する鉄粉スラリー中の鉄含有量は特に限定はないが、20〜70重量%、特に30〜50%の範囲が好ましい。   The iron content in the iron powder slurry containing the inorganic layered clay structure compound used in the method of the present invention is not particularly limited, but is preferably in the range of 20 to 70% by weight, particularly 30 to 50%.

本発明で用いる鉄粉スラリー中の無機層状粘土構造化合物の含有量は、含有する鉄粉の量によっても異なるため一概には決められないが、鉄粉含有量が50%のスラリーにおいて0.05%以上1%未満(対スラリー重量に対する重量%、)、特に0.1%以上0.5%以下の範囲が好ましい。無機層状粘土構造化合物が1%以上になると有機ハロゲン化物の分解活性が低下する傾向がある。   The content of the inorganic layered clay structure compound in the iron powder slurry used in the present invention varies depending on the amount of iron powder to be contained, and therefore cannot be determined unconditionally, but in a slurry with an iron powder content of 50%, it is 0.05. % To less than 1% (% by weight with respect to the weight of the slurry), in particular 0.1% to 0.5% is preferable. When the content of the inorganic layered clay structure compound is 1% or more, the decomposition activity of the organic halide tends to decrease.

本発明で用いる鉄粉スラリーは、低粘土でなおかつ沈降しないものであり、粘度は10〜1000mPas、特に20〜500mPasであることが好ましい。   The iron powder slurry used in the present invention is low clay and does not settle, and the viscosity is preferably 10 to 1000 mPas, particularly 20 to 500 mPas.

本発明で用いる鉄粉スラリーは粘度が低いだけでなく、スラリーの沈降がないことが必要であり、沈降速度は20mm/分以下、さらに10mm/分以下が好ましい。   The iron powder slurry used in the present invention is required not only to have a low viscosity but also to have no settling of the slurry, and the settling rate is preferably 20 mm / min or less, more preferably 10 mm / min or less.

鉄粉スラリーの粘度は、一般的なB型粘度計で測定することが出来る。沈降速度は例えばスラリーをメスシリンダーに充填し、30分以上でのスラリー界面の低下から単位時間当りの沈降速度を算出することができる。   The viscosity of the iron powder slurry can be measured with a general B-type viscometer. For example, the sedimentation rate can be calculated by filling the slurry into a graduated cylinder and calculating the sedimentation rate per unit time from the decrease in the slurry interface in 30 minutes or more.

本発明の方法では、鉄粉としてニッケルと部分合金化した鉄粉を用いる場合、分解活性が高いため、ニッケルを含有しない通常鉄粉又は酸化鉄で希釈して用いることができる。部分合金(A)と通常鉄又は酸化鉄(B)の混合比は特に限定されないがA/Bが9/1〜1/3の範囲で用いることが好ましい。   In the method of the present invention, when iron powder partially alloyed with nickel is used as the iron powder, the decomposition activity is high, so that it can be diluted with normal iron powder or iron oxide not containing nickel. The mixing ratio of the partial alloy (A) and normal iron or iron oxide (B) is not particularly limited, but it is preferable to use A / B in the range of 9/1 to 1/3.

本発明で用いる酸化鉄は特に限定されないが、酸化第一鉄、酸化第二鉄、マグネタイト、ベルドライト等、さらに具体的には一般的に入手が容易な砂鉄、鉄鉱物が用いられる。   The iron oxide used in the present invention is not particularly limited, and ferrous oxide, ferric oxide, magnetite, verdolite, and more specifically, iron iron and iron minerals that are generally easily available are used.

有機塩ハロゲン物汚染物を無機層状粘土構造化合物と鉄粉と水を含んでなるスラリーを用いて浄化する方法によれば、鉄粉スラリーの粘度が低く、スラリーの沈降速度が遅いためハンドリング性に優れ、鉄粉が有する有機ハロゲン化物の分解活性が低下することがない。   According to the method for purifying organic salt halide contaminants using a slurry comprising an inorganic layered clay structure compound, iron powder and water, the iron powder slurry has a low viscosity, and the sedimentation rate of the slurry is low, so that the handling property is improved. It is excellent and the decomposition activity of the organic halide contained in the iron powder is not lowered.

次に、本発明を実施例にさらに具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by these.

なお鉄粉スラリーの粘度の測定にはB型粘度計(TOKISANGYOU製 VISCOMETER TVB−10)を用い、ローター21、0.6〜60rpmで測定した。   In addition, the viscosity of the iron powder slurry was measured using a B-type viscometer (VISCOMETER TVB-10 manufactured by TOKISANGYO) at a rotor 21 of 0.6 to 60 rpm.

また鉄粉スラリーの沈降速度は、250mlのメスシリンダーにスラリーを充填し、30分後の拡散層容量(スラリー界面の低下)によって算出した。   The sedimentation rate of the iron powder slurry was calculated from the diffusion layer capacity (reduction of the slurry interface) after 30 minutes after the slurry was filled in a 250 ml graduated cylinder.

実施例1
鋳鉄粉(炭素2.3重量%含有)にNiを0.3重量%混合し、振動ミル(中央化工機(株)製、商品名V−MILL,BM−3、1200vpm,6.6Lポット)を用いて、部分合金化粉末(以下「合金粉」という)を得た。(振動数600vpm、窒素ガス流量40ml/分、粉砕時間2時間)当該合金粉を水に分散し、無機層状粘土構造化合物としてそれぞれスメクタイト(クニミネ工業製「スメクトンSA」)を0.3重量%添加し、スラリー濃度47%の鉄粉スラリーとした。
Example 1
Cast iron powder (containing 2.3% by weight of carbon) is mixed with 0.3% by weight of Ni, and vibration mill (by Chuo Koki Co., Ltd., trade name: V-MILL, BM-3, 1200 vpm, 6.6L pot) Was used to obtain a partially alloyed powder (hereinafter referred to as “alloy powder”). (Frequency: 600 vpm, nitrogen gas flow rate: 40 ml / min, pulverization time: 2 hours) Disperse the alloy powder in water and add 0.3% by weight of smectite (“Smecton SA” manufactured by Kunimine Industries) as an inorganic layered clay structure compound. Thus, an iron powder slurry having a slurry concentration of 47% was obtained.

トリクロルエチレンを10ppm含有する水溶液に上記の鉄粉スラリーを鉄粉換算で1重量%添加した場合の分解挙動を図1に示した。   The decomposition behavior when 1 wt% of the above iron powder slurry is added to an aqueous solution containing 10 ppm of trichloroethylene in terms of iron powder is shown in FIG.

鉄粉スラリーと混合から5日後にトリクロルエチレンが環境基準以下まで分解した。
比較例1
無機層状粘土構造化合物の代わりに、有機系(植物性多糖類)材料(テルナイト社製「レスタ」)を用いて実施例1と同様の処理を行った。
Five days after mixing with the iron powder slurry, trichlorethylene decomposed to below the environmental standard.
Comparative Example 1
The same treatment as in Example 1 was performed using an organic (plant polysaccharide) material (“Resta” manufactured by Ternite) instead of the inorganic layered clay structure compound.

無機層状粘土構造化合物を用いた場合に比べ、トリクロルエチレンの分解に長時間を要した。   Compared with the case of using an inorganic layered clay structure compound, it took a long time to decompose trichloroethylene.

実施例2〜4
実施例1で用いた合金粉1にNiを含有しない鋳鉄粉2の割合で混合した混合鉄粉を用
い、実施例2では無機層状粘土構造化合物としてそれぞれスメクタイト(クニミネ工業製「スメクトンSA」)を用い、実施例1と同様の処理を行った。
Examples 2-4
Using mixed iron powder mixed in the ratio of cast iron powder 2 not containing Ni to alloy powder 1 used in Example 1, in Example 2, smectite (“Smecton SA” manufactured by Kunimine Industry Co., Ltd.) was used as the inorganic layered clay structure compound. The same treatment as in Example 1 was performed.

実施例3では無機層状粘土構造化合物として、ベントナイト(クニミネ工業製「クニピア−F」)を用い、実施例1と同様の処理を行った。実施例4では無機層状粘土構造化合物としてイライト(関東化成製「トチクレー」)を用い、実施例1と同様の処理を行った。   In Example 3, the same treatment as in Example 1 was performed using bentonite (“Kunipia-F” manufactured by Kunimine Industries) as the inorganic layered clay structure compound. In Example 4, the same treatment as in Example 1 was performed using illite (“Tochikure” manufactured by Kanto Kasei) as the inorganic layered clay structure compound.

いずれも、20日以内にトリクロルエチレン濃度が環境基準以下となったが、スメクタイトが最もトリクロルエチレンの分解性に優れていた。結果を図2に示す。   In either case, the trichlorethylene concentration fell below the environmental standard within 20 days, but smectite was most excellent in degradability of trichlorethylene. The results are shown in FIG.

比較例2
実施例2〜4で用いた混合鉄粉に無機層状粘土構造化合物の代わりに、有機系(植物性多糖類)材料(テルナイト社製「レスタ」)を添加して、実施例2〜4と同様の処理を行った。
Comparative Example 2
Instead of the inorganic layered clay structure compound, an organic (plant polysaccharide) material ("Resta" manufactured by Ternite) was added to the mixed iron powder used in Examples 2 to 4, and the same as in Examples 2 to 4 Was processed.

無機層状粘土構造化合物を用いた場合に比べ、トリクロルエチレンの分解に長時間を要した。
比較例3
実施例2〜4で用いた混合鉄粉に分散剤を添加しないトリクロルエチレン水溶液を作製し、分散状態を評価した。
Compared with the case of using an inorganic layered clay structure compound, it took a long time to decompose trichloroethylene.
Comparative Example 3
A trichloroethylene aqueous solution in which no dispersant was added to the mixed iron powder used in Examples 2 to 4 was prepared, and the dispersion state was evaluated.

表1に各種分散剤の添加量と鉄粉スラリーの粘度、沈降速度を示す。   Table 1 shows the added amount of various dispersants, the viscosity of the iron powder slurry, and the settling rate.

Figure 2010110497
Figure 2010110497

実施例2は無機層状粘土構造化合物(スメクタイト)を添加した系であり、粘度の顕著な上昇は無く、沈降速度も小さく、鉄粉スラリーの均質分散が認められた。実施例3は無機層状粘土構造化合物(ベントナイト)を添加した系であり、粘度の上昇は無く、沈降速度も小さく、鉄粉スラリーの均質分散が認められた。比較例2は有機系(植物性多糖類)材料(テルナイト社製「レスタ」)を添加した系であるが、鉄粉スラリーの沈降速度は大きく、沈殿現象認められた。比較例3は分散剤無添加系であり、鉄粉スラリーの粘度が低く、スラリーの沈降速度が最も大きく、沈殿現象が認められた。   Example 2 was a system to which an inorganic layered clay structure compound (smectite) was added. There was no significant increase in viscosity, the sedimentation rate was small, and homogeneous dispersion of the iron powder slurry was observed. Example 3 was a system to which an inorganic layered clay structure compound (bentonite) was added. There was no increase in viscosity, the sedimentation rate was small, and uniform dispersion of the iron powder slurry was observed. Comparative Example 2 is a system to which an organic (vegetable polysaccharide) material ("Resta" manufactured by Ternite) was added, but the settling speed of the iron powder slurry was large, and a precipitation phenomenon was observed. Comparative Example 3 was a system with no dispersant added. The viscosity of the iron powder slurry was low, the sedimentation rate of the slurry was the largest, and a precipitation phenomenon was observed.

ニッケルで部分合金化した鉄粉に無機層状粘土構造化合物(スメクタイト)又は有機系(植物性多糖類)材料(テルナイト社製「レスタ」)を添加して作製した鉄粉スラリーのトリクロルエチレンの分解挙動を示す。Degradation behavior of trichlorethylene in iron powder slurry prepared by adding inorganic layered clay structure compound (smectite) or organic (plant polysaccharide) material ("Resta" manufactured by Ternite) to iron powder partially alloyed with nickel Indicates. ニッケルで部分合金化した鉄粉と鋳鉄粉の混合粉(混合比1:2)に各種無機層状粘土構造化合物(スメクタイト、ベントナイト、及びイライト又は有機系(植物性多糖類)材料(テルナイト社製「レスタ」)を添加して作製した鉄粉スラリーのトリクロルエチレンの分解挙動を示す。Various inorganic layered clay structure compounds (smectite, bentonite, and illite or organic (vegetable polysaccharides) material (made by Ternite Co., Ltd.), mixed powder of iron powder and cast iron powder partially alloyed with nickel (mixing ratio 1: 2) The decomposition behavior of trichlorethylene in the iron powder slurry prepared by adding “LESTA”) is shown.

Claims (8)

有機ハロゲン化物で汚染された土壌、排水又は地下水に対し、鉄粉及び必要に応じて水を混合することにより有機ハロゲン化物を浄化する方法において、無機層状粘土構造化合物と鉄粉と水を含んでなる鉄粉スラリーを用いることを特徴とする有機ハロゲン化物の浄化方法。 In a method for purifying organic halides by mixing iron powder and water as needed with soil, drainage or groundwater contaminated with organic halide, including inorganic layered clay structure compound, iron powder and water A method for purifying an organic halide, comprising using an iron powder slurry. 無機層状粘土構造化合物がスメクタイト、モンモリロナイト、ベントナイト、イライト、の群から選ばれる少なくとも1種以上である請求項1に記載の浄化方法。 The purification method according to claim 1, wherein the inorganic layered clay structure compound is at least one selected from the group consisting of smectite, montmorillonite, bentonite and illite. 鉄粉が、ニッケル及び/又は炭素と部分合金化した鉄粉であることを特徴とする請求項1乃至請求項2に記載の浄化方法。 3. The purification method according to claim 1, wherein the iron powder is iron powder partially alloyed with nickel and / or carbon. さらに、ニッケルを含まない鉄及び/又は酸化鉄を混合してなる請求項3に記載の浄化方法。 Furthermore, the purification method of Claim 3 formed by mixing the iron and / or iron oxide which do not contain nickel. 鉄粉及び水を含んでなる鉄粉スラリーに対し無機層状粘土構造化合物を0.1〜1重量%含み、粘度が10〜1000mPas、鉄粉の沈降速度が20mm/分以下である有機ハロゲン化物浄化用の鉄粉スラリー。 Purification of organic halides containing 0.1 to 1% by weight of an inorganic layered clay structure compound with respect to an iron powder slurry containing iron powder and water, a viscosity of 10 to 1000 mPas, and a settling rate of iron powder of 20 mm / min or less Iron powder slurry. 無機層状粘土構造化合物がスメクタイト、モンモリロナイト、ベントナイト、イライト、の群から選ばれる少なくとも1種以上である請求項5に記載の鉄粉スラリー。 The iron powder slurry according to claim 5, wherein the inorganic layered clay structure compound is at least one selected from the group consisting of smectite, montmorillonite, bentonite and illite. 鉄粉が、ニッケル及び/又は炭素と部分合金化した鉄粉であることを特徴とする請求項5乃至請求項6に記載のスラリー。 The slurry according to any one of claims 5 to 6, wherein the iron powder is iron powder partially alloyed with nickel and / or carbon. 鉄粉中にさらにニッケルを含まない鉄粉及び/又は酸化鉄を混合してなる請求項7に記載のスラリー。 The slurry according to claim 7, wherein the iron powder is further mixed with iron powder not containing nickel and / or iron oxide.
JP2008286389A 2008-11-07 2008-11-07 Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same Pending JP2010110497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286389A JP2010110497A (en) 2008-11-07 2008-11-07 Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286389A JP2010110497A (en) 2008-11-07 2008-11-07 Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same

Publications (1)

Publication Number Publication Date
JP2010110497A true JP2010110497A (en) 2010-05-20

Family

ID=42299537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286389A Pending JP2010110497A (en) 2008-11-07 2008-11-07 Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same

Country Status (1)

Country Link
JP (1) JP2010110497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706630A (en) * 2013-12-26 2014-04-09 江苏盖亚环境工程有限公司 Method for remediation of organic pollutants in soil by using mineral nanocomposite material
JP2016007591A (en) * 2014-06-26 2016-01-18 株式会社安藤・間 Soil cleaning agent and method for cleaning contaminated soil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005728A (en) * 1998-06-22 2000-01-11 Miyoshi Oil & Fat Co Ltd Metal treating agent and treatment of metal
JP2002159960A (en) * 2000-11-24 2002-06-04 Kawasaki Steel Corp Detoxicating treating method of soil and iron powder material for decomposing organic halogen compound
JP2004181457A (en) * 2002-11-18 2004-07-02 Yoshimasa Fukuda Method for decomposing organic harmful substance
JP2005200262A (en) * 2004-01-15 2005-07-28 Mitsui Mining & Smelting Co Ltd Porous material, its producing method, and method for cleaning soil using porous material
JP2006022166A (en) * 2004-07-06 2006-01-26 Tosoh Corp Method for detoxifying object contaminated with organic halogen compound
JP2006122796A (en) * 2004-10-28 2006-05-18 Hokkaido Univ Method of decomposing hardly decomposable organic compound with soil mineral-iron complex, and apparatus therefor
JP2007209911A (en) * 2006-02-10 2007-08-23 Takenaka Komuten Co Ltd Contaminated soil treatment method by deep layer mixing treatment
JP2007268382A (en) * 2006-03-30 2007-10-18 Sumitomo Osaka Cement Co Ltd Method for cleaning contaminated soil
JP2008142693A (en) * 2006-04-20 2008-06-26 Tosoh Corp Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005728A (en) * 1998-06-22 2000-01-11 Miyoshi Oil & Fat Co Ltd Metal treating agent and treatment of metal
JP2002159960A (en) * 2000-11-24 2002-06-04 Kawasaki Steel Corp Detoxicating treating method of soil and iron powder material for decomposing organic halogen compound
JP2004181457A (en) * 2002-11-18 2004-07-02 Yoshimasa Fukuda Method for decomposing organic harmful substance
JP2005200262A (en) * 2004-01-15 2005-07-28 Mitsui Mining & Smelting Co Ltd Porous material, its producing method, and method for cleaning soil using porous material
JP2006022166A (en) * 2004-07-06 2006-01-26 Tosoh Corp Method for detoxifying object contaminated with organic halogen compound
JP2006122796A (en) * 2004-10-28 2006-05-18 Hokkaido Univ Method of decomposing hardly decomposable organic compound with soil mineral-iron complex, and apparatus therefor
JP2007209911A (en) * 2006-02-10 2007-08-23 Takenaka Komuten Co Ltd Contaminated soil treatment method by deep layer mixing treatment
JP2007268382A (en) * 2006-03-30 2007-10-18 Sumitomo Osaka Cement Co Ltd Method for cleaning contaminated soil
JP2008142693A (en) * 2006-04-20 2008-06-26 Tosoh Corp Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706630A (en) * 2013-12-26 2014-04-09 江苏盖亚环境工程有限公司 Method for remediation of organic pollutants in soil by using mineral nanocomposite material
JP2016007591A (en) * 2014-06-26 2016-01-18 株式会社安藤・間 Soil cleaning agent and method for cleaning contaminated soil

Similar Documents

Publication Publication Date Title
US20230241576A1 (en) Composite material and method for removing pollutant from poluted water
EP2897911B1 (en) Method for use of new iron powder composition
JP2010110497A (en) Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same
KR20080043686A (en) Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same
Phenrat et al. Nanoscale Zero-Valent Iron Particles for Water Treatment: From Basic Principles to Field-Scale Applications
JP2012210559A (en) Clarifying agent for clarification treatment of soil/ground water, method for producing the same, method for transporting the same and method for clarification treatment of soil/ground water
JP6359891B2 (en) Soil purification agent and method for purification of contaminated soil
JP2008142693A (en) Iron powder for organic chlorinated compound decomposition, its manufacturing method, and detoxifying treatment method using the same
JP2006102675A (en) Cleaning agent for cleaning soil/ground water, manufacturing method therefor, and cleaning method for soil/ground water
JP2004057881A (en) Agent for making material polluted with organic halogen compound harmless, method of producing the agent, and method of making harmless using the agent
JP4626762B2 (en) Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method
JP4586325B2 (en) Detoxification treatment agent for object contaminated with organic halogen compound and detoxification treatment method using the same
JP4433173B2 (en) Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP2013208527A (en) Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
JP2010194451A (en) Organic halide cleaning agent and cleaning method using the same
JP2006249319A (en) Slurry containing iron, its manufacturing method, treating agent for making organic halogenide contaminant harmless and method for making harmless by using it
JP2004305235A (en) Method for rendering object to be treated contaminated with organic halogen compound harmless
JP2008272644A (en) Iron powder for decomposing organic chlorine compounds and method of detoxifying using the same
JP4786936B2 (en) Organohalogen compound treatment material
JP7300656B2 (en) Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method
JP2010131542A (en) Cleaning method of organic halide
JP2008194542A (en) Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218