JP2016007591A - Soil cleaning agent and method for cleaning contaminated soil - Google Patents

Soil cleaning agent and method for cleaning contaminated soil Download PDF

Info

Publication number
JP2016007591A
JP2016007591A JP2014130961A JP2014130961A JP2016007591A JP 2016007591 A JP2016007591 A JP 2016007591A JP 2014130961 A JP2014130961 A JP 2014130961A JP 2014130961 A JP2014130961 A JP 2014130961A JP 2016007591 A JP2016007591 A JP 2016007591A
Authority
JP
Japan
Prior art keywords
soil
iron powder
clay mineral
aqueous suspension
montmorillonite clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014130961A
Other languages
Japanese (ja)
Other versions
JP6359891B2 (en
Inventor
浩司 秦
Koji Hata
浩司 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2014130961A priority Critical patent/JP6359891B2/en
Publication of JP2016007591A publication Critical patent/JP2016007591A/en
Application granted granted Critical
Publication of JP6359891B2 publication Critical patent/JP6359891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-part soil cleaning agent that allows the preparation of a soil cleaning agent for an iron powder slurry capable of detoxicating contaminants such as organic halides and hexavalent chromium by efficiently reducing them directly from a soil contaminated with such contaminants, or capable of removing them after the detoxication, wherein an excellent dispersion of the iron powder can be obtained over an extended time.SOLUTION: The soil cleaning agent for cleaning a contaminated soil comprises: an iron powder aqueous suspension containing iron powder or dispersed iron powder; and a montmorillonite clay mineral aqueous suspension where a montmorillonite clay mineral as a thickener is dispersed in water. The montmorillonite clay mineral is bentonite or synthetic smectite.

Description

本発明は、有機ハロゲン化物、6価クロム等により汚染された土壌から該汚染物質を分解・無害化するために使用される土壌浄化剤、並びに汚染された土壌を浄化する方法に関する。   The present invention relates to a soil purification agent used for decomposing and detoxifying the pollutants from soil contaminated with organic halides, hexavalent chromium and the like, and a method for purifying the contaminated soil.

機械類の油類除去等の工業的な洗浄には、これまでトリクロロエチレン等の有機塩素系化合物が大量に使用されてきた。現在では環境汚染の観点から、このような有機塩素系化合物の使用が規制されている。しかしながら、既に多量の有機塩素系化合物が使用されており、このためその土壌汚染あるいは水質汚染も進んでいる。即ち、トリクロロエチレン等の有機塩素系化合物は、安定で微生物に分解され難く、自然環境に投棄された有機塩素系化合物は、土壌を汚染するだけでなく、最終的には河川や地下水を汚染し、これが飲料水の原水となることがあり、問題となる。   For industrial cleaning such as oil removal of machinery, organochlorine compounds such as trichlorethylene have been used in large quantities so far. At present, the use of such organochlorine compounds is regulated from the viewpoint of environmental pollution. However, a large amount of organochlorine compounds have already been used, and as a result, soil contamination or water pollution is also progressing. That is, organochlorine compounds such as trichlorethylene are stable and difficult to break down into microorganisms. Organochlorine compounds dumped in the natural environment not only contaminate the soil, but ultimately pollute rivers and groundwater, This can be a source of drinking water, which is problematic.

上記有機塩素系化合物等の揮発性の有機化合物で汚染された土壌を浄化する方法としては、従来から、土壌ガス吸引法、地下水揚水法、土壌掘削法等が知られている。土壌ガス吸引法は、不飽和帯に存在する対象物質を強制的に吸引するものであり、ボーリングにより地盤中に吸引用井戸を設置し、真空ポンプによって吸引用井戸内を減圧にし、気化した有機化合物を吸引井戸内に集め、地下に導いて土壌ガス中の有機化合物を活性炭に吸着させるなどの方法によって処理するものである。上記有機化合物による汚染が帯水層にまで及んでいる場合には、吸引用井戸内に水中ポンプを設置し、土壌ガスと同時に揚水して処理する方法が採用される。   Conventionally known methods for purifying soil contaminated with volatile organic compounds such as organic chlorine compounds include soil gas suction, groundwater pumping, soil excavation, and the like. The soil gas suction method forcibly sucks the target substances present in the unsaturated zone. A suction well is installed in the ground by boring, and the inside of the suction well is depressurized by a vacuum pump, and the vaporized organic The compounds are collected in a suction well, guided to the underground, and treated by a method such as adsorption of organic compounds in soil gas onto activated carbon. When the contamination by the organic compound extends to the aquifer, a method is adopted in which a submersible pump is installed in the suction well and the water is pumped and treated simultaneously with the soil gas.

地下揚水法は、土壌中に揚水井戸を設置し、汚染地下水を揚水して処理する方法である。さらに、土壌掘削法は、汚染土壌を掘削し、掘削した土壌を風力乾燥、加熱処理を施して有機化合物の除去回収を行う方法である。   The underground pumping method is a method of setting up a pumping well in soil and pumping up contaminated groundwater. Furthermore, the soil excavation method is a method in which contaminated soil is excavated, and the excavated soil is subjected to wind drying and heat treatment to remove and collect organic compounds.

しかしながら、これらの方法は、土壌を直接浄化する方法ではなく、上記土壌ガス吸引法、地下水揚水法等により集められた汚染水、あるいは河川、地下水等の汚染水を浄化する方法であり、対象は極めて大量であり、処理は長期間を要する場合が多い。また処理工程が複雑となる場合が多いのも欠点である。このため、汚染源である土壌を直接簡便に浄化する方法が求められている。   However, these methods are not methods for directly purifying soil, but are methods for purifying contaminated water collected by the soil gas suction method, groundwater pumping method, etc., or contaminated water such as rivers and groundwater. The amount is extremely large, and the treatment often takes a long time. It is also a drawback that the processing steps are often complicated. For this reason, a method for directly and simply purifying soil that is a source of contamination is required.

上記直接浄化可能な方法に用いられる浄化剤として、例えば、特許文献1(国際公開第2001−08825号公報)に、粒径10μm未満の球状の鉄微粒子スラリーからなる土壌浄化剤が開示されている。すなわち、鉄粒子を微粒することにより、鉄の表面積を大きくして汚染物質の処理能力を増大させ、また微粒化に加え、粒子の形を球状にすることにより土壌内への鉄の迅速な浸透を可能にしている。   As a purification agent used in the method capable of direct purification, for example, Patent Document 1 (International Publication No. 2001-08825) discloses a soil purification agent comprising a spherical iron fine particle slurry having a particle size of less than 10 μm. . That is, by finely pulverizing iron particles, the surface area of iron is increased to increase the processing capacity of pollutants, and in addition to atomization, the shape of the particles is made spherical to rapidly penetrate iron into the soil. Is possible.

特許文献1に記載のような鉄粉スラリーは、鉄粉自体、比重が高いため沈降しやすく良好な分散状態の鉄粉スラリーを得難いとの問題がある。このため、鉄粉スラリーを良好な分散状態とするために、増粘剤が添加されることが一般的である。例えば、特許文献2(特開2006−272068号公報)には、土壌浄化剤の増粘剤として、グアガム、キトサン、キサンタンガム、アルギン酸塩等の多糖類が使用されている。   The iron powder slurry as described in Patent Document 1 has a problem that since the iron powder itself has a high specific gravity, it is easy to settle and it is difficult to obtain a well dispersed iron powder slurry. For this reason, in order to make an iron powder slurry into a favorable dispersion state, it is common to add a thickener. For example, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-272068), polysaccharides such as guar gum, chitosan, xanthan gum, and alginates are used as thickeners for soil purification agents.

国際公開第2001−08825号公報International Publication No. 2001-08825 特開2006−272068号公報JP 2006-272068 A

本発明者の検討によれば、鉄粉スラリーを良好な分散状態とするために、特許文献2等に記載のグアガム等の多糖類を使用した場合、保存中に多糖類が腐敗等により劣化し、腐敗による悪臭が発生するだけでなく、肝心の増粘作用が得られなくなるとの問題があることが明らかとなった。また、増粘作用が得られない場合、汚染土壌に浄化剤を注入した際、浄化剤の汚染土壌への均一な浸透も阻害されるとの問題もある。   According to the study of the present inventor, when a polysaccharide such as guar gum described in Patent Document 2 is used in order to make the iron powder slurry in a good dispersion state, the polysaccharide deteriorates due to decay or the like during storage. It became clear that there was a problem that not only the bad smell caused by rot occurred but also the essential thickening action could not be obtained. In addition, when the thickening action cannot be obtained, there is a problem that when the cleaning agent is injected into the contaminated soil, the uniform penetration of the cleaning agent into the contaminated soil is also inhibited.

従って、本発明の目的は、有機ハロゲン化物、6価クロム等の汚染物質により汚染された土壌から、直接、効率よくこの汚染物質を還元することにより無毒化、或いは無毒化後除去することができる鉄粉スラリーを含む土壌浄化剤であって、鉄粉の良好な分散状態が長期にわたって得ることができる土壌浄化剤を提供することにある。   Therefore, the object of the present invention is to remove the contaminants directly or efficiently from the soil contaminated with contaminants such as organic halides and hexavalent chromium, and to remove them after detoxification. An object of the present invention is to provide a soil purification agent containing an iron powder slurry, which can obtain a good dispersion state of iron powder over a long period of time.

また、本発明の目的は、鉄粉スラリーの土壌浄化剤であって、鉄粉の良好な分散状態が長期にわたって得ることができる土壌浄化剤を調製することができる2液タイプの土壌浄化剤を提供することにある。   Moreover, the object of the present invention is a two-component type soil purification agent capable of preparing a soil purification agent that is an iron powder slurry soil purification agent that can obtain a good dispersion state of iron powder over a long period of time. It is to provide.

従って、本発明の目的は、上記2液タイプの土壌浄化剤を用いて、有機ハロゲン化物、6価クロム等で汚染された土壌を、掘削等行うことなく、撹拌により効率よく原位置で浄化処理する方法を提供することにある。   Accordingly, an object of the present invention is to use the above-described two-component type soil purification agent to efficiently purify soil contaminated with organic halides, hexavalent chromium, etc. in situ by agitation without excavation. It is to provide a way to do.

従って、前記の目的は、汚染された土壌を浄化するための土壌浄化剤であって、鉄粉、又は分散状態の鉄粉を含む鉄粉水性懸濁液と、増粘剤としてのモンモリロナイト系粘土鉱物が水中に分散されてなるモンモリロナイト系粘土鉱物水性懸濁液とを含む土壌浄化剤により達成することができる。   Therefore, the above object is a soil purifier for purifying contaminated soil, which is an iron powder aqueous suspension containing iron powder or dispersed iron powder, and montmorillonite clay as a thickener. It can be achieved by a soil purification agent comprising a montmorillonite clay mineral aqueous suspension in which a mineral is dispersed in water.

本発明のモンモリロナイト系粘土鉱物は、モンモリロン石群鉱物及び合成モンモリロン石群鉱物を含むものである。   The montmorillonite clay mineral of the present invention includes a montmorillonite group mineral and a synthetic montmorillonite group mineral.

上記土壌浄化剤の好ましい態様を以下に列記する。   Preferred embodiments of the soil purification agent are listed below.

(1)モンモリロナイト系粘土鉱物が、ベントナイト又は合成スメクタイトである。   (1) The montmorillonite clay mineral is bentonite or synthetic smectite.

(2)モンモリロナイト系粘土鉱物水性懸濁液が、さらに当該懸濁液を増粘させることができる添加剤を含んでいる。これにより、少量のベントナイトで大きな増粘効果を得ることができる。また、ベントナイトのpHを浄化に好適な中性域にシフトすることができる。   (2) The aqueous montmorillonite clay mineral suspension further contains an additive capable of thickening the suspension. Thereby, a big thickening effect can be acquired with a small amount of bentonite. Moreover, the pH of bentonite can be shifted to a neutral range suitable for purification.

(3)添加剤が、FeCl(塩化第一鉄)、FeCl(塩化第二鉄)、FeSO(硫酸第一鉄)、Fe(SO(硫酸第二鉄)、FeO、Fe及びFeSから選択される少なくとも1種の鉄化合物、特にFeCl、FeCl、FeSO、及びFe(SOから選択される少なくとも1種の鉄化合物である。 (3) The additives are FeCl 2 (ferrous chloride), FeCl 3 (ferric chloride), FeSO 4 (ferrous sulfate), Fe 2 (SO 4 ) 3 (ferric sulfate), FeO, At least one iron compound selected from Fe 3 O 4 and FeS, in particular at least one iron compound selected from FeCl 2 , FeCl 3 , FeSO 4 , and Fe 2 (SO 4 ) 3 .

(4)鉄粉の平均粒径が1〜500μm、特に10〜200μmである。鉄粉は平均粒径が大きいほどスラリー中で沈降しやすいので、本願発明の増粘剤は比較的大きい粒径の鉄粉に特に有効である。   (4) The average particle size of the iron powder is 1 to 500 μm, particularly 10 to 200 μm. Since the iron powder is more likely to settle in the slurry as the average particle size is larger, the thickener of the present invention is particularly effective for iron powder having a relatively large particle size.

(5)汚染された土壌の汚染物質が、有機ハロゲン化物及び/または6価クロム、特に有機ハロゲン化物であり、中でも揮発性有機塩素化合物(CVOC)ある。鉄粉の還元作用は還元され得る汚染物質、有機ハロゲン化物に特に有効であるが、6価クロムに対しても有効である。   (5) The pollutants in the contaminated soil are organic halides and / or hexavalent chromium, particularly organic halides, among which volatile organic chlorine compounds (CVOC). The reducing action of iron powder is particularly effective for pollutants and organic halides that can be reduced, but is also effective for hexavalent chromium.

本発明は、上記の土壌浄化剤に記載された、鉄粉又は鉄粉の水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液との混合物からなる土壌浄化剤にもある。   This invention exists also in the soil cleaning agent which consists of a mixture of the iron powder or the aqueous suspension of iron powder, and the montmorillonite clay mineral aqueous suspension described in the above-mentioned soil cleaning agent.

上記土壌浄化剤の好ましい態様を以下に列記する。   Preferred embodiments of the soil purification agent are listed below.

(1)鉄粉の濃度が10〜50質量%であり、ベントナイトの濃度が0.3〜5質量%である。効率の良い増粘効果が得られる。   (1) The concentration of iron powder is 10 to 50% by mass, and the concentration of bentonite is 0.3 to 5% by mass. An efficient thickening effect is obtained.

(2)粘度が25℃で200〜400mPa・sである。沈降を防止し、汚染土壌への注入等を行う施工機械に、鉄粉懸濁液を均一な濃度でポンプ圧送するために好適な粘度である。   (2) The viscosity is 200 to 400 mPa · s at 25 ° C. The viscosity is suitable for pumping the iron powder suspension at a uniform concentration to a construction machine that prevents sedimentation and injects into contaminated soil.

本発明は、前記2液タイプの土壌浄化剤に記載された、鉄粉又は鉄粉の水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液とを混合し、該混合物を汚染された土壌に浸透させることからなる土壌浄化方法にもある。   The present invention mixes iron powder or an aqueous suspension of iron powder and an aqueous suspension of montmorillonite clay mineral described in the two-component type soil purification agent, and permeates the mixture into contaminated soil. There is also a soil purification method consisting of

上記土壌浄化方法の好ましい態様を以下に列記する。   Preferred embodiments of the soil purification method are listed below.

(1)土壌浄化剤の浸透を、土壌浄化剤を土壌表面の略全面に散布することにより行う。   (1) The soil cleaner is infiltrated by spraying the soil cleaner over substantially the entire surface of the soil.

(2)前記土壌浄化剤の浸透を、前記混合物を供給するための注入管を挿入し、該混合物をその注入管に注入することにより行う。あるいは
前記土壌浄化剤の浸透を、前記混合物を、地盤改良用の施工機械で土壌中に供給し、前記混合物と該土壌とを撹拌することにより行う。
(2) The soil purifier is infiltrated by inserting an injection tube for supplying the mixture and injecting the mixture into the injection tube. Alternatively, the soil purifying agent is permeated by supplying the mixture into the soil using a construction machine for ground improvement and stirring the mixture and the soil.

本発明の土壌浄化剤は、汚染物質の除去のために鉄粉を主として用い、鉄粉の良好な分散安定性を得るために増粘剤としてベントナイトを用いている。これにより、多糖類のように腐敗等により悪臭の発生や、劣化が起こらないため、良好な粘度に安定化された土壌浄化剤を長期に安定して使用することができ、また、安定した土壌効果も長期に得ることができる。特に、ベントナイトの増粘効果を上げるために鉄化合物等の酸性の添加剤を用いることにより、少量のベントナイトで効率よく増粘効果を得ることができるため、増粘剤の量が抑えられ、鉄による浄化効果も得られやすい。また、酸性の添加剤を用いることによりpHを鉄粉による浄化に好適な中性域にシフトすることも可能である。   The soil purification agent of the present invention mainly uses iron powder for removing contaminants, and uses bentonite as a thickener to obtain good dispersion stability of iron powder. This prevents the generation of bad odors and deterioration due to rot such as polysaccharides, so the soil purifier stabilized with a good viscosity can be used stably for a long time, and stable soil The effect can also be obtained for a long time. In particular, by using an acidic additive such as an iron compound to increase the thickening effect of bentonite, a thickening effect can be obtained efficiently with a small amount of bentonite, so the amount of thickening agent can be suppressed, and iron It is easy to obtain a purification effect. It is also possible to shift the pH to a neutral range suitable for purification with iron powder by using an acidic additive.

本発明の良好な粘度に安定化された土壌浄化剤を汚染土壌に直接注入した場合、比較的浸透しやすい砂質層等だけでなく、シルト層や粘土層、関東ローム層等に鉄粉を均一に導入することができるため、有機塩素系化合物等の汚染物質の無害化を充分行うことができる。   When the soil cleansing agent stabilized to a good viscosity according to the present invention is directly injected into contaminated soil, iron powder is not only applied to sandy layers that are relatively easy to penetrate, but also to silt layers, clay layers, Kanto loam layers, etc. Since they can be introduced uniformly, it is possible to sufficiently detoxify pollutants such as organochlorine compounds.

図1は、本発明の浄化方法の実施形態の例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of an embodiment of the purification method of the present invention. 図2は、実施例の表1及び表2に示した各増粘剤の濃度に対する粘度のグラフである。FIG. 2 is a graph of the viscosity with respect to the concentration of each thickener shown in Tables 1 and 2 of the Examples. 図3は、実施例の表3〜10のクニピアFの濃度が2.5質量%における、各添加剤の濃度と粘度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the concentration of each additive and the viscosity when the concentration of Kunipia F in Tables 3 to 10 in the examples is 2.5 mass%. 図4は、実施例の表3〜10のクニピアFの濃度が2.5質量%における、各添加剤を添加したモンモリロナイト系粘土鉱物水性懸濁液(添加剤調製時)のpHと粘度の関係を示すグラフである。FIG. 4 shows the relationship between pH and viscosity of a montmorillonite clay mineral aqueous suspension (additive preparation) to which each additive was added when the concentration of Kunipia F in Tables 3 to 10 in the Examples was 2.5 mass%. It is a graph which shows. 図5は、実施例の表11〜13のクニピアFの濃度が1.0質量%、1.5質量%、2.5質量%における、塩化第一鉄の濃度と粘度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between ferrous chloride concentration and viscosity when the concentration of Kunipia F in Tables 11 to 13 of the examples is 1.0 mass%, 1.5 mass%, and 2.5 mass%. is there. 図6は、実施例の表14〜16のクニピアFの濃度が1.0質量%、1.5質量%、2.5質量%における、硫酸第一鉄の濃度と粘度の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the ferrous sulfate concentration and the viscosity when the concentration of Kunipia F in Tables 14 to 16 is 1.0 mass%, 1.5 mass%, and 2.5 mass%. is there. 図7は実施例の表17の各浄化液による、トリクロロエチレン(TCE)濃度の経過日数に対する変化を示すグラフである。FIG. 7 is a graph showing a change in the trichlorethylene (TCE) concentration with respect to the number of days elapsed by each of the cleaning liquids in Table 17 of the example.

本発明の土壌浄化剤は、鉄粉又は鉄粉が水中に分散されてなる鉄粉水性懸濁液と、増粘剤としてのベントナイトが水中に分散されてなるモンモリロナイト系粘土鉱物水性懸濁液とからなるものであり、またこれらの鉄粉又は鉄粉水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液の混合物である。すなわち、本発明の土壌浄化剤は、一般に、モンモリロナイト系粘土鉱物水性懸濁液とを調製し、使用される際鉄粉をモンモリロナイト系粘土鉱物水性懸濁液に加えて混合して使用するか、あるいは鉄粉水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液とをそれぞれ調製し、使用される際これらを混合して用いる。このため、使用される前は、一般にモンモリロナイト系粘土鉱物はその水性懸濁液として保存される。この増粘剤は無機物であるため、長期保存しても腐敗して、増粘効果が低下することはない。本発明の土壌浄化剤は、上記増粘剤により鉄による浄化効果も得られやすいことから、汚染土壌から汚染物質を還元等により無毒化、或いは無毒化後除去するために有用であり、また作業性においても優れたものである。   The soil purification agent of the present invention includes iron powder or an aqueous suspension of iron powder in which iron powder is dispersed in water, and an aqueous montmorillonite clay mineral suspension in which bentonite as a thickener is dispersed in water. And a mixture of these iron powder or iron powder aqueous suspension and montmorillonite clay mineral aqueous suspension. That is, the soil purification agent of the present invention is generally prepared with a montmorillonite clay mineral aqueous suspension, and when used, iron powder is added to the montmorillonite clay mineral aqueous suspension and mixed, Alternatively, an iron powder aqueous suspension and a montmorillonite clay mineral aqueous suspension are prepared and mixed when used. For this reason, montmorillonite clay minerals are generally stored as aqueous suspensions before use. Since this thickener is an inorganic substance, it does not rot even after long-term storage and the thickening effect does not decrease. The soil purifier of the present invention is also useful for detoxifying or removing the pollutant from the contaminated soil by reduction or the like after the decontamination from the contaminated soil, because the thickener can easily obtain the purifying effect by iron. It is also excellent in performance.

本発明の浄化の対象となる汚染源として、有機ハロゲン化物、6価クロム、シアン化物を挙げることができ、有機ハロゲン化物、6価クロムが適当であり、特に有機ハロゲン化物適当である。有機ハロゲン化物の例としては、塩化ビニル、1,1−ジクロロエチレン、1,2−ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2−ジクロロメタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,2,2−テトラクロロエタン、ジクロロジフルオロエタン等を挙げることができる。これらの有機ハロゲン化物は、鉄の脱ハロゲン化作用(還元作用)により、ハロゲンを失って対応する炭化水素となり、土壌より除去されると考えられる。有機ハロゲン化物としては、有機塩化物(なかでも揮発性有機塩素化合物(CVOC))に特に有効である。また、6価クロムは、長期間に亘る有効な鉄の還元作用により、効率良く3価クロムに還元することができ、その後必要により土壌より除去することができる。さらに、シアン化物(シアンイオン)は、鉄イオンと錯体を形成して無毒化される。   Examples of the contamination source to be purified according to the present invention include organic halides, hexavalent chromium, and cyanide. Organic halides and hexavalent chromium are suitable, and organic halides are particularly suitable. Examples of organic halides include vinyl chloride, 1,1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, dichloromethane, carbon tetrachloride, 1,2-dichloromethane, 1,1,1-trichloroethane, 1,1 , 2-trichloroethane, 1,1,2,2-tetrachloroethane, dichlorodifluoroethane and the like. These organic halides are considered to be removed from the soil by losing halogen to the corresponding hydrocarbons due to the dehalogenation action (reduction action) of iron. The organic halide is particularly effective for organic chlorides (especially volatile organochlorine compounds (CVOC)). Hexavalent chromium can be efficiently reduced to trivalent chromium by an effective iron reducing action over a long period of time, and then removed from the soil as necessary. Furthermore, cyanide (cyanide ions) is detoxified by forming a complex with iron ions.

本発明の土壌浄化剤に使用されるスラリーに含まれる鉄粉は、どのような鉄粉でも使用することができる。鉄粉の平均粒径は一般に1μm以上であり、1〜500μmが好ましく、さらに10〜500μm、特に10〜200μmが好ましい。このような鉄粉は、平均粒径が小さいほど洗浄力の向上が図れるが、粉塵爆発等の危険があるため取扱いが難しいこと、また小さいほど高価になるため、また大きすぎると沈降しやすくなることから、やや大きい、特に10〜200μmが好ましい。また、この範囲において、本発明の増粘剤が特に有効となる。   Any iron powder can be used as the iron powder contained in the slurry used in the soil purification agent of the present invention. The average particle size of the iron powder is generally 1 μm or more, preferably 1 to 500 μm, more preferably 10 to 500 μm, and particularly preferably 10 to 200 μm. Such iron powder can improve its detergency as the average particle size is smaller, but it is difficult to handle due to the danger of dust explosion, etc., and it is more expensive as it is smaller. In view of this, it is preferable that it is somewhat large, particularly 10 to 200 μm. In this range, the thickener of the present invention is particularly effective.

また、本発明の土壌浄化剤の鉄粉水性懸濁液中の鉄粉の含有量は10〜70質量%、特に20〜50質量%が好ましい。モンモリロナイト系粘土鉱物水性懸濁液と混合後の鉄粉水性懸濁液(すなわち、土壌に注入時の液) 中の鉄粉の含有量は、0.1〜50質量%、特に5〜30質量%が好ましい。鉄粉は金属鉄及び鉄含有化合物を主成分とするが、鉄粉のうち金属鉄が50質量%以上占めることが好ましい。鉄含有化合物は、主として、Fe、FeO、FeO等の酸化鉄である。鉄粉は、他の成分として、イオウ、CaO、SiO等を微量含んでいてもよい。 Moreover, the content of iron powder in the iron powder aqueous suspension of the soil purification agent of the present invention is preferably 10 to 70 mass%, particularly preferably 20 to 50 mass%. The content of iron powder in the iron powder aqueous suspension (that is, the liquid at the time of pouring into soil) after mixing with the montmorillonite clay mineral aqueous suspension is 0.1 to 50 mass%, particularly 5 to 30 mass%. % Is preferred. Although iron powder has metal iron and an iron containing compound as a main component, it is preferable that metal iron accounts for 50 mass% or more among iron powder. The iron-containing compound is mainly iron oxide such as Fe 2 O 3 , FeO, and FeO 2 . The iron powder may contain a small amount of sulfur, CaO, SiO 2 or the like as other components.

鉄粉は、上記平均粒径等を満たすものであればどのようなものでも使用することができる。使用可能な鉄粉として、市販の各種鉄粉を使用することができる。例えば、JEFミネラル(株)、(株)神戸製鋼所、DOWAエコシステム(株)等から販売されている鉄粉剤、特に土壌浄化用鉄粉剤を挙げることができる。鉄粉水性懸濁液は、一般に、上記鉄粉(鉄粉)を水(所望により下記の添加剤を含有してもよい)に分散させることにより得ることができる。   Any iron powder can be used as long as it satisfies the above average particle diameter and the like. As iron powder which can be used, various commercially available iron powders can be used. Examples thereof include iron powders sold by JEF Mineral Co., Ltd., Kobe Steel Co., Ltd., DOWA Ecosystem Co., Ltd., etc., particularly iron powders for soil purification. The aqueous iron powder suspension can be generally obtained by dispersing the above iron powder (iron powder) in water (which may contain the following additives if desired).

鉄粉水性懸濁液(鉄粉スラリー)は、例えば、製鋼用の酸素吹転炉から、精錬中に発生する排ガス中の製鋼ダストを集塵(好ましくは湿式集塵)し、炭酸ガス等のガスを除去することにより得られる製鋼ダストからなるスラリーを有利に利用することができる。通常、集塵後、上記製鋼ダストをシックナーにより鉄粉スラッジのスラリーとされたものである。   The iron powder aqueous suspension (iron powder slurry) collects steelmaking dust in the exhaust gas generated during refining (preferably wet dust collection) from an oxygen blow furnace for steelmaking, for example, carbon dioxide gas A slurry made of steelmaking dust obtained by removing the gas can be advantageously used. Usually, after dust collection, the steelmaking dust is made into a slurry of iron powder sludge by a thickener.

本発明の鉄粉は、鉄粒子表面の酸化を防止するために、酸化防止剤を鉄粉水性懸濁液に添加することが好ましい。酸化防止剤としては、有機酸(例、アスコルビン酸(ビタミンC)、クエン酸、リンゴ酸、特にアスコルビン酸)及びこれらの塩を挙げることができ、その添加量は、鉄粉に対して0.01〜10質量%が一般的で、0.1〜3質量%が好ましい。   In the iron powder of the present invention, it is preferable to add an antioxidant to the iron powder aqueous suspension in order to prevent oxidation of the iron particle surface. Examples of the antioxidant include organic acids (eg, ascorbic acid (vitamin C), citric acid, malic acid, particularly ascorbic acid) and salts thereof. 01-10 mass% is common, and 0.1-3 mass% is preferable.

本発明の鉄粉水性懸濁液又は土壌浄化剤は、さらに鉄以外の金属でも、還元作用を有する金属であるMn、Mg、Zn、Al、Ti等であれば併用することができる。   The aqueous iron powder suspension or soil purification agent of the present invention can be used in combination with metals other than iron as long as Mn, Mg, Zn, Al, Ti, etc. are metals having a reducing action.

本発明の鉄粉水性懸濁液(鉄粉スラリー)は、上記鉄粉スラリーに、所望により酸化防止剤、金属ハロゲン化物又は水溶性ポリマー等を加えて、懸濁、あるいは分散させて得られるものである。更に適宜水を加えて所望の濃度にすることができる。また必要により分散時に界面活性剤を使用することもできる。   The iron powder aqueous suspension (iron powder slurry) of the present invention is obtained by suspending or dispersing the above iron powder slurry by adding an antioxidant, a metal halide or a water-soluble polymer, if desired. It is. Further, water can be appropriately added to obtain a desired concentration. If necessary, a surfactant can be used at the time of dispersion.

本発明の鉄粉又は鉄粉水性懸濁液と混合して使用されるモンモリロナイト系粘土鉱物水性懸濁液は、公知のモンモリロナイト系粘土鉱物を水(所望により前記の添加剤を含有してもよい)に分散させることにより得ることができる。モンモリロナイト系粘土鉱物水性懸濁液中のモンモリロナイト系粘土鉱物の含有量は、0.5〜10質量%、特に1〜4質量%が好ましい。モンモリロナイト系粘土鉱物水性懸濁液と混合後の鉄粉水性懸濁液(すなわち、土壌に注入時の液) 中のモンモリロナイト系粘土鉱物の含有量は、0.3〜5質量%、特に0.5〜3.5質量%が好ましい。   The montmorillonite clay mineral aqueous suspension used by mixing with the iron powder or iron powder aqueous suspension of the present invention is a known montmorillonite clay mineral water (optionally containing the above-mentioned additives). ) To be dispersed. The content of the montmorillonite clay mineral in the aqueous suspension of montmorillonite clay mineral is preferably 0.5 to 10% by mass, particularly 1 to 4% by mass. The content of the montmorillonite clay mineral in the iron powder aqueous suspension after mixing with the montmorillonite clay mineral aqueous suspension (that is, the liquid at the time of pouring into the soil) is 0.3 to 5% by mass, particularly 0. 5-3.5 mass% is preferable.

本発明のモンモリロナイト系粘土鉱物は、モンモリロン石群鉱物又は合成モンモリロン石群鉱物を含むものである。モンモリロン石群鉱物としては、例えばモンモリロナイト(モンモリロン石)、バイデライト、サポナイト(サポー石)、ヘクトライト等を挙げることができる。モンモリロナイト、ヘクトライト、及びモンモリロナイトを主成分とするベントナイト、特にベントナイトが好ましい。また、合成モンモリロン石群鉱物として、合成スメクタイト、合成サポナイトが好ましい。   The montmorillonite clay mineral of the present invention contains a montmorillonite group mineral or a synthetic montmorillonite group mineral. Examples of the montmorillonite mineral include montmorillonite (montmorillonite), beidellite, saponite (sapphire), hectorite and the like. Bentonite containing montmorillonite, hectorite, and montmorillonite as main components, particularly bentonite is preferred. Moreover, as a synthetic montmorillonite group mineral, synthetic smectite and synthetic saponite are preferable.

ベントナイト等の主成分であるモンモリロナイトは、層状ケイ酸塩鉱物の1種であるスメクタイトに分類される粘土鉱物で、結晶構造はケイ酸四面体層−アルミナ八面体層−ケイ酸四面体層の3層が積み重なっており、その単位層は厚さ約10Å(1nm)、広がり0.1〜1μmという極めて薄い板状になっている。アルミナ八面体層の中心原子であるAlの1部がMgに置換されることで陽電荷不足となり、各結晶層自体は負に帯電しているが、結晶層間にNa+・K+・Ca2+・Mg2+などの陽イオンを挟むことにより電荷不足を中和し、モンモリロナイトは安定状態となる。このため、モンモリロナイトは結晶層が何層も重なり合った状態で存在している。層表面の負電荷及び層間陽イオンが色々な作用を起こすことによって、モンモリロナイトの特異的性質は発揮され、本発明では鉄粉水性懸濁液の増粘に利用している Montmorillonite, which is a main component such as bentonite, is a clay mineral classified as smectite, a kind of layered silicate mineral, and its crystal structure is 3 of silicate tetrahedral layer-alumina octahedral layer-silicate tetrahedral layer. The layers are stacked, and the unit layer has a very thin plate shape with a thickness of about 10 mm (1 nm) and a spread of 0.1 to 1 μm. A portion of Al, which is the central atom of the alumina octahedron layer, is replaced with Mg, resulting in a lack of positive charge, and each crystal layer itself is negatively charged, but Na + · K + · Ca 2 between the crystal layers. By sandwiching cations such as + · Mg 2+ , neutralization of charge shortage is achieved, and montmorillonite becomes stable. For this reason, montmorillonite exists in a state in which a number of crystal layers are overlapped. The specific properties of montmorillonite are exhibited by the negative charge on the surface of the layer and the interlayer cations causing various effects. In the present invention, this is used for thickening the iron powder aqueous suspension.

市販のベントナイトとしては、クニミネ工業(株)製のクニピアFを挙げることができ好ましい。市販の合成サポナイトとしては、クニミネ工業(株)製のスメクトンSAを挙げることができ好ましい。スメクトンSAは、サポナイト構造を有する合成無機高分子である。   As the commercially available bentonite, Kunipia F manufactured by Kunimine Kogyo Co., Ltd. can be exemplified. As the commercially available synthetic saponite, smecton SA manufactured by Kunimine Kogyo Co., Ltd. can be exemplified, which is preferable. Smecton SA is a synthetic inorganic polymer having a saponite structure.

モンモリロナイト系粘土鉱物の平均粒径は、10〜100μm、特に20〜40μmが好ましい。この範囲で有効増粘効果が得られやすい。   The average particle size of the montmorillonite clay mineral is preferably 10 to 100 μm, particularly preferably 20 to 40 μm. An effective thickening effect is easily obtained within this range.

本発明のモンモリロナイト系粘土鉱物水性懸濁液は、さらに当該懸濁液を増粘させることができる添加剤を含んでいることが好ましい。これにより、少量のベントナイトで大きな増粘効果を得ることができる。またベントナイトのpHを、鉄粉の浄化能力が大きくなる中性域にシフトすることもできる。好適な添加剤としては、FeCl(塩化第一鉄)、FeCl(塩化第二鉄)、FeSO(硫酸第一鉄)、Fe(SO(硫酸第二鉄)、FeO、FeSを挙げることができ、これらの中から1種又は2種以上組み合わせて使用することができる。特にFeCl、FeCl、FeSO、及びFe(SOが好ましく、中でもFeCl、FeSOが好ましい。 The aqueous montmorillonite clay mineral suspension of the present invention preferably further contains an additive capable of thickening the suspension. Thereby, a big thickening effect can be acquired with a small amount of bentonite. Also, the pH of bentonite can be shifted to a neutral range where the iron powder purification ability is increased. Suitable additives include FeCl 2 (ferrous chloride), FeCl 3 (ferric chloride), FeSO 4 (ferrous sulfate), Fe 2 (SO 4 ) 3 (ferric sulfate), FeO, FeS can be mentioned, and one or more of these can be used in combination. In particular, FeCl 2 , FeCl 3 , FeSO 4 , and Fe 2 (SO 4 ) 3 are preferable, and among them, FeCl 2 and FeSO 4 are preferable.

上記添加剤は、モンモリロナイト系粘土鉱物水性懸濁液に、0.01〜0.5質量%(さらに0.01〜0.2質量%、特に0.02〜0.1質量%)となるように添加することが好ましい。   The additive is 0.01-0.5% by mass (further 0.01-0.2% by mass, especially 0.02-0.1% by mass) in the montmorillonite clay mineral aqueous suspension. It is preferable to add to.

例えば、クニピアFの2.5%の水性懸濁液の粘度は約20mPa・s(25℃)であるが、増粘添加剤であるFeClを0.05質量%となるように添加すると、約250mPa・s(25℃)くらいに上昇し、またpHも6程度となり、大きな増粘効果を示すとともに高い浄化効果を示す(後述の実施例参照)。 For example, the viscosity of a 2.5% aqueous suspension of Kunipia F is about 20 mPa · s (25 ° C.), but when FeCl 2 as a thickening additive is added to 0.05 mass%, The temperature rises to about 250 mPa · s (25 ° C.), and the pH is also about 6, showing a large thickening effect and a high purification effect (see Examples described later).

土壌浄化剤を用いる本発明の汚染土壌の浄化方法は、上記鉄粉又は鉄粉水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液(土壌浄化剤)との混合物を、有機ハロゲン化物で汚染された土壌(地盤)に浸透するように付与することにより行われる。好ましくは、土壌浄化剤の浸透を、土壌浄化剤を散布することにより行う方法(1);有機ハロゲン化物で汚染された土壌に、上記の土壌浄化剤を供給するための注入管を挿入し、該土壌浄化剤をその注入管に注入することからなる方法(2);及び上記の土壌浄化剤を、地盤改良用の施工機械で土壌中に供給し、土壌浄化剤と土壌とを撹拌・混合することからなる方法(3)を挙げることができる。   In the method for purifying contaminated soil of the present invention using a soil purifier, the iron powder or a mixture of the iron powder aqueous suspension and the montmorillonite clay mineral aqueous suspension (soil purifier) is contaminated with an organic halide. It is performed by giving so as to penetrate into the soil (ground). Preferably, the method (1) for infiltrating the soil purification agent by spraying the soil purification agent; inserting an injection pipe for supplying the soil purification agent into the soil contaminated with the organic halide, Method (2) comprising injecting the soil purification agent into the injection pipe, and supplying the soil purification agent into the soil with a construction machine for ground improvement, stirring and mixing the soil purification agent and the soil The method (3) which consists of doing can be mentioned.

上記方法(2)は、例えば図1に示すように下記のように行うことができる。   The method (2) can be performed as follows, for example, as shown in FIG.

汚染土壌は一般に砂礫層(透水層)1とその下部にある粘土層(不透水層)2からなり、この汚染土壌に、有機ハロゲン化物で汚染された表面にボーリングにより土壌浄化剤3を供給するための注入孔4を設ける。注入孔4は必要により間隔を隔てて複数設けることができる。土壌浄化剤をポンプにより注入孔4に圧入する。注入孔4周囲に設けられた多数の穴から汚染土壌内に土壌浄化剤が矢印の方向に注入され、鉄粉が汚染土壌内に浸透し、有機ハロゲン化物と徐々に接触し、有機ハロゲン化物を分解除去する。   Contaminated soil generally consists of a gravel layer (permeable layer) 1 and a clay layer (impervious layer) 2 below it, and a soil purification agent 3 is supplied to the contaminated soil by boring the surface contaminated with organic halides. An injection hole 4 is provided. A plurality of injection holes 4 can be provided at intervals as needed. A soil cleaner is pressed into the injection hole 4 by a pump. The soil purifier is injected into the contaminated soil in the direction of the arrow from the many holes provided around the injection hole 4, and the iron powder penetrates into the contaminated soil and gradually comes into contact with the organic halide to remove the organic halide. Decompose and remove.

注入孔4で注入する前に、注入孔4から地下水を排出し、その後土壌浄化剤を注入しても良い。注入液が土壌表面からあふれ出ないように土壌表面に不透水性シート(例、ベントナイトシート)で覆っても良い。あるいは土壌内にシートを埋め込んでも良い。   Before injecting through the injection hole 4, groundwater may be discharged from the injection hole 4, and then a soil purification agent may be injected. The soil surface may be covered with a water-impermeable sheet (eg, bentonite sheet) so that the injected solution does not overflow from the soil surface. Alternatively, a sheet may be embedded in the soil.

そして、浄化処理は、例えば、注入孔4を通して排水し、注入管から本発明の洗浄剤を注入し、必要により減圧して、洗浄剤の拡散と、鉄による還元作用により発生する物質を除去することができる。   In the purification treatment, for example, water is drained through the injection hole 4, the cleaning agent of the present invention is injected from the injection tube, and the pressure is reduced as necessary to remove substances generated by the diffusion of the cleaning agent and the reducing action of iron. be able to.

上記の方法のように、有機ハロゲン化物で汚染された土壌の表面を、不通気性のシートで覆うこと(一般に、シートの覆いは浄化剤注入後に設置される)が好ましく、必要により通気性柱状部(上記発生物質の除去に有用)を設けることができる。   As in the above method, it is preferable to cover the surface of soil contaminated with organic halides with a non-breathable sheet (generally, the cover of the sheet is installed after the injection of the cleaning agent), and if necessary, a breathable columnar shape. Part (useful for removal of the generated substance) can be provided.

有機ハロゲン化物以外の汚染物質で汚染された土壌も、上記と同様に行うことができる。また、汚染された土壌(特に6価クロムで汚染された土壌)を、土壌掘削法により掘削土壌を反応槽等に投入して本発明の土壌浄化剤で処理することもでき、そして、処理したクロム化合物等を除去することも有利な場合がある。   Soil contaminated with contaminants other than organic halides can be performed in the same manner as described above. In addition, contaminated soil (especially soil contaminated with hexavalent chromium) can be treated with the soil purification agent of the present invention by introducing the excavated soil into a reaction tank or the like by the soil excavation method. It may be advantageous to remove chromium compounds and the like.

土壌に注入する土壌浄化剤中の鉄粉の濃度は前述のように0.1〜50質量%であり、5〜30質量%が好ましい。また注入量は、一般に土壌1m3当たり鉄粉5〜250kgであり、10〜150kgが好ましい。 As described above, the concentration of the iron powder in the soil purifier to be injected into the soil is 0.1 to 50% by mass, and preferably 5 to 30% by mass. Moreover, generally the injection amount is 5-250 kg of iron powder per 1 m < 3 > of soil, and 10-150 kg is preferable.

また、上記土壌浄化剤の注入は、鉄粉の水性懸濁液の注入、及び所望により使用される親水性バインダー等を含有する水性懸濁液の注入を分けて行っても良い。   Further, the injection of the soil purification agent may be performed separately by injection of an aqueous suspension of iron powder and injection of an aqueous suspension containing a hydrophilic binder or the like used as desired.

[実施例1]
(a)モンモリロナイト系粘土鉱物水性懸濁液
モンモリロナイト系粘土鉱物として、クニピアF(クニミネ工業(株)製)、及びスメクトンSA(クニミネ工業(株)製)を用い、下記表1、2に示す濃度(質量%)となるように、蒸留水500ml中にマグネチックスターラーで撹拌しながら添加し、モンモリロナイト系粘土鉱物水性懸濁液を作製した。
得られた水性懸濁液の粘度を、B型粘度計(BMII、東機産業(株)製、回転数60rpm)を用いて25℃で測定した。
[Example 1]
(A) Montmorillonite clay mineral aqueous suspension As the montmorillonite clay mineral, Kunipia F (Kunimine Kogyo Co., Ltd.) and Smecton SA (Kunimine Kogyo Co., Ltd.) are used, and the concentrations shown in Tables 1 and 2 below. (Mass%) was added to 500 ml of distilled water while stirring with a magnetic stirrer to prepare an aqueous suspension of montmorillonite clay mineral.
The viscosity of the obtained aqueous suspension was measured at 25 ° C. using a B-type viscometer (BMII, manufactured by Toki Sangyo Co., Ltd., rotation speed: 60 rpm).

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

上記表1及び表2に示した各増粘剤の濃度に対する粘度のグラフを図2に示す。   A graph of the viscosity with respect to the concentration of each thickener shown in Table 1 and Table 2 is shown in FIG.

[実施例2]
(a)モンモリロナイト系粘土鉱物水性懸濁液
モンモリロナイト系粘土鉱物として、クニピアF(クニミネ工業(株)製)を用い、2.5質量%のモンモリロナイト系粘土鉱物水性懸濁液を作製した。この懸濁液に、下記表3〜10の質量%となるように下記表3〜10の添加剤を添加して混合し、添加剤入りモンモリロナイト系粘土鉱物水性懸濁液を作製した。
[Example 2]
(A) Montmorillonite clay mineral aqueous suspension A montmorillonite clay mineral aqueous suspension of 2.5% by mass was prepared using Kunipia F (Kunimine Kogyo Co., Ltd.) as the montmorillonite clay mineral. To this suspension, the additives shown in Tables 3 to 10 below were added and mixed so as to be the mass% in the following Tables 3 to 10 to prepare an aqueous montmorillonite clay mineral suspension containing the additives.

得られた水性懸濁液のpH、粘度を測定した。pHをpHメーター(D−50、(株)堀場製作所製)を用いて、粘度をB型粘度計(BMII、東機産業(株)製、回転数60rpm)を用いて25℃で測定した。   The pH and viscosity of the obtained aqueous suspension were measured. The pH was measured at 25 ° C. using a pH meter (D-50, manufactured by Horiba, Ltd.) and the viscosity was measured using a B-type viscometer (BMII, manufactured by Toki Sangyo Co., Ltd., rotation speed: 60 rpm).

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

上記表3〜10のクニピアFの濃度が2.5質量%における、各添加剤の濃度と粘度の関係を示すグラフを図3に示す。   A graph showing the relationship between the concentration of each additive and the viscosity when the concentration of Kunipia F in Tables 3 to 10 is 2.5% by mass is shown in FIG.

上記表3〜10のクニピアFの濃度が2.5質量%における、各添加剤を添加したモンモリロナイト系粘土鉱物水性懸濁液(添加剤調製時)のpHと粘度の関係を示すグラフを図4に示す。   FIG. 4 is a graph showing the relationship between pH and viscosity of a montmorillonite-based clay mineral aqueous suspension to which each additive is added (when the additive is prepared) when the concentration of Kunipia F in Tables 3 to 10 is 2.5% by mass. Shown in

図3及び図4から明らかなように、増粘効果及びpHの低下の効果がともに優れているのは、塩化第一鉄、塩化第二鉄、硫酸第一鉄であり、塩酸、硫酸はpHが増粘とともに大きく低下するので好ましくない。   As is apparent from FIGS. 3 and 4, ferrous chloride, ferric chloride, and ferrous sulfate are excellent in both the thickening effect and the pH lowering effect, and hydrochloric acid and sulfuric acid are pH. Is not preferred because it greatly decreases with increasing viscosity.

[実施例3]
(a)モンモリロナイト系粘土鉱物水性懸濁液
モンモリロナイト系粘土鉱物として、クニピアF(クニミネ工業(株)製)を用い、1.0質量%、1.5質量%、2.5質量%のモンモリロナイト系粘土鉱物水性懸濁液を作製した。この懸濁液に、下記表11〜13の質量%となるように塩化第一鉄を添加して混合し、添加剤入りモンモリロナイト系粘土鉱物水性懸濁液を作製し、また、この懸濁液に、下記表14〜16の質量%となるように硫酸第一鉄を添加して混合し、添加剤入りモンモリロナイト系粘土鉱物水性懸濁液を作製した。
[Example 3]
(A) Montmorillonite-based clay mineral aqueous suspension As a montmorillonite-based clay mineral, Kunipia F (manufactured by Kunimine Industries Co., Ltd.) is used, and 1.0 mass%, 1.5 mass%, and 2.5 mass% montmorillonite-based suspension. An aqueous clay mineral suspension was prepared. To this suspension, ferrous chloride was added and mixed so as to be the mass% of the following Tables 11 to 13, and an aqueous montmorillonite clay mineral suspension containing additives was prepared. In addition, ferrous sulfate was added and mixed so as to be the mass% of the following Tables 14 to 16 to prepare an aqueous montmorillonite clay mineral suspension with additives.

得られた水性懸濁液のpH、粘度を測定した。pHをpHメーター(D−50、(株)堀場製作所製)を用いて、粘度をB型粘度計(BMII、東機産業(株)製、回転数60rpm)を用いて25℃で測定した。   The pH and viscosity of the obtained aqueous suspension were measured. The pH was measured at 25 ° C. using a pH meter (D-50, manufactured by Horiba, Ltd.) and the viscosity was measured using a B-type viscometer (BMII, manufactured by Toki Sangyo Co., Ltd., rotation speed: 60 rpm).

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

Figure 2016007591
Figure 2016007591

上記表11〜13のクニピアFの濃度が1.0質量%、1.5質量%、2.5質量%における、塩化第一鉄の濃度と粘度の関係を示すグラフを図5に示す。   The graph which shows the relationship between the density | concentration of ferrous chloride and a viscosity in the density | concentration of Kunipia F of said Table 11-13 in 1.0 mass%, 1.5 mass%, and 2.5 mass% is shown in FIG.

上記表14〜16のクニピアFの濃度が1.0質量%、1.5質量%、2.5質量%における、硫酸第一鉄の濃度と粘度の関係を示すグラフを図6に示す。   The graph which shows the relationship between the density | concentration of ferrous sulfate and the viscosity in the density | concentration of Kunipia F of said Table 14-16 in 1.0 mass%, 1.5 mass%, and 2.5 mass% is shown in FIG.

図5及び図6から明らかなように、クニピアFの濃度が1.5質量%以上で、特に優れた増粘効果が得られる。   As is clear from FIGS. 5 and 6, a particularly excellent thickening effect can be obtained when the concentration of Kunipia F is 1.5 mass% or more.

[実施例4]
(a)鉄粉水性懸濁液
鉄粉(商品名:鉄、粉末−150μm、99.9%;粒径:99.9%が150μm以下、和光純薬(株)製)400gに、蒸留水1Lを添加し、撹拌して、40質量%の鉄粉水性懸濁液を得た。
[Example 4]
(A) Iron powder aqueous suspension Iron powder (trade name: iron, powder—150 μm, 99.9%; particle size: 99.9% is 150 μm or less, manufactured by Wako Pure Chemical Industries, Ltd.) 1 L was added and stirred to obtain a 40% by mass iron powder aqueous suspension.

上記鉄粉水性懸濁液と、クニピアF又はクニピアFと添加剤の懸濁液を用いて下記のように試料を作製した。   A sample was prepared as follows using the iron powder aqueous suspension and the suspension of Kunipia F or Kunipia F and additives.

(1)TCE(トリクロロエチレン)5mg/L、
(2)TCE5mg/L+鉄粉50g/L(8mlのTCE50mg/Lと、10mlの鉄粉水性懸濁液を混合して、80mlにメスアップして作製)
(3)TCE5mg/L+クニピアF4.3g/L(8mlのTCE50mg/Lと、10mlのクニピアF35g/L(粘度(25℃)210mPa・s)とを混合して、80mlにメスアップして作製)
(4)TCE5mg/L+鉄粉50g/L+クニピアF4.3g/L(8mlのTCE50mg/Lと、10mlの鉄粉400g/L+クニピアF35g/L(粘度(25℃)260mPa・s)とを混合して、80mlにメスアップして作製)
(5)TCE5mg/L+鉄粉50g/L+クニピアF3.1g/L+塩化第一鉄0.038g/L(8mlのTCE50mg/Lと、10mlの鉄粉400g/L+クニピアF25g/L+塩化第一鉄0.3g/L(粘度(25℃)350mPa・s)とを混合して、80mlにメスアップして作製)
(6)TCE5mg/L+鉄粉50g/L+クニピアF3.1g/L+塩化第二鉄0.031g/L(8mlのTCE50mg/Lと、10mlの鉄粉400g/L+クニピアF25g/L+塩化第二鉄0.25g/L(粘度(25℃)300mPa・s)とを混合して、80mlにメスアップして作製)
(7)TCE5mg/L+鉄粉50g/L+クニピアF3.1g/L+硫酸第一鉄0.0625g/L(8mlのTCE50mg/Lと、10mlの鉄粉400g/L+クニピアF25g/L+硫酸第一鉄0.5g/L(粘度(25℃)290mPa・s)とを混合して、80mlにメスアップして作製
(8)TCE5mg/L+鉄粉50g/L+クニピアF3.1g/L+硫酸第二鉄0.0625g/L(8mlのTCE50mg/Lと、10mlの鉄粉400g/L+クニピアF25g/L+硫酸第二鉄0.5g/Lを混合して(粘度(25℃)275mPa・s)、80mlにメスアップして作製)
(1) TCE (trichloroethylene) 5 mg / L,
(2) TCE 5 mg / L + iron powder 50 g / L (Made 8 ml of TCE 50 mg / L and 10 ml of iron powder aqueous suspension and make up to 80 ml)
(3) TCE 5 mg / L + Kunipia F 4.3 g / L (8 ml of TCE 50 mg / L and 10 ml of Kunipia F 35 g / L (viscosity (25 ° C.) 210 mPa · s) are mixed and made up to 80 ml)
(4) TCE 5 mg / L + Iron powder 50 g / L + Kunipia F 4.3 g / L (8 ml TCE 50 mg / L and 10 ml iron powder 400 g / L + Kunipia F 35 g / L (viscosity (25 ° C.) 260 mPa · s)) To make up to 80ml
(5) TCE 5 mg / L + iron powder 50 g / L + Kunipia F 3.1 g / L + ferrous chloride 0.038 g / L (8 ml TCE 50 mg / L, 10 ml iron powder 400 g / L + Kunipia F25 g / L + ferrous chloride 0 .3g / L (Mixed with viscosity (25 ° C) 350mPa · s) and made up to 80ml.)
(6) TCE 5 mg / L + iron powder 50 g / L + Kunipia F 3.1 g / L + ferric chloride 0.031 g / L (8 ml of TCE 50 mg / L, 10 ml of iron powder 400 g / L + Kunipia F25 g / L + ferric chloride 0 .25 g / L (viscosity (25 ° C.) 300 mPa · s) mixed and made up to 80 ml)
(7) TCE 5 mg / L + iron powder 50 g / L + Kunipia F 3.1 g / L + ferrous sulfate 0.0625 g / L (8 ml TCE 50 mg / L, 10 ml iron powder 400 g / L + Kunipia F25 g / L + ferrous sulfate 0 (8) TCE 5 mg / L + iron powder 50 g / L + Kunipia F 3.1 g / L + ferric sulfate 0. 5 g / L (viscosity (25 ° C.) 290 mPa · s) 0625g / L (8ml TCE 50mg / L and 10ml iron powder 400g / L + Kunipia F25g / L + ferric sulfate 0.5g / L) (viscosity (25 ° C) 275mPa · s) To make)

Figure 2016007591
Figure 2016007591

上記表17の各浄化液による、TCE濃度の経過日数に対する変化を示すグラフを図7に示す。   The graph which shows the change with respect to the elapsed days of the TCE density | concentration by each purification liquid of the said Table 17 is shown in FIG.

上記表17の結果及び図7から、本発明の鉄粉とモンモリロナイト系粘土鉱物の組合せで、TCEに優れた浄化作用を示し、さらに添加剤を加えることによりその浄化作用はより一層向上することがわかる。   From the results of Table 17 and FIG. 7, the combination of the iron powder of the present invention and the montmorillonite clay mineral shows a purification action excellent in TCE, and the addition of an additive further improves the purification action. Recognize.

1 砂礫層(透水層)
2 粘土層(不透水層)
3 土壌浄化剤
4 注入孔
1 Gravel layer (permeable layer)
2 Clay layer (impermeable layer)
3 Soil cleaner 4 Injection hole

Claims (15)

汚染された土壌を浄化するための土壌浄化剤であって、鉄粉、又は分散状態の鉄粉を含む鉄粉水性懸濁液と、増粘剤としてのモンモリロナイト系粘土鉱物が水中に分散されてなるモンモリロナイト系粘土鉱物水性懸濁液とを含む土壌浄化剤。   A soil purification agent for purifying contaminated soil, wherein iron powder or an iron powder aqueous suspension containing dispersed iron powder and a montmorillonite clay mineral as a thickener are dispersed in water. A soil purification agent comprising a montmorillonite clay mineral aqueous suspension. モンモリロナイト系粘土鉱物が、ベントナイト又は合成スメクタイトである請求項1に記載の土壌浄化剤。   The soil purifier according to claim 1, wherein the montmorillonite clay mineral is bentonite or synthetic smectite. モンモリロナイト系粘土鉱物水性懸濁液が、さらに当該懸濁液を増粘させることができる添加剤を含んでいる請求項1に記載の土壌浄化剤。   The soil purification agent according to claim 1, wherein the montmorillonite clay mineral aqueous suspension further contains an additive capable of thickening the suspension. 添加剤が、FeCl、FeCl、FeSO、及びFe(SOから選択される少なくとも1種の鉄化合物である請求項2に記載の土壌浄化剤。 The soil purifier according to claim 2, wherein the additive is at least one iron compound selected from FeCl 2 , FeCl 3 , FeSO 4 , and Fe 2 (SO 4 ) 3 . 鉄粉の平均粒径が10〜200μmである請求項1〜4のいずれか1項に記載の土壌浄化剤。   The soil purifier according to any one of claims 1 to 4, wherein the average particle size of the iron powder is 10 to 200 µm. モンモリロナイト系粘土鉱物水性懸濁液の粘度が25℃で200〜400mPa・sである請求項1〜5のいずれか1項に土壌浄化剤。   The soil purifier according to any one of claims 1 to 5, wherein the viscosity of the aqueous montmorillonite clay mineral suspension is 200 to 400 mPa · s at 25 ° C. 前記汚染された土壌の汚染物質が、有機ハロゲン化物及び/又は6価クロムである請求項1〜6のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 6, wherein the pollutant in the contaminated soil is an organic halide and / or hexavalent chromium. 前記汚染された土壌の汚染物質が、有機ハロゲン化物である請求項1〜7のいずれかに記載の土壌浄化剤。   The soil purification agent according to any one of claims 1 to 7, wherein the pollutant in the contaminated soil is an organic halide. 請求項1〜8のいずれかに記載の土壌浄化剤に記載された、鉄粉又は鉄粉水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液との混合物からなる土壌浄化剤。   A soil purification agent comprising a mixture of iron powder or an iron powder aqueous suspension and a montmorillonite clay mineral aqueous suspension described in the soil purification agent according to any one of claims 1 to 8. 鉄粉の含有量が10〜50質量%であり、モンモリロナイト系粘土鉱物の含有量が0.3〜5質量%である請求項9に記載の土壌浄化剤。   The content of iron powder is 10-50 mass%, and the content of a montmorillonite clay mineral is 0.3-5 mass%. 粘度が25℃で200〜400mPa・sである請求項9又は10に土壌浄化剤。   The soil purifier according to claim 9 or 10, which has a viscosity of 200 to 400 mPa · s at 25 ° C. 請求項1〜8のいずれかに記載の土壌浄化剤に記載された、鉄粉又は鉄粉水性懸濁液とモンモリロナイト系粘土鉱物水性懸濁液とを混合し、該混合物を汚染された土壌に浸透させることからなる土壌浄化方法。   The iron powder or iron powder aqueous suspension and the montmorillonite clay mineral aqueous suspension described in the soil purification agent according to any one of claims 1 to 8 are mixed, and the mixture is mixed with contaminated soil. A soil purification method comprising infiltration. 前記土壌浄化剤の浸透を、土壌浄化剤を土壌表面の略全面に散布することにより行う請求項12に記載の土壌浄化方法。   The soil purification method according to claim 12, wherein the soil purification agent is permeated by spraying the soil purification agent over substantially the entire surface of the soil. 前記土壌浄化剤の浸透を、前記混合物を供給するための注入管を挿入し、該混合物をその注入管に注入することにより行う請求項12に記載の土壌浄化方法。   The soil purification method according to claim 12, wherein the soil purification agent is permeated by inserting an injection pipe for supplying the mixture and injecting the mixture into the injection pipe. 前記土壌浄化剤の浸透を、前記混合物を、地盤改良用の施工機械で土壌中に供給し、前記混合物と該土壌とを撹拌することにより行う請求項12に記載の土壌浄化方法。   The soil purification method according to claim 12, wherein the soil purification agent is permeated by supplying the mixture into soil with a ground improvement construction machine and stirring the mixture and the soil.
JP2014130961A 2014-06-26 2014-06-26 Soil purification agent and method for purification of contaminated soil Active JP6359891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130961A JP6359891B2 (en) 2014-06-26 2014-06-26 Soil purification agent and method for purification of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130961A JP6359891B2 (en) 2014-06-26 2014-06-26 Soil purification agent and method for purification of contaminated soil

Publications (2)

Publication Number Publication Date
JP2016007591A true JP2016007591A (en) 2016-01-18
JP6359891B2 JP6359891B2 (en) 2018-07-18

Family

ID=55225565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130961A Active JP6359891B2 (en) 2014-06-26 2014-06-26 Soil purification agent and method for purification of contaminated soil

Country Status (1)

Country Link
JP (1) JP6359891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162594A (en) * 2018-03-20 2019-09-26 株式会社大林組 Contaminated water purification method
WO2020230584A1 (en) * 2019-05-15 2020-11-19 株式会社神戸製鋼所 Remediation treatment agent and remediation treatment method
JP2020189287A (en) * 2019-05-15 2020-11-26 株式会社神戸製鋼所 Purification agent and purification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154744A (en) * 2002-11-08 2004-06-03 Takenaka Komuten Co Ltd Decontaminating material for soil contaminated with organochlorine compound, and contaminated soil decontamination method using the same
JP2005007256A (en) * 2003-06-18 2005-01-13 Matsuda Giken Kogyo Kk Contaminated soil insolubilization solidification agent
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP2010110497A (en) * 2008-11-07 2010-05-20 Tosoh Corp Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154744A (en) * 2002-11-08 2004-06-03 Takenaka Komuten Co Ltd Decontaminating material for soil contaminated with organochlorine compound, and contaminated soil decontamination method using the same
JP2005007256A (en) * 2003-06-18 2005-01-13 Matsuda Giken Kogyo Kk Contaminated soil insolubilization solidification agent
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP2010110497A (en) * 2008-11-07 2010-05-20 Tosoh Corp Iron powder slurry for decomposing organic halogenated substance and cleaning method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162594A (en) * 2018-03-20 2019-09-26 株式会社大林組 Contaminated water purification method
JP7098990B2 (en) 2018-03-20 2022-07-12 株式会社大林組 Contaminated water purification method
WO2020230584A1 (en) * 2019-05-15 2020-11-19 株式会社神戸製鋼所 Remediation treatment agent and remediation treatment method
JP2020189287A (en) * 2019-05-15 2020-11-26 株式会社神戸製鋼所 Purification agent and purification method

Also Published As

Publication number Publication date
JP6359891B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
Ye et al. Emerging sustainable technologies for remediation of soils and groundwater in a municipal solid waste landfill site--A review
US10737959B2 (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments
Akcil et al. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes
Moghadam et al. A review of combinations of electrokinetic applications
JP6359891B2 (en) Soil purification agent and method for purification of contaminated soil
Ren et al. Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil
JP3725749B2 (en) Iron fine particle slurry and production method thereof, soil purification agent, and soil purification method
Litter et al. In-situ technologies for groundwater treatment: the case of arsenic
JP3612258B2 (en) Soil purification agent and soil purification method
JP3476192B2 (en) Steelmaking dust slurry purification method and soil purification agent
JP2004292806A (en) Soil renewing agent and method for renewal of soil
JP4530824B2 (en) Soil purification agent and soil purification method
JP4218564B2 (en) Method for purification of contaminated aquifer using purification agent for water containing pollutant
JP2005131569A (en) Soil cleaning agent and soil cleaning method
JP5109036B2 (en) Detoxification method of soil
JP2006055724A (en) Method for soil restoration
US20070098501A1 (en) In-situ treatment of in ground contamination
JP2005111312A (en) Soil cleaning agent and soil cleaning method
Altaee et al. Soil Remediation Applications of Nanoparticles
JP4069019B2 (en) Soil restoration method
JP2004305963A (en) Method for purifying contaminated ground
JP2005111311A (en) Soil cleaning agent and soil cleaning method
JP4387648B2 (en) Decomposing agent and decomposing method of organic halogen compounds
Lee et al. Heavy Metal Contamination in Groundwater and Potential Remediation Technologies
KR101486239B1 (en) METHOD FOR REGENERATING REACTIVITY OF PASSIVATED nZVI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6359891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250