JP4069019B2 - Soil restoration method - Google Patents

Soil restoration method Download PDF

Info

Publication number
JP4069019B2
JP4069019B2 JP2003166500A JP2003166500A JP4069019B2 JP 4069019 B2 JP4069019 B2 JP 4069019B2 JP 2003166500 A JP2003166500 A JP 2003166500A JP 2003166500 A JP2003166500 A JP 2003166500A JP 4069019 B2 JP4069019 B2 JP 4069019B2
Authority
JP
Japan
Prior art keywords
soil
iron
particles
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166500A
Other languages
Japanese (ja)
Other versions
JP2005000788A (en
Inventor
哲治 茨城
充 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003166500A priority Critical patent/JP4069019B2/en
Publication of JP2005000788A publication Critical patent/JP2005000788A/en
Application granted granted Critical
Publication of JP4069019B2 publication Critical patent/JP4069019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄を含む粒子を土中に混入して土中の有害物質を無害化する方法に関する。
例えば、トリクロロエチレン、ジクロロエチレン、ダイオキシン類などの塩素系有機物や六価クロムなどに汚染された土壌を修復するために、微細な鉄粒子で構成される汚染土壌修復剤を使用して、土壌汚染物質を無害化する方法に関する。
【0002】
【従来の技術】
機械類や半導体の洗浄には、従来は、トリクロロエチレン等の有機ハロゲン化合物が利用されてきた。この有機ハロゲン化合物は発ガン性があることから、有害物質との認識がなされており、近年は、その使用が抑制されるとともに、排出管理が厳しくなっている。しかし、過去の有機ハロゲン化合物の使用が原因での汚染土壌が残っており、環境上の問題となっている。また、メッキ工場の排水などが原因で六価クロムに汚染されている場合もある。
【0003】
上記有機ハロゲン化物等の揮発性の有機化合物で汚染された土壌を浄化する方法としては、土壌ガス吸引法、地下水揚水法、土壌掘削法等が知られている。土壌ガス吸引法は、不飽和帯に存在する対象物質を強制的に吸引するものであり、ボーリングにより地盤中に吸引用井戸を設置し、真空ポンプによって吸引用井戸内を減圧にし、気化した有機化合物を吸引井戸内に集め、地下に導いて土壌ガス中の有機化合物を活性炭に吸着させるなどの方法によって処理するものである。上記有機化合物による汚染が帯水層にまで及んでいる場合には、吸引用井戸内に水中ポンプを設置し、土壌ガスと同時に揚水して処理する方法が採用されている。地下揚水法は、土壌中に揚水井戸を設置し、汚染地下水を揚水して処理する方法である。さらに、土壌掘削法は、汚染土壌を掘削し、掘削した土壌を風力乾燥、加熱処理を施して有機化合物の除去回収を行う方法である。
【0004】
上記のような集められた汚染水、あるいは地下水等の汚染水を浄化する方法としては、例えば特許第2636171号公報に、汚染水中の溶存酸素を除去した後、汚染水を鉄等の金属表面に接触させ、汚染水中に含まれる有機ハロゲン化物を還元除去する方法が開示されている。このような鉄の還元作用を利用した汚染水の浄化方法は、特開平3−106496号公報、特開平8−257570号公報、特開平10−263522号公報等にも記載されている。これらの方法はいずれも汚染水を、鉄を含む層やフィルター等を通過させて処理を行う方法である。
【0005】
また、強い還元作用を示す土壌修復剤としてミクロン単位の微細な鉄含有粒子を使用する方法が発明されており、特に、特開2001−198567公報には、微細な鉄粉をスラリー化して、土中に注入する技術が示されている。
【0006】
【特許文献1】
特許第2636171号公報
【特許文献2】
特開平3−106496号公報
【特許文献3】
特開平8−257570号公報
【特許文献4】
特開平10−263522号公報
【特許文献5】
特開2001−198567公報
【0007】
【発明が解決しようとする課題】
鉄含有粒子を土壌修復剤として使用する方法のうち、特開2001−198567公報に記載されている方法では、微細な鉄粒子を用いることから、極めて無害化反応速度が高いものである。しかし、0.5〜5ミクロン程度の比表面積の大きい粒子を使用することから、土中での鉄含有粒子の酸化速度も高く、反応活性が急速に低下する問題があった。本発明者らの実験では、このような微細な鉄含有粒子の反応活性は、数日から数週間で1/2以下となっていた。従って、地下水中のトリクロロエチレン等の汚染物質濃度が1000mg/リットル程度、またはそれ以上と極めて場合は、汚染物質を全量無害化する前に反応活性が低下する問題があった。従って、汚染物質の除去が不完全で、地下水がこのような高濃度の汚染物質を含む場合には、この技術を適用することができないことがあった。
【0008】
一方、特開平10−263522号公報に記載されている汚染水を土中の鉄を含む層やフィルター等を通過させて処理を行う方法では、反応期間が数ヶ月から1年程度かかるため、長期間にわたって反応活性が低下しない鉄含有粒子が用いられていた。このような粒子は、20〜100ミクロンの比較的大きなものであり、従って、比表面積が小さく、反応活性が比較的低いものであった。この結果、地下水中のトリクロロエチレン等の汚染物質濃度が高い場合は、土中の鉄を含む層を地下水が流れる時間内で、これらの汚染物質の除去が終了しない問題があった。この結果、地下水中の汚染物質を除去するために、複数回の処理が必要となり、費用が大幅に増加する問題が起きていた。
【0009】
このように、高濃度の汚染物質を含む土壌の浄化を目的とする場合は、反応活性を高める必要があるとともに、反応活性の維持時間も長い必要があり、上記の従来技術においては、この両者を同時に達成することが困難であった。従って、反応活性の高い土壌修復剤を用いて、1ヶ月から数ヶ月の長時間にわたって、土壌浄化反応を継続する新しい技術が求められていた。
【0010】
【課題を解決するための手段】
本発明は、これらのような従来技術が有する問題点を解決するためになされた発明であり、その要旨とするところは特許請求の範囲に記載した通り、以下の(1)から(3)に示す内容である。
(1)土中に透水性の高い通水層を施工して、当該通水層に比表面積が1グラム当り0.1〜4平方メートルであり、かつ、金属鉄、ウスタイト、マグネタイトから構成される粒子であって、金属鉄と第一鉄イオンを60質量%以上含むを繰り返し注入して、有害物質除去層を形成して、当該有害物質除去層に有害物質を含む地下水を通過させる際に、鉄を含む粒子を繰り返して土中に混入する周期( T :日)と比表面積( A :平方メートル/グラム)の積( A T )を20〜60の範囲の適正な値とすることを特徴とする土壌修復方法。
(2)土中に透水性の高い通水層を施工して、当該通水層に比表面積が1グラム当り0.1〜4平方メートルであり、かつ、金属鉄、ウスタイト、マグネタイトから構成される粒子であって、金属鉄と第一鉄イオンを25〜60質量%含む粒子を繰り返し注入して、有害物質除去層を形成して、当該有害物質除去層に有害物質を含む地下水を通過させる際に、鉄を含む粒子を繰り返して土中に混入する周期( T :日)と比表面積( A :平方メートル/グラム)の積( A T )を10〜40の範囲の適正な値とすることを特徴とする土壌修復方法。
(3)製鋼転炉から発生する転炉ガスを非燃焼式転炉ガス回収装置にて処理する際に、湿式集塵機で回収して得た鉄を多く含む粒子を使用することを特徴とする(1)または(2)に記載の土壌修復方法。
【0011】
【発明の実施の形態】
本発明では、土壌浄化剤として、反応活性が高い金属鉄と第一鉄イオンを含む粒子を用いる。ここで、反応活性が高い粒子とは、比表面積が大きく、かつ、金属鉄と第一鉄イオンの比率の高い粒子を用いる。本発明の土壌修復剤の条件は、比表面積が1グラム当り0.1〜4平方メートルであり、かつ、金属鉄と第一鉄イオンを25質量%以上含む粒子である。この比表面積である粒子の粒子径は、球に近い一般的な形状の場合には0.2〜5ミクロン程度である。なお、気孔の多い粒子を用いる場合は、粒子径は0.8〜20ミクロン程度である。比表面積は、BET法等で測定するが、球に近い形状の場合は、上記の粒子径の範囲内程度である。
【0012】
鉄を含む粒子が土壌汚染物質と反応する機構は、粒子中の金属鉄が酸化物又は水酸化物 の形態である二価の鉄イオン(第一鉄イオン)、また、二価の鉄イオンが三価の鉄イオン(第二鉄イ オン)に変化する際の還元反応に起因する。本発明者らの研究では、金属鉄と二価の鉄イオンが合計 25質量%以上であればトリクロロエチレン等の物質が100mg/リットル以上の高濃度である際にも十分に 低濃度まで除去するだけの反応容量を有することを解明した。また、本発明者らの研究では、特に、金属 鉄が第一鉄イオンに変化する際の反応が土壌浄化反応により効果的であることを見出した。従って、特に、本 発明の効果を十分に発揮するためには、金属鉄の比率が25質量%以上であることがより望ましい。このよう な比表面積の大きい粒子では、反応活性を低下させる金属鉄や第一鉄イオンの上を被覆するウスタイトやマグネタイトの層が薄 いことが重要である。また、土壌に混入する際の初期ウスタイトやマグネタイトの層が0.1〜0.3ミクロン程度を越えないこと が重要である。なお、ウスタイトやマグネタイトはいずれも第二鉄イオンを含むことから、土壌に混入する際の初期第二鉄イオンの比率が25質量%以下であると本発明の効果は大きい。
【0013】
本発明では、反応活性が高い粒子の比表面積を大きくすることにより、土壌汚染物質の浄化速度を大きくする。本発明者らは、十分な反応活性を発揮できる比表面積は、鉄含有粒子1グラム当たり0.1平方メートル以上であることを解明した。ただし、比表面積が4平方メートル/グラム以上であると、輸送や施工の最中に、粒子の酸化が進み、反応活性が低下する問題が起きる。
【0014】
本発明では、まず、第一工程として、上記の鉄含有粒子を土中に混入する。混入する方法は、土壌を掘り返して、鉄含有粒子と混合した後に、埋め戻す方法、鉄含有粒子と水を混合してスラリーを形成して、これを土中に注入する方法などがある。また、上記の方法を用いて、鉄含有粒子と汚染土壌をほぼ均一に混合することによって汚染物質を除去する方法が一般的である。一方、鉄含有粒子と透水性の高い粒子(砂など)を混合して、これで土中のパイルを形成して、汚染水が通過しやすい透水層を形成する。この透水層に汚染水を通過させることによって、汚染物質を除去する。
【0015】
続いて、所定の期間が経過した後に、土中または透水層中に、鉄含有粒子を再注入する。この理由は、本発明の方法で用いる鉄含有粒子は反応活性が高いが、反応活性を保持できる期間が短いからである。再注入の期間は、鉄含有粒子の比表面積と化学成分で決まる。本発明者らは、比表面積と反応活性の維持の期間がほぼ反比例することを解明した。本発明者らの実験では、粒子径が1ミクロン程度で、比表面積が約0.8平方メートル/グラム、かつ、金属鉄と第一鉄イオンが38質量%の鉄含有粒子の反応活性を調査したところ、15日経過すると、反応速度が初期値の20%まで低下していた。また、ほぼ同じ化学組成の鉄含有粒子であって、比表面積が1.4平方メートル/グラムのものでは、初期値の反応活性の20%はで低下するのに、9日間であった。また、反比例の係数は、鉄含有粒子の化学組成でほぼ決まることも解明した。鉄含有粒子の金属鉄と第一鉄イオンが多い場合(合計60質量%以上)では、比表面積(A:平方メートル/グラム)と再注入までの期間(T:日)の積(A*T)が20〜60であると、反応活性を連続して維持できる。また、鉄含有粒子の金属鉄と第一鉄イオンが少ない場合(合計25〜60質量%)では、比表面積と再注入までの期間の積、A*T、が10〜40であれば良い。
【0016】
本発明の再注入の方法は、幾つかの施工方法があるが、土や透水層に注入用のパイプを打ち込み、スラリー状とした鉄含有粒子を圧入することが最も良い。図1の装置を用いて、本発明の施工例を示す。この装置は、スラリー槽1、スラリーポンプ2、スラリーパイプ3、及び、注入管4から構成される。まず、スラリー槽1にて、鉄含有粒子と水の混合スラリーを製造する。スラリーの鉄含有粒子濃度は10〜100g/リットル程度が良い。このスラリーをスラリーポンプ2の動力で、スラリーパイプ3を経由して、注入管4に送る。注入管4は、パイプ側面に複数の穴を有する構造であり、土中に差し込まれている。注入管4の側面の穴から、スラリーを土中に分散させる。広い面積に対応する場合は、注入管4を複数使用する。この際の注入管4の間隔は、2〜10m程度である。また、透水層にスラリーを注入する場合は、各サンドパイルの中央に注入管4を設置することが良い。
【0017】
化学組成と比表面積の条件を満たせば、本発明の方法に用いる鉄含有粒子は、いずれの方法で製造したものでも良いが、以下の製造方法を用いることが経済的である。まず、アトマイズ法で製造した微細な酸化鉄粒子を水素還元する方法、溶融鉄に酸素を吹きかけて鉄を蒸発させてこれを冷却して微細な鉄含有粒子を製造する方法などにより、本発明に用いる鉄含有粒子を製造する。また、製鋼転炉から発生する転炉ガスを非燃焼式転炉ガス回収装置にて処理する際に、湿式集塵機で回収して得た鉄を多く含む粒子を用いる方法が最も経済的な鉄含有粒子の製造方法である。この方法で製造した鉄含有粒子は、1ミクロン程度の粒子径で、かつ、金属鉄と第一鉄イオンの合計質量が50〜65%であり、本発明に適した鉄含有粒子とである。
【0018】
【実施例】
本発明の方法を用いて、トリクロロエチレンで汚染された土壌の修復を行った。
(実施例1)
トリクロロエチレンが地下水中に160mg/リットル含まれる土壌に鉄含有粒子を注入して処理した。図1の装置で、30g/リットルの鉄含有粒子を含むスラリーを土中に注入した。土砂中の鉄含有粒子の注入比率は6kg/立方メートルとした。鉄含有粒子の比表面積は1.4平方メートル/グラムであり、金属鉄と第一鉄イオンの比率が37質量%であった。
【0019】
この結果、10日後に、地下水中トリクロロエチレン濃度が22mg/リットルまで低下した。しかし、これ以降は、反応速度が低下していた。そこで、12日後に鉄含有粒子を3kg/立方メートルの比率で再注入した。この結果、反応活性が高まって、最初の施工から21日後には、地下水中トリクロロエチレン濃度が4mg/リットルまで低下した。ここで、もう一度鉄含有粒子を注入した。注入比率は3kg/立方メートルであった。この結果、最終的には、トリクロロエチレン濃度が0.5mg/リットルまで低下した。
【0020】
(実施例2)
トリクロロエチレンが地下水中に75mg/リットル含まれる土壌の周囲に、透水性の高いサンドパイルを施工して、ここに鉄含有粒子を含有させた。サンドパイルの外側で、地下水を汲み上げて、サンドパイルで構成される透水層内を汚染地下水が通過することにより、トリクロロエチレンを除去した。ここでも、図1の装置で55g/リットルの鉄含有粒子を含むスラリーをサンドパイル中に注入した。鉄含有粒子は、比表面積が0.8平方メートル/グラムであり、金属鉄と第一鉄イオンの比率が45質量%のものであった。また、鉄含有粒子のサンドパイル中の比率は22kg/立方メートルであった。
【0021】
この処理では、処理初日は、透水層を通過した地下水中トリクロロエチレン濃度が8mg/リットルまで低下した。つまり、トリクロロエチレン除去率は約85%であった。5日後には、除去率が75%になり、15日後には、55%に低下した。この時点で、鉄含有粒子を7kg/立方メートルの比率で再注入した。この結果、トリクロロエチレン除去率は約80%に戻った。これ以降、15日おきに、再注入を繰り返すことにより、透水層を通過する地下水のトリクロロエチレン除去率を60〜80%に保つことができた。この処理を6ヶ月間繰り返した。なお、処理後の地下水を再度汚染地域に戻して、再循環させることにより、最終的には1mg/リットル以下の低濃度にした。
【0022】
【本発明の効果】
本発明によれば、反応活性の高い鉄粒子からなる土壌修復剤を長期間にわたって反応させることができる。この結果、六価クロム還元や有機ハロゲン化合物分解を効率的に行えるなど、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】 本発明に用いる、鉄含有粒子のスラリーを土中に注入する装置を示す図である。
【符号の説明】
1・・・スラリー槽、
2・・・スラリーポンプ、
3・・・スラリーパイプ、
4・・・注入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detoxifying harmful substances in soil by mixing particles containing iron into the soil.
For example, in order to repair soil contaminated with chlorinated organic substances such as trichlorethylene, dichloroethylene, dioxins and hexavalent chromium, contaminated soil remediation agents composed of fine iron particles are used to remove soil contaminants. It relates to a detoxifying method.
[0002]
[Prior art]
In the past, organic halogen compounds such as trichlorethylene have been used for cleaning machinery and semiconductors. Since these organic halogen compounds are carcinogenic, they are recognized as harmful substances. In recent years, their use has been suppressed and emission management has become strict. However, contaminated soil due to past use of organohalogen compounds remains, which is an environmental problem. Moreover, it may be contaminated with hexavalent chromium due to the drainage of the plating factory.
[0003]
Known methods for purifying soil contaminated with volatile organic compounds such as organic halides include a soil gas suction method, a groundwater pumping method, and a soil excavation method. The soil gas suction method forcibly sucks the target substances present in the unsaturated zone. A suction well is installed in the ground by boring, and the inside of the suction well is depressurized by a vacuum pump, and the vaporized organic The compounds are collected in a suction well, guided to the underground, and treated by a method such as adsorption of organic compounds in soil gas onto activated carbon. When the contamination by the organic compound extends to the aquifer, a method is adopted in which a submersible pump is installed in the suction well and the water is pumped up simultaneously with the soil gas. The underground pumping method is a method of setting up a pumping well in soil and pumping up contaminated groundwater. Furthermore, the soil excavation method is a method in which contaminated soil is excavated, and the excavated soil is subjected to wind drying and heat treatment to remove and collect organic compounds.
[0004]
As a method of purifying contaminated water such as collected water or ground water as described above, for example, in Japanese Patent No. 2636171, after removing dissolved oxygen in contaminated water, the contaminated water is applied to a metal surface such as iron. A method for reducing and removing organic halide contained in contaminated water by contacting is disclosed. Such a method for purifying contaminated water using the iron reducing action is also described in JP-A-3-106496, JP-A-8-257570, JP-A-10-263522, and the like. In any of these methods, the contaminated water is treated by passing it through a layer containing iron or a filter.
[0005]
Further, a method of using micron-sized fine iron-containing particles as a soil repairing agent exhibiting a strong reducing action has been invented. In particular, Japanese Patent Application Laid-Open No. 2001-198567 slurries fine iron powder, Techniques for injecting into are shown.
[0006]
[Patent Document 1]
Japanese Patent No. 2636171 [Patent Document 2]
JP-A-3-106496 [Patent Document 3]
JP-A-8-257570 [Patent Document 4]
Japanese Patent Laid-Open No. 10-263522 [Patent Document 5]
Japanese Patent Laid-Open No. 2001-198567
[Problems to be solved by the invention]
Among the methods using iron-containing particles as a soil restoration agent, the method described in JP-A-2001-198567 uses extremely fine iron particles, and therefore has a very high detoxification reaction rate. However, since particles having a large specific surface area of about 0.5 to 5 microns are used, there is a problem that the oxidation rate of iron-containing particles in the soil is high and the reaction activity rapidly decreases. In the experiments by the present inventors, the reaction activity of such fine iron-containing particles was ½ or less in several days to several weeks. Therefore, when the concentration of pollutants such as trichlorethylene in groundwater is as high as about 1000 mg / liter or more, there is a problem that the reaction activity is lowered before all the pollutants are rendered harmless. Therefore, this technique could not be applied when the removal of contaminants was incomplete and the groundwater contained such high concentrations of contaminants.
[0008]
On the other hand, in the method of treating contaminated water described in JP-A-10-263522 by passing it through a layer containing iron in the soil, a filter or the like, the reaction period takes from several months to one year. Iron-containing particles were used whose reaction activity did not decrease over time. Such particles have a relatively large size of 20 to 100 microns, and therefore have a small specific surface area and a relatively low reaction activity. As a result, when the concentration of contaminants such as trichlorethylene in the groundwater is high, there is a problem that removal of these contaminants is not completed within the time when the groundwater flows through the layer containing iron in the soil. As a result, in order to remove the pollutants in the groundwater, a plurality of treatments are required, and there has been a problem that the cost is greatly increased.
[0009]
Thus, in the case of purifying soil containing a high concentration of pollutants, it is necessary to increase the reaction activity and to maintain the reaction activity for a long time. It was difficult to achieve at the same time. Accordingly, there has been a demand for a new technique for continuing a soil remediation reaction over a long period of one month to several months using a soil repair agent having a high reaction activity.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the problems of the prior art as described above, and the gist of the present invention is the following (1) to (3) as described in the claims. It is the contents to show.
(1) A water-permeable layer with high water permeability is constructed in the soil, the water-permeable layer has a specific surface area of 0.1 to 4 square meters per gram, and is composed of metallic iron, wustite, and magnetite. a particle, the metallic iron and ferrous ions by repeated injections what comprising 60 wt% or more, to form a hazardous substance removing layer, when passing the ground water containing harmful substances in the hazardous substance removing layer The product ( A * T ) of the period ( T : day) and the specific surface area ( A : square meter / gram) in which iron-containing particles are repeatedly mixed into the soil is set to an appropriate value in the range of 20-60. A soil remediation method characterized.
(2) A water-permeable layer with high water permeability is constructed in the soil, the water-permeable layer has a specific surface area of 0.1 to 4 square meters per gram, and is composed of metallic iron, wustite, and magnetite. When particles containing 25 to 60 % by mass of metallic iron and ferrous ions are repeatedly injected to form a harmful substance removal layer and groundwater containing the harmful substance is passed through the harmful substance removal layer In addition, the product ( A * T ) of the period ( T : day) and the specific surface area ( A : square meter / gram) of mixing iron-containing particles repeatedly into the soil should be an appropriate value in the range of 10-40. A soil remediation method characterized by
(3) When the converter gas generated from the steelmaking converter is processed by the non-combustion converter gas recovery device, particles containing a large amount of iron obtained by collecting with a wet dust collector are used ( The soil repair method as described in 1) or (2) .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, the particle | grains containing metal iron and ferrous ion with high reaction activity are used as a soil purifier. Here, the particles having a high reaction activity are particles having a large specific surface area and a high ratio of metallic iron to ferrous ions. The conditions of the soil repairing agent of the present invention are particles having a specific surface area of 0.1 to 4 square meters per gram and containing 25% by mass or more of metallic iron and ferrous ions. The particle diameter of the particles having the specific surface area is about 0.2 to 5 microns in the case of a general shape close to a sphere. In addition, when using particles with many pores, the particle diameter is about 0.8 to 20 microns. The specific surface area is measured by the BET method or the like, and in the case of a shape close to a sphere, it is within the range of the particle diameter.
[0012]
The mechanism by which iron-containing particles react with soil pollutants is that divalent iron ions (ferrous ions) in which the metal iron in the particles is in the form of oxides or hydroxides, and divalent iron ions This is due to the reduction reaction when changing to trivalent iron ions (ferric ion). In our study, if the total amount of metallic iron and divalent iron ions is 25% by mass or more, even if a substance such as trichlorethylene has a high concentration of 100 mg / liter or more, it can be removed to a sufficiently low concentration. It was elucidated to have a reaction capacity of Moreover, the study of the present inventors, in particular, metallic iron reaction in the changes to the ferrous ions were found to be effective in soil purification reaction. Therefore, in particular, in order to fully exhibit the effects of the present invention, the ratio of metallic iron is more preferably 25% by mass or more. In such particles with a large specific surface area, it is important that the wustite or magnetite layer covering the metallic iron or ferrous ion that lowers the reaction activity is thin. It is also important that the initial wustite or magnetite layer does not exceed about 0.1 to 0.3 microns when mixed into the soil. In addition, since both wustite and magnetite contain ferric ions, the effect of the present invention is significant when the ratio of initial ferric ions when mixed into soil is 25% by mass or less.
[0013]
In the present invention, the purification rate of soil pollutants is increased by increasing the specific surface area of particles having high reaction activity. The present inventors have clarified that the specific surface area capable of exhibiting sufficient reaction activity is 0.1 square meter or more per gram of iron-containing particles. However, if the specific surface area is 4 square meters / gram or more, there is a problem that the oxidation of the particles proceeds during the transportation and construction, and the reaction activity decreases.
[0014]
In the present invention, first, the iron-containing particles are mixed into the soil as the first step. As a method of mixing, there are a method of digging up soil and mixing it with iron-containing particles, and then backfilling, a method of mixing iron-containing particles and water to form a slurry, and injecting this into the soil. Moreover, the method of removing a pollutant by mixing iron-containing particle | grains and contaminated soil substantially uniformly using said method is common. On the other hand, iron-containing particles and particles with high water permeability (such as sand) are mixed to form a pile in the soil, thereby forming a water-permeable layer through which contaminated water easily passes. By passing the contaminated water through the water permeable layer, the contaminant is removed.
[0015]
Subsequently, after a predetermined period has elapsed, the iron-containing particles are reinjected into the soil or the water permeable layer. This is because the iron-containing particles used in the method of the present invention have a high reaction activity but a short period during which the reaction activity can be maintained. The period of reinjection is determined by the specific surface area and chemical composition of the iron-containing particles. The present inventors have clarified that the specific surface area and the period of maintaining the reaction activity are almost inversely proportional. In the experiments by the present inventors, the reaction activity of iron-containing particles having a particle diameter of about 1 micron, a specific surface area of about 0.8 square meter / gram, and metal iron and ferrous ions of 38% by mass was investigated. However, after 15 days, the reaction rate had decreased to 20% of the initial value. Further, in the case of iron-containing particles having almost the same chemical composition and a specific surface area of 1.4 square meters / gram, 20% of the initial reaction activity was reduced to 9 days, but 9 days. It was also clarified that the coefficient of inverse proportion is almost determined by the chemical composition of the iron-containing particles. When iron-containing particles contain a large amount of metallic iron and ferrous ions (total of 60% by mass or more), the product (A * T) of the specific surface area (A: square meter / gram) and the period until re-injection (T: days) Is 20 to 60, the reaction activity can be continuously maintained. Moreover, when there are few metal iron and ferrous ion of iron containing particle | grains (25-60 mass% in total), the product of a specific surface area and the period until reinjection, A * T should just be 10-40.
[0016]
The reinjection method of the present invention has several construction methods, but it is best to drive the injection pipe into the soil or water permeable layer and press-fit the iron-containing particles in a slurry state. A construction example of the present invention is shown using the apparatus of FIG. This apparatus includes a slurry tank 1, a slurry pump 2, a slurry pipe 3, and an injection pipe 4. First, a mixed slurry of iron-containing particles and water is produced in the slurry tank 1. The iron-containing particle concentration of the slurry is preferably about 10 to 100 g / liter. This slurry is sent to the injection pipe 4 via the slurry pipe 3 by the power of the slurry pump 2. The injection tube 4 has a structure having a plurality of holes on the side surface of the pipe, and is inserted into the soil. From the hole on the side of the injection tube 4, the slurry is dispersed in the soil. When dealing with a wide area, a plurality of injection tubes 4 are used. The interval between the injection tubes 4 at this time is about 2 to 10 m. Moreover, when inject | pouring a slurry into a water-permeable layer, it is good to install the injection pipe 4 in the center of each sandpile.
[0017]
If the conditions of chemical composition and specific surface area are satisfied, the iron-containing particles used in the method of the present invention may be produced by any method, but it is economical to use the following production method. First, the method of hydrogen reduction of fine iron oxide particles produced by the atomization method, the method of producing fine iron-containing particles by blowing oxygen to molten iron, evaporating the iron, and cooling it, etc. The iron-containing particles used are produced. In addition, when the converter gas generated from a steelmaking converter is processed by a non-combustion converter gas recovery device, the method using the iron-rich particles recovered by a wet dust collector is the most economical iron-containing method. A method for producing particles. The iron-containing particles produced by this method have a particle diameter of about 1 micron and the total mass of metallic iron and ferrous ions is 50 to 65%, and are iron-containing particles suitable for the present invention.
[0018]
【Example】
The method of the present invention was used to repair soil contaminated with trichlorethylene.
Example 1
Treatment was performed by injecting iron-containing particles into soil containing 160 mg / liter of trichlorethylene in groundwater. In the apparatus of FIG. 1, a slurry containing 30 g / liter of iron-containing particles was poured into the soil. The injection ratio of iron-containing particles in the earth and sand was 6 kg / cubic meter. The specific surface area of the iron-containing particles was 1.4 square meters / gram, and the ratio of metallic iron to ferrous ions was 37% by mass.
[0019]
As a result, after 10 days, the trichlorethylene concentration in the groundwater decreased to 22 mg / liter. However, the reaction rate decreased after this. Therefore, after 12 days, iron-containing particles were reinjected at a rate of 3 kg / cubic meter. As a result, the reaction activity increased, and the concentration of trichlorethylene in groundwater decreased to 4 mg / liter 21 days after the first construction. Here, iron-containing particles were once again injected. The injection rate was 3 kg / cubic meter. As a result, the trichlorethylene concentration finally decreased to 0.5 mg / liter.
[0020]
(Example 2)
A sandpile with high water permeability was applied around the soil containing 75 mg / liter of trichlorethylene in the groundwater to contain iron-containing particles. The groundwater was pumped outside the sandpile, and the contaminated groundwater passed through the permeable layer composed of sandpile to remove trichlorethylene. Again, a slurry containing 55 g / liter of iron-containing particles was poured into the sandpile with the apparatus of FIG. The iron-containing particles had a specific surface area of 0.8 square meters / gram and a ratio of metallic iron to ferrous ion of 45% by mass. The ratio of iron-containing particles in the sand pile was 22 kg / cubic meter.
[0021]
In this treatment, on the first day of treatment, the concentration of trichlorethylene in the groundwater that passed through the permeable layer decreased to 8 mg / liter. That is, the trichlorethylene removal rate was about 85%. After 5 days, the removal rate became 75%, and after 15 days, it decreased to 55%. At this point, the iron-containing particles were reinjected at a rate of 7 kg / cubic meter. As a result, the trichlorethylene removal rate returned to about 80%. Thereafter, by repeating reinjection every 15 days, the trichlorethylene removal rate of groundwater passing through the permeable layer could be maintained at 60 to 80%. This treatment was repeated for 6 months. The groundwater after the treatment was returned to the contaminated area and recirculated to finally reduce the concentration to 1 mg / liter or less.
[0022]
[Effect of the present invention]
ADVANTAGE OF THE INVENTION According to this invention, the soil repair agent which consists of iron particles with high reaction activity can be made to react over a long period of time. As a result, there are significant industrially useful effects such as efficient reduction of hexavalent chromium and decomposition of organic halogen compounds.
[Brief description of the drawings]
FIG. 1 is a view showing an apparatus for injecting a slurry of iron-containing particles into soil, which is used in the present invention.
[Explanation of symbols]
1 ... slurry tank,
2 ... slurry pump,
3 ... slurry pipe,
4 ... Injection tube

Claims (3)

土中に透水性の高い通水層を施工して、当該通水層に比表面積が1グラム当り0.1〜4平方メートルであり、かつ、金属鉄、ウスタイト、マグネタイトから構成される粒子であって、金属鉄と第一鉄イオンを60質量%以上含むを繰り返し注入して、有害物質除去層を形成して、当該有害物質除去層に有害物質を含む地下水を通過させる際に、鉄を含む粒子を繰り返して土中に混入する周期( T :日)と比表面積( A :平方メートル/グラム)の積( A T )を20〜60の範囲の適正な値とすることを特徴とする土壌修復方法。A water-permeable layer with high water permeability is constructed in the soil, the specific surface area of the water-permeable layer is 0.1 to 4 square meters per gram, and the particles are composed of metallic iron, wustite, and magnetite. Then, by repeatedly injecting metal iron and ferrous ion containing 60 % by mass or more to form a harmful substance removal layer, when passing groundwater containing harmful substances through the harmful substance removal layer, iron is added. The product ( A * T ) of the period ( T : day) and the specific surface area ( A : square meter / gram) in which the contained particles are repeatedly mixed in the soil is set to an appropriate value in the range of 20-60. Soil restoration method. 土中に透水性の高い通水層を施工して、当該通水層に比表面積が1グラム当り0.1〜4平方メートルであり、かつ、金属鉄、ウスタイト、マグネタイトから構成される粒子であって、金属鉄と第一鉄イオンを25〜60質量%含む粒子を繰り返し注入して、有害物質除去層を形成して、当該有害物質除去層に有害物質を含む地下水を通過させる際に、鉄を含む粒子を繰り返して土中に混入する周期( T :日)と比表面積( A :平方メートル/グラム)の積( A T )を10〜40の範囲の適正な値とすることを特徴とする土壌修復方法。A water-permeable layer with high water permeability is constructed in the soil, the specific surface area of the water-permeable layer is 0.1 to 4 square meters per gram, and the particles are composed of metallic iron, wustite, and magnetite. Then, by repeatedly injecting particles containing 25-60 mass% of metallic iron and ferrous ions to form a harmful substance removal layer, and passing groundwater containing harmful substances through the harmful substance removal layer, It is characterized in that the product ( A * T ) of the period ( T : days) and the specific surface area ( A : square meter / gram) in which the particles containing the particles are repeatedly mixed into the soil is an appropriate value in the range of 10-40. How to repair soil. 製鋼転炉から発生する転炉ガスを非燃焼式転炉ガス回収装置にて処理する際に、湿式集塵機で回収して得た鉄を多く含む粒子を使用することを特徴とする請求項1または請求項2に記載の土壌修復方法。When processing converter gas generated from the steelmaking converter in a non-combustion type converter gas recovery system, according to claim 1 or, characterized by using particles containing a large amount of iron obtained by recovering a wet dust collector The soil restoration method according to claim 2 .
JP2003166500A 2003-06-11 2003-06-11 Soil restoration method Expired - Fee Related JP4069019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166500A JP4069019B2 (en) 2003-06-11 2003-06-11 Soil restoration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166500A JP4069019B2 (en) 2003-06-11 2003-06-11 Soil restoration method

Publications (2)

Publication Number Publication Date
JP2005000788A JP2005000788A (en) 2005-01-06
JP4069019B2 true JP4069019B2 (en) 2008-03-26

Family

ID=34092649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166500A Expired - Fee Related JP4069019B2 (en) 2003-06-11 2003-06-11 Soil restoration method

Country Status (1)

Country Link
JP (1) JP4069019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113979527A (en) * 2021-10-26 2022-01-28 中国科学院南京土壤研究所 Method for synchronously and efficiently removing hexavalent chromium and trichloroethylene combined pollution

Also Published As

Publication number Publication date
JP2005000788A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CN212954583U (en) System for repairing hexavalent chromium polluted groundwater
JP4167052B2 (en) Purification method for organic compound contamination
Chen et al. Constructing the active surface soil layer with ZVI-biochar amendment for simultaneous immobilization of As and Zn in both contaminated soil and groundwater: Continuous versus intermittent infiltration mode
JP2009050818A (en) Method for purifying contaminated soil and contaminated ground water
JP4069019B2 (en) Soil restoration method
JP6359891B2 (en) Soil purification agent and method for purification of contaminated soil
JP3725749B2 (en) Iron fine particle slurry and production method thereof, soil purification agent, and soil purification method
JP3455860B2 (en) Clogging prevention type water injection device
JP4218564B2 (en) Method for purification of contaminated aquifer using purification agent for water containing pollutant
TWI335950B (en)
JPH10277531A (en) Method for cleaning contaminated soil by circulation of ground water
JP2004261738A (en) Purification method for underground water polluted by cyanogen
JP4329361B2 (en) Groundwater purification wall and groundwater purification method
JP3764741B2 (en) Soil restoration method and soil restoration agent
JP2003080222A (en) Method of removing contaminant
JP5208599B2 (en) Purification of groundwater containing nitrate nitrogen
JP4530824B2 (en) Soil purification agent and soil purification method
JP2003088848A (en) Structure and method for cleaning soil containing contaminant
JP3753644B2 (en) In situ reduction of soluble and insoluble heavy metals and organohalogen compounds by pneumatic fracturing with iron powder injection to purify contaminated soil and groundwater
JP2006055724A (en) Method for soil restoration
JP3649026B2 (en) Groundwater treatment method
JP2005111311A (en) Soil cleaning agent and soil cleaning method
Zhang et al. Operational conditions of chelant-enhanced soil washing for remediation of metal-contaminated soil
JP4272551B2 (en) Method for producing iron powder for soil repair agent
JPH0523692A (en) Treatment and device for organochlorine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees