WO2011136189A1 - 環状スルホン化合物を含有する非水電解液、及びリチウム二次電池 - Google Patents

環状スルホン化合物を含有する非水電解液、及びリチウム二次電池 Download PDF

Info

Publication number
WO2011136189A1
WO2011136189A1 PCT/JP2011/060093 JP2011060093W WO2011136189A1 WO 2011136189 A1 WO2011136189 A1 WO 2011136189A1 JP 2011060093 W JP2011060093 W JP 2011060093W WO 2011136189 A1 WO2011136189 A1 WO 2011136189A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
substituted
hydrogen atom
Prior art date
Application number
PCT/JP2011/060093
Other languages
English (en)
French (fr)
Inventor
三尾 茂
中村 光雄
野木 栄信
林 剛史
剛史 小林
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/643,302 priority Critical patent/US9303011B2/en
Priority to CN201180020472.8A priority patent/CN102870268B/zh
Priority to KR1020127029926A priority patent/KR101422383B1/ko
Priority to EP11774970.5A priority patent/EP2565973B1/en
Priority to JP2012512837A priority patent/JP5399556B2/ja
Publication of WO2011136189A1 publication Critical patent/WO2011136189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte excellent in output characteristics, a lithium secondary battery using the same, and a lithium secondary battery additive useful as an additive for the electrolyte.
  • the lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte containing a lithium salt and a non-aqueous solvent.
  • the positive electrode active material used for the positive electrode for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 are used.
  • Nonaqueous electrolytes include mixed solvents (nonaqueous solvents) of carbonates such as ethylene carbonate, propylene carbonate, ethylene carbonate, and methyl carbonate, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN ( A solution in which a Li electrolyte such as SO 2 CF 2 CF 3 ) 2 is mixed is used.
  • carbonates such as ethylene carbonate, propylene carbonate, ethylene carbonate, and methyl carbonate
  • LiPF 6 LiBF 4
  • LiN (SO 2 CF 3 ) 2 and LiN A solution in which a Li electrolyte such as SO 2 CF 2 CF 3 ) 2 is mixed is used.
  • active materials for negative electrodes used for negative electrodes metal lithium, metal compounds capable of occluding and releasing lithium (metal simple substance, oxide, alloy with lithium, etc.) and carbon materials are known.
  • the present invention has been made to meet the above-mentioned problems, and an object of the present invention is to provide a non-aqueous electrolytic solution that improves battery output characteristics by keeping the resistance value of the battery low, and the non-aqueous electrolytic solution. And providing a lithium secondary battery with improved resistance.
  • a further object of the present invention is to provide an additive for a lithium secondary battery useful for such a non-aqueous electrolyte.
  • the present inventor has suppressed the increase in resistance of the battery by adding a specific additive to the non-aqueous electrolyte of the lithium secondary battery.
  • a new additive a novel compound was found and the present invention was completed. That is, the present invention is as follows.
  • a nonaqueous electrolytic solution containing a compound having a 1,3-dithietane-1,1,3,3-tetraoxide skeleton ⁇ 2> The nonaqueous electrolysis according to ⁇ 1>, wherein the compound having a 1,3-dithietane-1,1,3,3-tetraoxide skeleton is a cyclic sulfone compound represented by the following general formula (I): liquid.
  • R 1 , R 2 , R 3 and R 4 are each independently Hydrogen atom, Halogen atoms, A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, -SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group), -CO 2 R 10 group (R 10 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the aforementioned -SiR 7 R 8 R 9 group), -COR 11 group (R 11 represents a substituted or unsubstituted
  • R 1 and R 2 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 1 and R 2 are bonded.
  • a methylene group represented by (II) (in the general formula (II), R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a group having 2 to 12 carbon atoms); Represents a dialkylamino group, R 5 and R 6 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 5 and R 6 are bonded. May be.
  • R 3 and R 4 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 3 and R 4 are bonded.
  • a methylene group represented by (II) (in the general formula (II), R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a group having 2 to 12 carbon atoms); Represents a dialkylamino group, and R 5 and R 6 may combine with each other to form a C 3-7 cycloalkane group together with a carbon atom. ]
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms, Or —SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group).
  • R 1 and the R 2 are bonded to each other to form a cycloalkane group having 3 to 6 carbon atoms together with the carbon atom to which the R 1 and the R 2 are bonded, or the R 1 and the R 2 Together methylene group represented by the general formula (II) (in the general formula (II), R 5 and R 6 each independently represents a hydrogen atom or a dialkylamino group having 2 to 12 carbon atoms) .) R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms, or —SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group), or , The
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an allyl group, a trimethylsilyl group, or dimethyl t-butylsilyl.
  • R 1 and the R 2 are bonded to each other to form a cyclopentyl group together with the carbon atom to which the R 1 and the R 2 are bonded, or the R 1 and the R 2 are combined to form the general Forming a methylene group represented by the formula (II) (in the general formula (II), one of R 5 and R 6 is a hydrogen atom, and the other of R 5 and R 6 is a dimethylamino group);
  • R 3 and R 4 are each independently a hydrogen atom, fluorine atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, allyl group, trimethylsilyl group, dimethyl t-butylsilyl group, triethyl A silyl group or a triisopropylsilyl group, or The R 3 and
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • X 1 , X 2 , X 3 and X 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, or an alkyl having 1 to 3 carbon atoms which may be substituted with a fluorine atom. Indicates a group. However, X 1 , X 2 , X 3 and X 4 are not simultaneously hydrogen atoms. ]
  • R 1 , R 2 , R 3 and R 4 are each independently Hydrogen atom, Halogen atoms, A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, -SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group), -CO 2 R 10 group (R 10 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the aforementioned -SiR 7 R 8 R 9 group), -COR 11 group (R 11 represents a substituted or unsubstituted
  • R 1 and R 2 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 1 and R 2 are bonded.
  • a methylene group represented by (II) (in the general formula (II), R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a group having 2 to 12 carbon atoms); Represents a dialkylamino group, R 5 and R 6 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 5 and R 6 are bonded. May be.
  • R 3 and R 4 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 3 and R 4 are bonded.
  • a methylene group represented by (II) (in the general formula (II), R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a group having 2 to 12 carbon atoms); Represents a dialkylamino group, and R 5 and R 6 may combine with each other to form a C 3-7 cycloalkane group together with a carbon atom. ]
  • the resistance value of the battery can be reduced, and the resistance value using the non-aqueous electrolyte can be increased.
  • An improved high-power lithium secondary battery can be provided.
  • the additive for lithium secondary batteries useful for such a non-aqueous electrolyte can be provided.
  • the cyclic sulfone compound according to the present invention a nonaqueous electrolytic solution using the cyclic sulfone compound, and a lithium secondary battery using the nonaqueous electrolytic solution will be specifically described.
  • the nonaqueous electrolytic solution of the present invention contains a cyclic sulfone compound having a 1,3-dithietane-1,1,3,3-tetraoxide skeleton (hereinafter also referred to as “specific cyclic sulfone compound”).
  • specific cyclic sulfone compound a cyclic sulfone compound represented by the following general formula (I) (hereinafter also referred to as “compound represented by general formula (I)”) is preferable.
  • R 1 , R 2 , R 3 and R 4 are each independently Hydrogen atom, Halogen atoms, A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, -SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group), -CO 2 R 10 group (R 10 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the aforementioned -SiR 7 R 8 R 9 group), -COR 11 group (R 11 represents a substituted or unsubstituted
  • R 1 and R 2 may be bonded to each other to form a C 3-7 cycloalkane group together with the carbon atom to which R 1 and R 2 are bonded.
  • R 1 and R 2 together represent a methylene group represented by the above general formula (II) (in general formula (II),
  • R 5 and R 6 are each independently a hydrogen atom, carbon number 1 alkyl group of 1-10, a phenyl group or .
  • R 5 and R 6 represents a dialkylamino group having a carbon number of 2 to 12, 3 carbon together with the carbon atoms to which are bonded the R 5 and the R 6 bind to each other, To 7 cycloalkane groups may be formed).
  • R 3 and R 4 may be bonded to each other to form a cycloalkane group having 3 to 7 carbon atoms together with the carbon atom to which R 3 and R 4 are bonded.
  • R 3 and R 4 together represent a methylene group represented by the general formula (II) (in the general formula (II), R 5 and R 6 are each independently a hydrogen atom, carbon number 1 Represents an alkyl group of ⁇ 10, a phenyl group, or a dialkylamino group having 2 to 12 carbon atoms, and R 5 and R 6 may be bonded to each other to form a cycloalkane group of 3 to 7 carbon atoms with carbon atoms. .) May be formed.
  • alkyl group having 1 to 10 carbon atoms means methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, 2-methylbutyl, 1-methylpentyl. Specific examples thereof include neopentyl, 1-ethylpropyl, hexyl, 3,3-dimethylbutyl, heptyl, octyl, nonyl and decyl.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • the “alkenyl group having 2 to 10 carbon atoms” means vinyl, allyl, butenyl, buten-3-yl, pentenyl, penten-4-yl, hexenyl, hexen-5-yl, heptenyl Specific examples include octenyl, nonenyl, and decenyl.
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • the “alkynyl group having 2 to 10 carbon atoms” refers to ethynyl, propargyl, butyn-4-yl, butyn-3-yl, pentynyl, pentyn-4-yl, hexyn-5-yl Specific examples include heptin-7-yl, octin-8-yl, nonin-9-yl and decin-10-yl.
  • the alkynyl group preferably has 2 to 6 carbon atoms.
  • dialkylamino group having 2 to 12 carbon atoms refers to an amino acid having a linear or branched alkyl group having 2 to 12 carbon atoms.
  • specific examples are dimethylamino, diethylamino, dipropylamino, dibutylamino, dipentylamino, dihexylamino, diisopropylamino, diisobutylamino, methylethylamino, methylpropylamino, methylbutylamino, methylpentylamino, methylhexylamino As mentioned.
  • —SiR 17 R 18 R 19 groups and trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethyl-t-butylsilyl, dimethylvinylsilyl, dimethylallylsilyl, dimethylphenylsilyl, diphenylmethylsilyl, triphenylsilyl, etc.), hydroxyl, cyano, acetyl , Propionyl, benzoyl, carboxyl, methoxycarbonyl, ethoxy Rubonyl, trimethylsilyloxycarbonyl, trimethylsilylmethoxycarbonyl, 2-trimethylsilylethoxycarbonyl, phenyl, pyridyl, methylsulfonyl, ethylsulfonyl, propylsulfonyl, trifluoromethylsulfonyl, difluorophenylsulfonyl, phenylsulfonyl,
  • the substituent in the “substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms” includes 1 to 10 fluorine atoms, and 1 to 2 —SiR 17 R 18 R 19, respectively.
  • Groups (R 17 , R 18 and R 19 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group.
  • —SiR 17 R 18 R 19 groups and trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethyl-t-butylsilyl, dimethylvinylsilyl, dimethylallylsilyl, dimethylphenylsilyl, diphenylmethylsilyl, triphenylsilyl, etc.), hydroxyl, cyano, acetyl , Propionyl, benzoyl, carboxyl, methoxycarbonyl, ethoxy Carbonyl, trimethylsilyloxycarbonyl, trimethylsilylmethoxycarbonyl, 2-trimethylsilylethoxycarbonyl, phenyl, pyridyl, methylsulfonyl, ethylsulfonyl, propylsulfonyl, trifluoromethylsulfonyl, difluorophenylsulfonyl, phenylsulfonyl
  • R 17 , R 18 and R 19 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group.
  • —SiR 17 R 18 R 19 groups and trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethyl-t-butylsilyl, dimethylvinylsilyl, dimethylallylsilyl, dimethylphenylsilyl, diphenylmethylsilyl, triphenylsilyl, etc.), hydroxyl, cyano, acetyl , Propionyl, benzoyl, carboxyl, methoxycarbonyl, ethoxy Carbonyl, trimethylsilyloxycarbonyl, trimethylsilylmethoxycarbonyl, 2-trimethylsilylethoxycarbonyl, phenyl, pyridyl, methylsulfonyl, ethylsulfonyl, propylsulfonyl, trifluoromethylsulfonyl, difluorophenylsulfonyl, phenylsulfonyl
  • R 1 and R 2 are bonded to each other, and may be formed together with the carbon atom to which R 1 and R 2 are bonded. , Cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and the like.
  • R 3 and R 4 may be bonded to each other, and may be formed together with the carbon atom to which R 3 and R 4 are bonded. , Cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and the like.
  • R 5 and R 6 are bonded to each other, and may be formed together with the carbon atom to which R 5 and R 6 are bonded.
  • Examples of the “cycloalkane group of 3 to 7” include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and the like.
  • —SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or phenyl”
  • Examples of “representing a group” include trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethyl-t-butylsilyl, dimethylvinylsilyl, dimethylallylsilyl, dimethylphenylsilyl, diphenylmethylsilyl, triphenylsilyl and the like.
  • —CO 2 R 10 group (where R 10 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the —SiR 7 R 8 R 9 group,
  • R 10 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the —SiR 7 R 8 R 9 group
  • carboxy methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, hexyloxycarbonyl, heptyloxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, isobutoxycarbonyl, t -Butoxycarbonyl, trimethylsilyloxycarbonyl, trimethylsilylmethyloxycarbonyl, 2-trimethylsilylethyl
  • —COR 11 group (R 11 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group)” includes acetyl, propionyl, butyryl, pentanoyl, hexanoyl, Examples include heptanoyl, octanoyl, nonanoyl, decanoyl, isobutyryl, pivaloyl, benzoyl, trifluoroacetyl, and the like.
  • —P (O) (OR 12 ) 2 group R 12 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the —SiR 7 R 8 R 9 represents a group) ”includes phosphono, dimethoxyphosphono, diethoxyphosphono, dipropoxyphosphono, dibutoxyphosphono, dipentoxyphosphono, dihexyloxyphosphono, diheptyloxyphosphono, Dioctyloxyphosphono, dinonyloxyphosphono, didecyloxyphosphono, diisobutoxyphosphono, bis (trimethylsilyloxy) phosphono, bis (trimethylsilylmethyloxy) phosphono, bis (2-trimethylsilylethyloxy) phosphono, 2,2 , 2-trifluoroethyloxyphosphono, 2-cyanoethy
  • —SO 2 R 13 group (R 13 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms or a phenyl group)” is methylsulfonyl, ethylsulfonyl, Examples include propylsulfonyl, butylsulfonyl, pentylsulfonyl, hexylsulfonyl, heptylsulfonyl, octylsulfonyl, nonylsulfonyl, decylsulfonyl, isobutylsulfonyl, t-butylsulfonyl, phenylsulfonyl, trifluoromethylsulfonyl, and the like.
  • a “—SO 2 (OR 14 ) group (R 14 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the —SiR 7 R 8 R 9,” Represents methoxysulfonyl, ethoxysulfonyl, propoxysulfonyl, butoxysulfonyl, pentoxysulfonyl, hexyloxysulfonyl, heptyloxysulfonyl, octyloxysulfonyl, nonyloxysulfonyl, decyloxysulfonyl, isobutoxysulfonyl, t -Butoxysulfonyl, trimethylsilyloxysulfonyl, trimethylsilylmethyloxysulfonyl, 2-trimethylsilylethyloxysulfony
  • R 15 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a phenyl group, or the aforementioned —SiR 7 R 8 R 9.
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 6 carbon atoms, or —SiR 7 R 8 R 9 group (R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group), or ,
  • the R 1 and the R 2 are bonded to each other to form a cycloalkane group having 3 to 6 carbon atoms together with the carbon atom to which the R 1 and the R 2 are bonded, or the R 1 and the R 2 Together methylene group represented by the general formula (II) (in the general formula (II), R 5 and R 6 each independently represents a hydrogen atom or a dialkylamino group having 2
  • R 1 and R 2 are each independently a hydrogen atom, fluorine atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, allyl group, trimethylsilyl group, dimethyl t-butylsilyl group, triethyl A silyl group or a triisopropylsilyl group, or
  • the R 1 and the R 2 are bonded to each other to form a cyclopentyl group together with the carbon atom to which the R 1 and the R 2 are bonded, or the R 1 and the R 2 are combined to form the general Forming a methylene group represented by the formula (II) (in the general formula (II), one of R 5 and R 6 is a hydrogen atom, and the other of R 5 and R 6 is a dimethylamino group);
  • R 3 and R 4 are each independently a hydrogen atom, fluorine atom, methyl group, ethyl group
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms), a substituted or unsubstituted carbon number.
  • R 7 , R 8 and R 9 each independently represents 1 to 10 carbon atoms (more preferably An alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms (more preferably an alkenyl group having 2 to 6 carbon atoms, or a phenyl group), or bonded to each other and the R 1 and the R Forming a cycloalkane group having 3 to 7 carbon atoms (more preferably 3 to 6 carbon atoms) together with the carbon atom to which 2 is bonded;
  • R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms), a substituted or unsubstituted carbon number.
  • R 7 , R 8 and R 9 each independently represents 1 to 10 carbon atoms (more preferably An alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms (more preferably an alkenyl group having 2 to 6 carbon atoms, or a phenyl group), or bonded to each other and the R 3 and the R
  • a cycloalkane group having 3 to 7 carbon atoms is formed together with the carbon atom to which 4 is bonded.
  • R 1 and R 2 are each independently a hydrogen atom, fluorine atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, trimethylsilyl group, dimethyl t-butylsilyl group, triethylsilyl group, Or a triisopropylsilyl group, or bonded to each other to form a cyclopentyl group together with the carbon atom to which R 1 and R 2 are bonded;
  • R 3 and R 4 are each independently a hydrogen atom, fluorine atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, trimethylsilyl group, dimethyl t-butylsilyl group, triethylsilyl group, Or it is a triisopropylsilyl group, or it is a form which couple
  • the compound represented by the general formula (I) is preferably a compound other than the compound in which R 1 , R 2 , R 3 and R 4 in the general formula (I) are all hydrogen atoms.
  • the form of the cyclic sulfone compound represented by the following general formula (A) or the following general formula (B) is also exemplified.
  • R 17 , R 18 , and R 19 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a phenyl group.
  • Two R 17 s , R 18 s , and R 19 s each present in the general formula (A) may be the same or different.
  • Ra and Rb each independently represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms or a phenyl group.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • iPr represents an isopropyl group
  • Bu represents a butyl group
  • sBu Is a secondary butyl group
  • iBu is an isobutyl group
  • tBu is a tertiary butyl group
  • Pent is a pentyl group
  • Hex is a hexyl group
  • Hept is a heptyl group
  • Oct is a pentyl group
  • the cyclic sulfone compound represented by the general formula (I) of the present invention can be produced by a method described in the following known literature, but is not limited to this production method. Chemishche Berichte, 1981, 114, 3378-3384. Chemishche Berichte, 1991, 124, 1805-1807. Chemishche Berichte, 1993, 126, 537-542. Chemishche Berichte, 1993, 126, 537-542. Chemishche Berichte, 1996, 129, 161-168. Angewandte Chemie, 1980, 92, 223-224 Russian Journal of Organic Chemistry, 1993, 29, 479-481. Russian Journal of Organic Chemistry, 1995, 31, 543-544. Russian Journal of Organic Chemistry, 1995, 31, 543-544. Phosphorous, Slufur and Silicon and Related Elements, 1994, 94, 477-478. Journal of American Chemical Society, 1996, 108, 2358-2366. SU 311908 (1971)
  • the cyclic sulfone compound represented by the general formula (I) is useful as an additive for a lithium secondary battery, particularly as an additive for a non-aqueous electrolyte solution of a lithium secondary battery described later.
  • the additive for lithium secondary batteries of the present invention is an additive for lithium secondary batteries containing the compound represented by the general formula (I) as an active ingredient.
  • the additive for a lithium secondary battery of the present invention may contain only one compound represented by the general formula (I) or two or more compounds represented by the general formula (I). You may go out.
  • the additive for lithium secondary batteries of this invention may contain the other component in addition to the compound represented by general formula (I) as needed.
  • the other component from the viewpoint of obtaining the above effect more effectively, for example, at least one compound represented by the following general formula (III) or the following general formula (IV) (more preferably, the general At least one of the compounds represented by formula (III) can be used.
  • the nonaqueous electrolytic solution of the present invention is characterized by containing the specific cyclic sulfone compound, but the other components can optionally include known ones.
  • the specific cyclic sulfone compound contained in the nonaqueous electrolytic solution of the present invention may be only one type or two or more types may be used in combination.
  • the content of the specific cyclic sulfone compound in the nonaqueous electrolytic solution of the present invention is preferably 0.001% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass. preferable. In this range, it is possible to suppress an increase in resistance of the battery with time and achieve high output.
  • the nonaqueous electrolytic solution generally contains an electrolyte and a nonaqueous solvent.
  • Nonaqueous solvent As the non-aqueous solvent in the present invention, various known ones can be appropriately selected, but it is preferable to use a cyclic aprotic solvent and / or a chain aprotic solvent. In order to improve the safety of the battery, when aiming to improve the flash point of the solvent, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent.
  • Cyclic aprotic solvent As the cyclic aprotic solvent, cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, and cyclic ether can be used.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • the mixing ratio of the cyclic aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity related to the charge / discharge characteristics of the battery can be increased.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is more preferable.
  • cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone, or alkyl-substituted products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone, and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the degree of dissociation between the flash point of the electrolytic solution and the electrolyte.
  • a cyclic carboxylic acid ester as the cyclic aprotic solvent.
  • a cyclic carboxylic acid ester is preferably used by mixing with another cyclic aprotic solvent. Examples thereof include a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate.
  • cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, and ⁇ -butyrolactone and ethylene carbonate and methylethyl.
  • ⁇ -butyrolactone ethylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, methyl ethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, ethylene Carbonate and Lopylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, methyl ethyl carbonate and diethyl carbonate, ⁇ -butyrolactone and ethylene carbonate Propylene carbonate, dimethyl carbonate,
  • cyclic sulfone examples include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methyl propyl sulfone and the like.
  • An example of a cyclic ether is dioxolane.
  • Chain aprotic solvent a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphate, or the like can be used.
  • the mixing ratio of the chain aprotic solvent in the non-aqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate.
  • These chain carbonates may be used as a mixture of two or more.
  • chain carboxylic acid ester examples include methyl pivalate.
  • chain ether examples include dimethoxyethane.
  • chain phosphate ester examples include trimethyl phosphate.
  • the non-aqueous solvent used in the non-aqueous electrolyte solution according to the present invention may be used alone or in combination. Further, only one or a plurality of cyclic aprotic solvents may be used, or only one or a plurality of chain aprotic solvents may be used, or a cyclic aprotic solvent and a chain aprotic solvent. A mixed solvent may be used. When the load characteristics and low temperature characteristics of the battery are particularly intended to be improved, it is preferable to use a combination of a cyclic aprotic solvent and a chain aprotic solvent as the nonaqueous solvent.
  • the conductivity of the electrolyte solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
  • cyclic carbonate and chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and die
  • the mixing ratio of the cyclic carbonate and the chain carbonate is expressed by mass ratio, and the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • the cyclic carbonate: chain carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15:85. ⁇ 55: 45.
  • the nonaqueous electrolytic solution according to the present invention may contain a solvent other than the above as a nonaqueous solvent.
  • a solvent other than the above as a nonaqueous solvent include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like.
  • examples thereof include boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • the nonaqueous electrolytic solution of the present invention preferably contains a compound represented by the general formula (III) from the viewpoint of forming a negative electrode surface film.
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • Examples of the compound represented by the general formula (III) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate. Of these, vinylene carbonate is most preferred.
  • the content of the compound represented by the general formula (III) in the non-aqueous electrolyte of the present invention is although it can be appropriately selected depending on the condition, it is preferably 0.001% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
  • the nonaqueous electrolytic solution of the present invention preferably contains a compound represented by the general formula (IV) from the viewpoint of forming a surface film of the negative electrode.
  • X 1 , X 2 , X 3 and X 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, or an alkyl having 1 to 3 carbon atoms which may be substituted with a fluorine atom Indicates a group. However, X 1 to X 4 are not simultaneously hydrogen atoms.
  • examples of the alkyl group having 1 to 3 carbon atoms which may be substituted by a fluorine atom of X 1 to X 4 include, for example, fluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, heptafluoro And propyl.
  • known compounds can be used, for example, 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4,4,5-trimethyl.
  • fluoroethylene carbonate and 4,4,5,5-tetrafluoroethylene carbonate are most desirable.
  • the content of the compound represented by the general formula (IV) in the nonaqueous electrolytic solution of the present invention is although it can be appropriately selected depending on the condition, it is preferably 0.001% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
  • electrolytes can be used for the nonaqueous electrolytic solution of the present invention, and any of them can be used as long as it is normally used as an electrolyte for a nonaqueous electrolytic solution.
  • These electrolytes may be used alone or in combination of two or more. Of these, lithium salts are particularly desirable.
  • the electrolyte in the present invention is usually preferably contained in the nonaqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
  • the nonaqueous electrolytic solution of the present invention when a cyclic carboxylic acid ester such as ⁇ -butyrolactone is used in combination as the nonaqueous solvent, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. .
  • the ratio of LiPF 6 in the lithium salt is 1% by mass to 100% by mass, preferably 10% by mass to 100% by mass, and more preferably 50% by mass to 100% by mass.
  • Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 mol / liter to 3 mol / liter, preferably 0.5 mol / liter to 2 mol / liter.
  • the non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • the lithium secondary battery of the present invention basically comprises a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present invention, and a separator is usually provided between the negative electrode and the positive electrode. .
  • metal lithium As the negative electrode active material constituting the negative electrode in the present invention, metal lithium, a lithium-containing alloy, a metal or alloy that can be alloyed with lithium, an oxide that can be doped / undoped with lithium ions, a lithium ion doped Any of undopeable transition metal nitrides, carbon materials that can be doped / undoped with lithium ions, or mixtures thereof can be used.
  • metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Among these, carbon materials that can be doped / undoped with lithium ions are preferable.
  • carbon materials examples include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite, etc.), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • the amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesopause bitch carbon fiber (MCF).
  • the graphite material there are natural graphite and artificial graphite, and as the artificial graphite, graphitized MCMB, graphitized MCF and the like are used.
  • the thing containing a boron etc. can be used, The thing etc. which coat
  • the carbon material a graphite material coated with an amorphous carbon material or a mixture of an amorphous carbon material and a graphite material can be used.
  • carbon materials may be used alone or in combination of two or more.
  • a carbon material having a (002) plane distance d (002) of 0.340 nm or less measured by X-ray analysis is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is preferable.
  • Examples of the positive electrode active material constituting the positive electrode in the present invention include transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , and V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , and LiNiO. 2 , LiNi X Co (1-X) O 2 [0 ⁇ X ⁇ 1], complex oxides composed of lithium and transition metals such as LiFePO 4 , polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazole / polyaniline Examples thereof include conductive polymer materials such as composites.
  • a composite oxide composed of lithium and a transition metal is particularly preferable.
  • a carbon material can also be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • Said positive electrode active material may be used by 1 type, and may mix and use 2 or more types. Since the positive electrode active material usually has insufficient conductivity, it is used together with a conductive auxiliary agent to constitute the positive electrode.
  • the conductive aid include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the separator in the present invention is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • porous polyolefin is preferable, and specific examples include a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film.
  • other resin excellent in thermal stability may be coated.
  • Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
  • the nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of this invention contains the said negative electrode active material, a positive electrode active material, and a separator.
  • the lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • An example of the lithium secondary battery of the present invention is a coin-type battery shown in FIG. In the coin-type battery shown in FIG.
  • a disc-shaped negative electrode 2 a separator 5 into which a non-aqueous electrolyte solution obtained by dissolving an electrolyte in a non-aqueous solvent, a disc-shaped positive electrode 1, stainless steel, or aluminum as necessary
  • Spacer plates 7 and 8 are stacked in this order and accommodated between positive electrode can 3 (hereinafter also referred to as “battery can”) and sealing plate 4 (hereinafter also referred to as “battery can lid”).
  • the positive electrode can 3 and the sealing plate 4 are caulked and sealed via a gasket 6.
  • non-aqueous electrolyte of the embodiment of the present invention and the lithium secondary battery using the non-aqueous electrolyte is not particularly limited, and can be used for various known uses.
  • NMR data of exemplary compound 65 1 H-NMR (270 MHz, CDCl 3 ) ⁇ (ppm): 60.5 (1.3 H, s), 5.79 (0.7 H, s), 0.99 (12 H, s), 0.98 ( 6H, s), 0.43 (8H, s), 0.40 (4H, s).
  • 1,1,1-trifluoropropan-2-one (0.99 g, 8.8 mmol) was added dropwise, and the mixture was stirred at 30 ° C. for 3 hours and at 40 ° C. for 1 hour.
  • the reaction solution was poured into an ice-cooled dilute aqueous hydrochloric acid solution, and the aqueous layer was extracted twice with ethyl acetate.
  • the combined organic layers were dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (elution solvent: ethyl acetate / hexane) to give Exemplary Compound 99 (1.83 g, yield 85%).
  • Example 1 A lithium secondary battery was produced by the following procedure. ⁇ Production of negative electrode> 20 parts by mass of artificial graphite, 80 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose, and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet-shaped negative electrode comprising a negative electrode current collector and a negative electrode active material layer Got. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • this positive electrode mixture slurry is applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press to form a sheet-like positive electrode comprising a positive electrode current collector and a positive electrode active material ( Hereinafter, also referred to as “Mn positive electrode”).
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 34:33:33 (mass ratio), respectively, to obtain a mixed solvent.
  • LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the finally prepared nonaqueous electrolytic solution was 1 mol / liter.
  • the cyclic sulfone compound [Exemplary Compound 3] and vinylene carbonate as additives, with respect to the total amount of the nonaqueous electrolyte solution finally prepared, are 0.5% by mass, respectively.
  • a nonaqueous electrolytic solution was obtained.
  • the above-mentioned negative electrode was punched into a disk shape with a diameter of 14 mm and the above-mentioned positive electrode with a diameter of 13 mm to obtain a coin-shaped electrode.
  • a 20 ⁇ m thick microporous polyethylene film was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode are stacked in this order in a stainless steel battery can (2032 size), and 20 ⁇ l of non-aqueous electrolyte is injected to be contained in the separator, the positive electrode, and the negative electrode. Soaked.
  • a coin-type lithium secondary battery (hereinafter referred to as a test battery) having a configuration of 3.2 mm shown in FIG. 1 was produced. The initial characteristics of the obtained coin-type battery (test battery) were evaluated.
  • the battery was charged at a constant voltage of 4.0 V, the battery was cooled to 0 ° C. in a thermostat, and impedance measurement was performed using a Solartron impedance measurement device (potential galvanostat SI1287 and frequency response analyzer 1255B).
  • the resistance value [ ⁇ ] at 2 Hz was defined as the initial battery resistance.
  • Table 1 The results are shown in Table 1 below.
  • Examples 2 to 15 instead of the cyclic sulfone compound [Exemplary Compound 3] used in the preparation of the non-aqueous electrolyte, the cyclic sulfone compound shown in Table 1 has a content of 0.5 mass relative to the total mass of the non-aqueous electrolyte finally prepared.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 1 except that it was added so as to be%. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 1.
  • Example 1 The cyclic sulfone compound [Exemplary Compound 3] used for the preparation of the non-aqueous electrolyte solution was not added, and only vinylene carbonate (VC) was used as an additive. A coin-type battery was obtained in the same manner as in Example 1 except that 5% by mass was added. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 1.
  • Example 16 In Example 1, a coin-type lithium secondary battery was produced and evaluated in the same manner as in Example 1 except that the Mn positive electrode was changed to the following Co positive electrode. Details are shown below.
  • ⁇ Production of negative electrode> As in Example 1, 20 parts by mass of artificial graphite, 80 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose, and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. .
  • this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet-shaped negative electrode comprising a negative electrode current collector and a negative electrode active material layer Got.
  • the coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 34:33:33 (mass ratio), respectively, to obtain a mixed solvent.
  • LiPF 6 as an electrolyte was dissolved so that the electrolyte concentration in the finally prepared nonaqueous electrolytic solution was 1 mol / liter.
  • the cyclic sulfone compound [Exemplary Compound 3] and vinylene carbonate as additives, with respect to the total amount of the nonaqueous electrolyte solution finally prepared, are 0.5% by mass, respectively.
  • a nonaqueous electrolytic solution was obtained.
  • the above-mentioned negative electrode was punched into a disk shape with a diameter of 14 mm and the above-mentioned positive electrode with a diameter of 13 mm to obtain a coin-shaped electrode. Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were laminated in this order in a stainless steel battery can (2032 size), and 20 ⁇ l of nonaqueous electrolyte was injected to impregnate the separator, the positive electrode, and the negative electrode. I let you.
  • a coin-type lithium secondary battery (hereinafter referred to as a test battery) having the configuration shown in FIG. The initial characteristics of the obtained coin-type battery (test battery) were evaluated.
  • the battery was charged at a constant voltage of 4.0 V, the battery was cooled to 0 ° C. in a thermostat, and impedance measurement was performed using a Solartron impedance measurement device (potential galvanostat SI1287 and frequency response analyzer 1255B).
  • the resistance value [ ⁇ ] at 2 Hz was defined as the initial battery resistance.
  • Table 2 The results are shown in Table 2 below.
  • Examples 17 to 30 Instead of the cyclic sulfone compound [Exemplary Compound 3] used for the preparation of the non-aqueous electrolyte, the cyclic sulfone compound shown in Table 2 is 0.5 mass relative to the total mass of the non-aqueous electrolyte finally prepared.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 16 except that it was added so as to be%. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 16.
  • Example 31 In the preparation of the nonaqueous electrolytic solution of Example 1, the content relative to the total mass of the nonaqueous electrolytic solution in which the cyclic sulfone compound [Exemplary Compound 2] is finally prepared instead of the cyclic sulfone compound [Exemplary Compound 3] is 0.00.
  • a non-aqueous electrolyte solution was obtained in the same manner as in Example 1 except that 5% by mass was added and that vinylene carbonate was not added.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 1 except that the obtained nonaqueous electrolytic solution was used. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 1.
  • Examples 32 to 48 instead of the cyclic sulfone compound [Exemplary Compound 2] used for the preparation of the non-aqueous electrolyte, the cyclic sulfone compound shown in Table 3 is 0.5 mass relative to the total mass of the non-aqueous electrolyte finally prepared.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 31 except that it was added so as to be%. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 31.
  • Example 5 A coin-type battery was obtained in the same manner as in Example 31 except that the cyclic sulfone compound [Exemplary Compound 2] used for the preparation of the nonaqueous electrolytic solution was not added. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 31.
  • Example 49 In Example 31, a coin-type lithium secondary battery was fabricated and evaluated in the same manner as in Example 31 except that the Mn positive electrode was changed to the Co positive electrode described above. That is, a non-aqueous electrolyte was obtained in the same manner as in Example 31, and a coin-type lithium secondary battery was obtained in the same manner as in Example 16 except that the obtained non-aqueous electrolyte was used. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 16.
  • Examples 50 to 67 instead of the cyclic sulfone compound [Exemplary Compound 2] used for the preparation of the non-aqueous electrolyte, the cyclic sulfone compound shown in Table 4 has a content of 0.5 mass relative to the total mass of the non-aqueous electrolyte finally prepared.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 49 except that the addition was performed so that the content of the lithium secondary battery would be 5%. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 49.
  • Example 7 A coin-type battery was obtained in the same manner as in Example 49 except that the cyclic sulfone compound [Exemplary Compound 2] used for the preparation of the nonaqueous electrolytic solution was not added. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 49.
  • Example 68 In the preparation of the non-aqueous electrolyte in Example 1, instead of the cyclic sulfone compound [Exemplary Compound 3] and vinylene carbonate, the cyclic sulfone compound [Exemplary Compound 6] and fluoroethylene carbonate are finally prepared.
  • a nonaqueous electrolytic solution was obtained in the same manner as in Example 1 except that the content was 1.0% by mass with respect to the total mass.
  • a coin-type lithium secondary battery was obtained in the same manner as in Example 1 except that the obtained nonaqueous electrolytic solution was used. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 1.
  • Example 69 A coin-type lithium secondary battery was obtained in the same manner as in Example 68 except that [Exemplary Compound 65] was added in place of the cyclic sulfone compound [Exemplary Compound 6] used in the preparation of the nonaqueous electrolytic solution. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 68.
  • Example 9 A coin-type lithium secondary battery was obtained in the same manner as in Example 68 except that the cyclic sulfone compound [Exemplary Compound 6] used for the preparation of the nonaqueous electrolytic solution was not added. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 68.
  • Example 70 In Example 68, a battery was produced and evaluated in the same manner as in Example 68 except that the Mn positive electrode was changed to the aforementioned Co positive electrode. That is, a non-aqueous electrolyte was obtained in the same manner as in Example 68, and a coin-type lithium secondary battery was obtained in the same manner as in Example 16 except that the obtained non-aqueous electrolyte was used. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 16.
  • Example 71 A coin-type lithium secondary battery was obtained in the same manner as in Example 70 except that [Exemplary Compound 65] was added instead of the cyclic sulfone compound [Exemplary Compound 6] used in the preparation of the non-aqueous electrolyte. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 70.
  • Example 11 A coin-type lithium secondary battery was obtained in the same manner as in Example 70 except that the cyclic sulfone compound [Exemplary Compound 6] used for the preparation of the nonaqueous electrolytic solution was not added. The obtained coin-type battery was evaluated for initial characteristics in the same manner as in Example 70.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明では、1,3-ジチエタン-1,1,3,3-テトラオキシド構造を有する環状スルホン化合物を含有する非水電解液が提供される。該環状スルトン化合物は、式(I)で表される化合物であることが好ましい。式(I)中、R~Rは、水素原子、ハロゲン原子、置換もしくは無置換のアルキル基等を表す。

Description

環状スルホン化合物を含有する非水電解液、及びリチウム二次電池
 本発明は、出力特性に優れた非水電解液、それを用いたリチウム二次電池、電解液の添加剤として有用なリチウム二次電池添加剤に関する。
 近年、リチウム二次電池は携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
 リチウム二次電池は、主に、リチウムを吸蔵放出可能な材料を含む正極および負極、並びに、リチウム塩と非水溶媒とを含む非水電解液から構成される。
 正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
 また、非水電解液としては、エチレンカーボネートやプロピレンカーボネート、エチレンカーボネート、メチルカーボネートなどカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF)やLiN(SOCFCF)のようなLi電解質を混合した溶液が用いられている。
 一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムの吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
 電池性能の中で、特に自動車用途のリチウム二次電池に関しては高出力化が要望されることから、電池の抵抗をいろいろな条件にわたって小さくすることが望まれている。
 電池の抵抗が上昇する要因のひとつとして、負極表面に形成される、溶媒の分解物や無機塩による皮膜が知られている。一般的に負極表面は、充電条件で負極活物質中にリチウム金属が存在することから、電解液の還元分解反応が起こることが知られている。このような還元分解が継続的に起これば、電池の抵抗が上昇し、充放電効率が低下し、電池のエネルギー密度が低下することになる。これらの問題を克服するため、種々の化合物を電解液に添加する試みがなされてきた。
 その試みとして、添加剤として種々のスルホン酸エステル化合物を含有させて電池抵抗を改善する試みがなされている(例えば、特開2000-3724号公報、特開2000-133304号公報、国際公開第2005/057713号パンフレット、及び特開2009-054287号公報参照)。
 しかしながら、従来の添加剤では電池抵抗の低減を十分に図れないという課題がある。
 本発明は、前記課題に応えるためになされたものであり、本発明の目的は、電池の抵抗値を低く抑えることにより電池の出力特性改善を実現する非水電解液、および、該非水電解液を用い、抵抗値が改善されたリチウム二次電池を提供することである。
 本発明のさらなる目的は、このような非水電解液に有用なリチウム二次電池用添加剤を提供することである。
 本発明者は、上記課題に対し、鋭意検討した結果、リチウム二次電池の非水電解液に対し、特定の添加剤を加えることにより、電池の抵抗上昇が抑制されること、また、そのような添加剤として新規な化合物を見出し、本発明を完成した。
 すなわち本発明は、以下のとおりである。
<1> 1,3-ジチエタン-1,1,3,3-テトラオキシド骨格を有する化合物を含有する非水電解液。
<2> 前記1,3-ジチエタン-1,1,3,3-テトラオキシド骨格を有する化合物が、下記一般式(I)で表される環状スルホン化合物である<1>に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000005
〔一般式(I)において、R、R、R及びRは、それぞれ独立に、
水素原子、
ハロゲン原子、
置換もしくは無置換の炭素数1~10のアルキル基、
置換もしくは無置換の炭素数2~10のアルケニル基、
置換もしくは無置換の炭素数2~10のアルキニル基、
-SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)、
-CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す)、
-P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)、
-SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、または、
-B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)を表す。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。〕
<3> 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成しており、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成している
<2>に記載の非水電解液。
<4> 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成しており、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成している
<2>に記載の非水電解液。
<5> さらに、下記一般式(III)で表される化合物を含有する<1>~<4>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000006
〔一般式(III)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。〕
<6> さらに、下記一般式(IV)で表される化合物を含有する<1>~<5>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000007
〔一般式(IV)中、X、X、X及びXは、各々独立に、水素原子、フッ素原子、塩素原子、またはフッ素原子により置換されてもよい炭素数1~3のアルキル基を示す。ただし、X、X、X及びXが同時に水素原子であることはない。〕
<7> 前記1,3-ジチエタン-1、1,3,3-テトラオキシド骨格を有する化合物の含有量が、0.001質量%~10質量%である<1>~<6>のいずれか1項に記載の非水電解液。
<8> 前記一般式(III)で表される化合物の含有量が、0.001質量%~10質量%である<5>~<7>のいずれか1項に記載の非水電解液。
<9> 前記一般式(IV)で表される化合物の含有量が、0.001質量%~10質量%である<6>~<8>のいずれか1項に記載の非水電解液。
<10> 下記一般式(I)で表される環状スルホン化合物を有効成分として含むリチウム二次電池用添加剤。
Figure JPOXMLDOC01-appb-C000008
〔一般式(I)において、R、R、R及びRは、それぞれ独立に、
水素原子、
ハロゲン原子、
置換もしくは無置換の炭素数1~10のアルキル基、
置換もしくは無置換の炭素数2~10のアルケニル基、
置換もしくは無置換の炭素数2~10のアルキニル基、
-SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)、
-CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す)、
-P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)、
-SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、または、
-B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)を表す。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。〕
<11> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒化物、リチウムイオンのドープ・脱ドープが可能な炭素材料、およびこれらの混合物から選ばれた少なくとも1種を負極活物質として含む負極と、
 <1>~<9>のいずれか1項に記載の非水電解液と、
を含むリチウム二次電池。
<12> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒化物、リチウムイオンのドープ・脱ドープが可能な炭素材料、およびこれらの混合物から選ばれた少なくとも1種を負極活物質として含む負極と、
 <1>~<9>のいずれか1項に記載の非水電解液と、
を含むリチウム二次電池を充放電させて得られたリチウム二次電池。
 本発明によれば、リチウム二次電池に用いる非水電解液であって、電池の抵抗値を低く抑え、高出力化が実現できる非水電解液、及び該非水電解液を用いた抵抗値が改善された高出力のリチウム二次電池を提供することができる。
 また、本発明によれば、このような非水電解液に有用なリチウム二次電池用添加剤を提供することができる。
本発明のリチウム二次電池の一例を示すコイン型電池の模式的断面図である。
 以下、本発明における環状スルホン化合物、それを用いた非水電解液、およびその非水電解液を用いたリチウム二次電池について具体的に説明する。
〔環状スルホン化合物〕
 本発明の非水電解液は、1,3-ジチエタン-1,1,3,3-テトラオキシド骨格を有する環状スルホン化合物(以下、「特定環状スルホン化合物」ともいう)を含有する。
 非水電解液を上記本発明の構成とすることにより、電池の抵抗値を低く抑えることができ、電池の高出力化を実現できる。
 前記特定環状スルホン化合物としては、下記一般式(I)で表される環状スルホン化合物(以下、「一般式(I)で表される化合物」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(I)において、R、R、R及びRは、それぞれ独立に、
水素原子、
ハロゲン原子、
置換もしくは無置換の炭素数1~10のアルキル基、
置換もしくは無置換の炭素数2~10のアルケニル基、
置換もしくは無置換の炭素数2~10のアルキニル基、
-SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)、
-CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す)、
-P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
-SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)、
-SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、または、
-B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)を表す。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。また、R及びRは、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
 R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。また、R及びRは、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
 一般式(I)中、「炭素数1~10のアルキル基」とは、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、t-ブチル、ペンチル、2-メチルブチル、1-メチルペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、3,3-ジメチルブチル、ヘプチル、オクチル、ノニル、デシルが具体例として挙げられる。
 前記アルキル基の炭素数は、1~6が好ましい。
 一般式(I)中、「炭素数2~10のアルケニル基」とは、ビニル、アリル、ブテニル、ブテン-3-イル、ペンテニル、ペンテン-4-イル、へキセニル、ヘキセン-5-イル、ヘプテニル、オクテニル、ノネニル、デセニルが具体例として挙げられる。
 前記アルケニル基の炭素数は、2~6が好ましい。
 一般式(I)中、「炭素数2~10のアルキニル基」とは、エチニル、プロパルギル、ブチン-4-イル、ブチン-3-イル、ペンチニル、ペンチン-4-イル、へキシン-5-イル、ヘプチン-7-イル、オクチン-8-イル、ノニン-9-イル、デシン-10-イルが具体例として挙げられる。
 前記アルキニル基の炭素数は、2~6が好ましい。
 一般式(I)中(詳しくは、一般式(II)中)、「炭素数2~12のジアルキルアミノ基」とは、炭素数が2ないし12個の直鎖または分岐鎖アルキル基を有するアミノ基であり、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチルアミノ、ジヘキシルアミノ、ジイソプロピルアミノ、ジイソブチルアミノ、メチルエチルアミノ、メチルプロピルアミノ、メチルブチルアミノ、メチルペンチルアミノ、メチルヘキシルアミノが具体例として挙げられる。
 一般式(I)中、「置換もしくは無置換の炭素数1~10のアルキル基」における置換基としては、1乃至10個のフッ素原子、以下それぞれ1乃至2個の-SiR171819基(R17、R18及びR19はそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す。-SiR171819基の具体例としては、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、ジメチル-t-ブチルシリル、ジメチルビニルシリル、ジメチルアリルシリル、ジメチルフェニルシリル、ジフェニルメチルシリル、トリフェニルシリル、などが挙げられる。)、ヒドロキシル、シアノ、アセチル、プロピオニル、ベンゾイル、カルボキシル、メトキシカルボニル、エトキシカルボニル、トリメチルシリルオキシカルボニル、トリメチルシリルメトキシカルボニル、2-トリメチルシリルエトキシカルボニル、フェニル、ピリジル、メチルスルホニル、エチルスルホニル、プロピルスルホニル、トリフルオロメチルスルホニル、ジフルオロフェニルスルホニル、フェニルスルホニル、メトキシスルホニル、エトキシスルホニル、プロポキシスルホニルオキシ、ブトキシスルホニルオキシ、フルオロスルホニルオキシ、トリメチルシリルオキシスルホニル、ホスホノ、ジメチルホスホノ、ジエチルホスホノ、ビス(トリメチルシリルメチル)ホスホノ、ビス(トリメチルシリルエチル)ホスホノ、ビス(シアノエチル)ホスホノ、ビス(メチルスルホニルエチル)ホスホノ、ビス(フェニルスルホニルエチル)ホスホノ、ジヒドロキシボリル、ジメトキシボリル、ジエトキシボリル、ビス(トリメチルシリルオキシ)ボリル、などが具体例として挙げられる。
 一般式(I)中、「置換もしくは無置換の炭素数2~10のアルケニル基」における置換基としては、1乃至10個のフッ素原子、以下それぞれ1乃至2個の-SiR171819基(R17、R18及びR19はそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す。-SiR171819基の具体例としては、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、ジメチル-t-ブチルシリル、ジメチルビニルシリル、ジメチルアリルシリル、ジメチルフェニルシリル、ジフェニルメチルシリル、トリフェニルシリル、などが挙げられる。)、ヒドロキシル、シアノ、アセチル、プロピオニル、ベンゾイル、カルボキシル、メトキシカルボニル、エトキシカルボニル、トリメチルシリルオキシカルボニル、トリメチルシリルメトキシカルボニル、2-トリメチルシリルエトキシカルボニル、フェニル、ピリジル、メチルスルホニル、エチルスルホニル、プロピルスルホニル、トリフルオロメチルスルホニル、ジフルオロフェニルスルホニル、フェニルスルホニル、メトキシスルホニル、エトキシスルホニル、プロポキシスルホニルオキシ、ブトキシスルホニルオキシ、フルオロスルホニルオキシ、トリメチルシリルオキシスルホニル、ホスホノ、ジメチルホスホノ、ジエチルホスホノ、ビス(トリメチルシリルメチル)ホスホノ、ビス(トリメチルシリルエチル)ホスホノ、ビス(シアノエチル)ホスホノ、ビス(メチルスルホニルエチル)ホスホノ、ビス(フェニルスルホニルエチル)ホスホノ、ジヒドロキシボリル、ジメトキシボリル、ジエトキシボリル、ビス(トリメチルシリルオキシ)ボリル、などが具体例として挙げられる。
 一般式(I)中、「置換もしくは無置換の炭素数2~10のアルキニル基」における置換基としては、1乃至10個のフッ素原子、以下それぞれ1乃至2個の-SiR171819基(R17、R18及びR19はそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す。-SiR171819基の具体例としては、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、ジメチル-t-ブチルシリル、ジメチルビニルシリル、ジメチルアリルシリル、ジメチルフェニルシリル、ジフェニルメチルシリル、トリフェニルシリル、などが挙げられる。)、ヒドロキシル、シアノ、アセチル、プロピオニル、ベンゾイル、カルボキシル、メトキシカルボニル、エトキシカルボニル、トリメチルシリルオキシカルボニル、トリメチルシリルメトキシカルボニル、2-トリメチルシリルエトキシカルボニル、フェニル、ピリジル、メチルスルホニル、エチルスルホニル、プロピルスルホニル、トリフルオロメチルスルホニル、ジフルオロフェニルスルホニル、フェニルスルホニル、メトキシスルホニル、エトキシスルホニル、プロポキシスルホニルオキシ、ブトキシスルホニルオキシ、フルオロスルホニルオキシ、トリメチルシリルオキシスルホニル、ホスホノ、ジメチルホスホノ、ジエチルホスホノ、ビス(トリメチルシリルメチル)ホスホノ、ビス(トリメチルシリルエチル)ホスホノ、ビス(シアノエチル)ホスホノ、ビス(メチルスルホニルエチル)ホスホノ、ビス(フェニルスルホニルエチル)ホスホノ、ジヒドロキシボリル、ジメトキシボリル、ジエトキシボリル、ビス(トリメチルシリルオキシ)ボリル、などが具体例として挙げられる。
 一般式(I)中、R及びRが互いに結合し、該R及び該Rが結合している炭素原子とともに形成してもよい「炭素数3~7のシクロアルカン基」としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタンなどが挙げられる。
 一般式(I)中、R及びRが互いに結合し、該R及び該Rが結合している炭素原子とともに形成してもよい「炭素数3~7のシクロアルカン基」としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタンなどが挙げられる。
 一般式(I)中(詳しくは、一般式(II)中)、R及びRが互いに結合し、該R及び該Rが結合している炭素原子とともに形成してもよい「炭素数3~7のシクロアルカン基」としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタンなどが挙げられる。
 一般式(I)中、「-SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)」としては、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、ジメチル-t-ブチルシリル、ジメチルビニルシリル、ジメチルアリルシリル、ジメチルフェニルシリル、ジフェニルメチルシリル、トリフェニルシリルなどが挙げられる。
 一般式(I)中、「-CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)」としては、カルボキシ、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル、ヘキシルオキシカルボニル、ヘプチルオキシカルボニル、オクチルオキシカルボニル、ノニルオキシカルボニル、デシルオキシカルボニル、イソブトキシカルボニル、t-ブトキシカルボニル、トリメチルシリルオキシカルボニル、トリメチルシリルメチルオキシカルボニル、2-トリメチルシリルエチルオキシカルボニル、2,2,2-トリフルオロエチルオキシカルボニル、2-シアノエチルオキシカルボニル、フェニルオキシカルボニル、などが挙げられる。
 一般式(I)中、「-COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基を表す)」としては、アセチル、プロピオニル、ブチリル、ペンタノイル、ヘキサノイル、ヘプタノイル、オクタノイル、ノナノイル、デカノイル、イソブチリル、ピバロイル、ベンゾイル、トリフルオロアセチル、などが挙げられる。
 一般式(I)中、「-P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)」としては、ホスホノ、ジメトキシホスホノ、ジエトキシホスホノ、ジプロポキシホスホノ、ジブトキシホスホノ、ジペントキシホスホノ、ジヘキシルオキシホスホノ、ジヘプチルオキシホスホノ、ジオクチルオキシホスホノ、ジノニルオキシホスホノ、ジデシルオキシホスホノ、ジイソブトキシホスホノ、ビス(トリメチルシリルオキシ)ホスホノ、ビス(トリメチルシリルメチルオキシ)ホスホノ、ビス(2-トリメチルシリルエチルオキシ)ホスホノ、2,2,2-トリフルオロエチルオキシホスホノ、2-シアノエチルオキシホスホノ、フェニルオキシホスホノ、などが挙げられる。
 一般式(I)中、「-SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)」としては、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘキシルスルホニル、ヘプチルスルホニル、オクチルスルホニル、ノニルスルホニル、デシルスルホニル、イソブチルスルホニル、t-ブチルスルホニル、フェニルスルホニル、トリフルオロメチルスルホニル、などが挙げられる。
 一般式(I)中、「-SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)」としては、メトキシスルホニル、エトキシスルホニル、プロポキシスルホニル、ブトキシスルホニル、ペントキシスルホニル、ヘキシルオキシスルホニル、ヘプチルオキシスルホニル、オクチルオキシスルホニル、ノニルオキシスルホニル、デシルオキシスルホニル、イソブトキシスルホニル、t-ブトキシスルホニル、トリメチルシリルオキシスルホニル、トリメチルシリルメチルオキシスルホニル、2-トリメチルシリルエチルオキシスルホニル、2,2,2-トリフルオロエチルオキシスルホニル、2-シアノエチルオキシスルホニル、フェニルオキシスルホニル、などが挙げられる。
 一般式(I)中、「-B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)」としては、ボリル、ジメトキシボリル、ジエトキシボリル、ジプロポキシボリル、ジブトキシボリル、ジペントキシボリル、ジヘキシルオキシボリル、ジヘプチルオキシボリル、ジオクチルオキシボリル、ジノニルオキシボリル、ジデシルオキシボリル、ジイソブトキシボリル、ジt-ブトキシボリル、ジトリメチルシリルオキシボリル、ビス(トリメチルシリルメチルオキシ)ボリル、ビス(2-トリメチルシリルエチルオキシ)ボリル、ビス(2,2,2-トリフルオロエチルオキシ)ボリル、ビス((2-シアノエチルオキシ)ボリル、フェニルオキシボリル、などが挙げられる。
 前記一般式(I)の好ましい形態は、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成しており、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成している形態である。
 当該形態の中でもより好ましくは、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成しており、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
 前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成している形態である。
 前記一般式(I)の別の好ましい形態は、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~10(より好ましくは炭素数1~6)のアルキル基、置換もしくは無置換の炭素数2~10(より好ましくは炭素数2~6)のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~10(より好ましくは炭素数1~6)のアルキル基、炭素数2~10(より好ましくは炭素数2~6)のアルケニル基、またはフェニル基である)であるか、または、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7(より好ましくは炭素数3~6)のシクロアルカン基を形成し、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~10(より好ましくは炭素数1~6)のアルキル基、置換もしくは無置換の炭素数2~10(より好ましくは炭素数2~6)のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~10(より好ましくは炭素数1~6)のアルキル基、炭素数2~10(より好ましくは炭素数2~6)のアルケニル基、またはフェニル基である)であるか、または、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7(より好ましくは炭素数3~6)のシクロアルカン基を形成する形態である。
 当該形態の中でもより好ましくは、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成し、
 前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成する形態である。
 また、前記一般式(I)で表される化合物として、好ましくは、一般式(I)中のR、R、R及びRが全て水素原子である化合物以外の化合物である。
 また、前記一般式(I)で表される化合物においては、R、R、R及びRの組み合わせによっては、立体的に相対配置の異なる異性体が存在する場合がある。この場合、本発明のリチウム二次電池用添加剤としては、いずれか一方のみを用いてもよいし、両者の混合物を用いてもよい。
 また、一般式(I)で表される環状スルホン化合物の好ましい形態としては、下記一般式(A)又は下記一般式(B)で表される環状スルホン化合物の形態も挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(A)中、R17、R18、及びR19は、それぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す。
 一般式(A)中に2個ずつ存在するR17、R18、及びR19は、それぞれ、同一であっても異なっていてもよい。
 一般式(B)中、Ra及びRbは、それぞれ独立に、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。
 一般式(B)中の「置換もしくは無置換の炭素数1~10のアルキル基」の好ましい範囲については、一般式(I)中の「置換もしくは無置換の炭素数1~10のアルキル基」の好ましい範囲と同様である。
 本発明における一般式(I)で表される化合物の具体例〔例示化合物1~例示化合物118〕を、一般式(I)における、R、R、R及びRを明示することで下記の表に記載するが、本発明はこれらの化合物に限定されるものではない。
 下記例示化合物の構造中、「Me」はメチル基を、「Et」がエチル基を、「Pr」はプロピル基を、「iPr」はイソプロピル基を、「Bu」はブチル基を、「sBu」はセカンダリーブチル基を、「iBu」はイソブチル基を、「tBu」はターシャリブチル基を、「Pent」はペンチル基を、「Hex」はヘキシル基を、「Hept」はヘプチル基を、「Oct」はオクチル基を、「Non」はノニル基を、「Dec」はデシル基を、「Ph」は、フェニル基をそれぞれ表す。
 下記例示化合物のうち、R及びRの少なくとも一方並びにR及びRの少なくとも一方が水素原子以外である例示化合物においては、シス型及びトランス型の立体異性体が存在する場合があるが、この場合、当該例示化合物は、両異性体のいずれか一方であっても、両異性体の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 本発明の一般式(I)で表される環状スルホン化合物は、以下の既知文献に記載されている方法によって製造することができるが、本製法に限定されるものではない。
Chemishche Berichte, 1981, 114, 3378-3384.
Chemishche Berichte, 1991, 124, 1805-1807.
Chemishche Berichte, 1993, 126, 537-542.
Chemishche Berichte, 1993, 126, 537-542.
Chemishche Berichte, 1996, 129, 161-168.
Angewandte Chemie, 1980, 92, 223-224
Russian Journal of Organic Chemistry, 1993, 29, 479-481.
Russian Journal of Organic Chemistry, 1995, 31, 543-544.
Russian Journal of Organic Chemistry, 1995, 31, 543-544.
Phosphorous, Slufur and Silicon and Related Elements, 1994, 94, 477-478.
Journal of American Chemical Society, 1996, 108, 2358-2366.
SU 311908 (1971)
 上記一般式(I)で表される環状スルホン化合物は、リチウム二次電池用添加剤、特に、後述するリチウム二次電池の非水電解液用の添加剤として有用であり、この添加剤を非水電解液に添加することで、電池の経時的な抵抗上昇を抑制し、高出力化を実現させる。
 即ち、本発明のリチウム二次電池用添加剤は、前記一般式(I)で表される化合物を有効成分として含むリチウム二次電池用添加剤である。
 本発明のリチウム二次電池用添加剤は、前記一般式(I)で表される化合物を1種のみ含んでいてもよいし、前記一般式(I)で表される化合物を2種以上含んでいてもよい。
 また、本発明のリチウム二次電池用添加剤は、必要に応じ、一般式(I)で表される化合物に加え、その他の成分を含んでいてもよい。
 前記その他の成分としては、上記効果をより効果的に得る観点より、例えば、後述の一般式(III)または後述の一般式(IV)で表される化合物の少なくとも1種(より好ましくは前記一般式(III)で表される化合物の少なくとも1種)を用いることができる。
<非水電解液>
 本発明の非水電解液は、前記特定環状スルホン化合物を含有することを特徴とするが、その他の成分は、公知のものを任意に含むことができる。
 本発明の非水電解液に含まれる前記特定環状スルホン化合物は、1種のみであっても、2種以上を併用してもよい。
 本発明の非水電解液中における前記特定環状スルホン化合物の含有量は、0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、電池の経時的な抵抗上昇を抑制し、高出力化を達成することができる。
 次に、非水電解液の他の成分について説明する。非水電解液は、一般的には、電解質と非水溶媒とを含有する。
〔非水溶媒〕
 本発明における非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び/または鎖状の非プロトン性溶媒を用いることが好ましい。
 電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
〔環状の非プロトン性溶媒〕
 環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
 環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。γ-ブチロラクトンが最も好ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/または鎖状カーボネートとの混合物が挙げられる。
 環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 環状エーテルの例としてジオキソランを挙げることができる。
〔鎖状の非プロトン性溶媒〕
 前記鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
〔溶媒の組み合わせ〕
 本発明に係る非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類または複数種類用いても、鎖状の非プロトン性溶媒のみを1種類または複数種類用いても、または環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
 さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
〔その他の溶媒〕
 本発明に係る非水電解液は、非水溶媒として、上記以外の他の溶媒を含んでいてもよい。他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PHO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
 前記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。
〔一般式(III)で表される化合物〕
 本発明の非水電解液は、負極の表面皮膜形成の観点から、一般式(III)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000016
 前記一般式(III)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。
 一般式(III)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、ブロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。これらのうちでビニレンカーボネートが最も好ましい。
 本発明の非水電解液が前記一般式(III)で表される化合物を含有する場合、本発明の非水電解液中における一般式(III)で表される化合物の含有量は、目的に応じて適宜選択できるが、0.001質量%~10質量%が好ましく、0.05質量%~5質量%であることが更に好ましい。
〔一般式(IV)で表される化合物〕
 本発明の非水電解液は、負極の表面皮膜形成の観点から、一般式(IV)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000017
 前記一般式(IV)中、X、X、X及びXは、各々独立に、水素原子、フッ素原子、塩素原子、またはフッ素原子により置換されてもよい炭素数1~3のアルキル基を示す。ただし、X~Xが同時に水素原子であることはない。
 一般式(IV)中、X~Xのフッ素原子により置換されていてもよい炭素数1~3のアルキル基としては、例えばフルオロメチル、ジフルオロメチル、トリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピルなどが挙げられる。
 一般式(IV)で表される化合物としては公知のものを使用でき、たとえば、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネートなどの、エチレンカーボネートにおいて1~4個の水素がフッ素により置換されたフッ素化エチレンカーボネートが挙げられる。これらの中でも、4,5-ジフルオロエチレンカーボネート、4-フルオロエチレンカーボネートが最も望ましい。
 本発明の非水電解液が前記一般式(IV)で表される化合物を含有する場合、本発明の非水電解液中における一般式(IV)で表される化合物の含有量は、目的に応じて適宜選択できるが、0.001質量%~10質量%が好ましく、0.05質量%~5質量%であることが更に好ましい。
〔電解質〕
 本発明の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
 電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1~8の整数)、(CNPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
 LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)(ここでR~R13は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
 これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1~8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)が好ましい。
 本発明における電解質は、通常は、非水電解質中に0.1モル/リットル~3モル/リットル、好ましくは0.5モル/リットル~2モル/リットルの濃度で含まれることが好ましい。
 本発明の非水電解液において、非水溶媒として、γ-ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
 具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1~8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1~8の整数)などが例示される。
 リチウム塩中に占めるLiPFの比率は、1質量%~100質量%、好ましくは10質量%~100質量%、さらに好ましくは50質量%~100質量%が望ましい。このような電解質は、0.1モル/リットル~3モル/リットル、好ましくは0.5モル/リットル~2モル/リットルの濃度で非水電解液中に含まれることが好ましい。
 本発明の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
<リチウム二次電池>
 本発明のリチウム二次電池は、負極と、正極と、前記本発明の非水電解液とを基本的に含んで構成されており、通常、負極と正極との間にセパレータが設けられている。
(負極)
 本発明における負極を構成する負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープ可能な遷移金属窒素化物、リチウムイオンのドープ・脱ドープが可能な炭素材料、またはこれらの混合物のいずれかを用いることができる。リチウム(またはリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛等)、非晶質炭素材料、等が挙げられる。前記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
 非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)などが例示される。
 黒鉛材料としては、天然黒鉛、人造黒鉛があり、人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができ、また、金、白金、銀、銅、スズなどの金属で被覆したものなども用いることができる。
 また、前記炭素材料としては、非晶質炭素材料で被覆された黒鉛材料や、非晶質炭素材料と黒鉛材料との混合物も使用することができる。
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。 前記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。
 また、前記炭素材料としては、真密度が1.70g/cm以上である黒鉛またはそれに近い性質を有する高結晶性炭素材料が好ましい。
 以上のような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。
(正極)
 本発明における正極を構成する正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物または遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、LiFePOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール/ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属またはリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 上記の正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は通常導電性が不充分であるため、導電性助剤とともに使用して正極を構成する。導電助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(セパレータ)
 本発明におけるセパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 前記多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 前記高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(電池の構成)
 本発明のリチウム二次電池は、前記の負極活物質、正極活物質及びセパレータを含む。 本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本発明のリチウム二次電池の例として、図1に示すコイン型電池が挙げられる。
 図1に示すコイン型電池では、円盤状負極2、電解質を非水溶媒に溶解してなる非水電解液を注入したセパレータ5、円盤状正極1、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板7、8が、この順序に積層された状態で、正極缶3(以下、「電池缶」ともいう)と封口板4(以下、「電池缶蓋」ともいう)との間に収納される。正極缶3と封口板4とはガスケット6を介してかしめ密封する。
 本発明の実施形態の非水電解液及びその非水電解液を用いたリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノートパソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
 以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。なお、以下の実施例において、「%」は質量%を表す。
 以下、一般式(I)で表される化合物の合成例を示す。
〔合成例1〕
<2,4-ジメチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物3)の合成>
 ナトリウムヒドリド(60%鉱油、0.88g、22.0mmol)をジメチルスルホキシド(10ml)に懸濁し、1,3-ジチエタン-1,1,3,3-テトラオキシド(1.56g、10.0mmol)をジメチルスルホキシド(40ml)に溶かした溶液を室温で滴下し、10分撹拌した。さらにヨウ化メチル(3.12g、22.0mmol)を滴下し、30℃で30分、40℃で2時間撹拌した。反応液に、10%の水を含有したジメチルスルホキシド(6.0g)を滴下し撹拌した後、反応液を氷水(60ml)に注ぎこんだ。析出した固体をろ過取し、得られた個体をシリカゲルクロマトグラフィー(溶出溶媒:クロロホルム/ヘキサン=9/1)にて精製し、約1:1の立体異性体の混合物として例示化合物3(0.44g,収率24%)を得た。
例示化合物3のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.23-6.15(1H,m),6.02-5.94(1H,m),1.86-1.84(3H,m), 1.78-1.76(3H,m).
〔合成例2〕
<2,2,4,4-テトラメチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物4)の合成>
 前記合成例1において、ヨウ化メチル及びナトリウムヒドリドの使用量を、原料(1,3-ジチエタン-1,1,3,3-テトラオキシド)に対して4モル等量に変更したこと以外は同様の方法により、例示化合物4を合成した。
例示化合物4のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):1.84(12H,s)
〔合成例3〕
<2,4-ジエチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物6)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化エチルに変更したこと以外は同様の方法により、例示化合物6を合成した。
例示化合物6のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.56-5.49(0.8H,m),5.29(1.2H、t、J=7.6Hz),2.41-2.22(4H,m),1.56-1.16(6H,m).
〔合成例4〕
<2,2,4,4-テトラエチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物7)の合成>
 前記合成例2において、ヨウ化メチルをヨウ化エチルに変更したこと以外は同様の方法により、例示化合物7を合成した。
例示化合物7のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):2.38(8H,t,J=7.6Hz),1.10(12H,t,7.6Hz).
〔合成例5〕
<2-イソプロピル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物11)の合成>
 前記合成例1において、ヨウ化メチルを、原料(1,3-ジチエタン-1,1,3,3-テトラオキシド)に対して1モル等量のヨウ化イソプロピルに変更したこと以外は同様の方法により、例示化合物11を合成した。
例示化合物11のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.82-5.75(1H,m),5.53-5.47(2H,m),2.99-2.85(1H,m),1.21(6H,d,J=6.6Hz).
〔合成例6〕
<2,4-ジイソプロピル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物12)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化イソプロピルに変更したこと以外は同様の方法により、例示化合物12を合成した。
例示化合物12のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.28(1.6H,d,J=11.5Hz),5.10(0.4H,d,J=11.5Hz),2.93-2.76(2H,m),1.24(2.4H,d,J=6.9Hz),1.20(9.6H,d,J=6.9Hz).
〔合成例7〕
<2,4-ジベンジル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物34)の合成>
 前記合成例1において、ヨウ化メチルをベンジルブロミドに変更したこと以外は同様の方法により、例示化合物34を合成した。
例示化合物34のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):7.42-7.24(10H,m),7.04-6.98(1.2H,m),6.81(0.8H,t,J=7.6Hz),3.60(2.4H,d,J=7.6Hz),3.52(1.6H,d,J=7.6Hz).
〔合成例8〕
<2,4-ビス(トリメチルシリルメチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物36)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化トリメチルシリルメタンに変更したこと以外は同様の方法により、例示化合物36を合成した。
例示化合物36のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.66-5.59(1.3H,m),5.39-5.33(0.7H,m),1.57(3.7H,d,J=7.9Hz),1.47(1.3H,d,J=7.9Hz),0.17(12H,s),0.16(6H,s).
〔合成例9〕
<2,4-ビス(2-シアノエチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物53)の合成>
 前記合成例1において、ヨウ化メチルをアクリロニトリルに変更したこと以外は同様の方法により、例示化合物53を合成した。
例示化合物53のNMRデータ:
 H-NMR(270MHz,acetone-d)δ(ppm):6.13-6.08(2H,m),2.98-2.70(8H,m).
〔合成例10〕
<2,4-ビス(ジメチルt-ブチルシリル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物65)の合成>
 1,3-ジチエタン-1,1,3,3-テトラオキシド(3.27g、20.9mmol)を1,4-ジオキサン(100ml)に懸濁した中に、トリエチルアミン(8.8ml,6.28mmol)および、ジメチルt-ブチルシリルトリフルオロメタンスルホネート(10.6ml,46.0mmol)を滴下した。混合物を、20℃で1時間、65℃で3時間撹拌した後、溶媒を減圧下溜去した。残渣に水を加え、酢酸エチルで2回抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた個体をヘキサン(100ml)に懸濁し1時間撹拌した後ろ過した。得られた個体を減圧下乾燥し、例示化合物65(3.16g,収率39%)を得た。
例示化合物65のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):60.5(1.3H,s),5.79(0.7H,s),0.99(12H,s),0.98(6H,s),0.43(8H,s),0.40(4H,s).
〔合成例11〕
<6,12-ジチアジスピロ[4.1.4.1]ドデカン-6,6,12,12-テトラオキシド(例示化合物74)の合成>
 前記合成例1において、ヨウ化メチルを1,4-ジヨウ化ブタンに変更したこと以外は同様の方法により、例示化合物74を合成した。
例示化合物74のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):2.66-2.60(8H,m),1.86-1.57(8H,m).
〔合成例12〕
<2-((ジメチルアミノ)メチレン)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物78)の合成>
 1,3-ジチエタン-1,1,3,3-テトラオキシド(0.24g、1.54mmol)をN,N-ジメチルホルムアミド(5.0ml)に混合し、室温で、トリエチルアミン(0.47ml、3.4mmol)及びクロロトリメチルシラン(0.43ml、3.4mmol)を加えた。混合物を60℃に加熱し、5時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、濃縮した。残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1)にて精製し、例示化合物78(198.6mg,収率61%)を得た。
例示化合物78のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):7.84(1H,s),5.56(2H,s),3.32(3H,s),3.26(3H,s)
〔合成例13〕
<2-(1,1,1-トリフルオロ-2-ヒドロキシプロパン-2-イル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物99)の合成>
 ナトリウムヒドリド(60%鉱油、0.35g、8.8mmol)をジメチルスルホキシド(10ml)に懸濁し、1,3-ジチエタン-1,1,3,3-テトラオキシド(1.25g、8.0mmol)をジメチルスルホキシド(30ml)に溶かした溶液を室温で滴下し、10分撹拌した。さらに1,1,1-トリフルオロプロパン-2-オン(0.99g、8.8mmol)を滴下し、30℃で3時間、40℃で1時間撹拌した。反応液を氷冷した希塩酸水溶液中に注ぎ込み、その水層より酢酸エチルで2回抽出した。合わせた有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し(溶出溶媒:酢酸エチル/ヘキサン)、例示化合物99(1.83g,収率85%)を得た。
例示化合物99のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):7.16(1H,s),6.26(1H,d,2.3Hz),5.97(1H,d,J=13.5,2.3Hz),5.64(1H,d,J=2.3Hz),1.93(3H,m).
〔合成例14〕
<2-(2,2,2-トリフルオロ-1-ヒドロキシ-1-フェニルエチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物100)の合成>
 前記合成例13において、1,1,1-トリフルオロプロパン-2-オンをトリフルオロアセトフェノンに変更したこと以外は同様の方法により、例示化合物100を合成した。
例示化合物100のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):8.01(1H,s),8.00-7.74(2H,m),7.49-7.46(3H,m),6.45(1H,dd,J=14.5,2.3Hz),6.45(1H,s),6.27(1H,d,J=14.5Hz).
〔合成例15〕
<2-メチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物2)の合成>
 前記合成例1において、ヨウ化メチルの添加量を、原料(1,3-ジチエタン-1,1,3,3-テトラオキシド)に対して1モル等量に変更したこと以外は同様の方法により、例示化合物2を合成した。
例示化合物2のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.18-5.97(3H,m),1.84(3H,d,J=7.3Hz).
〔合成例16〕
<2-エチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物5)の合成>
 前記合成例15において、ヨウ化メチルをヨウ化エチルに変更したこと以外は同様の方法により、例示化合物5を合成した。
例示化合物5のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.19-5.92(3H,m),2.82-2.26(2H,m),1.17(3H,t,J=7.6Hz).
〔合成例17〕
<2,4-ジプロピル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物9)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化プロピルに変更したこと以外は同様の方法により、例示化合物9を合成した。
例示化合物9のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.63-5.57(1.1H,m),5.35(0.9H,t,J=6.7Hz),2.33-2.17(4H,m),1.66-1.52(4H,m),1.06-1.00(6H,m).
〔合成例18〕
<2,4-ジブチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物14)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化ブチルに変更したこと以外は同様の方法により、例示化合物14を合成した。
例示化合物14のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.62-5.55(1.1H,m),5.34(0.9H,t,J=7.6Hz),2.34-2.19(4H,m),1.58-1.35(8H,m),0.98-0.93(6H,m).
〔合成例19〕
<2,4-ジアリル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物30)の合成>
 前記合成例1において、ヨウ化メチルをアリルブロマイドに変更したこと以外は同様の方法により、例示化合物30を合成した。
例示化合物30のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.90-5.68(3H,m),5.51-5.45(1H,m),5.37-5.28(4H,m),3.09-2.96(4H,m).
〔合成例20〕
<2-トリメチルシリルメチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物35)の合成>
 前記合成例15において、ヨウ化メチルをトリメチルシリルメチルヨージドに変更したこと以外は同様の方法により、例示化合物35を合成した。
例示化合物35のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.19-6.10(2H,m),5.87-5.80(1H,m),1.59(2H,d,J=8.2Hz),0.18(9H,s).
〔合成例21〕
<1,3-ジチアスピロ[3.4]オクタン-1,1,3,3-テトラオキシド(例示化合物103)の合成>
 前記合成例15において、ヨウ化メチルを1,4-ジヨードブタンに変更したこと以外は同様の方法により、例示化合物103を合成した。
例示化合物103のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.07(2H,s),2.68-2.63(4H,m),1.87-1.82(4H,m).
〔合成例22〕
<2-(3,3,4,4,4-ペンタフルオロブチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物106)の合成>
 前記合成例15において、ヨウ化メチルを1,1,1,2,2-ペンタフルオロ-4-ヨードブタンに変更したこと以外は同様の方法により、例示化合物106を合成した。
例示化合物106のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):6.62-6.40(3H,m),2.52-2.34(4H,m).
〔合成例23〕
<2,4-ビス(3,3,4,4,4-ペンタフルオロブチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物107)の合成>
 前記合成例1において、ヨウ化メチルを1,1,1,2,2-ペンタフルオロ-4-ヨードブタンに変更したこと以外は同様の方法により、例示化合物107を合成した。
例示化合物107のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):6.74(0.8H,t,J=5.6Hz),6.53(1.2H,t,J=6.6Hz),2.57-2.35(8H,m).
〔合成例24〕
<2-(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物108)の合成>
 前記合成例15において、ヨウ化メチルを1,1,1,2,2,3,3,4,4-ノナフルオロ-6-ヨードヘキサンに変更したこと以外は同様の方法により、例示化合物108を合成した。
例示化合物108のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):6.62-6.42 (3H,m),2.53-2.41(4H,m).
〔合成例25〕
<2,4-ビス(3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物109)の合成>
 前記合成例1において、ヨウ化メチルを1,1,1,2,2-ペンタフルオロ-4-ヨードブタンに変更したこと以外は同様の方法により、例示化合物109を合成した。
例示化合物109のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm): 6.71-6.69(0.7H,m),6.54-6.49(1.3H,m),2.57-2.44(8H, m).
〔合成例26〕
<2-(3,4,4,4-テトラフルオロ-3-(トリフルオロメチル)ブチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物110)の合成>
 前記合成例15において、ヨウ化メチルを1,1,1-テトラフルオロ-4-ヨード-2-(トリフルオロメチル)ブタンに変更したこと以外は同様の方法により、例示化合物110を合成した。
例示化合物110のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):6.57(2H,s),6.39(1H,t,J=6.3Hz),2.52-2.40(4H,m).
〔合成例27〕
<2,4-ビス(3,4,4,4-テトラフルオロ-3-(トリフルオロメチル)ブチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物111)の合成>
 前記合成例1において、ヨウ化メチルを1,1,1,2-テトラフルオロ-4-ヨード-2-(トリフルオロメチル)ブタンに変更したこと以外は同様の方法により、例示化合物111を合成した。
例示化合物111のNMRデータ:
 H-NMR(270MHz,DMSO-d6)δ(ppm):6.74-6.72(0.7H,m),6.55-6.50(1.3H,m),2.51-2.41(8H,m).
〔合成例28〕
<2-(3,3,3-トリフルオロプロピル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物112)の合成>
 前記合成例15において、ヨウ化メチルを1,1,1-トリフルオロ-3-ヨードプロパンに変更したこと以外は同様の方法により、例示化合物112を合成した。
例示化合物112のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.27-6.10(3H,m),2.67-2.51(4H,m).
〔合成例29〕
<2,4-ビス(3,3,3-トリフルオロプロピル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物113)の合成>
 前記合成例1において、ヨウ化メチルを1,1,1-トリフルオロ-3-ヨードプロパンに変更したこと以外は同様の方法により、例示化合物113を合成した。
例示化合物113のNMRデータ:
 H-NMR(270MHz,acetone-d6)δ(ppm):6.33-6.29(0.8H,m),6.17-6.12(1.2H,m),2.70-2.51(8H,m).
〔合成例30〕
<2,4-ビス(4,4,4-トリフルオロブチル)-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物115)の合成>
 前記合成例1において、ヨウ化メチルを1,1,1-トリフルオロ-4-ヨードブタンに変更したこと以外は同様の方法により、例示化合物115を合成した。
例示化合物115のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.64-5.58(0.8H,m),5.37(1.2H,t,J=7.3Hz),2.44-2.13(8H,m),1.88-1.56(4H,m).
〔合成例31〕
<2,4-ジペンチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物116)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化ペンチルに変更したこと以外は同様の方法により、例示化合物116を合成した。
例示化合物116のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.62-5.55(1.1H,m),5.34(0.9H,t,J=7.6Hz),2.33-2.18(4H,m),1.57-1.31(12H, m),0.94-0.89(6H,m).
〔合成例32〕
<2,4-ジオクチル-1,3-ジチエタン-1,1,3,3-テトラオキシド(例示化合物117)の合成>
 前記合成例1において、ヨウ化メチルをヨウ化オクチルに変更したこと以外は同様の方法により、例示化合物117を合成した。
例示化合物117のNMRデータ:
 H-NMR(270MHz,CDCl)δ(ppm):5.61-5.54(1.2H,m),5.33(0.8H,t,J=7.6Hz),2.33-2.17(4H,m),1.53-1.27(4H,m),0.91(6H,t,J=6.3Hz).
〔実施例1〕
 以下の手順にて、リチウム二次電池を作製した。
<負極の作製>
 人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiMnを90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部をN-メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極(以下、「Mn正極」ともいう)を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に調製される非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
 得られた溶液に対して、添加剤として、環状スルホン化合物〔例示化合物3〕とビニレンカーボネートとを、最終的に調製される非水電解液全質量に対する含有量がそれぞれ0.5質量%となるように添加して、非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで円盤状に打ち抜いて、コイン状の電極を得た。また厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、非水電解液20μlを注入してセパレータと正極と負極に含漬させた。
 更に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの図1で示す構成を有するコイン型のリチウム二次電池(以下、試験用電池と称する)を作製した。
 得られたコイン型電池(試験用電池)について、初期特性評価を実施した。
[評価方法]
<電池の初期特性評価>
 試験用電池を、1mA定電流かつ4.2V定電圧で充電し、1mA定電流で2.85Vまで放電するサイクルを、10サイクル行った。その際、1サイクル目の充電容量[mAh]及び放電容量[mAh]から、初回の充放電効率を下記式にて計算した。初回の充放電効率及び1サイクル目の放電容量を、下記表1中の「初回効率」欄及び「初回放電容量」欄にそれぞれ示す。
 初回の充放電効率[%]
=1サイクル目の放電容量[mAh]/1サイクル目の充電容量[mAh]×100[%]
 更に、定電圧4.0Vで充電し、恒温槽内で電池を0℃に冷却し、Solartron社製のインピーダンス測定装置(ポテンショガルバノスタットSI1287及び周波数応答アナライザ1255B)を用いてインピーダンス測定を行い、0.2Hzでの抵抗値[Ω]を初期電池抵抗とした。結果を下記表1に示す。
〔実施例2~15〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕に代えて、表1に示す環状スルホン化合物を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例1と同様にして初期特性評価を実施した。
〔比較例1〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕を添加せず、添加剤としてビニレンカーボネート(VC)のみ、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加したこと以外は、実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして初期特性評価を実施した。
〔比較例2〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が0.5質量%となるように添加した以外は、実施例1と同様にしてコイン型電池を得た。比較化合物PRSは、本発明の範囲外の不飽和スルトン化合物である。
 得られたコイン型電池について、実施例1と同様にして初期特性評価を実施した。
 実施例1~15並びに比較例1及び2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
 前記表1の結果より、実施例1~15並びに比較例1及び2のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例1と比較し、実施例1~15では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例2では初期抵抗の増大が確認された。
〔実施例16〕
 実施例1において、Mn正極を下記のCo正極に変更したこと以外は実施例1と同様にしてコイン型のリチウム二次電池を作製し、評価を行った。詳細を以下に示す。
<負極の作製>
 実施例1と同様に、人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiCoOを90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部をN-メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極(以下、「Co正極」ともいう)を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に調製される非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
 得られた溶液に対して、添加剤として、環状スルホン化合物〔例示化合物3〕とビニレンカーボネートとを、最終的に調製される非水電解液全質量に対する含有量がそれぞれ0.5質量%となるように添加して、非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで円盤状に打ち抜いて、コイン状の電極を得た。また厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、非水電解液20μlを注入してセパレータと正極と負極に含漬させた。
 更に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの図1で示す構成を有するコイン型のリチウム二次電池(以下、試験用電池と称する)を作製した。
 得られたコイン型電池(試験用電池)について、初期特性評価を実施した。
[評価方法]
<電池の初期特性評価>
 試験用電池を、1mA定電流かつ4.2V定電圧で充電し、1mA定電流で2.85Vまで放電するサイクルを、10サイクル行った。その際、1サイクル目の充電容量[mAh]及び放電容量[mAh]から、初回の充放電効率(初回効率)を下記式にて計算した。初回の充放電効率及び1サイクル目の放電容量を、下記表2中の「初回効率」欄及び「初回放電容量」欄にそれぞれ示す。
 初回の充放電効率[%]
=1サイクル目の放電容量[mAh]/1サイクル目の充電容量[mAh]×100[%]
 更に、定電圧4.0Vで充電し、恒温槽内で電池を0℃に冷却し、Solartron社製のインピーダンス測定装置(ポテンショガルバノスタットSI1287及び周波数応答アナライザ1255B)を用いてインピーダンス測定を行い、0.2Hzでの抵抗値[Ω]を初期電池抵抗とした。結果を下記表2に示す。
〔実施例17~30〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕に代えて、表2に示す環状スルホン化合物を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加した以外は、実施例16と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例16と同様にして初期特性評価を実施した。
〔比較例3〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕を添加せず、添加剤としてビニレンカーボネート(VC)のみ、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加したにしたこと以外は、実施例16と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例16と同様にして初期特性評価を実施した。
〔比較例4〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物3〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が0.5質量%となるように添加した以外は、実施例16と同様にしてコイン型電池を得た。比較化合物PRSは、本発明の範囲外の不飽和スルトン化合物である。
 得られたコイン型電池について、実施例16と同様にして初期特性評価を実施した。
 実施例16~30並びに比較例3及び4の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000019
 前記表2の結果より、実施例16~30並びに比較例3及び4のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例3と比較し、実施例16~30では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例4では初期抵抗の増大が確認された。
〔実施例31〕
 実施例1の非水電解液の調製において、環状スルホン化合物〔例示化合物3〕に代えて環状スルホン化合物〔例示化合物2〕を最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加したこと、及び、ビニレンカーボネートを添加しなかったこと以外は実施例1と同様にして非水電解液を得た。得られた非水電解液を用いたこと以外は実施例1と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例1と同様にして初期特性評価を実施した。
〔実施例32~48〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕に代えて、表3に示す環状スルホン化合物を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加した以外は、実施例31と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例31と同様にして初期特性評価を実施した
〔比較例5〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕を添加しないこと以外は、実施例31と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例31と同様にして初期特性評価を実施した。
〔比較例6〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が0.5質量%となるように添加した以外は、実施例31と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例31と同様にして初期特性評価を実施した。
 実施例31~48並びに比較例5及び6の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000020
 前記表3の結果より、実施例31~48並びに比較例5及び6のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例5と比較し、実施例31~48では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例6では初期抵抗の増大が確認された。
〔実施例49〕
 実施例31において、Mn正極を前述のCo正極に変更したこと以外は実施例31と同様にしてコイン型のリチウム二次電池を作製し、評価を行った。
 即ち、実施例31と同様にして非水電解液を得、得られた非水電解液を用いたこと以外は実施例16と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例16と同様にして初期特性評価を実施した。
〔実施例50~67〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕に代えて、表4に示す環状スルホン化合物を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加した以外は、実施例49と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例49と同様にして初期特性評価を実施した。
〔比較例7〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕を添加しないこと以外は、実施例49と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例49と同様にして初期特性評価を実施した。
〔比較例8〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物2〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が0.5質量%となるように添加した以外は、実施例49と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例49と同様にして初期特性評価を実施した。
 実施例49~67並びに比較例7及び8の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000021
 前記表4の結果より、実施例49~67並びに比較例7及び8のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例7と比較し、実施例49~67では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例8では初期抵抗の増大が確認された。
〔実施例68〕
 実施例1における非水電解液の調製において、環状スルホン化合物〔例示化合物3〕及びビニレンカーボネートに代えて環状スルホン化合物〔例示化合物6〕及びフルオロエチレンカーボネートを、最終的に調製される非水電解液全質量に対する含有量がそれぞれ1.0質量%となるように添加したこと以外は実施例1と同様にして非水電解液を得た。得られた非水電解液を用いたこと以外は実施例1と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例1と同様にして初期特性評価を実施した。
〔実施例69〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕に代えて〔例示化合物65〕を添加した以外は実施例68と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例68と同様にして初期特性評価を実施した。
〔比較例9〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕を添加しないこと以外は実施例68と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例68と同様にして初期特性評価を実施した。
〔比較例10〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が1.0質量%となるように添加した以外は、実施例68と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例68と同様にして初期特性評価を実施した。
 実施例68及び69並びに比較例9及び10の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000022
 前記表5の結果より、実施例68及び69並びに比較例9及び10のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例9と比較し、実施例68及び69では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例10では初期抵抗の増大が確認された。
〔実施例70〕
 実施例68において、Mn正極を前述のCo正極に変更したこと以外は実施例68と同様にして電池を作製し、評価を行った。
 即ち、実施例68と同様にして非水電解液を得、得られた非水電解液を用いたこと以外は実施例16と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例16と同様にして初期特性評価を実施した。
〔実施例71〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕に代えて〔例示化合物65〕を添加した以外は実施例70と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例70と同様にして初期特性評価を実施した。
〔比較例11〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕を添加しないこと以外は実施例70と同様にしてコイン型のリチウム二次電池を得た。
 得られたコイン型電池について、実施例70と同様にして初期特性評価を実施した。
〔比較例12〕
 非水電解液の調製に用いた環状スルホン化合物〔例示化合物6〕に代えて、不飽和スルトン化合物として、1,3-プロパ-1-エンスルトン(比較化合物PRS)を、最終的に調製される非水電解液全量に対する含有量が1.0質量%となるように添加した以外は、実施例70と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例70と同様にして初期特性評価を実施した。
 実施例70及び71並びに比較例11及び12の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000023
 前記表6の結果より、実施例70及び71並びに比較例11及び12のリチウム二次電池は、いずれも、初期効率、初期放電容量には問題がないことがわかる。また、環状スルホン化合物を含有しない比較例11と比較し、実施例70及び71では、初期抵抗が低く抑えられ、出力特性が改善されていることが確認された。また、比較不飽和スルトン化合物であるPRSを添加した比較例12では初期抵抗の増大が確認された。
 日本出願2010-101206の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  1,3-ジチエタン-1,1,3,3-テトラオキシド骨格を有する化合物を含有する非水電解液。
  2.  前記1,3-ジチエタン-1、1,3,3-テトラオキシド骨格を有する化合物が、下記一般式(I)で表される環状スルホン化合物である請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔一般式(I)において、R、R、R及びRは、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    置換もしくは無置換の炭素数1~10のアルキル基、
    置換もしくは無置換の炭素数2~10のアルケニル基、
    置換もしくは無置換の炭素数2~10のアルキニル基、
    -SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)、
    -CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
    -COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す)、
    -P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
    -SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)、
    -SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、または、
    -B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)を表す。
     R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
     R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。〕
  3.  前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
     前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成しており、
     前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、置換もしくは無置換の炭素数1~6のアルキル基、置換もしくは無置換の炭素数2~6のアルケニル基、もしくは-SiR基(R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、またはフェニル基である)であるか、または、
     前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~6のシクロアルカン基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子または炭素数2~12のジアルキルアミノ基を表す。)を形成している
    請求項2に記載の非水電解液。
  4.  前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
     前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成しており、
     前記R及び前記Rが、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アリル基、トリメチルシリル基、ジメチルt-ブチルシリル基、トリエチルシリル基、もしくはトリイソプロピルシリル基であるか、または、
     前記R及び前記Rが互いに結合し該R及び該Rが結合している炭素原子とともにシクロペンチル基を形成しているか、もしくは、前記R及び前記Rが一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRの一方が水素原子であり、R及びRの他方がジメチルアミノ基である。)を形成している
    請求項2に記載の非水電解液。
  5.  さらに、下記一般式(III)で表される化合物を含有する請求項1~請求項4のいずれか1項に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002

    〔一般式(III)中、Y及びYは、各々独立に、水素原子、メチル基、エチル基、またはプロピル基を示す。〕
  6.  さらに、下記一般式(IV)で表される化合物を含有する請求項1~請求項5のいずれか1項に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003

    〔一般式(IV)中、X、X、X及びXは、各々独立に、水素原子、フッ素原子、塩素原子、またはフッ素原子により置換されてもよい炭素数1~3のアルキル基を示す。ただし、X、X、X及びXが同時に水素原子であることはない。〕
  7.  前記1,3-ジチエタン-1、1,3,3-テトラオキシド骨格を有する化合物の含有量が、0.001質量%~10質量%である請求項1~請求項6のいずれか1項に記載の非水電解液。
  8.  前記一般式(III)で表される化合物の含有量が、0.001質量%~10質量%である請求項5~請求項7のいずれか1項に記載の非水電解液。
  9.  前記一般式(IV)で表される化合物の含有量が、0.001質量%~10質量%である請求項6~請求項8のいずれか1項に記載の非水電解液。
  10.  下記一般式(I)で表される環状スルホン化合物を有効成分として含むリチウム二次電池用添加剤。
    Figure JPOXMLDOC01-appb-C000004

    〔一般式(I)において、R、R、R及びRは、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    置換もしくは無置換の炭素数1~10のアルキル基、
    置換もしくは無置換の炭素数2~10のアルケニル基、
    置換もしくは無置換の炭素数2~10のアルキニル基、
    -SiR基(R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、またはフェニル基を表す)、
    -CO10基(R10は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
    -COR11基(R11は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す)、
    -P(O)(OR12基(R12は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、
    -SO13基(R13は、置換もしくは無置換の炭素数1~10のアルキル基、またはフェニル基を表す。)、
    -SO(OR14)基(R14は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す。)、または、
    -B(OR15基(R15は、水素原子、置換もしくは無置換の炭素数1~10のアルキル基、フェニル基、または前記-SiR基を表す)を表す。
     R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。
     R及びRは、互いに結合し該R及び該Rが結合している炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよく、また、一体となって前記一般式(II)で表されるメチレン基(一般式(II)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、フェニル基、または炭素数2~12のジアルキルアミノ基を表す。R及びRは、互いに結合し炭素原子とともに炭素数3~7のシクロアルカン基を形成してもよい。)を形成してもよい。〕
  11.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒化物、リチウムイオンのドープ・脱ドープが可能な炭素材料、およびこれらの混合物から選ばれた少なくとも1種を負極活物質として含む負極と、
     請求項1~請求項9のいずれか1項に記載の非水電解液と、
    を含むリチウム二次電池。
  12.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒化物、リチウムイオンのドープ・脱ドープが可能な炭素材料、およびこれらの混合物から選ばれた少なくとも1種を負極活物質として含む負極と、
     請求項1~請求項9のいずれか1項に記載の非水電解液と、
    を含むリチウム二次電池を充放電させて得られたリチウム二次電池。
PCT/JP2011/060093 2010-04-26 2011-04-25 環状スルホン化合物を含有する非水電解液、及びリチウム二次電池 WO2011136189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/643,302 US9303011B2 (en) 2010-04-26 2011-04-25 Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
CN201180020472.8A CN102870268B (zh) 2010-04-26 2011-04-25 含有环状砜化合物的非水电解液及锂二次电池
KR1020127029926A KR101422383B1 (ko) 2010-04-26 2011-04-25 환상 설폰 화합물을 함유하는 비수전해액, 및 리튬 2차 전지
EP11774970.5A EP2565973B1 (en) 2010-04-26 2011-04-25 Non-aqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery comprising the same
JP2012512837A JP5399556B2 (ja) 2010-04-26 2011-04-25 環状スルホン化合物を含有する非水電解液、及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101206 2010-04-26
JP2010-101206 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136189A1 true WO2011136189A1 (ja) 2011-11-03

Family

ID=44861488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060093 WO2011136189A1 (ja) 2010-04-26 2011-04-25 環状スルホン化合物を含有する非水電解液、及びリチウム二次電池

Country Status (6)

Country Link
US (1) US9303011B2 (ja)
EP (1) EP2565973B1 (ja)
JP (1) JP5399556B2 (ja)
KR (1) KR101422383B1 (ja)
CN (1) CN102870268B (ja)
WO (1) WO2011136189A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054511A1 (ja) * 2011-10-11 2013-04-18 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
WO2013084393A1 (ja) * 2011-12-07 2013-06-13 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
CN103367801A (zh) * 2012-04-09 2013-10-23 张家港市国泰华荣化工新材料有限公司 能提高锂离子电池高温性能的电解液
JP2015149234A (ja) * 2014-02-07 2015-08-20 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
WO2022138452A1 (ja) * 2020-12-21 2022-06-30 株式会社Gsユアサ 非水電解質蓄電素子、電子機器及び自動車
WO2022210803A1 (ja) * 2021-03-30 2022-10-06 セントラル硝子株式会社 非水電解液、非水電解液電池、及び非水電解液電池の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10833366B2 (en) * 2012-05-01 2020-11-10 Altairnano, Inc. Lithium titanate cell
CN104051787B (zh) * 2014-07-02 2016-04-27 东莞市凯欣电池材料有限公司 一种非水电解液及其制备方法以及一种高电压锂离子电池
CN104051788B (zh) * 2014-07-02 2016-06-15 东莞市凯欣电池材料有限公司 非水电解液及其制备方法以及一种锂离子电池
US9928970B2 (en) * 2015-04-23 2018-03-27 Jtekt Corporation Lithium ion capacitor
EP3595072B1 (en) * 2017-03-08 2023-10-04 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
CN111205267A (zh) * 2020-03-05 2020-05-29 中节能万润股份有限公司 一种新型含砜类锂离子电池电解液添加剂、其制备及其应用
CN111313118B (zh) * 2020-04-13 2021-07-06 东方醒狮储能电池有限公司 一种锂离子电池的化成方法
KR20220129390A (ko) * 2021-03-16 2022-09-23 삼성에스디아이 주식회사 신규 화합물, 이를 포함하는 첨가제, 전해질 및 리튬 이차전지
KR102395110B1 (ko) * 2021-09-24 2022-05-09 제이엘켐 주식회사 이차전지 전해질용 첨가제로 사용되는 펜타에리쓰리톨 디설페이트의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (ja) 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2000133304A (ja) 1998-10-26 2000-05-12 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2002170564A (ja) * 2000-11-30 2002-06-14 Mitsubishi Chemicals Corp 非水系電解液二次電池用正極材料、正極及び二次電池
JP2005135701A (ja) * 2003-10-29 2005-05-26 Nec Corp 二次電池用電解液およびそれを用いた二次電池
WO2005057713A1 (ja) 2003-12-15 2005-06-23 Nec Corporation 二次電池
JP2005222846A (ja) * 2004-02-06 2005-08-18 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2008269980A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2009054287A (ja) 2007-08-23 2009-03-12 Sony Corp 電解液および電池
JP2010101206A (ja) 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd 火花点火式内燃機関

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894822B (zh) * 2003-12-15 2010-06-02 日本电气株式会社 二次电池
JP5084164B2 (ja) 2006-03-29 2012-11-28 株式会社デンソー 非水電解液および該電解液を用いた二次電池
KR20100014725A (ko) 2007-04-05 2010-02-10 미쓰비시 가가꾸 가부시키가이샤 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
JP2008258013A (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
US8197964B2 (en) 2007-07-09 2012-06-12 Sony Corporation Battery
CA2719405A1 (en) * 2008-04-28 2009-11-05 Asahi Glass Company, Limited Nonaqueous electrolyte for secondary cell, and secondary cell
CN102037599B (zh) * 2008-05-19 2014-10-29 松下电器产业株式会社 蓄电装置用非水溶剂和蓄电装置用非水电解液以及采用了它们的非水系蓄电装置、锂二次电池和双电层电容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003724A (ja) 1997-08-22 2000-01-07 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2000133304A (ja) 1998-10-26 2000-05-12 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池
JP2002170564A (ja) * 2000-11-30 2002-06-14 Mitsubishi Chemicals Corp 非水系電解液二次電池用正極材料、正極及び二次電池
JP2005135701A (ja) * 2003-10-29 2005-05-26 Nec Corp 二次電池用電解液およびそれを用いた二次電池
WO2005057713A1 (ja) 2003-12-15 2005-06-23 Nec Corporation 二次電池
JP2005222846A (ja) * 2004-02-06 2005-08-18 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2008269980A (ja) * 2007-04-20 2008-11-06 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2009054287A (ja) 2007-08-23 2009-03-12 Sony Corp 電解液および電池
JP2010101206A (ja) 2008-10-21 2010-05-06 Daihatsu Motor Co Ltd 火花点火式内燃機関

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE, vol. 92, 1980, pages 223 - 224
CHEMISHCHE BERICHTE, vol. 114, 1981, pages 3378 - 3384
CHEMISHCHE BERICHTE, vol. 124, 1991, pages 1805 - 1807
CHEMISHCHE BERICHTE, vol. 126, 1993, pages 537 - 542
CHEMISHCHE BERICHTE, vol. 129, 1996, pages 161 - 168
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 108, 1996, pages 2358 - 2366
PHOSPHOROUS, SLUFUR AND SILICON AND RELATED ELEMENTS, vol. 94, 1994, pages 477 - 478
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 29, 1993, pages 479 - 48 1
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 31, 1995, pages 543 - 544
See also references of EP2565973A4 *
YU WANG ET AL.: "Experimental Charge Density Study of 1,3-Dithietane 1,1,3,3-Tetraoxide, (CH2S02)", INORGANIC CHEMISTRY, vol. 27, 1988, pages 520 - 523, XP008162719 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054511A1 (ja) * 2011-10-11 2013-04-18 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
US9306238B2 (en) 2011-10-11 2016-04-05 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JPWO2013054511A1 (ja) * 2011-10-11 2015-03-30 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
EP2768065A4 (en) * 2011-10-11 2015-03-18 Gs Yuasa Int Ltd NON-aqueous electrolysis SECONDARY BATTERY AND METHOD FOR PRODUCING A SECONDARY BATTERY WITH NON-ACID ELECTROLYTE
KR20140106495A (ko) * 2011-12-07 2014-09-03 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지 및 비수 전해질 2차 전지의 제조 방법
EP2790261A1 (en) * 2011-12-07 2014-10-15 GS Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
EP2790261A4 (en) * 2011-12-07 2014-11-12 Gs Yuasa Int Ltd NON-WATER ELECTROLYTE BATTERY AND METHOD FOR PRODUCING THE NONATURATED ELECTROLYTE BATTERY
CN103843187A (zh) * 2011-12-07 2014-06-04 株式会社杰士汤浅国际 非水电解质二次电池和非水电解质二次电池的制造方法
JPWO2013084393A1 (ja) * 2011-12-07 2015-04-27 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
WO2013084393A1 (ja) * 2011-12-07 2013-06-13 株式会社Gsユアサ 非水電解質二次電池および非水電解質二次電池の製造方法
US9917327B2 (en) 2011-12-07 2018-03-13 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
KR102006010B1 (ko) * 2011-12-07 2019-07-31 가부시키가이샤 지에스 유아사 비수 전해질 2차 전지 및 비수 전해질 2차 전지의 제조 방법
US10749213B2 (en) 2011-12-07 2020-08-18 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN103367801A (zh) * 2012-04-09 2013-10-23 张家港市国泰华荣化工新材料有限公司 能提高锂离子电池高温性能的电解液
JP2015149234A (ja) * 2014-02-07 2015-08-20 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
WO2022138452A1 (ja) * 2020-12-21 2022-06-30 株式会社Gsユアサ 非水電解質蓄電素子、電子機器及び自動車
WO2022210803A1 (ja) * 2021-03-30 2022-10-06 セントラル硝子株式会社 非水電解液、非水電解液電池、及び非水電解液電池の製造方法

Also Published As

Publication number Publication date
EP2565973A1 (en) 2013-03-06
KR20130006694A (ko) 2013-01-17
JPWO2011136189A1 (ja) 2013-07-18
CN102870268B (zh) 2015-07-29
KR101422383B1 (ko) 2014-07-22
US20130040209A1 (en) 2013-02-14
EP2565973B1 (en) 2017-01-04
CN102870268A (zh) 2013-01-09
EP2565973A4 (en) 2015-08-05
US9303011B2 (en) 2016-04-05
JP5399556B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5399556B2 (ja) 環状スルホン化合物を含有する非水電解液、及びリチウム二次電池
JP5524347B2 (ja) 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
JP5399559B2 (ja) シリルエステル基含有ホスホン酸誘導体を含有する非水電解液及びリチウム二次電池
JP5695209B2 (ja) ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池
JP6487147B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP5956680B2 (ja) 電池用非水電解液、新規化合物、高分子電解質、及びリチウム二次電池
JP2014170689A (ja) 非水電解液及びリチウム二次電池
JP5542827B2 (ja) 不飽和スルトン化合物を含有するリチウム二次電池用非水電解液、リチウム二次電池用添加剤、及びリチウム二次電池
JP5552088B2 (ja) ベンゾジオキサジチエピン誘導体を含有する非水電解液及びリチウム二次電池
JP5674600B2 (ja) 環状スルホン化合物を含有するリチウム二次電池用非水電解液、及びそのリチウム二次電池
JP5552077B2 (ja) リン誘導体を含有する非水電解液及びリチウム二次電池
JP5785064B2 (ja) ホスホノ酢酸化合物を含有する非水電解液、及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020472.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512837

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13643302

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127029926

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011774970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011774970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10141/DELNP/2012

Country of ref document: IN