WO2011132729A1 - 煙灰からの結晶性ヒ酸鉄原料液の製造方法 - Google Patents

煙灰からの結晶性ヒ酸鉄原料液の製造方法 Download PDF

Info

Publication number
WO2011132729A1
WO2011132729A1 PCT/JP2011/059789 JP2011059789W WO2011132729A1 WO 2011132729 A1 WO2011132729 A1 WO 2011132729A1 JP 2011059789 W JP2011059789 W JP 2011059789W WO 2011132729 A1 WO2011132729 A1 WO 2011132729A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
arsenic
slurry
copper
smoke ash
Prior art date
Application number
PCT/JP2011/059789
Other languages
English (en)
French (fr)
Inventor
三雄 鐙屋
祐輔 佐藤
寛信 見上
Original Assignee
Dowaメタルマイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaメタルマイン株式会社 filed Critical Dowaメタルマイン株式会社
Publication of WO2011132729A1 publication Critical patent/WO2011132729A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the technology for separating and recovering arsenic from substances containing arsenic and other metal elements, and in particular, arsenic contained in smoke ash generated in non-ferrous smelting is used as a raw material solution for producing crystalline iron arsenate.
  • the present invention relates to a technique for separating and recovering as a liquid arsenic-containing solution suitable for the above.
  • Arsenic is a substance with a large environmental load, and its stable treatment method is important from the viewpoint of environmental conservation.
  • non-ferrous smelting, especially copper smelting the arsenic content in the ore tends to increase in recent years, and the treatment of arsenic has become an important technical element.
  • Patent Document 1 has been proposed regarding the arsenic treatment.
  • Patent Document 1 uses an acidic solution to leach arsenic and copper from non-ferrous smelting ash to obtain a leachate, and then extract the copper (Cu) by applying a solvent to the leachate to obtain the obtained post-extraction solution. (Raffinate) is provided to the original solution for producing crystalline iron arsenate. Then, it is proposed that the subsequent crystallization of iron arsenate is performed at a pH value of 1 to 2 while coexisting a seed crystal.
  • Patent Document 2 a smoke ash treatment method for separating copper and arsenic from non-ferrous smelted ash containing copper and arsenic.
  • the smoke ash treatment method is to prepare a slurry by mixing non-ferrous smelted smoke ash and water, and by adding an alkaline agent to the slurry, the leaching reaction is controlled within a predetermined pH value range, and a leachate containing copper This is a method for obtaining a leaching residue containing arsenic.
  • Patent Documents 1 and 2 The present inventors have studied Patent Documents 1 and 2 described above, and have found the following problems.
  • the method of Patent Document 1 it is difficult to efficiently separate arsenic and copper contained in the smoke ash, and further, Na (sodium) and K (potassium) contained in the smoke ash are transferred to the leachate. There was a problem that it could not be suppressed.
  • there was no preparatory treatment for arsenic or copper in the smoke ash before the leaching operation and treatment could not be performed according to the components of the smoke ash. As a result, most of Na and K contained in the smoke ash are brought into the post-extraction liquid (raffinate) that is the original liquid for producing scorodite.
  • smoke ash is an emission of non-ferrous smelting process, and the variation range of components and properties is wide and the variation is large. Therefore, the components and properties are unlikely to be constant depending on the location and time of generation of smoke ash.
  • Some smoke ash is difficult to separate from copper and arsenic by wet leaching. However, a technique for treating this hardly separable smoke ash has not been found.
  • the present invention has been made under the above-described circumstances, and the problem to be solved is an arsenic solution that can efficiently separate copper and arsenic from smoke ash and contains almost no Na and K.
  • the object is to provide a method for producing a crystalline iron arsenate raw material solution that can be provided.
  • another object of the present invention is to provide a method for producing a crystalline iron arsenate raw material liquid that can be separated by wet treatment even for smoke ash, which is difficult to separate copper and arsenic.
  • the present inventors have conducted intensive research. First, we investigated the properties and behavior of various smoke ash. Then, it turned out that there exists a smoke ash which cannot separate copper and arsenic in the leaching of smoke ash according to the prior art, and furthermore, cannot be separated at all. Therefore, the present inventors can separate copper and arsenic even with smoke ash with poor copper / arsenic separation in the prior art or with smoke ash that is difficult to separate, and furthermore, Na and K are reliably separated. The research of the method that can be done was advanced.
  • the present inventors have improved the copper / arsenic separability by adding an iron source to the ash pulp and neutralizing and leaching, and furthermore, the ash ash is difficult to separate copper and arsenic.
  • they came up with preliminary leaching to separate copper and arsenic.
  • copper, Na and K are transferred to the leaching solution, and arsenic is put into the residue.
  • the present invention has been completed by conceiving the epoch-making knowledge that this is possible.
  • the first invention for solving the above-described problem is A smoke ash containing copper and arsenic is used as a slurry, and the pH value of the slurry is set to a range of 3 to 4, and copper is leached into the slurry liquid, and leaching is performed using arsenic as a residue.
  • a method for producing a crystalline iron arsenate raw material liquid from smoke ash comprising a step of pre-leaching while maintaining the pH value of the slurry at 2 or less.
  • the second invention is The preliminary leaching means that, when the slurry contains Na and / or K, the Na and / or K is dissolved in the slurry liquid. From the smoke ash according to the first invention, It is a manufacturing method of the crystalline iron arsenate raw material liquid.
  • the third invention is The method for producing a crystalline iron arsenate raw material liquid from smoke ash according to the first or second invention, wherein the preliminary leaching is performed with a pH value of the slurry of 0.5 to 2. .
  • the fourth invention is: The method for producing a crystalline iron arsenate raw material liquid from smoke ash according to any one of the first to third inventions, wherein the residue is dissolved with an acid to form an arsenic solution.
  • the fifth invention is: The crystal from smoke ash according to any one of the first to fourth inventions, wherein in the preliminary leaching step, at least one of an iron source and a hydrogen peroxide solution is further added to the slurry. Is a method for producing a ferrous iron arsenate raw material liquid.
  • the sixth invention is: In the leaching step, any one or more of an iron source and a hydrogen peroxide solution is further added to the liquid from which the copper has been leached, according to any one of the first to fifth inventions. It is a manufacturing method of the crystalline iron arsenate raw material liquid from smoke ash.
  • the seventh invention The method for producing a crystalline iron arsenate raw material liquid from smoke ash according to the fifth or sixth invention, wherein the iron source is trivalent iron.
  • the eighth invention In a leaching method in which smoke ash generated in non-ferrous smelting containing copper and arsenic is used as a slurry, copper is leached into a slurry liquid, and arsenic is used as a residue, the ash or the slurry contains an iron source and / or hydrogen peroxide. It is a manufacturing method of the crystalline iron arsenate raw material liquid from smoke ash which has adding water.
  • FIG. 1 is a process flow diagram showing a method for producing crystalline iron arsenate raw material liquid from smoke ash according to the present invention, the smoke ash, preliminary leaching, leaching, and re-leaching for the mode for carrying out the present invention , The soaking operation, and the processing of difficult-to-separate smoke ash will be described in this order.
  • Smoke ash is generated from each process of non-ferrous smelting.
  • the smoke ash may contain light elements such as Na and K.
  • the present invention can be effectively applied even to smoke ash containing copper, arsenic, Na, and K generated from a smelting process or the like in copper smelting.
  • Preliminary leaching according to the present invention is an operation in which a liquid of water, process water, acid, etc. is added to the smoke ash described above to make a smoke ash slurry before leaching described later, and the pH value of the slurry is 2 or less. is there.
  • an acid such as sulfuric acid is added so that the pH value becomes 2 or less.
  • the pH value is preferably in the range of 0.5-2. This is because by taking the pH value, light elements such as Na and K are leached into the slurry liquid.
  • the equipment may be a normal reaction vessel.
  • the concentration of the slurry may be determined in consideration of the dissolution amount of copper and light elements.
  • the stirring time may be about 10 minutes after the pH value of the slurry reaches a predetermined value, depending on the stirring strength.
  • the slurry obtained by the preliminary leaching is used as it is as a raw material for leaching in the copper arsenic separation process which is the next process.
  • the slurry concentration may be adjusted for convenience in the copper arsenic separation step.
  • the leaching is performed by adding a pH adjusting agent such as alkali to the slurry after preliminary leaching and adjusting the pH value to 3-4. During leaching, heating, stirring, etc. may be performed simultaneously. Since the slurry after the leaching becomes a residue remaining undissolved with the liquid, solid-liquid separation is performed by filtration or the like. At this time, since Na and K are dissolved in the liquid, they can be separated from the arsenic in the residue. Since the leaching residue obtained by the solid-liquid separation contains arsenic, re-leaching described later is performed. On the other hand, since the liquid contains a small amount of arsenic in addition to copper, Na, and K, a liquid purification operation described later may be performed.
  • a pH adjusting agent such as alkali
  • an alkaline agent of an alkaline earth metal can be suitably used.
  • Ca (OH) 2 , CaCO 3, Mg (OH) 2 and the like are preferable because they are available for general use.
  • the re-leaching is an operation of dissolving a residue obtained after the leaching with an acid such as sulfuric acid and re-leaching and then separating the solid and liquid to obtain a re-leaching filtrate containing arsenic.
  • the re-leaching filtrate was optimal as a raw material liquid for synthesizing iron arsenate crystals because arsenic was dissolved at a high concentration and the concentrations of Na and K were slight.
  • the smoke ash is directly acidified by performing multi-stage leaching operations such as preliminary leaching, leaching and re-leaching according to the present invention.
  • multi-stage leaching operations such as preliminary leaching, leaching and re-leaching according to the present invention.
  • the fact that Na and K in the re-leaching solution can be dramatically reduced to 0.1 g / L or less was confirmed.
  • the synthesis of iron arsenate crystals from the re-leached filtrate obtained by re-leaching can be performed using a conventional iron addition method.
  • the pH value of the liquid is adjusted to about 1 to 2, iron salt is added, the temperature is kept constant at 50 to 100 ° C., and the mixture is stirred for 7 to 10 hours.
  • iron salt is added, the temperature is kept constant at 50 to 100 ° C., and the mixture is stirred for 7 to 10 hours.
  • sufficiently good iron arsenate crystals corodite, FeAsO 4 .2H 2 O
  • arsenic as a crystalline scorodite, stabilized arsenic can be stored.
  • iron arsenate crystals are formed in the liquid after the iron arsenate crystal formation reaction, the iron arsenate crystals can be recovered by filtration or the like.
  • the dripping operation is to remove arsenic contained in a small amount in the filtrate obtained by the above-described leaching.
  • at least one of an iron source and hydrogen peroxide solution is added to the filtrate.
  • alkali is added and the pH is adjusted to 3 or more, preferably 3.5 or more to obtain a liquid and a residue.
  • the liquid is a concentrated copper solution that contains almost no arsenic. Therefore, it can be used as a copper raw material that does not give arsenic load to the subsequent process.
  • copper is taken into the iron porcelain, and it can be expected that the porcelain will further adsorb arsenic and move to the leach residue. I can do it.
  • the inventors when targeting the smoke ash having poor separability, the inventors have come up with a configuration in which an oxidizing agent is added in the preliminary leaching or leaching described with reference to FIG.
  • the oxidizing agent include trivalent iron, hydrogen peroxide, ozone, oxygen gas, and peroxide.
  • trivalent iron is preferable because it enters the leaching residue in the leaching step and is leached in the subsequent leaching step, and can be used as an iron source for generating iron arsenate crystals.
  • an oxidizing agent such as trivalent iron may be added to the hardly-separable smoke ash or smoke ash slurry.
  • the addition of the oxidant is performed based on the separable state at the time of either preliminary leaching or leaching. A plurality of divided additions may be performed at the same location. However, from the viewpoint of stabilizing the process, it is preferable to add an oxidizing agent during preliminary leaching.
  • the trivalent iron compound examples include ferric sulfate (Fe 2 (SO 4 ) 3 ), iron hydroxide, and goethite. One or more of these are added as they are or in the form of a solution. However, when hydrogen peroxide or the like is used in addition to the iron source, the iron source may be a divalent iron compound. In the case of adding trivalent iron, the total amount of arsenic contained in the smoke ash is equal to or more than 1 mol, preferably 1.5 mol. The iron source to be added may be solid as long as it has solubility in the liquid.
  • the method for treating difficult-to-separate smoke ash and adding the iron source in the preliminary leaching or leaching can be applied to the smoke ash generated in the copper smelting process.
  • the separation between copper and arsenic is inferior, and smoke ash with an iron / arsenic mass ratio of 1 or less, further effects can be expected.
  • an arsenic solution containing iron can be obtained by redissolving the obtained residue with an acid such as sulfuric acid. Further, since the re-leaching solution contains almost no Na or K, it can be supplied as a raw material for crystalline iron arsenate having an optimum liquid quality.
  • Example 1 500 dry ⁇ g of non-ferrous smelting furnace ash A samples having the component grades shown in Table 1 were prepared. The components were analyzed by ICP (component analysis was also performed by ICP in the following Examples and Comparative Examples). 1000 mL of pure water was used as a solvent for preparing the slurry, and a 2 liter beaker was used as the container. As the stirring device, a two-stage turbine stirring blade equipped with four baffle plates was used. As an alkaline agent, Ca (OH) 2 milk (aqueous solution) having a concentration of 200 g / L was prepared. The reaction was performed between 30-35 ° C.
  • leaching was performed. Specifically, after stirring by preliminary leaching, an alkaline agent was added to the slurry to neutralize to a set pH value of 3.5. After reaching the set pH value, leaching was continued for another 25 minutes while maintaining the set pH value, and then stirring was terminated and filtration was performed.
  • the amount of Ca (OH) 2 solution used as the alkaline agent was 120 mL.
  • the leaching residue was washed with water in a filter using 1000 mL of pure water.
  • the composition of the obtained filtrate is shown in Table 2. According to the filtrate composition shown in Table 2 and the balance of the amount of leachate, it was found that about 80% of the copper in the smoke ash was transferred to the filtrate and about 98% of arsenic was put in the residue.
  • pure water was added to the total amount of the residue to make a slurry again, and then sulfuric acid was added to perform re-leaching.
  • the amount of pure water used to produce the residue slurry was 370 mL, and a 1-liter beaker was used as the container.
  • the stirrer used 1 stage turbine blades with 4 baffle plates.
  • Sulfuric acid is the reagent 95% sulfuric acid.
  • 370 mL of pure water and the total amount of the residue were put into a 1 liter beaker and stirred for 15 minutes to form a slurry.
  • 95% sulfuric acid is added to adjust the pH value to 0.3, and leaching is continued for 25 minutes at 30 to 35 ° C. while maintaining the pH value.
  • Table 3 shows the composition of the obtained re-leaching solution. From the results shown in Table 3, a concentrated arsenic solution containing a sufficient amount of iron to form crystalline iron arsenate was obtained as the re-leaching solution. Furthermore, Na and K that form jarosite are hardly contained, the copper content is small, and the liquid quality is sufficient as a raw material liquid for producing iron arsenate crystals (scorodite). confirmed.
  • Example 1 A re-leaching solution and a residue were obtained by performing the same operation as in Example 1 except that the smoke ash slurry described in Example 1 was used and preliminary leaching was carried out with a pH value of 2 or less.
  • Table 4 shows the composition of the leachate obtained in the middle, and Table 5 shows the composition of the leaching solution.
  • the re-leaching solution according to Comparative Example 1 shown in Table 5 and the re-leaching solution according to Example 1 subjected to the preliminary leaching are compared from the viewpoint as a raw material solution for producing crystalline iron arsenate. Then, in the re-leaching solution according to Example 1, Na and K are almost completely removed, which is a preferable liquid quality as a raw material for producing iron arsenate crystals. , K was contained at about 1 g / L, which was not preferable as a raw material liquid. This is because jarosite may be formed.
  • the leachate according to Example 1 is more in the form of copper and arsenic than the leachate according to Comparative Example 1. It was found that the separability was good. This is also evident from the difference in the copper concentration of the re-leaching solution.
  • the raw material liquid for producing crystalline iron arsenate is used, the lower the copper concentration, the better.
  • the effect of the preliminary leaching is large also from this viewpoint.
  • Example 2 The same smoke ash as in Example 1 was leached by the method according to the prior art. First, 500 dry ⁇ g of the smoke ash A described in Example 1 was prepared. 700 mL of pure water was used as a solvent for preparing the slurry, and a 2 liter beaker was used as the container. The stirrer used was a two-stage turbine blade equipped with four baffle plates. The sulfuric acid used was 95% sulfuric acid as a reagent.
  • the acid leaching solution according to Comparative Example 2 shown in Table 6 is a solution in which arsenic is not concentrated compared to the re-leaching solution according to Example 1, Na, K as jarosite forming elements are several g / It was contained in the L order, and further copper was as high as 60 g / L. Therefore, it was found that the raw material liquid for producing iron arsenate has an inappropriate liquid quality. That is, when acid was leached directly by adding acid to the smoke ash A, it was confirmed that Na, K, and copper would inevitably have high concentrations when trying to obtain a solution with a high arsenic concentration.
  • Example 2 A nonferrous smelting furnace smoke ash B sample having component grades shown in Table 7 was prepared at 360 dry ⁇ g.
  • the smoke ash B is copper / arsenic hardly separable smoke ash.
  • the reagent ferric sulfate was dissolved to prepare a trivalent iron solution having a trivalent iron concentration of 99 g / L.
  • a solvent for preparing the slurry 980 mL of pure water was used, and a 2 liter beaker was used as the container.
  • the stirrer used 4 baffle plate 2 stage turbine blades.
  • Ca (OH) 2 milk (aqueous solution) having a concentration of 200 g / L was prepared as an alkaline agent. The reaction was performed between 30-35 ° C.
  • 980 mL of pure water and 360 ash ⁇ g of smoke ash B sample were added and stirred for 10 minutes.
  • the pH value of the slurry at this time was 2.5.
  • the amount of iron contained in 220 mL of the trivalent iron solution corresponds to a molar amount of 1.5 times the amount of arsenic contained in the smoke ash B sample 360 dry ⁇ g.
  • an alkali agent was added to the slurry, and neutralized to a set pH value of 3.5. After reaching the set pH value, leaching was further carried out for 20 minutes while maintaining the set pH value, and then the stirring of the slurry was finished and subjected to filtration. In the leaching, the amount of Ca (OH) 2 solution used was 340 mL.
  • the smoke ash B cannot be separated and leached of copper and arsenic when only the smoke ash slurry is treated, but the smoke ash slurry is trivalent. By mixing iron and leaching, copper and arsenic can be separated and leached.
  • Example 3 Leaching was performed by the same operation as in Example 2 except that preliminary leaching with addition of trivalent iron was not performed. Specifically, 980 mL of pure water and smoke ash sample B360dry ⁇ g were added to a 2-liter beaker and stirred for 10 minutes to form a slurry. The pH value of the slurry at this time was 2.5. Next, the Ca (OH) 2 milk was added to the smoke ash slurry to raise the pH value. Then, the viscosity of the slurry gradually increased, and when the pH value was 2.8, stirring was no longer possible and the leaching test was stopped.
  • Example 3 This example was performed to confirm the effect of adding trivalent iron or hydrogen peroxide, or adding both trivalent iron and hydrogen peroxide when nothing was added to the slurry during leaching. It is. 500 dry ⁇ g of non-ferrous smelting furnace smoke ash C was prepared. Table 10 shows the component quality of the smoke ash C.
  • Example 4 In Example 4, trivalent iron, hydrogen peroxide, or the filtrate obtained in “(a) When both trivalent iron and hydrogen peroxide added are not added” in Example 3 described above, or This was done to confirm the effect when both trivalent iron and hydrogen peroxide were added.
  • the reaction was continued for another 15 minutes while maintaining the set pH value, and then stirring of the reaction source solution was terminated and subjected to filtration to obtain a filtrate.
  • Table 12 shows the arsenic concentration and copper concentration of the filtrate obtained.
  • the ratio of the addition of 1.9 mL of 3% hydrogen peroxide solution to 150 mL of the filtrate is the same as the addition ratio of 12.9 mL of 3% hydrogen peroxide solution to the 1000 mL of pure water used explained in Example 3 above. It is set according to this.
  • the ratio of the addition of 3.2 mL of the ferric sulfate solution with an iron concentration of 99 g / L to 150 mL of the filtrate is the same as that of the second sulfuric acid with an iron concentration of 99 g / L with respect to the 1000 mL of pure water used explained in Example 3 above. It is set according to the ratio of addition of 21.5 mL of iron solution.
  • reaction product recovered in the tests (e) to (g) contains some copper.
  • the reaction product (trivalent iron) still has the ability to adsorb arsenic. Therefore, it is preferable to collect these reaction products, return them to the preliminary leaching step, and use them again in the leaching step.
  • trivalent iron is effectively utilized in the leaching process, and the amount of newly added trivalent iron can be reduced. As a result, not only cost reduction is achieved, but also the actual operation greatly contributes to stabilization of the leaching process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

非鉄製錬にて発生する煙灰から、銅とヒ素とを効率よく分離出来、且つ、Na及びKが殆ど含まれないヒ素溶液を提供出来る結晶性ヒ酸鉄原料液の製造方法を提供する。銅とヒ素とを含む煙灰をスラリーとして、当該スラリーのpH値を3~4の範囲とし、銅を当該スラリーの液に浸出し、ヒ素を残渣とする浸出工程を有し、当該残渣からヒ素溶液を得る処理方法において、当該浸出工程の前に、当該スラリーのpH値を2以下に保持して予備浸出する工程を有する煙灰からの結晶性ヒ酸鉄原料液の製造方法を提供する。

Description

煙灰からの結晶性ヒ酸鉄原料液の製造方法
 ヒ素と他の金属元素とを含む物から、ヒ素を分離して回収する技術に関し、特には、非鉄製錬にて発生する煙灰に含有される砒素を、結晶性ヒ酸鉄生成用の原料液として適した液質のヒ素含有溶液として分離回収する技術に関する。
 ヒ素は環境負荷の大きな物質であり、その安定的な処理方法は環境保全の観点から重要である。非鉄製錬、特に銅製錬においては、鉱石中のヒ素含有量が近年上昇する傾向にあり、当該ヒ素の処理は重要な技術要素となっている。
 当該ヒ素処理に関して、例えば、特許文献1が提案されている。
 特許文献1は、酸性溶液を用いて、非鉄製錬煙灰からヒ素と銅とを浸出して浸出液とし、次いで、この浸出液に溶媒を作用させ銅(Cu)を抽出し、得られた抽出後液(ラフィネート)を、結晶性ヒ酸鉄生成用の元液に供ずるものである。そして、続くヒ酸鉄の結晶化を、種結晶を共存させながらpH値を1~2として行うことを提案している。
 一方、本出願人は、特許文献2として、銅と砒素とを含む非鉄製錬煙灰から銅と砒素を分別する煙灰処理方法を開示している。当該煙灰処理方法とは、非鉄製錬煙灰と水とを混合してスラリーを作製し、当該スラリーへのアルカリ剤添加により、所定pH値範囲内に制御して浸出反応させ、銅を含む浸出液と砒素を含む浸出残渣とを得る方法である。
特表2008-540824号公報 特開2009-161803号公報
 本発明者らは、上述した特許文献1、2を検討し、以下の課題を見出した。
 特許文献1の方法では、煙灰に含有されるヒ素と銅とを効率よく分離することに困難があり、さらには、煙灰に含有されるNa(ナトリウム)及びK(カリウム)が浸出液へ移行することを抑制出来ないという課題があった。
 また、浸出操作前おいて、煙灰中のヒ素または銅へ予備的な処理をする構成が無く、煙灰の成分に応じて処理をすることが出来なかった。
 その結果、スコロダイト生成用の元液となる抽出後液(ラフィネート)に、煙灰に含有されたNa及びKの大半が持ち込まれる。この為、高温下、且つ、pH値1~2間でスコロダイトを生成する場合には、Na系及びK系のジャロサイトが生成し易く、得られるスコロダイトのヒ素の溶出特性に著しく悪影響を及ぼすことが懸念されるものであった。
 また、煙灰を酸浸出するため、ヒ素のみならず易溶性の銅も全て溶出してしまう。この為、煙灰が銅を多量に含むものの場合、次工程に設けられる銅の溶媒抽出工程の設備が大型化し、設備投資やランニングコストが高価となる問題があった。
 特許文献2の方法においても、ヒ素と、Na及びKとの分離が十分ではなかった。
 さらに、煙灰は非鉄製錬工程の排出物であり、成分、性状の変動範囲が広く、ばらつきも大きい。従って、その成分、性状は、煙灰の発生箇所、時間により、一定のものとはなり難い。煙灰によっては、銅とヒ素との分離が湿式浸出では困難な難分離性のものもある。しかし、この難分離性の煙灰を処理する技術は見出されていなかった。
 本発明は、上述の状況もとでなされたものであり、その解決しようとする課題は、煙灰から、銅とヒ素とを効率よく分離出来、且つ、Na及びKが殆ど含まれないヒ素溶液を提供出来る結晶性ヒ酸鉄原料液の製造方法を提供することにある。
 さらには、銅とヒ素との分離が困難である煙灰であっても、湿式処理で分離を可能とする結晶性ヒ酸鉄原料液の製造方法を提供することにある。
 上述の課題を解決するため、本発明者等は鋭意研究を行った。
 まず、多様な煙灰について、その性状と挙動について調査を行った。すると、従来技術に係る煙灰の浸出において銅とヒ素の分離性の悪いものや、さらには、全く分離の出来ない煙灰も存在することが判明した。
 そこで、本発明者等は、従来の技術において銅/ヒ素分離性の悪い煙灰や、分離自体困難な煙灰であっても、銅とヒ素との分離が出来、さらに、Na、Kの分離が確実に行える方法の研究を進めた。
 当該研究の結果、本発明者等は、煙灰パルプに鉄源を添加し中和浸出することで、銅/ヒ素分離性が向上し、さらには、銅とヒ素との分離が困難な煙灰であっても、銅とヒ素とを分離する予備浸出に想到した。そして、浸出操作の前に当該予備浸出という操作を行うことで、銅とヒ素との分離が困難な煙灰であっても、銅、Na、Kを浸出液に移行させ、ヒ素を残渣に入れ込むことが可能となるという画期的な知見に想到し、本発明を完成した。
 即ち、上述の課題を解決する第1の発明は、
 銅とヒ素とを含む煙灰をスラリーとして、当該スラリーのpH値を3~4の範囲とし、銅を当該スラリーの液に浸出し、ヒ素を残渣とする浸出工程を有し、当該残渣からヒ素溶液を得る処理方法において、
 当該浸出工程の前に、当該スラリーのpH値を2以下に保持して予備浸出する工程を有することを特徴とする、煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第2の発明は、
 前記予備浸出とは、前記スラリーがNa及び/又はKを含有する場合、当該Na及び/又はKを当該スラリー液に溶解するものであることを特徴とする、第1の発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第3の発明は、
 前記予備浸出が、前記スラリーのpH値を0.5~2として行われることを特徴とする、第1または第2の発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第4の発明は、
 前記残渣を酸で溶解し、ヒ素溶液とすることを特徴とする、第1~第3のいずれかの発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第5の発明は、
 前記予備浸出工程において、前記スラリーへ、さらに鉄源または過酸化水素水のいずれか1種以上を添加することを特徴とする、第1~第4のいずれかの発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第6の発明は、
 前記浸出工程において、前記銅が浸出された液へ、さらに鉄源または過酸化水素水のいずれか1種以上を添加することを特徴とする、第1~第5のいずれかの発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第7の発明は、
 前記鉄源が3価鉄であることを特徴とする、第5または第6の発明に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 第8の発明は、
 銅とヒ素とを含む非鉄製錬にて発生する煙灰をスラリーとして、銅をスラリー液に浸出し、ヒ素を残渣とする浸出方法において、当該煙灰または当該スラリーに、鉄源及び/または過酸化水素水を添加することを有する、煙灰からの結晶性ヒ酸鉄原料液の製造方法である。
 本発明に係る煙灰からの結晶性ヒ酸鉄原料液の製造方法によれば、銅とヒ素とを含有する煙灰から、銅とヒ素との固液分離を効率良く行うことが出来、且つ、Na、Kをほとんど含まないヒ素溶液を得ることができる。
本発明に係る煙灰からの結晶性ヒ酸鉄原料液の製造方法を示す工程フロー図である。
 本発明を実施するための形態について、本発明に係る煙灰からの結晶性ヒ酸鉄原料液の製造方法を示す工程フロー図である図1を参照しながら、煙灰、予備浸出、浸出、再浸出、淨液操作、及び、難分離性煙灰の処理、の順に説明する。
〈煙灰〉
 煙灰は、非鉄製錬の各工程からから発生するものである。そして、煙灰にはヒ素、銅等以外にも、Na、K等の軽元素が混入している場合もある。
 本発明は、銅製錬における鎔錬工程等から発生する、銅、ヒ素、NaおよびKを含む煙灰であっても、有効に適用出来る。
〈予備浸出〉
 本発明に係る予備浸出とは、後述する浸出の前に、上述した煙灰へ、水、工程水、酸等の液を加えて煙灰のスラリーとし、当該スラリーのpH値を2以下とする操作である。煙灰のスラリーのpH値が2を超える場合は、硫酸などの酸を添加してpH値が2以下となるようにする。ただし、pH値は0.5~2の範囲とすることが好ましい。当該pH値を採ることで、Na、Kという軽元素がスラリー液へ浸出されるためである。
 スラリーは攪拌し、予備浸出の促進とスラリーの均質化を図ることが望ましい。この操作は、大気圧下で実施出来、温度も常温~50℃程度でよいので、コスト等を勘案して適宜設定すればよい。設備は通常の反応槽でよい。スラリーの濃度は、銅と軽元素の溶解量などを考慮して決定すればよい。
 撹拌時間は、当該スラリーのpH値が所定値に到達した後、攪拌強度にもよるが10分間程度で良い。
 上述の構成の結果、予備浸出後のスラリー液へは、Na、Kといった軽元素が浸出されるが、無機酸による弱酸性の状態であれば、これらの軽元素が難溶性の化合物を生成するおそれがなく、そのまま液への溶解が維持されるので好ましい。
 当該予備浸出で得られたスラリーは、そのままでも次工程である銅ヒ素分離工程における浸出の原料となる。尤も、銅ヒ素分離工程における便宜の為、スラリー濃度を調整してもよい。
〈浸出〉
 浸出は、予備浸出後のスラリーへアルカリ等のpH調整剤を添加して、pH値を3~4に調整して行う。浸出の際は、加温、撹拌等を同時に行ってもよい。当該浸出後のスラリーは、液と溶け残りの残渣となるので、ろ過等により固液分離を行う。このときNa、Kは液に溶解しているので、残渣中のヒ素と分離できる。
 当該固液分離によって得られた浸出残渣はヒ素を含むので、後述する再浸出を行う。一方、液は、銅、Na、Kの他に少量のヒ素を含むので、後述する浄液操作を行ってもよい。
 浸出で用いるpH調整剤であるアルカリには、アルカリ土類金属類のアルカリ剤が好適に使用できる。中でも、Ca(OH)2やCaCO3及びMg(OH)2等は汎用的に入手が可能であり好ましい。
〈再浸出〉
 再浸出は、前記浸出後に得られた残渣を硫酸などの酸により溶解して再浸出した後、固液分離してヒ素を含む再浸出ろ液を得る操作である。
 当該再浸出ろ液は、ヒ素が高濃度に溶解されている上、Na、Kの含有濃度が僅かである為、ヒ酸鉄結晶を合成するための原料液として最適なものとなった。
 因みに、本発明者らが、種々の煙灰を用いてNa、Kの挙動を調査した結果、本発明に係る、予備浸出、浸出、再浸出という多段の浸出操作を行うことによって、煙灰を直接酸性浸出する場合に較べ、再浸出液中のNa、Kを0.1g/L以下まで劇的に削減できる事実を確認した。
 再浸出で得られた再浸出ろ液からのヒ酸鉄結晶の合成は、従来にある鉄添加の方法を用いて実施できる。液のpH値を1~2程度とし、鉄塩を加えて、温度50~100℃にて恒温、撹拌をし、7~10時間反応させれば良い。オートクレーブ法でも適用可能であるが、大気圧下での反応で十分に良好なヒ酸鉄結晶(スコロダイト、FeAsO4・2H2O)を得られる。ヒ素を結晶性であるスコロダイトとすることで、安定化したヒ素の保管が可能となる。
 上記ヒ酸鉄結晶生成反応後の液にヒ酸鉄結晶が形成されているので、ろ過等によりヒ酸鉄結晶を回収することが出来る。
〈淨液操作〉
 淨液操作は、上述した浸出で得られたろ液に少量含有されるヒ素を除去するものである。浄液操作では、ろ液に鉄源または過酸化水素水のいずれか1種以上を添加する。この際、アルカリを添加してpH値を3以上、好ましくは3.5以上としてろ過し、液と残渣とを得る。
 液は、ヒ素を殆ど含まない銅の濃厚溶液である。そこで、後工程にヒ素負荷を与えない銅原料として利用することが出来る。
 残渣においては、銅が鉄の殿物に取り込まれており、また当該殿物により、さらに砒素を吸着し、浸出残渣に移行することを期待出来る為、上述した予備浸出の工程に投入することが出来る。
〈難分離性煙灰の処理〉
 上述したように本発明者らは、多様な煙灰について、その性状と挙動について調査を行い、銅とヒ素との分離性の悪いものや、さらには、全く分離の出来ない煙灰を知見した。具体的には、従来の技術に係るpH値3~4の酸溶液のみの浸出においては、銅とヒ素との分離が困難な難分離性の煙灰を知見した。
 本発明において、当該分離性の悪い煙灰を対象とする場合、図1にて説明した予備浸出または浸出において、酸化剤を添加する構成に想到した。当該酸化剤としては、3価鉄、過酸化水素、オゾン、酸素ガス、過酸化物、などがある。
 中でも3価鉄は、浸出工程にて浸出残渣に入り、続く再浸出工程で浸出されることになることから、ヒ酸鉄結晶生成用の鉄源としても利用できるので好ましい。
 具体的には、難分離性の煙灰または煙灰スラリーへ、3価鉄等の酸化剤を添加すれば良い。当該酸化剤の添加は、予備浸出または浸出のいずれかの時に、分離性の状態から判断して行う。同一箇所で複数回の分割添加を実施しても良い。尤も、工程を安定させる観点からは、予備浸出時に酸化剤を添加することが好ましい。
 3価鉄化合物としては、硫酸第二鉄(Fe2(SO43)、水酸化鉄、ゲーサイト、等がある。これらの1種以上をそのまま、または、溶液の形にて添加する。尤も、鉄源に加えて、過酸化水素等を併用する場合は、鉄源が2価鉄化合物でも良い。
 3価鉄を添加する場合は、煙灰中に含有する総ヒ素モル量と等倍モル以上、好ましくは1.5倍モルとする。添加する鉄源は、液への溶解性があれば固形であっても良い。
 一方、銅とヒ素との分離はするものの、例えば、浸出液にヒ素が1g/L以上浸出されるような分離性が劣る煙灰を処理対象とする場合は、当該煙灰に含まれるヒ素の0.5倍モル量以下での3価鉄添加で効果が十分に現れる。そこで、当該鉄源コストを考え、処理対象の煙灰の性質に応じて3価鉄添加量を調整することが好ましい。
 上述した、予備浸出または浸出において酸化剤を添加する構成により、従来の技術では銅とヒ素の分離が困難な煙灰であっても、銅とヒ素の分離が可能となった。その結果、分離性が劣る煙灰でも、浸出にて銅、Na、Kを浸出液に移行させ、ヒ素を高濃度で残渣に入れ込むことが可能となった。
 上述した鉄源の添加により、銅とヒ素との分離性が向上した詳細な理由は明らかではない。煙灰はヒ素を十分に含む為、そのまま酸等を用いて溶解すれば、スラリー中に固形分として懸濁している煙灰中のヒ素は、当該溶液と平衡する溶解度まで溶解すると考えられる。
 しかし本発明によれば、スラリーへ3価鉄等の酸化剤を加えると、ヒ素の理論的な溶解度の量から考慮して、まだヒ素溶解量に余裕があるにも拘わらず、液中の残渣中の未溶解のヒ素の溶解が抑制される、一方、銅や亜鉛等の他の金属元素は溶解されるためヒ素と他の金属元素との分離可能となったものである。
 以上、詳細に説明した、難分離の煙灰の処理方法であって予備浸出または浸出において鉄源を添加する方法は、銅製錬工程で発生する煙灰にも適用可能である。特に、銅とヒ素との分離性が劣り、鉄/ヒ素の質量比で1以下の煙灰であればさらに効果が期待できる。
 難分離の煙灰の処理の場合も、得られた残渣を硫酸等の酸により再溶解することで鉄を含むヒ素の溶解液が得られる。さらに当該再浸出液は、Na、Kを殆ど含んでいないので、結晶性ヒ酸鉄の原料として、最適な液質を有するものとして供給することが出来る。
 以下、実施例を参照しながら本発明をより具体的に説明する。
(実施例1)
 表1に成分品位を示す非鉄製錬炉煙灰A試料を500dry・g準備した。尚、成分の分析はICPにより行った(以下の実施例、比較例においても成分分析はICPにて行った。)。
 スラリーを作製するための溶媒には純水1000mLを用い、容器は2リットルビーカーを使用した。攪拌装置には、4枚邪魔板を備えた2段タービン攪拌羽根を使用した。
 アルカリ剤として、濃度200g/LのCa(OH)2ミルク(水溶液)を準備した。
反応は30~35℃間にて行った。
Figure JPOXMLDOC01-appb-T000001
 2リットルビーカーへ1000mLの純水と、煙灰A試料500dry・gとを添加し、10分間攪拌し煙灰のスラリーとした。この時のスラリーのpH値は2.4を示した。次いで、スラリーへ試薬95%硫酸を添加してpH値を1.4まで低下させ、さらに10分間攪拌し予備浸出を実施した。
 予備浸出実施後に、浸出を実施した。
 具体的には、予備浸出による攪拌後、スラリーにアルカリ剤を添加し、設定pH値の3.5まで中和した。当該設定pH値に到達後、さらに25分間、当該設定pH値を維持しながら浸出を継続した後、攪拌を終了し、ろ過を実施した。アルカリ剤としてCa(OH)2液の使用量は120mLであった。
 ろ過によりろ液を回収した後、浸出残渣に対し、純水1000mLを用いて濾過器内で通水洗浄を行った。得られたろ液の組成を表2に示す。
 表2に示すろ液組成と、浸出液量のバランスとにより、煙灰中の銅の約80%がろ液に移行し、ヒ素は約98%が残渣に入れ込まれていることが判明した。
Figure JPOXMLDOC01-appb-T000002
 次いで、当該残渣全量へ純水を加えて再びスラリー化し、次いで硫酸を添加し、再浸出を実施した。
 具体的には、当該残渣スラリーを作製するために用いた純水量は370mLであり、容器は1リットルビーカーを使用した。攪拌装置は、4枚邪魔板を備えた1段タービン羽根を使用した。硫酸は試薬95%硫酸である。
 そして、1リットルビーカーへ、370mLの純水と、当該残渣全量とを入れ、15分間攪拌しスラリー状態とした。次いで、試薬95%硫酸を添加してpH値を0.3とし、当該pH値を維持しながら30~35℃間にて25分間浸出を継続した後、攪拌を終了して濾過に供じ、再浸出液と残渣とを得た。
 得られた再浸出液の組成を表3に示す。
 表3の結果より、再浸出液として、結晶性ヒ酸鉄を形成するに十分な量の鉄を含むヒ素の濃厚液が得られた。さらには、ジャロサイトを形成するNaおよびKが殆ど含まれておらず、且つ、銅の含有量も少なく、ヒ酸鉄結晶(スコロダイト)生成の為の原料液として十分な液質であることが確認された。
Figure JPOXMLDOC01-appb-T000003
(比較例1)
 実施例1で説明した煙灰スラリーを用い、pH値を2以下として実施した予備浸出を行わない以外は、実施例1と同じ操作を行って、再浸出液と残渣とを得た。
 途中で得られた浸出液組成を表4に、再浸出液組成を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5に示す比較例1に係る再浸出液と、予備浸出を行った実施例1に係る再浸出液とを、結晶性ヒ酸鉄生成用の原料液としての観点から比較する。すると、実施例1に係る再浸出液では、NaおよびKがほぼ完全に除去されていてヒ酸鉄結晶を生成するための原料としては好ましい液質であるが、比較例1に係る再浸出液ではNa、Kが約1g/L含まれていたおり原料液質としては好ましいものではなかった。ジャロサイト形成のおそれがあるからである。
 Na、Kが煙灰中にどの様な化合物形態で含まれているかについて、詳細は不明である。しかし、本発明に係るpH値が2以下の予備浸出を実施することにより、これらNa、K化合物形態が壊れ、予備浸出時点で効率良く浸出除去されたものと本発明者等は推定している。
 さらに、表4に示す比較例1に係る浸出液組成と、実施例1に係る浸出液組成との比較から、実施例1に係る浸出液の方が、比較例1に係る浸出液より、銅とヒ素との分離性が良いことが判明した。これは、再浸出液の銅濃度の違いからも明白である。ここで、結晶性ヒ酸鉄生成用の原料液とする場合には、銅濃度は低い程好ましいが、当該観点からも予備浸出の効果は大きいことが判明した。
(比較例2)
 実施例1と同じ煙灰を、従来の技術に係る方法で浸出した。
 まず、実施例1で説明した煙灰Aを500dry・g準備した。
 スラリーを作製するための溶媒として純水700mLを用い、容器は2リットルビーカーを使用した。攪拌装置は、4枚邪魔板を備えた2段タービン羽根を使用した。硫酸は試薬95%硫酸を用いた。
 2リットルビーカーへ700mLの純水と、当該煙灰500gとを添加し、10分間攪拌しスラリー状態とした。次いで、試薬95%硫酸を添加して、pH値を0.3とし、さらに当該pH値を維持しながら30~35℃間にて25分間浸出を継続した後、スラリーの攪拌を終了し濾過に供じた。得られた酸性浸出液の組成を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す比較例2に係る酸性浸出液は、実施例1に係る再浸出液に比べ、ヒ素が濃縮されていない液であるにも係わらず、ジャロサイト形成元素であるNa、Kが数g/Lオーダーで含有されており、さらには銅が60g/Lと高かった。従って、ヒ酸鉄生成用の原料液としては、不適当な液質であることが判明した。即ち、煙灰Aへ直接、酸を添加し酸性浸出をした場合、ヒ素濃度の高い溶液を得ようとすると、必然的にNa、K、銅も高濃度となることが確認された。
(実施例2)
 表7に成分品位を示す非鉄製錬炉煙灰B試料を360dry・g準備した。
 尚、当該煙灰Bは、銅/ヒ素の難分離性の煙灰である。
Figure JPOXMLDOC01-appb-T000007
 試薬硫酸第2鉄を溶解して、3価鉄濃度が99g/Lである3価鉄溶液を作製した。 スラリーを作製するための溶媒として純水980mLを用い、容器は2リットルビーカーを使用した。攪拌装置は、4枚邪魔板2段タービン羽根を使用した。アルカリ剤として濃度200g/LのCa(OH)2ミルク(水溶液)を準備した。反応は30~35℃間にて行った。
 2リットルビーカーへ980mLの純水と、煙灰B試料360dry・gとを添加し、10分間攪拌した。この時のスラリーのpH値は2.5を示した。
 次いで、当該スラリーへ3価鉄溶液220mLを添加し、さらに95%硫酸を添加してpH値を0.75まで低下させ、さらに10分間攪拌し、予備浸出を実施した。尚、当該3価鉄溶液220mLに含有される鉄の量は、当該煙灰B試料360dry・g中に含有するヒ素量の1.5倍モル量に相当するものである。
 予備浸出終了後、スラリーにアルカリ剤を添加し、設定pH値の3.5まで中和した。当該設定pH値に到達後、さらに20分間、当該設定pH値を維持しながら浸出を実施した後、スラリーの攪拌を終了し濾過に供じた。当該浸出においてCa(OH)2液の使用量は340mLであった。
 ろ過によりろ液を回収した後、浸出残渣に対し、純水1000mLを用いて濾過器内で通水洗浄を行った。得られたろ液の組成を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すろ液組成と、浸出液量のバランスとより、煙灰中の銅の約75%がろ液に移行し、ヒ素は約96%が残渣に入れ込まれていることが判明した。
 次いで、当該残渣全量へ純水を加えてスラリー化し、次いで硫酸を添加し、再浸出を実施した。
 具体的には、当該残渣スラリーを作製するために用いた純水量は750mLであり、容器は2リットルビーカーを使用した。攪拌装置は、4枚邪魔板を備えた2段タービン羽根を使用した。硫酸は試薬95%硫酸である。
 そして、2リットルビーカーへ、750mLの純水と、当該残渣全量とを入れ、15分間攪拌しスラリー状態とした。次いで、試薬95%硫酸を添加してpH値を0.5とし、当該pH値を維持しながら30~35℃間にて25分間浸出を継続した後、攪拌を終了して濾過に供じ、再浸出液と残渣とを得た。
 得られた再浸出液の組成を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9の結果より、再浸出液として、結晶性ヒ酸鉄を形成するに十分な量の鉄を含むヒ素の濃厚液が得られた。さらには、ジャロサイトを形成するNaおよびKが0.1g/L以下含まれるのみで、且つ、銅の含有量も少なく、ヒ酸鉄結晶(スコロダイト)生成の為の原料液として十分な液質であるヒ素溶液を回収することが可能となった。本液は、結晶性ヒ酸鉄生成用の元液として好ましい液質である。
 さらに、当該煙灰Bは、後述の比較例3に示す様に、当該煙灰スラリーのみを処理対象とした場合には、銅とヒ素の分離浸出は不可能であったが、当該煙灰スラリーに3価鉄を配合し当該浸出を行うことで、銅とヒ素の分離浸出が可能となったものである。
(比較例3)
 3価鉄を添加した予備浸出を行わない以外は、実施例2と同様の操作により浸出を行った。
 具体的には、2リットルビーカーへ980mLの純水と、煙灰試料B360dry・gとを添加し、10分間攪拌しスラリーとした。この時のスラリーのpH値は2.5を示した。次いで、当該煙灰スラリーに当該Ca(OH)2ミルクを添加しpH値を上昇させた。すると、徐々にスラリーの粘性が増大し、pH値が2.8の時点で、もはや攪拌不能の状態となり浸出試験を中止した。
 サンプリングの結果、当該時点での銅濃度は5.2g/L、ヒ素濃度は5.4g/Lであり、銅とヒ素とが分離する傾向にはなかった。いずれにしても、攪拌が不能となる状態まで、当該スラリーの粘性が上昇する為、比較例3に係る銅、ヒ素の分離浸出法の実施は不可能であることが判明した。
(実施例3)
 本実施例は、浸出時のスラリーへ何も添加しない場合、3価鉄あるいは過酸化水素、または、3価鉄及び過酸化水素添加の両方を添加した場合の効果を確認する為に行ったものである。
 非鉄製錬炉煙灰Cを500dry・g準備した。
 当該煙灰Cの成分品位を、表10に示す。
Figure JPOXMLDOC01-appb-T000010
 スラリーを作製するための溶媒には純水1000mLを用い、容器は2リットルビーカーを使用した。攪拌装置には、4枚邪魔板を備えた2段タービン攪拌羽根を使用した。
 アルカリ剤として、濃度200g/LのCa(OH)2ミルク(水溶液)を準備した。反応は30~35℃間にて行った。
 (a)3価鉄及び過酸化水素添加の両方を添加しない場合
 2リットルビーカーへ、1000mLの純水と煙灰C試料500dry・gとを添加し、10分間攪拌しスラリーとした。この時のスラリーのpH値は2.6を示した。
 次いで、試薬95%硫酸を添加して、スラリーのpH値を1.8とし、さらに10分間攪拌して予備浸出を実施した。
 当該攪拌終了後、スラリーにアルカリ剤を添加し、設定pH値の3.9まで中和した。当該設定pH値に到達後、さらに25分間、当該設定pH値を維持しながら浸出を実施した後、スラリーの攪拌を終了し、ろ過に供じた。
 得られたろ液のヒ素濃度と銅濃度とを表11に示す。
 (b)過酸化水素水を添加した場合
 2リットルビーカーへ、1000mLの純水と煙灰C試料500dry・gとを添加し、10分間攪拌しスラリーとした。ここで3%過酸化水素水を12.9ml添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌して予備浸出を実施した。
 当該予備浸出終了後、上述した(a)と同様の操作を行って浸出を実施し、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表11に示す。
 尚、上述した過酸化水素の添加量は、1g/Lの3価ヒ素を、5価ヒ素へ酸化するに必要な反応量論の1倍当量に相当する量である。
 (c)3価鉄を添加した場合
 2リットルビーカーへ、1000mLの純水と煙灰C試料500dry・gとを添加し、10分間攪拌しスラリーとした。ここで鉄濃度が99g/Lの硫酸第2鉄溶液を21.5mL添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌して予備浸出を実施した。
 当該予備浸出終了後、上述した(a)と同様の操作を行って浸出を実施し、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表11に示す。
 尚、上述した3価鉄溶液21.5mLに含有される鉄量は、煙灰C試料500dry・g中に含有されるヒ素量の0.2倍モル量に相当するものである。
 (d)過酸化水素水及び3価鉄を添加した場合
 2リットルビーカーへ、1000mLの純水と煙灰C試料500dry・gとを添加し、10分間攪拌しスラリーとした。ここで3%過酸化水素水を12.9mLと、鉄濃度が99g/Lの硫酸第2鉄溶液21.5mLとを添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌して予備浸出を実施した。
 当該予備浸出終了後、上述した(a)と同様の操作を行って浸出を実施し、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表11に示す。
Figure JPOXMLDOC01-appb-T000011
(a~dの考察)
 (a)の試験結果において、浸出液中にヒ素が1g/L残留したことから、非鉄製錬炉煙灰Cは、銅とヒ素の分離性が若干劣るものであることが判明した。
 しかし(b)~(d)の試験結果より、銅とヒ素の分離性が若干劣る煙灰Cであっても、浸出時に、過酸化水素あるいは3価鉄の添加、又は、過酸化水素及び3価鉄の添加により、銅の浸出率には殆ど影響を与えることなく、銅とヒ素との分離性の向上を実現出来ることが判明した。
 特に、「(c)3価鉄を添加した場合」、「(d)過酸化水素水及び3価鉄を添加した場合」は、3価鉄や過酸化水素水の添加量が、少量であるにも拘わらず銅とヒ素の分離性が著しく向上し、かつ添加操作も簡便であることから、実操業上、非常に有効な手段であると考えられる。
(実施例4)
 実施例4においては、上述した実施例3の「(a)3価鉄及び過酸化水素添加の両方を添加しない場合」にて得られたろ液に対し、3価鉄あるいは過酸化水素、または、3価鉄及び過酸化水素添加の両方を添加した場合の効果を確認する為に行ったものである。
 (e)過酸化水素水を添加した場合
 上述した実施例3の「(a)3価鉄及び過酸化水素添加の両方を添加しない場合」にて得られたろ液150mLを準備し元液とした。
 300mlビーカーに当該元液150mLを量りとり、3%過酸化水素水を1.9mL添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌を行った。
 当該攪拌後、当該元液にアルカリ剤を添加し、設定pH値の3.9まで中和した。当該設定pH値に到達後、さらに15分間、当該設定pH値を維持しながら反応を継続した後、当該反応元液の攪拌を終了して濾過に供じ、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表12に示す。
 尚、当該ろ液150mLに対する、3%過酸化水素水1.9mLの添加の割合は、上述した実施例3で説明した使用純水量1000mLに対する3%過酸化水素水12.9mLの添加の割合に準じて、設定したものである。
 (f)3価鉄を添加した場合
 300mlビーカーに当該元液150mLを量りとり、鉄濃度99g/Lの硫酸第2鉄溶液3.2mLを添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌を行った。
 当該攪拌後、上述した(e)と同様の操作を行って、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表12に示す。
尚、当該ろ液150mLに対する、鉄濃度99g/Lの硫酸第2鉄溶液3.2mLの添加の割合は、上述した実施例3で説明した使用純水量1000mLに対する鉄濃度99g/Lの硫酸第2鉄溶液21.5mLの添加の割合に準じて、設定したものである。
 (g)過酸化水素水と3価鉄とを添加した場合
 300mlビーカーに当該元液150mLを量りとり、3%過酸化水素水1.9mLと、鉄濃度99g/Lの硫酸第2鉄溶液3.2mLとを添加し、次に試薬95%硫酸を添加してpH値を1.8まで低下させ、さらに10分間攪拌を行った。
 当該攪拌後、上述した(e)と同様の操作を行って、ろ液を得た。
 得られたろ液のヒ素濃度と銅濃度とを表12に示す。
Figure JPOXMLDOC01-appb-T000012
(e~gの考察)
 (e)~(g)の試験結果より、浸出ろ液へ、過酸化水素あるいは3価鉄の添加、又は、過酸化水素及び3価鉄の添加は、処理対象液が銅の濃厚液であるにも拘わらず、ヒ素除去には、非常に効果的であることが判明した。
 特に「(g)過酸化水素水と3価鉄とを添加した場合」においては、ヒ素をほぼ完全に除去する事が出来た。この結果、(g)の処理を実施したろ液から、銅を回収する工程以降へのヒ素の拡散を阻止することが可能となり、環境保全上、有意義な結果をもたらすこととなることが判明した。
 さらに、(e)~(g)の試験で回収された反応生成物には若干の銅が含まれる。そして、当該反応生成物(3価鉄)には未だヒ素を吸着する能力がある。そこで、これら反応生成物を回収して予備浸出工程へ戻し、再度浸出工程で用いることが好ましい構成である。当該反応生成物回収と浸出工程での再使用により、浸出工程で3価鉄が有効に活用され、新たに添加する3価鉄量も減らすことが出来る。この結果、コスト削減が達成されるだけでなく、実操業上、浸出工程の安定化に大きく寄与することとなる。

Claims (8)

  1.  銅とヒ素とを含む煙灰をスラリーとして、当該スラリーのpH値を3~4の範囲とし、銅を当該スラリーの液に浸出し、ヒ素を残渣とする浸出工程を有し、当該残渣からヒ素溶液を得る処理方法において、
     当該浸出工程の前に、当該スラリーのpH値を2以下に保持して予備浸出する工程を有することを特徴とする、煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  2.  前記予備浸出とは、前記スラリーにおいて、Na及び/又はKを当該スラリー液に溶解するものであることを特徴とする、請求項1に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  3.  前記予備浸出が、前記スラリーのpH値を0.5~2として行われることを特徴とする、請求項1または2に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  4.  前記残渣を酸で溶解し、ヒ素溶液とすることを特徴とする、請求項1~3のいずれかに記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  5.  前記予備浸出工程において、前記スラリーへ、さらに鉄源または過酸化水素水のいずれか1種以上を添加することを特徴とする、請求項1~4のいずれかに記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  6.  前記浸出工程において、前記銅が浸出された液へ、さらに鉄源または過酸化水素水のいずれか1種以上を添加することを特徴とする、請求項1~5のいずれかに記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  7.  前記鉄源が3価鉄であることを特徴とする、請求項5または6に記載の煙灰からの結晶性ヒ酸鉄原料液の製造方法。
  8.  銅とヒ素とを含む非鉄製錬にて発生する煙灰をスラリーとして、銅をスラリー液に浸出し、ヒ素を残渣とする浸出方法において、当該煙灰または当該スラリーに、鉄源及び/または過酸化水素水を添加することを有する、煙灰からの結晶性ヒ酸鉄原料液の製造方法。
PCT/JP2011/059789 2010-04-23 2011-04-21 煙灰からの結晶性ヒ酸鉄原料液の製造方法 WO2011132729A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100373A JP5645457B2 (ja) 2010-04-23 2010-04-23 煙灰からの結晶性ヒ酸鉄原料液の製造方法
JP2010-100373 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011132729A1 true WO2011132729A1 (ja) 2011-10-27

Family

ID=44834245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059789 WO2011132729A1 (ja) 2010-04-23 2011-04-21 煙灰からの結晶性ヒ酸鉄原料液の製造方法

Country Status (2)

Country Link
JP (1) JP5645457B2 (ja)
WO (1) WO2011132729A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095984A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の浸出方法
JP2013095986A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の浸出回収方法
JP2013095985A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の回収方法
CN106282584A (zh) * 2015-06-02 2017-01-04 云南锡业集团有限责任公司研究设计院 一种复杂高砷铜冶炼烟尘有价金属回收的方法
CN113755696A (zh) * 2021-08-06 2021-12-07 衢州华友钴新材料有限公司 一种从含砷酸性溶液中选择性脱砷的方法
CN114990341A (zh) * 2022-06-14 2022-09-02 长沙有色冶金设计研究院有限公司 一种氧化锌与铜白烟尘混合浸出的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647158B2 (ja) * 2012-02-23 2014-12-24 Jx日鉱日石金属株式会社 鉛製錬から排出される銅含有不純物塊の処理方法及びそれを用いた鉛の精錬方法
JP5821775B2 (ja) * 2012-05-17 2015-11-24 住友金属鉱山株式会社 銅製錬煙灰の処理方法
JP6193603B2 (ja) * 2013-04-10 2017-09-06 Dowaメタルマイン株式会社 非鉄製錬煙灰からのスコロダイト製造方法
JP6015824B2 (ja) * 2015-07-30 2016-10-26 住友金属鉱山株式会社 銅製錬煙灰の処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161123A (ja) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd 煙灰からの砒素除去方法
WO2008114833A1 (ja) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co., Ltd. 砒素含有固形物およびその製法
JP2009022866A (ja) * 2007-07-19 2009-02-05 Dowa Metals & Mining Co Ltd 鉄砒素化合物合成装置
JP2009161803A (ja) * 2007-12-28 2009-07-23 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161123A (ja) * 2003-11-28 2005-06-23 Mitsui Mining & Smelting Co Ltd 煙灰からの砒素除去方法
WO2008114833A1 (ja) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co., Ltd. 砒素含有固形物およびその製法
JP2009022866A (ja) * 2007-07-19 2009-02-05 Dowa Metals & Mining Co Ltd 鉄砒素化合物合成装置
JP2009161803A (ja) * 2007-12-28 2009-07-23 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095984A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の浸出方法
JP2013095986A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の浸出回収方法
JP2013095985A (ja) * 2011-11-02 2013-05-20 Dowa Metals & Mining Co Ltd 非鉄製錬煙灰からのヒ素の回収方法
CN106282584A (zh) * 2015-06-02 2017-01-04 云南锡业集团有限责任公司研究设计院 一种复杂高砷铜冶炼烟尘有价金属回收的方法
CN113755696A (zh) * 2021-08-06 2021-12-07 衢州华友钴新材料有限公司 一种从含砷酸性溶液中选择性脱砷的方法
CN114990341A (zh) * 2022-06-14 2022-09-02 长沙有色冶金设计研究院有限公司 一种氧化锌与铜白烟尘混合浸出的方法
CN114990341B (zh) * 2022-06-14 2023-09-26 长沙有色冶金设计研究院有限公司 一种氧化锌与铜白烟尘混合浸出的方法

Also Published As

Publication number Publication date
JP5645457B2 (ja) 2014-12-24
JP2011230938A (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5645457B2 (ja) 煙灰からの結晶性ヒ酸鉄原料液の製造方法
US8110162B2 (en) Method of processing copper arsenic compound
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
CN100537798C (zh) 一种从含三氧化二砷烟尘中脱砷的方法
EP2668303B9 (en) Improved method of ore processing
AU2007216890B2 (en) Process for treating electrolytically precipitated copper
PH12015502683B1 (en) Wastewater treatment process
EA020382B1 (ru) Способ удаления мышьяка в виде скородита
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
JP5114048B2 (ja) 砒素液の製法
JP2009050769A (ja) 砒素含有溶液の処理方法
JPH11277075A (ja) 硫酸鉄溶液中に存在する砒素の除去及び固定方法
JP6193603B2 (ja) 非鉄製錬煙灰からのスコロダイト製造方法
JP5840920B2 (ja) 非鉄製錬煙灰からのヒ素の回収方法
JP2007297240A (ja) 砒素含有物の処理方法
JP5848584B2 (ja) 非鉄製錬煙灰からのヒ素の浸出回収方法
JP2012067361A (ja) 銅とヒ素とを含む非鉄製錬中間産物からの銅とヒ素との分離方法
JP5889603B2 (ja) 非鉄製錬煙灰からのヒ素の浸出方法
JP7068618B2 (ja) スコロダイトの製造方法
JP2018150186A (ja) スコロダイトの製造方法
JP2010284581A (ja) 砒酸溶液からのCuイオンの除去方法
CN109371238A (zh) 一种从贵金属精矿中脱除硒的方法
JP5762799B2 (ja) 非鉄製錬中間産物からAsとCuとを分離して回収する方法
JP6828400B2 (ja) スコロダイトの製造方法
RU2226226C1 (ru) Способ переработки никель-кобальтового концентрата

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772061

Country of ref document: EP

Kind code of ref document: A1