WO2011132679A1 - 内燃機関用オイルリング - Google Patents

内燃機関用オイルリング Download PDF

Info

Publication number
WO2011132679A1
WO2011132679A1 PCT/JP2011/059642 JP2011059642W WO2011132679A1 WO 2011132679 A1 WO2011132679 A1 WO 2011132679A1 JP 2011059642 W JP2011059642 W JP 2011059642W WO 2011132679 A1 WO2011132679 A1 WO 2011132679A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oil ring
ring
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/059642
Other languages
English (en)
French (fr)
Inventor
護 宮本
柴田 士郎
弘通 横川
小川 勝明
Original Assignee
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44834197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011132679(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本ピストンリング株式会社 filed Critical 日本ピストンリング株式会社
Priority to US13/641,791 priority Critical patent/US20130049305A1/en
Priority to JP2012511671A priority patent/JP5773500B2/ja
Priority to CN201180020064.2A priority patent/CN102859241B/zh
Priority to EP11772014.4A priority patent/EP2562448B1/en
Publication of WO2011132679A1 publication Critical patent/WO2011132679A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • F16J9/061Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging using metallic coiled or blade springs
    • F16J9/062Coiled spring along the entire circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • F16J9/20Rings with special cross-section; Oil-scraping rings

Definitions

  • the present invention relates to an oil ring for an internal combustion engine having a two-piece structure including an oil ring body and a coil expander.
  • piston rings used in internal combustion engines are required to have low friction with respect to the inner wall of the cylinder in order to realize smooth reciprocation of the piston in the cylinder in accordance with market demands for improving fuel consumption. ing. Therefore, the internal combustion engine oil ring, which has the role of scraping off excess engine oil on the cylinder inner wall surface and flowing down to the back of the piston, similarly reduces the friction force generated between the cylinder inner wall surface and improves fuel efficiency.
  • a technique for reducing the width of the oil ring main body in the axial direction has been pursued.
  • the oil ring can be made thinner to improve the ability to follow the inner wall surface of the cylinder and reduce oil consumption. It will cause a decline.
  • a two-piece configuration hereinafter referred to as a two-piece oil ring
  • the coil expander improves the oil scraping performance of the oil ring by pressing and urging the oil ring main body radially outward.
  • the oil ring main body is composed of an upper rail and a lower rail constituting the upper portion and the lower portion, and a web connected to each of the rails, and the outer peripheral sliding surface of each of the upper rail and the lower rail is When the piston reciprocates, it slides on the inner wall surface of the cylinder through an oil film.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-45172 discloses an oil ring with a coil expander (so-called two-piece oil ring) for scraping off excess oil from the inner wall surface of a cylinder.
  • Patent Document 1 states that “a steel having a substantially I-shaped cross section composed of a thin web provided with upper and lower side rails that are rigid blocks and a large number of oil holes that connect both side rails.
  • a circumferential groove for receiving the scraped oil is formed on the outer periphery of the oil scraping ring, and a circumferential groove for accommodating an annular coil expander on the inner periphery
  • the coil expander is in contact with the upper and lower side rails at only two points when viewed in cross section, and the coil expander is separated from the web at portions other than these contact points.
  • An oil ring with a coil expander characterized in that a predetermined minute gap is formed is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-194272 discloses an oil ring wire used for an oil ring in which oil circulation is improved. Specifically, Patent Document 2 discloses that "the oil ring having the through oil hole formed therein is used as an oil ring of a piston of an internal combustion engine or the like having a through oil hole through which oil flows from at least one to the other. A wire rod for oil ring, wherein the through oil hole has a taper portion in which at least one of the side walls facing the through oil hole is substantially inclined with respect to the direction of oil flow is disclosed. Has been.
  • Patent Document 1 discloses a technique for providing a gap formed between the oil ring body and the coil expander, it is clear how much gap is necessary. Rather, it is quite difficult for those skilled in the art to implement.
  • the gap formed between the oil ring body and the coil expander becomes too large and the width of the oil ring body in the radial direction of the oil ring becomes thin, the oil ring body will be deformed during processing. Is likely to occur.
  • the oil ring main body is deformed, the pressing force of the oil ring against the cylinder inner wall surface is locally reduced, and oil is left behind, which easily increases oil consumption.
  • the oil ring has a local decrease in the pressing force against the inner wall surface of the cylinder, so that the oil rises and the oil enters the cylinder combustion chamber side of the engine. It may occur.
  • the tension of the oil ring is increased, the friction between the cylinder inner wall surface and the oil ring becomes too large, and the smooth reciprocation of the piston is hindered.
  • the outer periphery shape in the oil ring axial direction cross section of the inner periphery side of an oil ring main body of the oil ring of patent document 1 is a substantially taper shape, a coil expander and upper and lower side rails are substantially two points. Only contact.
  • the contact portion promotes wear.
  • the pressing force against the cylinder inner wall surface of the oil ring varies in the circumferential direction of the oil ring.
  • the coil spring is formed by a pair of flange portions and a web portion connecting the flange portions. Although it has a shape that can be accommodated in a state of being wrapped inside, no gap is formed between the substantially semicircular recess and the coil spring. Therefore, when the oil ring wire of Patent Document 2 is used as an oil ring, the coil spring is in close contact with the oil ring body, and most of the oil return hole formed in the oil ring body is blocked. .
  • Patent Document 2 when the wire for oil ring of Patent Document 2 is used as an oil ring, for example, when the area of the opening of the through oil hole is small, the possibility that the hole is blocked by sludge increases, and the oil consumption It is difficult to say that it is necessarily sufficient to reduce the above.
  • the present invention is an internal combustion engine that can stably obtain a function of scraping excess oil from the cylinder inner wall surface and flowing down to the back of the piston for a long period of time, and reliably reducing oil consumption during driving of the internal combustion engine.
  • the purpose is to provide oil rings for engines.
  • the present inventors have solved the above-mentioned problems by making the shape of the oil ring main body a shape that satisfies a predetermined condition.
  • the present invention will be described.
  • An oil ring for an internal combustion engine comprises an oil ring body whose oil ring axial section is substantially I-shaped and a coil expander disposed on the inner peripheral side of the oil ring body.
  • a first rail that slides on the inner wall surface of the cylinder, a second rail, and a plurality of oil return holes for allowing the oil that the first rail and the second rail scrape off from the inner wall surface of the cylinder to flow down to the piston back surface.
  • the oil ring main body is provided with a coil expander receiving recess having a substantially semicircular cross section in the oil ring axial direction along the inner peripheral surface of the oil ring main body, and the inner portion of the coil expander receiving recess.
  • An oil return groove is formed on the peripheral surface along the inner peripheral direction to smoothly return the scraped oil to the back of the piston.
  • the outer peripheral shape is composed of a curve that is continuous with the straight line and the straight line.
  • the curvature radius in the oil ring axial section of the coil expander receiving recess provided in the oil ring body is r1
  • the curvature radius in the oil ring axial section of the coil expander is r2.
  • it is preferable that r2 / r1 0.8 to less than 1.0.
  • the oil ring main body has an oil ring radial depth of the oil return groove as A, and an oil ring radial width of the web before the oil return groove is formed as B.
  • a / B 0.05 to 0.50.
  • the oil ring radial width B before formation of the oil return groove of the web constituting the oil ring body is preferably 0.3 mm or more.
  • the oil return hole provided in the web constituting the oil ring main body has an opening width along the circumferential direction of the oil ring main body of 0.5 mm to 5.0 mm,
  • the opening height along the oil ring axial direction is preferably 0.2 mm to 0.8 mm.
  • the oil ring axial width h1 of the oil ring body is preferably 1.0 mm to 2.5 mm.
  • the tension ratio of the oil ring to the cylinder bore diameter is preferably 0.05 N / mm to 0.5 N / mm.
  • the curve formed in the oil ring axial cross section of the oil return groove formed in the oil ring body is a curvature of the extended curve connected from the coil expander housing recess.
  • the radius is preferably 0.01 to 0.30 mm.
  • the pitch in the circumferential direction of the web of the oil return holes provided in the web constituting the oil ring main body is E
  • the length of the oil return holes in the circumferential direction of the web is C.
  • C / (E ⁇ C) 0.1 to 1.2.
  • the oil ring according to the present invention by making the shape of the oil ring main body satisfy the conditions specified in the present invention, the oil return to the piston back surface becomes smooth, and the oil ring presses against the cylinder inner wall surface.
  • the pressure variation can be stably suppressed for a long time. That is, by using the oil ring according to the present invention, it is possible to reliably reduce the oil consumption of gasoline engines and diesel engines for internal combustion engines mainly used in automobiles and to improve fuel consumption. .
  • FIG. 1 It is a perspective view of the 2 piece oil ring comprised from the oil ring main body of this invention, and the coil expander arrange
  • FIG. 3 is a cross-sectional view illustrating an oil return groove formed in an oil ring body of the present invention by cutting a shape different from the oil return groove shown in FIG. 2 in the oil ring axial direction.
  • It is a principal part front view seen from the oil ring radial direction outer side in order to demonstrate the shape of the oil return hole with which the oil ring main body of this invention is equipped.
  • It is sectional drawing which cut
  • FIG. 1 is a perspective view of a two-piece oil ring composed of an oil ring main body of the present invention and a coil expander arranged on the inner periphery of the oil ring main body.
  • the two-piece oil ring 1 includes an oil ring body 2 and a coil expander 3.
  • the oil ring main body 2 is a ring having a substantially I-shaped cross section, and includes an abutment portion 2a.
  • the oil ring body 2 is formed by integrating an upper first rail 5, a lower second rail 6, and a web 4 that is connected to these rails and is positioned at an intermediate portion of the oil ring body 2. Has been.
  • the first rail 5 and the second rail 6 constituting the oil ring main body 2 of the present invention are formed in a substantially circular shape in the circumferential direction of the two-piece oil ring 1.
  • the outer peripheral sliding surfaces of the first rail 5 and the second rail 6 are in contact with the inner wall surface of the cylinder through an oil film, and slide in the piston axial direction.
  • the web 4 is provided with an oil return hole 7 that is substantially circular in the circumferential direction of the two-piece oil ring 1 as shown in FIG. 1 and is formed so as to penetrate in the radial direction.
  • a plurality are arranged in the direction.
  • the coil expander 3 makes the spring of a spiral form circular arc shape.
  • a joint core wire is used for the coil expander 3 in order to connect the joint portion of the coil expander to form an annular coil.
  • FIG. 2 is a cross-sectional view illustrating the state where the oil ring for an internal combustion engine according to the present invention is mounted in the oil ring groove of the piston, cut in the piston axial direction.
  • a coil expander housing recess 2 b is formed in the circumferential direction by the first and second rails 5, 6 and the web 4 on the inner peripheral surface of the oil ring body 2.
  • a concave outer peripheral groove 2 c is formed by the first and second rails 5, 6 and the web 4 when viewed in the oil ring axial section. .
  • the oil ring 1 for an internal combustion engine according to the present invention has a substantially semicircular shape when the coil expander housing recess 2 b is viewed in the cross section in the oil ring axial direction, and the coil expander 3. Is housed in a state of being wrapped in the substantially semicircular portion as viewed in the cross section in the oil ring axial direction. Therefore, according to the oil ring 1 for an internal combustion engine according to the present invention, when the inner periphery of the oil ring main body 2 has an arc shape, a large contact area between the oil ring main body 2 and the coil expander 3 is ensured. Thus, the pressing force against the cylinder inner wall surface 21 can be stabilized.
  • the inner periphery of the oil ring body 2 has an arc shape, so that local variations in the pressing force against the cylinder inner wall surface in the circumferential direction of the oil ring. It is difficult to occur, and it is difficult for oil to be left behind.
  • the oil scraping function of the oil ring 1 for an internal combustion engine will be described step by step.
  • the outer peripheral sliding surfaces 8 and 9 of both the first and second rails 5 and 6 of the oil ring main body 2 adhere to the inner wall surface 21 of the cylinder 20. Scrape off excess oil.
  • the oil thus scraped off is temporarily retained and received in the outer peripheral groove 2 c of the oil ring main body 2, and then flows through the oil return hole 7 to the coil expander housing recess 2 b.
  • the oil flowing into the coil expander housing recess 2b flows down to the back surface of the piston 10 through the oil drain hole 12 provided in communication with the oil ring groove 11, and into an oil pan (not shown). Returned.
  • the oil ring 1 for an internal combustion engine even if the shape on the coil expander arrangement side of the oil ring body 2 is substantially semicircular, the oil return groove 2d exists, The oil scraped off by the oil ring 1 for the internal combustion engine can be quickly released to the oil drain hole 12 provided on the back side of the oil ring, and the oil consumption can be reduced.
  • the oil return groove 2d formed in the oil ring main body 2 is constituted by a straight line and a curved line continuous with the straight line in the cross section in the axial direction of the oil ring. Accordingly, it is possible to suppress the oil scraped off by the oil ring 1 from staying in the oil return groove 2d. Therefore, according to the oil ring 1 for an internal combustion engine according to the present invention, the oil return groove 2d formed in the oil ring main body 2 has an outer peripheral shape of a straight line and a curve continuous to the straight line in the cross section in the oil ring axial direction.
  • the oil scraped off from the oil ring 1 can be quickly released to the oil drain hole 12 provided on the back side of the oil ring.
  • the opening edge of the coil expander accommodating recess 2b and the opening edge of the oil return hole 7 in the oil return groove 2d are formed with curved surfaces.
  • the oil ring 1 for an internal combustion engine has a curvature radius r1 of the curved oil ring axial cross section excluding the oil return groove 2d in the coil expander housing recess 2b provided in the oil ring body 2, and the coil expander 3
  • r2 / r1 0.8 to less than 1.0.
  • FIG. 3 is a perspective view of an essential part for explaining the inner peripheral side shape of the oil ring main body of the present invention.
  • FIG. 4 is a perspective view of a main part for explaining the radius of curvature of the coil expander receiving recess provided in the oil ring body of the present invention.
  • the outer diameter of the coil expander 3 is indicated by a broken line.
  • the curvature radius of the oil ring axial section of the curved surface excluding the oil return groove 2d in the coil expander housing recess 2b is r1
  • the outer diameter of the coil expander 3 is the oil ring axial section.
  • r2 / r1 is in the range of 0.8 to less than 1.0, so that the contact area between the coil expander 3 and the coil expander housing recess 2b can be increased.
  • the pressing force applied to the inner wall surface of the cylinder by the oil ring 1 can be stabilized in the ring circumferential direction.
  • the r2 / r1 is less than 0.8, the outer diameter of the coil expander 3 is small, so that the overall length with respect to the outer diameter of the coil expander becomes long, and the oil ring 1 to be combined is unreasonable. There is a concern that it may lead to deterioration of attachment.
  • the outer diameter of the coil expander 3 becomes too small so that the coil expander 3 enters the oil return groove 2d of the oil ring body, and a sufficient gap is provided between the oil ring body 2 and the coil expander 3. Therefore, the oil scraped off by the oil ring 1 is not smoothly discharged to the inner peripheral side of the oil ring 1 and there is a risk of increasing oil consumption. Further, when r2 / r1 is 1.0 or more, the coil expander 3 may interfere with the coil expander receiving recess 2b of the oil ring body or may not enter the coil expander receiving recess 2b.
  • the oil ring main body 2 of the present invention has the curvature radius r1 of the curved oil ring axial cross section excluding the oil return groove 2d in the coil expander accommodating recess 2b, and the oil ring axial cross section of the outer diameter of the coil expander 3.
  • the coil expander is less likely to be housed in the circumferential direction of the oil ring, and wear on the inner circumferential surface of the oil ring is prevented. It can be effectively suppressed. Therefore, according to the oil ring 1 for an internal combustion engine according to the present invention, the tension of the oil ring can be set as low as possible without causing an increase in oil consumption, and the degree of freedom in designing the oil ring is large. Become.
  • the oil ring main body 2 has the oil ring radial depth of the oil return groove 2d as A, and the oil ring radial direction of the web 4 before the oil return groove 2d is formed.
  • a / B 0.05 to 0.50.
  • FIG. 5 is a cross-sectional view illustrating an oil return groove formed in the oil ring main body of the present invention by cutting a shape different from the oil return groove shown in FIG. 2 in the oil ring axial direction.
  • the oil ring main body 2 has an oil return groove 2 d depth A in the oil ring radial direction, and the web 4 before the oil return groove 2 d is formed.
  • Oil ring radial width in JIS B 8032 (1993), page 21 Table 14 (X-enlarged view) is represented by “a13-a4” as B, A / B is 0.05
  • a / B is 0.05
  • the oil ring radial depth of the oil return groove 2d formed in the oil ring body 2 is A, and the oil before the oil return groove 2d of the web 4 is formed.
  • the oil ring radial width is B, and A / B is less than 0.05, the oil ring radial depth A of the oil return groove 2d is too shallow with respect to the oil ring radial width B. Therefore, the function of returning the oil to the back surface of the piston cannot be fully exhibited.
  • the oil return hole 7 formed in the web 4 of the oil ring body 2 is largely blocked by the coil expander 3. Therefore, the oil that has passed through the oil return hole 7 may not be smoothly discharged to the inner peripheral side of the oil ring body 2.
  • the A / B exceeds 0.50
  • the oil ring radial depth A of the oil return groove 2d becomes too deep with respect to the oil ring radial width B, and the width of the web 4 is thin. Therefore, the oil ring main body 2 is easily deformed during processing, and the durability of the oil ring 1 and the oil scraping function are deteriorated.
  • the oil return groove 2d formed in the oil ring main body 2 of the present invention has an oil ring radial depth A, and the web 4 has an oil ring radial width B before the oil return groove 2d is formed. Even if the groove has a very shallow depth with A / B of about 0.05, the effect of reducing oil consumption can be obtained. Therefore, considering the balance between the rigidity of the oil ring and the oil consumption performance, it is more preferable to set the A / B within the range of 0.05 to 0.50.
  • the shape of the oil return groove 2d formed in the oil ring main body 2 of the present invention is not limited to the shape shown in FIG.
  • a straight line configured from a position indicated by G in the drawing toward the bottom surface of the oil return groove 2 d is formed in a substantially tapered shape.
  • the oil ring 1 for an internal combustion engine according to the present invention includes the side wall of the oil return groove 2d configured between the curved surface of the opening edge of the coil expander housing recess 2b and the curved surface of the opening edge of the oil return hole 7. Can be formed so as to be inclined toward the opening side of the coil expander housing recess 2b.
  • the oil return groove 2d formed in the oil ring main body 2 is composed of a straight line and a curve that continues to the straight line
  • the oil return groove 2d formed in the oil ring body 2 is an oil ring 1 for an internal combustion engine according to the present invention. It is possible to effectively prevent sludge stagnation and to effectively suppress the oxidation and to stably reduce oil consumption for a long period of time.
  • the width B in the oil ring radial direction before the oil return groove 2d of the web 4 constituting the oil ring body 2 is preferably 0.3 mm or more.
  • B indicates the width in the radial direction of the oil ring before the oil return groove 2 d of the web 4 is formed.
  • the width of the web 4 becomes too thin.
  • the strength of the oil ring main body 2 is lowered, and sufficient durability cannot be obtained when the oil ring is used for an internal combustion engine.
  • the width of the web 4 is too thin, the oil ring body 2 is likely to be deformed during processing, and the oil scraping function of the oil ring 1 cannot be stabilized.
  • the oil return hole 7 provided in the web 4 constituting the oil ring body 2 has an opening width along the circumferential direction of the oil ring body 2 (C in FIG. 6).
  • the opening height (height indicated by D in FIG. 6) along the oil ring axis direction is preferably 0.2 mm to 0.8 mm.
  • FIG. 6 is a front view of a main part viewed from the outside in the radial direction of the oil ring in order to explain the shape of the oil return hole provided in the oil ring main body of the present invention.
  • the oil ring main body 2 of the present invention has an opening area of the oil return hole 7 that is too small when the opening width C is shorter than 0.5 mm or the opening height D is lower than 0.2 mm.
  • the oil scraped off by the oil ring 1 cannot be quickly discharged into the oil drain hole 12 provided on the back side of the oil ring.
  • the oil ring main body 2 of the present invention has an area of the oil return hole 7 that is too large when the opening width C is longer than 5.0 mm or the opening height D is higher than 0.8 mm.
  • the strength of the oil ring body 2 is reduced, and sufficient durability cannot be obtained when the oil ring is used for an internal combustion engine.
  • the area of the oil return hole 7 is too large, the oil ring main body 2 is likely to be deformed when processing the oil ring main body 2, and the oil scraping function is reduced.
  • the shape of the oil return hole 7 is not limited to a shape in which a side corresponding to the opening height D of both ends of the rectangular shape is formed as an arc-shaped side having a constant curvature radius R as shown in FIG.
  • various shapes such as a rectangle, a circle, an ellipse, and a side corresponding to the opening height D may be appropriately selected and used.
  • the oil ring main body 2 preferably has an oil ring axial width (width indicated by h1 in FIG. 2) of 1.0 mm to 2.5 mm.
  • the tension ratio of the oil ring 1 to the cylinder bore diameter is preferably 0.05 N / mm to 0.5 N / mm.
  • the oil ring 1 for an internal combustion engine has a tension ratio (value calculated by [oil ring tension (N)] / [cylinder bore diameter (mm)]) of 0.05 N with respect to a cylinder bore diameter (not shown). / Mm to 0.5 N / mm.
  • the tension ratio with respect to the cylinder bore diameter is smaller than 0.05 N / mm, the pressing force of the outer peripheral sliding surfaces 8 and 9 of the oil ring body 2 against the inner wall surface 21 of the cylinder 20 becomes insufficient. Therefore, in this case, the outer peripheral sliding surfaces 8 and 9 cannot sufficiently scrape off excess oil, leading to an increase in oil consumption.
  • the tension ratio to the cylinder bore diameter is larger than 0.5 N / mm, the pressing force of the outer peripheral sliding surfaces 8 and 9 against the inner wall surface 21 of the cylinder 20 becomes too large and the frictional force becomes high, resulting in fuel consumption. Will be reduced.
  • the frictional force between the cylinder and the oil ring tends to be proportional to the magnitude of the tension of the oil ring.
  • the curve formed in the oil ring axial section of the oil return groove 2d formed in the oil ring body 2 extends from the coil expander housing recess 2b.
  • the radius of curvature of the curve is preferably 0.01 to 0.30 mm.
  • FIG. 3A illustrates a portion surrounded by a in FIG.
  • the curve formed in the oil ring axial cross section of the oil return groove 2d formed in the oil ring main body 2 of the present invention is a radius of curvature of an extended curve connected from the coil expander housing recess 2b (FIG. 3 (a )
  • the radius of curvature R of the extended curve is less than 0.01 mm, the coil expander 3 is easily worn and damaged, and the tension of the coil expander is reduced, so that oil consumption increases. At the same time, the gas sealing performance is lowered.
  • the pitch in the circumferential direction of the web 4 of the oil return hole 7 provided in the web 4 constituting the oil ring main body 2 is 3 It is preferably 5 mm to 10.0 mm.
  • the pitch in the circumferential direction of the web 4 of the oil return holes 7 provided in the web 4 constituting the oil ring main body 2 is indicated by E.
  • the oil ring 1 for an internal combustion engine according to the present invention can improve both the durability and oil consumption performance of the oil ring 1 when the pitch E is in the range of 3.5 mm to 10.0 mm.
  • the pitch E is less than 3.5 mm, the distance between the oil return holes 7 in the web 4 is too short, the strength of the oil ring body 2 is weakened, and the durability of the oil ring 1 is inferior. It is not preferable.
  • the pitch E exceeds 10.0 mm, the distance between the oil return holes 7 in the web 4 is too long, and the oil scraped off by the oil ring 1 cannot be released to the back side of the piston. It will increase.
  • the pitch in the circumferential direction of the web 4 of the oil return hole 7 provided in the web 4 constituting the oil ring body 2 is E, and the web 4 of the oil return hole is in the web 4.
  • the pitch in the circumferential direction of the web 4 described above is indicated by E
  • the length of the oil return hole 7 in the circumferential direction of the web 4 is indicated by C.
  • the relationship “C / (EC)” between the pitch E and the length C of the oil return hole 7 in the circumferential direction of the web 4 is 0.1.
  • the thickness of the nitride layer is preferably set to 150 ⁇ m or less.
  • the oil ring main body 2 can improve durability by curing the outer surface by performing nitriding treatment. This is because there is a background in which higher wear resistance is required for the oil ring body 2 due to the recent increase in the speed and load of the internal combustion engine for automobiles.
  • the oil ring main body 2 is mainly made of a steel material, and the oil ring main body 2 is provided with a very hard nitrided layer made of nitride produced by reacting with chromium or iron by nitriding the oil ring main body 2. . That is, the oil ring main body 2 is formed with a nitride layer on the surface thereof, so that it has excellent wear resistance and scuff resistance against the cylinder, and can withstand use under more severe conditions. Can be provided. However, if the entire base material of the oil ring main body 2 is nitrided by performing the nitriding treatment, the oil ring main body 2 becomes too hard and brittle, and the breakage resistance is lowered. Therefore, when nitriding the oil ring main body 2 of the present invention, it is preferable to set the nitrided layer to have a thickness of 150 ⁇ m or less.
  • FIG. 7 is a cross-sectional view showing a state in which the outer surface of the oil ring main body of the present invention is subjected to nitriding treatment, cut in the oil ring axial direction.
  • FIG. 7 shows that the nitride layer 30 is formed on the outer surface of the oil ring main body 2.
  • the thickness of the nitride layer 30 indicated by F in the drawing is preferably set to be 150 ⁇ m or less.
  • the durability of the oil ring affects the frictional force between the oil ring outer peripheral sliding surface and the cylinder inner wall surface, as described above, the oil ring tension is considered, It is also affected by how the metals are combined. For example, if the sliding metal is made of chrome or aluminum, seizure is likely to occur. Therefore, in consideration of the material of the metal, it is common to apply a coating with excellent wear resistance, and the nitriding treatment is performed on the outer surface of the oil ring main body for the same reason.
  • the oil ring outer circumferential sliding surface if necessary, the chromium nitride (Cr 2 N, CrN) coating and made of chromium nitride (Cr 2 N, CrN) from a mixture of chromium (Cr) From the viewpoint of wear resistance, it is more preferable to form an ion plating film. In addition, it is possible to improve the durability of the oil ring by forming a coating of chromium-boron nitride (Cr-BN), DLC (diamond-like carbon), etc. on the outer ring sliding surface of the oil ring. Can do.
  • Cr-BN chromium-boron nitride
  • DLC diamond-like carbon
  • Example 1 an actual machine test of a 4-cylinder gasoline engine having a displacement of 2000 cc and a cylinder bore diameter of 86 mm was conducted, and an oil return groove with or without an oil return groove on the inner peripheral surface of the coil expander housing recess of the oil ring was used. It was confirmed whether there would be a difference in consumption.
  • the engine was operated under full load (WOT) at a rotational speed of 5000 rpm for 10 hours.
  • WOT full load
  • the combination of the piston ring was a 1st ring, a 2nd ring, and an oil ring.
  • the first ring made of 10Cr steel having an axial width (h1) of 1.2 mm and a radial width (a1) of 2.9 mm was subjected to gas nitriding treatment.
  • an FC material having an axial width (h1) of 1.2 mm and a radial width (a1) of 3.4 mm was used.
  • the 10Cr steel constituting the 1st ring and the FC material constituting the 2nd ring will be described.
  • the 10Cr steel mentioned here is carbon 0.50 mass%, silicon 0.21 mass%, manganese 0.30 mass%, chromium 10.1 mass%, phosphorus 0.02 mass%, sulfur 0.01 mass%, and the balance. It has a composition of iron and inevitable impurities and has been subjected to gas nitriding treatment.
  • FC material said here is carbon 3.41 mass%, silicon 2.05 mass%, manganese 0.65 mass%, phosphorus 0.30 mass%, sulfur 0.08 mass%, chromium 0.10 mass. %, Copper 0.10% by mass, the balance iron and unavoidable impurities, FC250 material equivalent.
  • the oil ring used in Example 1 has an oil ring main body axial width (h1) of 2.00 mm, an oil ring radial width (a1) of 2.00 mm, and the oil ring radial direction of the oil ring after the coil expander is arranged.
  • the width (a12) is set to 2.74 mm.
  • the oil ring used in the first embodiment has an oil return groove formed so as to be connected to the coil expander housing recess in the outer peripheral shape of the oil ring axial section, and a straight line and a curve continuous to the straight line.
  • the oil return groove is provided with an extended curved surface (curvature radius is 0.10 mm) connected from the coil expander housing recess. Further, in the oil ring of Example 1, when the oil ring radial depth of the oil return groove is A and the oil ring radial width before forming the oil return groove of the web is B, A / B is 0. .08, and the A / B falls within the range of 0.05 to 0.50 which is the condition of the present invention. That is, the oil ring used in Example 1 specifically has the following specifications. The detailed settings of the oil ring used in Example 1 are shown in Table 1 below. In addition, the oil ring axial direction width
  • Oil ring radial depth of oil return groove (A): 0.04 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.49 mm
  • Oil ring axial width of oil return groove (X): 0.70mm
  • Opening width of oil return hole (C): 2.00 mm
  • Opening height of oil return hole (D): 0.50 mm
  • Tension ratio to cylinder bore diameter 0.24 N / mm
  • the oil ring main body which comprises the oil ring said here is carbon 0.70 mass%, silicon 0.25 mass%, manganese 0.30 mass%, chromium 8.0 mass%, phosphorus 0.02 mass%, So-called 8Cr steel having a composition of 0.01 mass% sulfur, the balance iron and inevitable impurities was used.
  • the nitrided layer the layer indicated by F in FIG. 7
  • nitriding with a thickness of 100 ⁇ m in the oil ring radial direction It was confirmed that a layer was formed.
  • And coil expander is carbon 0.55 mass%, silicon 1.41 mass%, manganese 0.65 mass%, chromium 0.68 mass%, copper 0.06 mass%, phosphorus 0.01 mass%, sulfur
  • a material equivalent to the SWOSC-V material having a composition of 0.01% by mass, balance iron and inevitable impurities was used.
  • Example 1 so-called 8Cr steel is used for the material of the oil ring main body, but the material used depending on the vehicle type or the like is usually used properly.
  • 10Cr steel and 13Cr steel with an increased chromium content, and 17Cr steel with an increased chromium content are mainly used for diesel vehicles in which the engine is exposed to higher loads.
  • the SWRH material is preferably used as the material of the oil ring, but the material is limited to these materials. It is not a thing.
  • the oil ring of the present invention is affected by nitriding.
  • nitrogen atoms enter and diffuse into the steel from the surface to form a nitrided layer.
  • the nitride in the nitride layer is mainly a compound with chromium, vanadium, molybdenum or a compound in which iron is dissolved.
  • Chromium in steel exists as chromium carbide in addition to solid solution in the base metal, but since it has a greater affinity for nitrogen than carbon, nitrogen diffused from the surface by nitriding treatment reacts with chromium carbide. Chromium nitride is produced.
  • a relatively hard nitride layer can be obtained by dispersing a large amount of hard chromium nitride for the reasons described above, and excellent wear resistance. Has scuffing resistance.
  • the nitriding treatment has a low processing cost and has a smaller influence on the environment than chromium plating.
  • the liquid nitriding (salt bath nitriding) method, the gas nitriding method, etc. are mentioned. In the present invention, when nitriding is performed, it is preferable to use an inexpensive gas nitriding method.
  • the nitride layer when forming a nitride layer only on a part of the oil ring body, after forming the nitride layer on the entire surface of the oil ring body, as a method of removing the unnecessary nitride layer by post-processing, or as a masking process,
  • the nitride layer can be partially formed by a method in which a nitriding inhibitor (water glass, nickel-phosphorous plating, or the like) is attached to a portion where the nitride layer is not previously formed, and then nitriding is performed.
  • the nitride layer can be formed by ion nitridation that can be partially formed.
  • Example 1 the oil consumption was confirmed using an oil ring having a tension ratio to the cylinder bore diameter of 0.24 N / mm.
  • Table 1 shows the oil consumption ratio of Example 1 based on the oil consumption obtained by conducting an actual machine test using an oil ring that does not satisfy the conditions of the present invention (Comparative Example 2 shown below). As a relative ratio with respect to this. As a result, the oil consumption ratio of Example 1 was 0.78.
  • Example 2 an actual machine test of a four-cylinder gasoline engine having a displacement of 1500 cc and a cylinder bore diameter of 73 mm was conducted, and an oil return groove was provided with or without an oil return groove on the inner peripheral surface of the coil expander housing recess of the oil ring. It was confirmed whether there would be a difference in consumption.
  • the engine is driven under the same driving conditions as in the first embodiment, and it is confirmed how the difference in the shape of the oil ring body used affects the characteristics (oil consumption performance) of the oil ring. Went.
  • the piston ring used was a 1st ring, a 2nd ring, and an oil ring as in Example 1.
  • the 1st ring at this time was the same as in Example 1, but was obtained by subjecting a 10Cr steel with an axial width (h1) of 1.2 mm and a radial width (a1) of 2.9 mm to gas nitriding treatment.
  • the 2nd ring was made of FC material having an axial width (h1) of 1.2 mm and a radial width (a1) of 3.4 mm.
  • the oil ring of Example 2 was an oil ring for an internal combustion engine having a two-piece configuration, as in Example 1.
  • the oil ring at this time was gas-nitrided on the oil ring body made of 8Cr steel in the same manner as in Example 1 (the thickness of the nitrided layer indicated by F in FIG. 7 is 100 ⁇ m). And a coil expander made of a SWOSC-V material equivalent material was used.
  • the compositions of the 1st ring, 2nd ring, and oil ring used in Example 2 were the same as in Example 1. However, the oil ring used in Example 2 was different from that in Example 1 with respect to its shape.
  • the axial width (h1) of the oil ring main body is 1.50 mm
  • the oil ring radial width (a1) is 1.70 mm
  • the width (a12) is set to 2.14 mm.
  • the shape of the oil return groove formed so as to be connected to the coil expander housing concave portion is a straight line and a curve continuous to the straight line in the outer peripheral shape of the oil ring axial section.
  • the oil return groove is provided with an extended curved surface (curvature radius of 0.09 mm) connected from the coil expander housing recess.
  • the oil ring used in Example 2 specifically has the following specifications.
  • the detailed settings of the oil ring used in Example 2 are shown in Table 2 below.
  • Oil ring radial depth of oil return groove (A): 0.09 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.49 mm
  • Oil ring axial width of oil return groove (X): 0.65mm
  • Opening width of oil return hole (C): 1.50 mm
  • Opening height of oil return hole (D): 0.40 mm
  • Tension ratio to cylinder bore diameter 0.07 N / mm
  • Example 2 the oil consumption was confirmed using an oil ring having a tension ratio to the cylinder bore diameter of 0.07 N / mm.
  • Table 1 shows the oil consumption ratio of Example 2 based on the oil consumption obtained by conducting an actual machine test using an oil ring (Comparative Example 4 shown below) that does not satisfy the conditions of the present invention. As a relative ratio with respect to this. As a result, the oil consumption ratio of Example 2 was 0.85.
  • the same engine as in the second embodiment is used, and the engine is driven under the same driving conditions as in the second embodiment.
  • the effect was confirmed.
  • the piston ring to be used was made into the 1st ring, the 2nd ring, and the oil ring similarly to Example 1 and Example 2.
  • the first ring at this time was gas-nitrided on an axial width (h1) of 1.2 mm and a radial width (a1) of 2.9 mm made of 10Cr steel, as in Example 1 and Example 2. Things were used.
  • the 2nd ring was made of FC material having an axial width (h1) of 1.2 mm and a radial width (a1) of 3.4 mm.
  • the oil ring of Example 3 was an oil ring for an internal combustion engine having a two-piece configuration, as in Examples 1 and 2.
  • the oil ring at this time was obtained by subjecting the oil ring body made of 8Cr steel to gas nitriding treatment in the same manner as in Example 1 and Example 2 (the thickness of the nitrided layer indicated by F in FIG. 7 was 100 ⁇ m).
  • the coil expander made of a SWOSC-V material equivalent material was used.
  • the compositions of the 1st ring, 2nd ring, and oil ring used in Example 3 were the same as those in Example 1 and Example 2. However, the oil ring used in Example 3 was different from that in Example 1 and Example 2 with respect to its shape.
  • the oil ring used in Example 3 has an axial width (h1) of the oil ring body of 1.50 mm, an oil ring radial width (a1) of 1.70 mm, and the oil ring radial direction of the oil ring after the coil expander is arranged.
  • the width (a12) is set to 2.32 mm.
  • the shape of the oil return groove formed so as to be connected to the coil expander housing recess is a straight line and a curve continuous to the straight line in the outer peripheral shape of the oil ring axial section.
  • the oil return groove is provided with an extended curved surface (curvature radius of 0.09 mm) connected from the coil expander housing recess.
  • Example 3 when the oil ring radial depth of the oil return groove is A and the oil ring radial width before forming the oil return groove of the web is B, A / B is 0. .30, and the A / B falls within the range of 0.05 to 0.50 which is the condition of the present invention. That is, the oil ring used in Example 3 specifically has the following specifications. The detailed settings of the oil ring used in Example 3 are shown in Table 2 below.
  • Oil ring radial depth of oil return groove (A): 0.17 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.57 mm
  • Oil ring axial width of oil return groove (X): 0.65mm
  • Opening width of oil return hole (C): 1.50 mm
  • Opening height of oil return hole (D): 0.40 mm
  • Tension ratio to cylinder bore diameter 0.07 N / mm
  • Example 3 the oil consumption was confirmed using an oil ring having a tension ratio with respect to the cylinder bore diameter of 0.07 N / mm.
  • Table 1 shows the oil consumption ratio of Example 3 based on the oil consumption obtained by conducting an actual machine test using an oil ring (Comparative Example 4 shown below) that does not satisfy the conditions of the present invention. As a relative ratio with respect to this. As a result, the oil consumption ratio of Example 3 was 0.85.
  • Comparative Example 1 is used for comparison with Example 1.
  • Comparative Example 1 the same engine as in Example 1 was used and the engine was driven under the same driving conditions as in Example 1 to confirm the oil consumption.
  • the piston ring of the comparative example 1 used what combined the 1st ring, the 2nd ring, and the oil ring similarly to Example 1.
  • the 1st ring and the 2nd ring are the same as those used in the first embodiment.
  • the oil ring of Comparative Example 1 was the same as that of Example 1 except for the shape of the oil return groove of the oil ring body.
  • the oil ring of the comparative example 1 does not have the extended curved surface connected from the coil expander accommodation recessed part in the said oil return groove
  • the oil ring used in Comparative Example 1 has the following specifications. Note that more detailed settings of the oil ring used in Comparative Example 1 are shown in Table 1 below together with Example 1.
  • Oil ring radial depth of oil return groove (A): 0.04 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.49 mm
  • Oil ring axial width of oil return groove (X): 0.70mm
  • Opening width of oil return hole (C): 2.00 mm
  • Opening height of oil return hole (D): 0.50 mm
  • Tension ratio to cylinder bore diameter 0.24 N / mm
  • Comparative Example 2 Comparative Example 2 is used for comparison with Example 1.
  • Comparative Example 2 the same engine as in Example 1 was used and the engine was driven under the same driving conditions as in Example 1 to confirm the oil consumption.
  • the piston ring of the comparative example 2 used what combined the 1st ring, 2nd ring, and the oil ring similarly to Example 1 as the piston ring.
  • the 1st ring and the 2nd ring are the same as those used in the first embodiment.
  • the oil ring of Comparative Example 2 was the same as that of Example 1 except that no oil return groove was formed in the oil ring body.
  • the oil ring used in Comparative Example 2 has the following specifications. Note that more detailed settings of the oil ring used in Comparative Example 2 are shown in Table 1 below together with Example 1.
  • Oil ring radial depth of oil return groove (A): 0 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.45 mm
  • Oil ring axial width of oil return groove (X): 0 mm
  • Opening width of oil return hole (C): 2.00 mm
  • Opening height of oil return hole (D): 0.50 mm
  • Tension ratio to cylinder bore diameter 0.20 N / mm
  • the oil ring of Comparative Example 2 was used in which the outer peripheral shape in the oil ring axial cross section was constituted only by a straight line.
  • a / B becomes 0,
  • the A / B is outside the range of 0.05 to 0.50 which is the condition of the present invention.
  • the oil consumption was confirmed using the thing whose tension ratio with respect to a cylinder bore diameter is 0.20 N / mm.
  • Table 1 the oil consumption ratio obtained by the actual machine test using the combination of the piston rings of Comparative Example 2 is shown as the reference “1”.
  • Comparative Example 3 is used for comparison with Example 2 and Example 3.
  • Comparative Example 3 the same engine as in Example 2 and Example 3 was used and the engine was driven under the same driving conditions as in Example 2 and Example 3 to confirm the oil consumption.
  • the piston ring of the comparative example 3 used what combined the 1st ring, the 2nd ring, and the oil ring similarly to Example 2 and Example 3.
  • the 1st ring and the 2nd ring are the same as those used in the second and third embodiments.
  • the oil ring of Comparative Example 3 was the same as that of Example 2 except for the shape of the oil return groove of the oil ring body.
  • the oil return groove is formed in the oil ring body, the oil return groove is not provided with an extended curved surface connected from the coil expander housing recess.
  • the oil ring used in Comparative Example 3 has the following specifications.
  • Oil ring radial depth of oil return groove (A): 0.09 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.49 mm
  • Oil ring axial width of oil return groove (X): 0.65mm
  • Opening width of oil return hole (C): 1.50 mm
  • Opening height of oil return hole (D): 0.40 mm
  • Tension ratio to cylinder bore diameter 0.07 N / mm
  • Comparative Example 4 is used for comparison with Example 2 and Example 3.
  • Comparative Example 4 the same engine as in Example 2 and Example 3 was used and the engine was driven under the same driving conditions as in Example 2 and Example 3 to confirm the oil consumption.
  • the piston ring of the comparative example 4 used what combined the 1st ring, the 2nd ring, and the oil ring similarly to Example 2 and Example 3.
  • the 1st ring and the 2nd ring are the same as those used in the second and third embodiments.
  • the oil ring of Comparative Example 4 was the same as that of Example 2 except that no oil return groove was formed in the oil ring body.
  • the oil ring used in Comparative Example 4 has the following specifications.
  • the more detailed setting of the oil ring used in Comparative Example 4 is shown in Table 2 below together with Example 2 and Example 3.
  • Oil ring radial depth of oil return groove (A): 0 mm
  • Oil ring radial width (B) before forming the oil return groove of the web 0.49 mm
  • Oil ring axial width of oil return groove (X): 0 mm
  • Opening width of oil return hole (C): 1.50 mm
  • Opening height of oil return hole (D): 0.40 mm
  • Tension ratio to cylinder bore diameter 0.07 N / mm
  • FIG. 8 shows the oil ring axial cross-sectional shape of the oil return groove and the oil consumption ratio when an oil ring having an axial width of 2.00 mm is used. It is a graph which shows the relationship.
  • FIG. 8 shows the results of comparing oil consumption for Example 1, Comparative Example 1, and Comparative Example 2 in which the shapes of the oil rings shown in Table 1 below are different.
  • the oil consumption ratio in FIG. 8 is a ratio when the numerical value of oil consumption (g / h) when the oil ring (without oil return groove) of Comparative Example 2 is used is 1.00.
  • the oil consumption of the example 1 was the lowest, and the oil return groove formed in the oil ring body was extended from the coil expander housing recess. It has a curved surface (the radius of curvature is 0.10 mm).
  • the oil consumption of the comparative example 1 was the next result with the least oil consumption.
  • the oil return groove was formed in the oil ring body, the coil expander was formed in the oil return groove.
  • the extended curved surface connected from the housing recess is not provided.
  • the oil consumption of the comparative example 2 resulted in the largest amount of oil consumption, and the oil return groove was not formed.
  • the oil return groove formed in the oil ring main body has an extended curved surface connected from the coil expander housing concave portion with a curvature radius (0 .01 to 0.30 mm) is more preferable from the viewpoint of reducing oil consumption.
  • FIG. 9 shows the oil ring axial cross-sectional shape of the oil return groove when an oil ring having an axial width of 1.50 mm is used. It is a graph which shows the relationship with an oil consumption ratio.
  • FIG. 9 shows the results of comparing oil consumption for Example 2, Example 3, Comparative Example 3, and Comparative Example 4 in which the shapes of the oil rings shown in Table 2 below are different.
  • the oil consumption ratio in FIG. 9 is a ratio when the numerical value of oil consumption (g / h) when the oil ring (without oil return groove) of Comparative Example 4 is used is 1.00.
  • the result of the least oil consumption was obtained when the oil rings of Example 2 and Example 3 were used, and the oil return groove formed in the oil ring body was a coil expander accommodating recess. Are provided with an extended curved surface (curvature radius of 0.09 mm) connected to each other.
  • the oil consumption of the comparative example 3 was the next result with the least oil consumption.
  • the oil return groove was formed in the oil ring body, a coil expander was formed in the oil return groove.
  • the extended curved surface connected from the housing recess is not provided.
  • the oil consumption of the comparative example 4 resulted in the largest amount of oil consumption, and the oil return groove was not formed.
  • the oil return groove formed in the oil ring main body has the condition that the extended curved surface connected from the coil expander accommodating recess is defined in the present invention. It has been found that providing with a radius of curvature (0.01 to 0.30 mm) is more preferable from the viewpoint of reducing oil consumption.
  • the oil ring of the example satisfying the conditions defined in the present invention can obtain the effect of reducing the oil consumption as compared with the oil ring of the comparative example not satisfying the conditions.
  • the reason why it is preferable to set the dimensions of the main body within the condition range defined in the present invention will be shown by conducting the following confirmation test.
  • FIG. 10 is a graph showing the relationship between the oil ring radial width of the web constituting the oil ring body and the generated stress.
  • FIG. 10 shows a result of a test conducted based on the stress measurement method described above, and the relationship between the radial direction width of the oil ring main body and the generated stress.
  • the generated stress when the oil ring radial width of the web is 0.06 mm is about 550 MPa
  • the generated stress when the oil ring radial width of the web is 0.20 mm is about 250 MPa
  • the generated stress was about 220 MPa when the oil ring radial width of the web was 0.45 mm.
  • FIG. 10 shows the data obtained here connected by smooth lines.
  • the pressure is preferably 500 MPa or less. From FIG. 10, it can be seen that the stress generated in the oil ring main body exceeds 500 MPa when the oil ring radial width of the web constituting the oil ring is less than about 0.08 mm. From this result, considering the durability required for the oil ring for the internal combustion engine, it is understood that the oil ring radial width of the web constituting the oil ring body needs to be about 0.08 mm or more.
  • the condition defined in the present invention is that the oil ring radial depth of the oil return groove is A,
  • the oil ring radial width B before the oil return groove of the web constituting the oil ring main body needs to be about 0.16 mm or more in calculation. become.
  • the oil ring for an internal combustion engine is more preferably about 350 MPa or less empirically considering the use under severe conditions such as an oil ring for a diesel engine. From FIG.
  • the stress generated in the oil ring body exceeds 350 MPa when the width of the web constituting the oil ring in the oil ring radial direction is less than about 0.15 mm.
  • the oil ring radial width B before the formation of the oil return groove of the web needs to be about 0.30 mm or more in calculation.
  • the oil ring for an internal combustion engine according to the present invention has an oil ring radial width B of 0 before formation of the oil return groove of the web constituting the oil ring main body when considering use under severe conditions. More preferably, it is 30 mm or more.
  • the oil ring for an internal combustion engine according to the present invention is an oil return groove formed by connecting to the inner peripheral side of the oil ring main body in the oil ring axial section, and the outer peripheral shape thereof is a straight line and the straight line.
  • the oil return groove has a shape satisfying the conditions specified in the present invention, so that excess oil on the inner wall surface of the cylinder is scraped off and flows down to the piston back surface. Can be obtained stably over a long period of time.
  • the oil ring for an internal combustion engine according to the present invention is applicable to any internal combustion engine.
  • this oil ring By using this oil ring, the oil consumption during driving of the internal combustion engine is reduced, and the wear of the oil ring itself is reduced. The performance can be improved, and at the same time, it is possible to stabilize the pressing force on the inner wall surface of the cylinder and improve the degree of design freedom necessary for enhancing these functions. Therefore, it is preferable to use the oil ring for an internal combustion engine according to the present invention for an automobile internal combustion engine because it is possible to reduce the frequency of oil supply, to effectively use resources, and to reduce the environmental load.
  • Oil ring 2 for internal combustion engines Oil ring main body 2a Joint part 2b Coil expander accommodation recessed part 2c Outer peripheral groove 2d Oil return groove 3 Coil expander 4 Web 5 1st rail 6 2nd rail 7 Oil return hole 10 Piston 12 Oil drain hole 20 Cylinder 21 Cylinder inner wall surface A Oil ring radial depth B of oil return groove Oil ring radial width C of web before formation of oil return groove C Oil return hole opening width D Oil return hole opening height E Oil return Hole pitch F Nitrided layer thickness G Oil return groove curved surface X Oil return groove oil ring axial width h1 Oil ring body axial width

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 シリンダ内壁面の余分なオイルを掻き取り、ピストン裏面に流下させる機能が長期間安定して得られ、内燃機関の駆動時のオイル消費量を確実に低減できる内燃機関用オイルリングの提供を目的とする。この目的を達成するため、オイルリング本体は、その内周面に沿って、オイルリング軸方向の断面が略半円状のコイルエキスパンダ収容凹部を備え、更に、当該コイルエキスパンダ収容凹部の内周面には、その内周方向に沿って、掻き落としたオイルをピストン裏面へスムーズに戻すためのオイル戻し溝が形成され、当該オイル戻し溝は、オイルリング軸方向断面において、その外周形状が直線と当該直線に連続する曲線とから構成される内燃機関用オイルリングを採用する。

Description

内燃機関用オイルリング
 本件発明は、オイルリング本体とコイルエキスパンダとから成る2ピース構成の内燃機関用オイルリングに関する。
 従来より、内燃機関に用いられるピストンリングにおいては、燃費向上の市場要求に伴い、シリンダ内におけるピストンのスムーズな往復運動を実現すべく、シリンダ内壁面に対して低摩擦化を図れるものが求められている。そのため、シリンダ内壁面の余分なエンジンオイルを掻き取り、ピストン裏面に流下させる役割を持つ内燃機関用オイルリングに関しても同様に、シリンダ内壁面との間に生じる摩擦力を低減して燃費の向上を図ると共にオイル消費量の低減を図るべく、オイルリング本体の軸方向幅を薄くする薄幅化技術が追求されている。
 なお、オイルリングは、薄幅化することでシリンダの内壁面への追従性を向上させ、オイル消費量を削減することができるが、同時にオイルリングの張力が低下し過ぎることによりオイル掻き性能の低下を招くこととなる。このような薄幅化技術に対応した内燃機関用オイルリングとしては、オイルリング本体とコイルエキスパンダとから成る2ピース構成のもの(以下、2ピースオイルリングと称する。)がある。ここで、コイルエキスパンダは、オイルリング本体を径方向外方に押圧付勢することにより、オイルリングのオイル掻き性能を向上させるものである。また、オイルリング本体は、その上側部分及び下側部分を構成する上側レール及び下側レールと、これら各レールと連結するウェブとからなり、当該上側レール及び下側レール各々の外周摺動面が、ピストンが往復動作する際にシリンダ内壁面に対して油膜を介した状態で摺動する。
 しかし、このような2ピースオイルリングは、コイルエキスパンダがオイルリング本体の内周に密着した状態で配置され、オイルリング本体に形成されているオイル戻し孔を大部分塞いでしまうことで、上側レール及び下側レールにて掻き落としたオイルをすばやくオイルリングの背面側に逃がすことを阻害する恐れがある。なお、2ピースオイルリングは、オイルリング本体に形成されているオイル戻し孔の大きさを大きくし過ぎるとオイルリング本体の強度低下を招く恐れがある。そこで、2ピースオイルリングにおいては、オイルリング軸方向の幅の薄幅化が図られたものでありながらも、シリンダ内壁面の余分なエンジンオイルを掻き取りピストン裏面に流下させる機能を長期間安定して得られ、オイル消費量の低減を図ることができるものが求められてきた。
 例えば、特許文献1(特開昭61-45172号)には、シリンダ内壁面から過剰のオイルを掻き取るためのコイルエキスパンダ付きオイルリング(所謂2ピースオイルリング)について開示されている。具体的には、特許文献1には、「剛性の塊である上下のサイドレールとこれら両サイドレールを連結する多数のオイル孔を備えた、薄肉ウェブとから構成される断面略I形の鋼製オイル掻きリングを有し、該オイル掻きリングの外周には掻き取ったオイルを受容するための周溝が形成され、他方、内周には、環状のコイルエキスパンダを収容するための周溝が形成され、該コイルエキスパンダは横断面で見て上下のサイドレールと実質上二点のみで接触し、これら接触点以外の部分においてコイルエキスパンダは上記ウェブから隔てられ該ウェブとの間に所定の微小間隙が形成されていることを特徴とするコイルエキスパンダ付オイルリング」が開示されている。
 また、特許文献2(特開2006-194272号)には、オイルの流通性が改善されるオイルリングに用いられるオイルリング用線材について開示されている。具体的には、特許文献2には、「少なくとも一方から他方にオイルを流通させる貫通油孔を備えた内燃機関等のピストンのオイルリングとして使用される、前記貫通油孔が形成されたオイルリング用線材であって、前記貫通油孔は、前記オイルの流通方向に対し前記貫通油孔の相対する側壁の少なくとも一方が実質的に傾斜したテーパ部を有しているオイルリング用線材」が開示されている。なお、特許文献2のオイルリング用線材は、2ピース型オイルリングとして用いる場合において、一対のフランジ部と当該フランジ部を連結するウエブ部とを有し、当該ウエブ部に貫通油孔が形成されているものが好ましいとされている。
特開昭61-45172号公報 特開2006-194272号公報
 しかしながら、特許文献1に記載されたオイルリングは、オイルリング本体とコイルエキスパンダとの間に形成されている隙間を設ける技術が開示されているものの、どの程度の隙間が必要であるのかが明確ではなく、当業者が実施しようとしてもかなりの困難が伴うものである。ちなみに、オイルリング本体とコイルエキスパンダとの間に形成されている隙間が大きくなり過ぎて、オイルリング本体を構成するウェブのオイルリング径方向幅が薄くなると、オイルリング本体の加工の際において変形が起こり易くなる。そして、オイルリング本体に変形が生じると、オイルリングのシリンダ内壁面に対する押圧力が局所的に減少し、オイルの掻き残しが生じてオイル消費量の増大を招き易くなる。更に、オイルリングは、シリンダ内壁面に対する押圧力が局所的に減少することで、オイル上がりが生じてエンジンのシリンダ燃焼室側にオイルが侵入することによって、オイルが一緒に燃焼されて黒煙が発生してしまう場合もある。なお、この問題を解消すべく、オイルリングの張力を高くすると、シリンダ内壁面とオイルリングとの間における摩擦が大きくなり過ぎて、ピストンのスムーズな往復運動を阻害することになる。
 また、特許文献1のオイルリングは、オイルリング本体の内周側のオイルリング軸方向断面における外周形状が略テーパー形状であるために、コイルエキスパンダと上下のサイドレールとが、実質上二点のみで接触するものである。このように、特許文献1のオイルリングにおいては、当該オイルリング本体と当該コイルエキスパンダとがオイルリング軸方向断面でみたときに二点のみで接触しているため、当該接触部で摩耗の促進を招き易く、オイルリングのシリンダ内壁面に対する押圧力が当該オイルリング周方向でばらつく問題がある。なお、オイルリングの周方向において、シリンダ内壁面に対する押圧力のばらつきが大きくなると、オイルリング外周面とシリンダ内壁面との接触面に高面圧部分が生じて潤滑油膜を切り、双方部材に摩耗が生じることとなり好ましくない。
 そして、特許文献2に記載されたオイルリング用線材においては、コイルスプリングを、一対のフランジ部と当該フランジ部を連結するウエブ部とで形成されるオイルリング本体内周側の略半円状凹部内に包み込む状態で収容可能な形状を備えているが、当該略半円状凹部とコイルスプリングとの間に隙間の形成がされていない。従って、特許文献2のオイルリング用線材をオイルリングとして用いた場合には、コイルスプリングがオイルリング本体と密着し、オイルリング本体に形成されているオイル戻し孔を大部分塞いでしまうこととなる。その結果、特許文献2のオイルリング用線材を用いたオイルリングでは、オイルリング外周にて掻き落としたオイルをすばやくオイルリングの背面側に逃がすことができなくなり、オイルリングによるオイル掻き落とし機能が低下し、オイル消費量の増大を招いてしまう。そして、当該オイルリング用線材に設けられている貫通油孔に関しては、テーパー部の角度についての開示はあっても貫通油孔の具体的な大きさ(開口幅及び開口高さ)に関しては設定されていない。すなわち、特許文献2のオイルリング用線材をオイルリングとして用いた場合において、例えば当該貫通油孔の開口部の面積が小さい場合には、スラッジにより孔が閉塞する可能性が増大し、オイル消費量の低減を図るのに必ずしも十分であるとは言い難い。
 以上のことから、本件発明は、シリンダ内壁面の余分なオイルを掻き取り、ピストン裏面に流下させる機能が長期間安定して得られ、内燃機関の駆動時のオイル消費量を確実に低減できる内燃機関用オイルリングの提供を目的とする。
 そこで、本発明者等は、鋭意研究を行った結果、オイルリング本体の形状を、所定の条件を満たした形状とすることで、上述した課題を解決するに到った。以下、本件発明に関して説明する。
 本件発明に係る内燃機関用オイルリングは、オイルリング軸方向断面が略I字型のオイルリング本体と当該オイルリング本体内周側に配置されるコイルエキスパンダとからなり、当該オイルリング本体は、シリンダ内壁面を摺動する第1レールと、第2レールと、当該第1レール及び第2レールがシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔を備えるウェブとで構成され、当該オイルリング本体は、その内周面に沿って、オイルリング軸方向の断面が略半円状のコイルエキスパンダ収容凹部を備え、更に、当該コイルエキスパンダ収容凹部の内周面には、その内周方向に沿って、掻き落としたオイルをピストン裏面へスムーズに戻すためのオイル戻し溝が形成され、当該オイル戻し溝は、オイルリング軸方向断面において、その外周形状が直線と当該直線に連続する曲線とから構成されることを特徴とする。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体に備わるコイルエキスパンダ収容凹部のオイルリング軸方向断面における曲率半径をr1、前記コイルエキスパンダのオイルリング軸方向断面における曲率半径をr2とした場合、r2/r1=0.8~1.0未満であることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体は、前記オイル戻し溝のオイルリング径方向深さをAとし、前記ウェブの当該オイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/B=0.05~0.50であることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体を構成するウェブの前記オイル戻し溝形成前におけるオイルリング径方向幅Bは、0.3mm以上であることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体を構成するウェブに設けるオイル戻し孔は、当該オイルリング本体の円周方向に沿った開口幅が0.5mm~5.0mmであり、且つ、オイルリング軸方向に沿った開口高さが0.2mm~0.8mmであることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体のオイルリング軸方向幅h1は、1.0mm~2.5mmであることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリングのシリンダボア径に対する張力比は、0.05N/mm~0.5N/mmであることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体に形成されるオイル戻し溝の当該オイルリング軸方向断面において構成される曲線は、前記コイルエキスパンダ収容凹部から連接する延設曲線の曲率半径が、0.01~0.30mmであることが好ましい。
 本件発明に係る内燃機関用オイルリングにおいて、前記オイルリング本体を構成するウェブに備わるオイル戻し孔の当該ウェブの周方向におけるピッチをE、当該オイル戻し孔の当該ウェブの周方向における長さをCとした場合、C/(E-C)=0.1~1.2であることが好ましい。
 本件発明に係るオイルリングは、オイルリング本体の形状を本件発明で規定する条件を満足する形状とすることで、ピストン裏面へのオイル戻りがスムーズになり、更に、オイルリングのシリンダ内壁面に対する押圧力のばらつきを長期間安定して抑えることができる。すなわち、本件発明に係るオイルリングを用いることで、主に自動車に使用される内燃機関用のガソリンエンジン、ディーゼルエンジンのオイル消費量を確実に削減できると共に燃費の向上を図ることができるようになる。
本件発明のオイルリング本体と、当該オイルリング本体の内周に配置されるコイルエキスパンダとから構成される2ピースオイルリングの斜視図である。 本件発明に係る内燃機関用オイルリングをピストンのオイルリング溝に装着した状態を説明するためにピストン軸方向で切断して例示した断面図である。 本件発明のオイルリング本体の内周側形状を説明するための要部斜視図である。 本件発明のオイルリング本体に備わるコイルエキスパンダ収容凹部の曲率半径について説明するための要部斜視図である。 本件発明のオイルリング本体に形成されるオイル戻し溝について、図2に示すオイル戻し溝と異なる形状をオイルリング軸方向で切断して例示した断面図である。 本件発明のオイルリング本体に備わるオイル戻し孔の形状を説明するためにオイルリング径方向外方からみた要部正面図である。 本件発明のオイルリング本体の外表面に窒化処理を施した状態をオイルリング軸方向で切断して示した断面図である。 オイルリング軸方向幅が2.00mmの場合における、オイル戻し溝のオイルリング軸方向断面形状とオイル消費量比との関係を示すグラフである。 オイルリング軸方向幅が1.50mmの場合における、オイル戻し溝のオイルリング軸方向断面形状とオイル消費量比との関係を示すグラフである。 オイルリング本体を構成するウェブのオイルリング径方向幅と発生応力との関係を示すグラフである。
 本件発明に係る内燃機関用オイルリングの好ましい実施の形態について、以下に図を用いて示しながら本件発明をより詳細に説明する。
 図1は、本件発明のオイルリング本体と、当該オイルリング本体の内周に配置されるコイルエキスパンダとから構成される2ピースオイルリングの斜視図である。図1に示すように、2ピースオイルリング1は、オイルリング本体2と、コイルエキスパンダ3とから構成されている。また、当該オイルリング本体2は、その断面が略I字型のリングであり、合口部2aを備えている。そして、このオイルリング本体2は、上側の第1レール5と、下側の第2レール6と、これらレールを連結してオイルリング本体2の中間部分に位置するウェブ4とが一体化して構成されている。
 本件発明のオイルリング本体2を構成する第1レール5及び第2レール6は、2ピースオイルリング1の周方向に略円形に形成されている。この第1レール5及び第2レール6の各々の外周摺動面は、シリンダの内壁面と油膜を介して接触し、ピストン軸方向に摺動する。また、ウェブ4は、図1に示すように2ピースオイルリング1の周方向に略円形であって、半径方向に貫通形成されたオイル戻し孔7を備え、且つ、そのオイル戻し孔7が周方向に複数配置されている。そして、図1に示すように、コイルエキスパンダ3は、螺旋状の形態のスプリングを円弧状としたものである。なお、図示はしないが、コイルエキスパンダ3には、当該コイルエキスパンダの合口部を接続し円環状のコイルとするために、当該合口部にジョイント用の芯線が用いられている。
 図2は、本件発明に係る内燃機関用オイルリングをピストンのオイルリング溝に装着した状態を説明するためにピストン軸方向で切断して例示した断面図である。図2に示すように、オイルリング本体2の内周面には、第1及び第2レール5,6及びウェブ4により、コイルエキスパンダ収容凹部2bが周方向に形成されている。そして、オイルリング本体2の外周面側には、双方の第1及び第2レール5,6及びウェブ4により、オイルリング軸方向断面でみたときに凹字状の外周溝2cが形成されている。
 また、図2に示すように、本件発明に係る内燃機関用オイルリング1は、コイルエキスパンダ収容凹部2bがオイルリング軸方向断面でみたときに略半円状となっており、コイルエキスパンダ3がオイルリング軸方向断面でみて当該略半円状部内に包み込まれる状態で収容されている。従って、本件発明に係る内燃機関用オイルリング1によれば、オイルリング本体2の内周を円弧形状とした場合に、当該オイルリング本体2とコイルエキスパンダ3との接触面積を大きく確保することができ、シリンダ内壁面21に対する押圧力の安定化を図ることができる。また、本件発明に係る内燃機関用オイルリング1のように、オイルリング本体2の内周を円弧形状とすることで、オイルリングの周方向において、シリンダ内壁面に対する押圧力に局所的なばらつきが生じ難く、オイルの掻き残しが起こり難くなる。
 ここで、図2を参照しつつ、内燃機関用オイルリング1のオイル掻き落とし機能について、一連の流れを順を追って説明しておく。まず、シリンダ20内をピストン10が往復運動する際に、オイルリング本体2の双方の第1及び第2レール5,6の外周摺動面8,9が、シリンダ20の内壁面21に付着している余分なオイルを掻き落とす。そして、掻き落とされたオイルは、オイルリング本体2の外周溝2c内に一時的に滞留受容された後、オイル戻し孔7を通ってコイルエキスパンダ収容凹部2bに流れる。そして、コイルエキスパンダ収容凹部2bに流されてきたオイルは、オイルリング溝11と連通して設けられているオイルドレイン孔12を通ってピストン10の裏面に流下し、オイルパン(不図示)に戻される。
 上述した内燃機関用オイルリング1のオイル掻き落とし機能における一連の流れの中の、掻き落としたオイルをオイル戻し孔7を通してコイルエキスパンダ収容凹部2bへ流す際において、本件発明に係る内燃機関用オイルリング1によれば、当該オイルの流れを阻害することがない。これは、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2とコイルエキスパンダ3との間にオイル戻し溝2dを形成することで、オイルリング本体2に形成された当該オイル戻し孔7が塞がれないためである。すなわち、本件発明に係る内燃機関用オイルリング1においては、例えオイルリング本体2のコイルエキスパンダ配置側の形状が略半円状であったとしても、当該オイル戻し溝2dが存在することで、内燃機関用オイルリング1が掻き落としたオイルをすばやくオイルリングの背面側に設けられたオイルドレイン孔12に逃がすことができ、オイル消費量を低減させることが可能となる。
 更に、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2に形成されるオイル戻し溝2dがオイルリング軸方向断面において、その外周形状が直線と当該直線に連続する曲線とから構成されることによって、オイルリング1により掻き落とされたオイルを当該オイル戻し溝2d内に滞留するのを抑制することができる。従って、本件発明に係る内燃機関用オイルリング1によれば、オイルリング本体2に形成されるオイル戻し溝2dがオイルリング軸方向断面において、その外周形状が直線と当該直線に連続する曲線とから構成されることで、オイルリング1の掻き落としたオイルをすばやくオイルリングの背面側に設けられたオイルドレイン孔12に逃がすことが可能となる。なお、図2に例示するように、本件発明に係る内燃機関用オイルリング1は、当該オイル戻し溝2dにおける、コイルエキスパンダ収容凹部2bの開口縁及びオイル戻し孔7の開口縁を曲面で形成することで、オイルスラッジの滞留を効果的に防止し、また、酸化をも効果的に抑制して、オイル消費量の削減効果を長期間安定して発揮することができることとなる。
 また、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2に備わるコイルエキスパンダ収容凹部2bにおけるオイル戻し溝2dを除く曲面のオイルリング軸方向断面の曲率半径をr1、コイルエキスパンダ3の外径のオイルリング軸方向断面の曲率半径をr2とした場合、r2/r1=0.8~1.0未満であることが好ましい。
 図3は、本件発明のオイルリング本体の内周側形状を説明するための要部斜視図である。また、図4は、本件発明のオイルリング本体に備わるコイルエキスパンダ収容凹部の曲率半径について説明するための要部斜視図である。図3には、コイルエキスパンダ3の外径が破線により示されている。図3及び図4に示すように、コイルエキスパンダ収容凹部2bにおけるオイル戻し溝2dを除く曲面のオイルリング軸方向断面の曲率半径をr1、コイルエキスパンダ3の外径のオイルリング軸方向断面の曲率半径をr2とした場合に、r2/r1が0.8~1.0未満の範囲内となることで、当該コイルエキスパンダ3とコイルエキスパンダ収容凹部2bとの接触面積をより広くとることができるようになり、オイルリング1によるシリンダ内壁面への押圧力をリング周方向で安定させることができる。ここで、当該r2/r1が0.8未満の場合、コイルエキスパンダ3の外径が小さいためコイルエキスパンダの外径に対する全長が長くなり、組み合わせるオイルリング1に無理がかかることや、ピストン組付け性の悪化に繋がることが懸念される。更に、この場合、コイルエキスパンダ3の外径が小さくなり過ぎてオイルリング本体のオイル戻し溝2dに当該コイルエキスパンダ3が入り込み、オイルリング本体2とコイルエキスパンダ3との間に十分な隙間を形成できないため、オイルリング1により掻き落とされたオイルが当該オイルリング1の内周側にスムーズに排出されず、オイル消費の増大を招く恐れがある。また、当該r2/r1が1.0以上となる場合、コイルエキスパンダ3がオイルリング本体のコイルエキスパンダ収容凹部2bと干渉したり、当該コイルエキスパンダ収容凹部2bに入らなくなる恐れがある。
 すなわち、本件発明のオイルリング本体2は、コイルエキスパンダ収容凹部2bにおけるオイル戻し溝2dを除く曲面のオイルリング軸方向断面の曲率半径r1を、コイルエキスパンダ3の外径のオイルリング軸方向断面の曲率半径r2との関係において、本件発明の条件を満足させることで、オイルリングの周方向においてコイルエキスパンダの収容状態が不安定になり難く、オイルリング内周面に摩耗の発生するのを効果的に抑制できる。従って、本件発明に係る内燃機関用オイルリング1によれば、オイルリングの張力をオイル消費量の増大を招かない範囲で極力低めに設定することが可能となり、オイルリングの設計の自由度が大きくなる。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2は、オイル戻し溝2dのオイルリング径方向深さをAとし、ウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅をBとした場合、A/B=0.05~0.50であることが好ましい。
 図5は、本件発明のオイルリング本体に形成されるオイル戻し溝について、図2に示すオイル戻し溝と異なる形状をオイルリング軸方向で切断して例示した断面図である。図5に示すように、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2が、オイル戻し溝2dのオイルリング径方向深さをAとし、ウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅(JIS B 8032(1993年)の第21頁表14(X拡大図)において「a13-a4」で表される幅)をBとした場合、A/Bを0.05~0.50の範囲内に設定されることで剛性を確保することができ、また、オイルリング本体2の加工の際に形状にばらつきが生じることなく、製品品質を向上させることができる。なお、図5には、オイル戻し溝2dのオイルリング径方向深さA、及びウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅Bの、基準となる位置を破線(図中コイルエキスパンダ3の外周との接線)により示している。
 ここで、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2に形成されるオイル戻し溝2dのオイルリング径方向深さをAとし、ウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅をBとした場合において、A/Bが0.05未満の場合には、オイル戻し溝2dのオイルリング径方向深さAが当該オイルリング径方向幅Bに対して浅くなり過ぎて、ピストン裏面へのオイル戻し機能を十分に発揮することができない。すなわち、この場合には、オイルリング本体2におけるオイル戻し溝2dの占める割合が小さくなり過ぎるため、当該オイルリング本体2のウェブ4に形成されるオイル戻し孔7がコイルエキスパンダ3によって大きく塞がれてしまい、オイル戻し孔7を通過したオイルがオイルリング本体2の内周側にスムーズに排出されない恐れがある。一方、当該A/Bが0.50を超える場合には、オイル戻し溝2dのオイルリング径方向深さAが当該オイルリング径方向幅Bに対して深くなり過ぎて当該ウェブ4の幅が薄くなるため、オイルリング本体2の加工の際に変形が起こりやすく、また、オイルリング1の耐久性及びオイル掻き機能の低下を招いてしまう。
 ちなみに、本件発明のオイルリング本体2に形成されるオイル戻し溝2dは、オイルリング径方向深さをAとし、ウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅をBとした場合、A/Bが0.05程度の極めて浅い深さの溝であってもオイル消費量の削減効果を得ることができる。よって、オイルリングの剛性とオイル消費性能とのバランスを考慮すると、当該A/Bを0.05~0.50の範囲内に設定することがより好ましい。
 なお、図5に例示するように、本件発明のオイルリング本体2に形成されるオイル戻し溝2dの形状は、図2に示した形状に限定されるものではない。図5に示すオイルリング1の断面図では、図中Gで示す箇所からオイル戻し溝2dの底面に向けて構成される直線が略テーパー形状で形成されている。このように、本件発明に係る内燃機関用オイルリング1は、コイルエキスパンダ収容凹部2bの開口縁の曲面とオイル戻し孔7の開口縁の曲面との間に構成されるオイル戻し溝2dの側壁を、当該コイルエキスパンダ収容凹部2bの開口側に向けて離間するように傾斜して形成することもできる。本件発明に係る内燃機関用オイルリング1は、オイルリング本体2に形成されるオイル戻し溝2dがオイルリング軸方向断面における外周形状を直線と当該直線に連続する曲線とで構成される限り、オイルスラッジの滞留を効果的に防止し、また、酸化をも効果的に抑制して長期間安定してオイル消費量の削減効果を発揮することができる。
 また、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2を構成するウェブ4のオイル戻し溝2d形成前におけるオイルリング径方向幅Bが0.3mm以上であることが好ましい。
 図5には、ウェブ4のオイル戻し溝2d形成前におけるオイルリング径方向幅がBにより示されている。ここで、本件発明に係る内燃機関用オイルリング1は、当該ウェブ4の当該オイル戻し溝2d形成前におけるオイルリング径方向幅Bが0.3mm未満となると、当該ウェブ4の幅が薄くなり過ぎてオイルリング本体2の強度が低くなり、オイルリングを内燃機関用として用いた場合に、十分な耐久性を得ることができない。また、当該ウェブ4の幅が薄くなり過ぎると、オイルリング本体2の加工の際に変形が起こりやすく、オイルリング1のオイル掻き機能の安定化を図ることができない。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2を構成するウェブ4に設けるオイル戻し孔7は、当該オイルリング本体2の円周方向に沿った開口幅(図6中Cで示す幅)が0.5mm~5.0mm、且つ、オイルリング軸方向に沿った開口高さ(図6中Dで示す高さ)が0.2mm~0.8mmであることが好ましい。
 図6は、本件発明のオイルリング本体に備わるオイル戻し孔の形状を説明するためにオイルリング径方向外方からみた要部正面図である。図6より、本件発明のオイルリング本体2は、開口幅Cが0.5mmより短いか、又は開口高さDが0.2mmより低い場合には、オイル戻し孔7の開口面積が小さ過ぎて、オイルリング1が掻き落としたオイルを速やかに当該オイルリングの背面側に設けられたオイルドレイン孔12へ排出することができない。また、本件発明のオイルリング本体2は、当該開口幅Cが5.0mmより長いか、又は当該開口高さDが0.8mmより高い場合には、オイル戻し孔7の面積が大き過ぎて、オイルリング本体2の強度が低下し、当該オイルリングを内燃機関用として用いた場合に十分な耐久性を得ることができない。また、当該オイル戻し孔7の面積が大き過ぎると、オイルリング本体2の加工の際に変形が起こりやすく、オイル掻き機能の低下を招いてしまう。なお、当該オイル戻し孔7の形状は、図6に示すような、長方形形状の両端部の開口高さDに相当する辺を一定の曲率半径Rを備える弧状辺として形成したものに限定されない。例えば、オイルリングとしての要求特性を満たす限りにおいて長方形、円形状、楕円形状、開口高さDに相当する辺を曲線形状としたもの等の種々の形状を適宜選択して使用することができる。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2のオイルリング軸方向幅(図2中h1で示す幅)は、1.0mm~2.5mmであることが好ましい。
 ここで、図2に示すように、オイルリング本体2のオイルリング軸方向幅h1が1.0mmよりも薄い場合には、外周摺動面8,9においてシリンダ20の内壁面21に対する接触面積が小さくなると共に、オイルリング本体2の強度の低下を招く恐れがある。またこの場合、オイルリング1は、オイル戻し孔7の開口面積を大きく取ることが出来なくなり、掻き落としたオイルがオイル戻し孔7を通ってオイルリング本体2の外周溝2cから内周側のコイルエキスパンダ収容凹部2bへ流れ難くなるため、結果として、オイル消費量が増大してしまう。そして、内燃機関用オイルリング1のオイルリング本体2のオイルリング軸方向幅h1が2.5mmよりも厚い場合には、オイルリング1の張力を高くしないとオイルリング本体2のシリンダ内壁面21への押圧力が低下するため、オイル消費量が増大してしまう。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング1のシリンダボア径に対する張力比は、0.05N/mm~0.5N/mmであることが好ましい。
 本件発明に係る内燃機関用オイルリング1は、シリンダボア径(図示せず)に対する張力比([オイルリングの張力(N)]/[シリンダボア径(mm)]で算出される値)を0.05N/mm~0.5N/mmに設定している。ここで、シリンダボア径に対する張力比が0.05N/mmよりも小さい場合には、オイルリング本体2の外周摺動面8,9のシリンダ20の内壁面21に対する押圧力が不十分となる。したがってこの場合、当該外周摺動面8,9は余分なオイルを十分に掻き落とすことができず、オイル消費量の増大を招いてしまう。また、シリンダボア径に対する張力比が0.5N/mmよりも大きい場合には、当該外周摺動面8,9のシリンダ20の内壁面21に対する押圧力が大きくなり過ぎて摩擦力が高くなり、燃費の低下を招いてしまう。一般的に、シリンダとオイルリングとの摩擦力は、オイルリングの張力の大きさに比例する傾向にある。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2に形成されるオイル戻し溝2dの当該オイルリング軸方向断面において構成される曲線は、コイルエキスパンダ収容凹部2bから連接する延設曲線の曲率半径が、0.01~0.30mmであることが好ましい。
 図3(a)は、図3においてaで囲まれた箇所を例示している。本件発明のオイルリング本体2に形成されるオイル戻し溝2dの、当該オイルリング軸方向断面において構成される曲線は、コイルエキスパンダ収容凹部2bから連接する延設曲線の曲率半径(図3(a)におけるR)が、0.01~0.30mmであることで、当該延設曲線部分と接触するコイルエキスパンダ3の摩耗損傷を抑制すると共に、オイル消費量の低減を図ることができる。ここで、当該延設曲線の曲率半径Rが0.01mm未満である場合には、コイルエキスパンダ3が摩耗損傷し易くなり、当該コイルエキスパンダの張力が低下するために、オイル消費が多くなると共に、ガスシール性の低下を招いてしまう。また、当該延設曲線の曲率半径Rが0.30mmを超える場合には、当該コイルエキスパンダ3とコイルエキスパンダ収容凹部2bとの接触面積が小さくなり、オイルリング1のシリンダ内壁面21に対する押圧力を安定させることが困難となる。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7の当該ウェブ4の周方向におけるピッチ(図6中Eで示すピッチ)は、3.5mm~10.0mmであることが好ましい。
 図6には、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7の当該ウェブ4の周方向におけるピッチがEにより示されている。本件発明に係る内燃機関用オイルリング1は、当該ピッチEが3.5mm~10.0mmの範囲内であることで、オイルリング1の耐久性とオイル消費性能とを共に向上させることができる。ここで、当該ピッチEが3.5mm未満の場合には、ウェブ4におけるオイル戻し孔7の間隔が短か過ぎてオイルリング本体2の強度が弱くなり、オイルリング1の耐久性が劣ることとなり好ましくない。また、当該ピッチEが10.0mmを超える場合には、ウェブ4におけるオイル戻し孔7の間隔が長過ぎて、オイルリング1が掻き落としたオイルをピストン裏側に逃がすことができなくなるためオイル消費の増大を招いてしまう。
 また、本件発明に係る内燃機関用オイルリング1において、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7の当該ウェブ4の周方向におけるピッチをE、当該オイル戻し孔の当該ウェブ4の周方向における長さをCとした場合、C/(E-C)=0.1~1.2であることが好ましい。
 図6には、上述したウェブ4の周方向におけるピッチがEにより示され、また、オイル戻し孔7の当該ウェブ4の周方向における長さがCにより示されている。本件発明に係る内燃機関用オイルリング1は、当該ピッチEと、当該オイル戻し孔7の当該ウェブ4の周方向における長さCとの関係「C/(E-C)」が、0.1~1.2の範囲内であることで、オイルリング1の耐久性とオイル消費性能とを共に向上させる際により安定性を増す。ここで、当該ピッチEと、当該オイル戻し孔の当該ウェブ4の周方向における長さCとの関係「C/(E-C)」が、0.1未満の場合には、ウェブ4におけるオイル戻し孔7の間隔が長くなるため、オイルリング1が掻き落としたオイルをピストン裏側に逃がすことができなくなり、オイル消費の増大を招くこととなる。また、当該ピッチEと、当該オイル戻し孔の当該ウェブ4の周方向における長さCとの関係「C/(E-C)」が、1.2mmを超える場合には、ウェブ4におけるオイル戻し孔7の間隔が短くなるため、オイルリング本体の強度が低下し、オイルリング1の耐久性が劣化する恐れがある。なお、当該「C/(E-C)」は、オイルリング1の耐久性及びオイル消費性能の観点からみて0.2~1.0の範囲内であることがより好ましく、更に好ましくは0.2~0.6の範囲内であることが好ましい。
 また、本件発明に係る内燃機関用オイルリング1は、オイルリング本体2の外表面に窒化処理を施す際に、窒化層の厚さを150μm以下に設定するのが好ましい。オイルリング本体2は、窒化処理を施すことで外表面を硬化させて耐久性を向上させることができる。これは、最近の自動車用内燃機関の高速、高負荷化により、オイルリング本体2についてもより高い耐摩耗性が要求されている背景があるためである。オイルリング本体2は、その材質に主に鉄鋼材料が用いられ、オイルリング本体2に窒化処理を行うことでクロムや鉄と反応して作られる窒化物からなる極めて硬い窒化層を備えることとなる。すなわち、オイルリング本体2は、その表面に窒化層を形成することで、耐摩耗性及びシリンダに対する耐スカッフ性に優れたものとなり、より過酷な状況下での使用に耐え得る内燃機関用オイルリングを提供することが可能となる。しかし、窒化処理を行うことによって、オイルリング本体2の母材全体が窒化されることとなると、オイルリング本体2は硬くなり過ぎて脆くなり、耐折損性を低下させてしまう。そのため、本件発明のオイルリング本体2に窒化を施す場合には、窒化層の厚さが150μm以下となるように設定することが好ましい。
 図7は、本件発明のオイルリング本体の外表面に窒化処理を施した状態をオイルリング軸方向で切断して示した断面図である。図7には、オイルリング本体2の外表面に窒化層30の形成されているのが示されている。ここで、図中Fで示す窒化層30の厚さは、150μm以下となるように設定することが好ましい。
 また、オイルリングの耐久性は、オイルリング外周摺動面とシリンダ内壁面との摩擦力の大きさに影響するため、上述したように、オイルリングの張力の大きさを考慮するが、摺動する金属の組み合わせ方によっても影響を受ける。例えば、摺動する金属の材質をクロム同士やアルミ同士にすると、焼き付きを起こし易くなる。そこで、当該金属の材質を考えた上で、耐摩耗性に優れたコーティングを施すのが一般的であり、オイルリング本体の外表面に窒化処理を施すのも同じ理由によるものである。また同様に、オイルリング外周摺動面には、必要に応じ、クロム窒化物(CrN、CrN)からなる皮膜や、クロム窒化物(CrN、CrN)とクロム(Cr)の混合物からなるイオンプレーティング皮膜を形成することも耐摩耗性の観点からみるとより好ましい。その他、オイルリング外周摺動面に、クロム-ボロンよりなる窒化物(Cr-B-N)、DLC(ダイヤモンド ライク カーボン)等の皮膜を形成することによってもオイルリングの耐久性の向上を図ることができる。
 以下、実施例および比較例を示して本件発明を具体的に説明する。なお、本件発明は、以下の実施例に限定されるものではない。
 実施例1では、排気量が2000cc、シリンダボア径が86mmの4気筒ガソリンエンジンの実機試験を行い、オイルリングのコイルエキスパンダ収容凹部の内周面にオイル戻し溝が有るものと無いものとでオイル消費量に違いが生じるか否かについての確認を行った。なお、エンジンの運転条件は、全負荷(WOT)で回転数5000rpmで10時間行った。そして、ピストンリングの組み合わせは、1stリング、2ndリング、オイルリングとした。このときの1stリングは、10Cr鋼からなる軸方向幅(h1)1.2mm、径方向幅(a1)2.9mmのものにガス窒化処理を施したものを用いた。2ndリングは、FC材からなる軸方向幅(h1)1.2mm、径方向幅(a1)3.4mmのものを用いた。
 なお、念のために1stリングを構成する10Cr鋼及び2ndリングを構成するFC材に関して述べておく。ここで言う10Cr鋼は、炭素0.50質量%、ケイ素0.21質量%、マンガン0.30質量%、クロム10.1質量%、リン0.02質量%、硫黄0.01質量%、残部鉄及び不可避不純物の組成を備え、且つ、ガス窒化処理を施したものである。そして、ここで言うFC材とは、炭素3.41質量%、ケイ素2.05質量%、マンガン0.65質量%、リン0.30質量%、硫黄0.08質量%、クロム0.10質量%、銅0.10質量%、残部鉄及び不可避不純物の組成を備えるFC250材相当のものである。
 そして、オイルリングは、上述の実施の形態で述べた2ピース構成の内燃機関用オイルリングを使用した。実施例1で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が2.00mm、オイルリング径方向幅(a1)が2.00mm、コイルエキスパンダ配置後のオイルリングのオイルリング径方向幅(a12)が2.74mmに設定されたものである。また、実施例1で用いるオイルリングは、そのコイルエキスパンダ収容凹部に連接して形成されるオイル戻し溝の形状が、オイルリング軸方向断面の外周形状において、直線と当該直線に連続する曲線とから構成されるものであって、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接した延設曲面(曲率半径が0.10mm)を備えたものである。また、実施例1のオイルリングは、当該オイル戻し溝のオイルリング径方向深さをAとし、当該ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0.08となり、当該A/Bが本件発明の条件である0.05~0.50の範囲内となるものである。すなわち、実施例1で用いるオイルリングは、具体的には下記に示す仕様のものである。なお、実施例1で用いるオイルリングのより詳細な設定については、以下の表1に示してある。なお、下記及び以下の表1に示す、オイル戻し溝のオイルリング軸方向幅(X)は、図3においてXで示した幅を言う(以下同様)。
 オイル戻し溝のオイルリング径方向深さ(A)         :0.04mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.49mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0.70mm
 オイル戻し孔の開口幅(C)                 :2.00mm
 オイル戻し孔の開口高さ(D)                :0.50mm
 シリンダボア径に対する張力比                :0.24N/mm
 また、ここで言うオイルリングを構成するオイルリング本体は、炭素0.70質量%、ケイ素0.25質量%、マンガン0.30質量%、クロム8.0質量%、リン0.02質量%、硫黄0.01質量%、残部鉄及び不可避不純物の組成の所謂8Cr鋼を用いた。なお、ガス窒化処理を施した際に、オイルリング軸方向断面にて外周摺動面の窒化層(図7中Fで示す層)を確認した結果、オイルリング径方向において、厚さ100μmの窒化層が形成されていることを確認した。そして、コイルエキスパンダは、炭素0.55質量%、ケイ素1.41質量%、マンガン0.65質量%、クロム0.68質量%、銅0.06質量%、リン0.01質量%、硫黄0.01質量%、残部鉄及び不可避不純物の組成を備えるSWOSC-V材相当の素材を用いた。
 実施例1において、オイルリング本体の材質に所謂8Cr鋼を用いたが、通常、車種等によって用いられる材質は使い分けられる。例えば、クロム含有量を増加した10Cr鋼や13Cr鋼、更にクロム含有量を増加した17Cr鋼(SUS440相当)は主にエンジンがより高負荷にさらされるディーゼル車に用いられる。なお、オイルリングの材質としては、今回実施例で用いた8Cr鋼や、上述した10Cr鋼、13Cr鋼及び17Cr鋼の他に、SWRH材等が好適に用いられるが、これらの材質に限定されるものではない。
 ここで、本件発明のオイルリングに窒化を施した場合、オイルリングにどのような影響を及ぼすかについて簡単に述べておく。例えば、クロム鋼に窒化処理を施すと、窒素原子が表面から鋼中に侵入、拡散して窒化層を形成する。窒化層中の窒化物は、主にクロム、バナジウム、モリブデンとの化合物又は鉄を固溶したそれらの化合物である。鋼中のクロムは、母材中に固溶する他、クロム炭化物として存在するが、炭素よりも窒素との親和力が大きいため、窒化処理により表面から拡散してくる窒素とクロム炭化物が反応してクロム窒化物を生成する。例えば、13Cr鋼や17Cr鋼はクロム含有量が比較的多いため、上述の理由により硬いクロム窒化物が多く分散することで比較的硬度の高い窒化層が得られると共に、優れた耐摩耗性、及び耐スカッフィング性を備える。また窒化処理は、その処理コストが安価であり、クロムめっきに比べて環境へ及ぼす影響も小さい。そして、上述した窒化処理は、その方法として液体窒化(塩浴窒化)法やガス窒化法等が挙げられる。なお、本件発明において窒化処理を施す場合には、安価なガス窒化法を用いることが好ましい。また、オイルリング本体の一部分にのみ窒化層を形成する場合は、オイルリング本体の全面に窒化層を形成した後、後処理により不必要な部分の窒化層を除去する方法や、マスキング処理として、例えば予め窒化層を形成しない部分に窒化防止剤(水ガラスやニッケル-リンめっき等)を付着させ、その後窒化処理を施す方法等により、窒化層を部分的に形成することが可能である。また、窒化層を部分的に形成可能なイオン窒化により形成することもできる。
 なお、この実施例1では、シリンダボア径に対する張力比を0.24N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表1には、実施例1のオイル消費量比を、本件発明の条件を満足しないオイルリング(以下に示す比較例2)を用いて実機試験をして得られたオイル消費量を基準「1」として、これに対する相対比で表示している。その結果、実施例1のオイル消費量比は0.78となった。
 実施例2では、排気量が1500cc、シリンダボア径が73mmの4気筒ガソリンエンジンの実機試験を行い、オイルリングのコイルエキスパンダ収容凹部の内周面にオイル戻し溝が有るものと無いものとでオイル消費量に違いが生じるか否かについての確認を行った。また、実施例2では、実施例1と同じ駆動条件でエンジンを駆動させて、用いるオイルリング本体の形状等の相違がオイルリングの特性(オイル消費性能)にどのような影響を及ぼすかについて確認を行った。そして、用いるピストンリングは、実施例1と同様に、1stリング、2ndリング、オイルリングとした。このときの1stリングは、実施例1と同様に、10Cr鋼からなる軸方向幅(h1)1.2mm、径方向幅(a1)2.9mmのものにガス窒化処理を施したものを用いた。2ndリングは、実施例1と同様に、FC材からなる軸方向幅(h1)1.2mm、径方向幅(a1)3.4mmのものを用いた。また、実施例2のオイルリングは、実施例1と同様に、2ピース構成の内燃機関用オイルリングを使用した。このときのオイルリングは、実施例1と同様に、オイルリング本体が8Cr鋼からなるものにガス窒化処理を施した(図7中Fで示す窒化層の厚さが100μmに形成されていることを確認)ものを用い、コイルエキスパンダがSWOSC-V材相当材からなるものを用いた。そして、実施例2で用いる1stリング、2ndリング、及びオイルリングの組成は、実施例1と同様とした。但し、実施例2で用いるオイルリングは、その形状に関して実施例1と異なるものを用いた。
 実施例2で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が1.50mm、オイルリング径方向幅(a1)が1.70mm、コイルエキスパンダ配置後のオイルリングのオイルリング径方向幅(a12)が2.14mmに設定されたものである。また、実施例2で使用するオイルリングは、そのコイルエキスパンダ収容凹部に連接して形成されるオイル戻し溝の形状が、オイルリング軸方向断面の外周形状において、直線と当該直線に連続する曲線とから構成されるものであって、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接した延設曲面(曲率半径が0.09mm)を備えたものものである。また、実施例2のオイルリングは、当該オイル戻し溝のオイルリング径方向深さをAとし、当該ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0.18となり、当該A/Bが本件発明の条件である0.05~0.50の範囲内となるものである。すなわち、実施例2で用いるオイルリングは、具体的には下記に示す仕様のものである。なお、実施例2で用いるオイルリングのより詳細な設定については、以下の表2に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0.09mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.49mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0.65mm
 オイル戻し孔の開口幅(C)                 :1.50mm
 オイル戻し孔の開口高さ(D)                :0.40mm
 シリンダボア径に対する張力比                :0.07N/mm
 なお、この実施例2では、シリンダボア径に対する張力比を0.07N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表1には、実施例2のオイル消費量比を、本件発明の条件を満足しないオイルリング(以下に示す比較例4)を用いて実機試験をして得られたオイル消費量を基準「1」として、これに対する相対比で表示している。その結果、実施例2のオイル消費量比は0.85となった。
 実施例3では、実施例2と同じエンジンを用い、また、実施例2と同じ駆動条件でエンジンを駆動させて、用いるオイルリング本体の形状等の相違がオイルリングの特性(オイル消費性能)にどのような影響を及ぼすかについて確認を行った。そして、用いるピストンリングは、実施例1及び実施例2と同様に、1stリング、2ndリング、オイルリングとした。このときの1stリングは、実施例1及び実施例2と同様に、10Cr鋼からなる軸方向幅(h1)1.2mm、径方向幅(a1)2.9mmのものにガス窒化処理を施したものを用いた。2ndリングは、実施例1及び実施例2と同様に、FC材からなる軸方向幅(h1)1.2mm、径方向幅(a1)3.4mmのものを用いた。また、実施例3のオイルリングは、実施例1及び実施例2と同様に、2ピース構成の内燃機関用オイルリングを使用した。このときのオイルリングは、実施例1及び実施例2と同様に、オイルリング本体が8Cr鋼からなるものにガス窒化処理を施したもの(図7中Fで示す窒化層の厚さが100μmに形成されていることを確認)を用い、コイルエキスパンダがSWOSC-V材相当材からなるものを用いた。そして、実施例3で用いる1stリング、2ndリング、及びオイルリングの組成は、実施例1及び実施例2と同様とした。但し、実施例3で用いるオイルリングは、その形状に関して実施例1及び実施例2と異なるものを用いた。
 実施例3で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が1.50mm、オイルリング径方向幅(a1)が1.70mm、コイルエキスパンダ配置後のオイルリングのオイルリング径方向幅(a12)が2.32mmに設定されたものである。また、実施例3で使用するオイルリングは、そのコイルエキスパンダ収容凹部に連接して形成されるオイル戻し溝の形状が、オイルリング軸方向断面の外周形状において、直線と当該直線に連続する曲線とから構成されるものであって、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接した延設曲面(曲率半径が0.09mm)を備えたものものである。また、実施例3のオイルリングは、当該オイル戻し溝のオイルリング径方向深さをAとし、当該ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0.30となり、当該A/Bが本件発明の条件である0.05~0.50の範囲内となるものである。すなわち、実施例3で用いるオイルリングは、具体的には下記に示す仕様のものである。なお、実施例3で用いるオイルリングのより詳細な設定については、以下の表2に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0.17mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.57mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0.65mm
 オイル戻し孔の開口幅(C)                 :1.50mm
 オイル戻し孔の開口高さ(D)                :0.40mm
 シリンダボア径に対する張力比                :0.07N/mm
 なお、この実施例3では、シリンダボア径に対する張力比を0.07N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表1には、実施例3のオイル消費量比を、本件発明の条件を満足しないオイルリング(以下に示す比較例4)を用いて実機試験をして得られたオイル消費量を基準「1」として、これに対する相対比で表示している。その結果、実施例3のオイル消費量比は0.85となった。
比較例
[比較例1]
 比較例1は、実施例1との対比用として用いる。比較例1では、実施例1と同じエンジンを用いて、実施例1と同じ駆動条件でエンジンを駆動させてオイル消費量の確認を行った。そして、比較例1のピストンリングは、実施例1と同様に、ピストンリングは、1stリング、2ndリング、オイルリングを組み合わせたものを使用した。ここで、1stリング及び2ndリングは実施例1で使用したものと同様のものである。また、比較例1のオイルリングに関しては、オイルリング本体のオイル戻し溝の形状を除き、実施例1と同じ設定条件のものを用いた。ちなみに、比較例1のオイルリングは、オイルリング本体にオイル戻し溝の形成がされているものの、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接する延設曲面が備わっていないものである。具体的には、比較例1で用いるオイルリングは、下記に示す仕様のものである。なお、比較例1で用いるオイルリングのより詳細な設定については、実施例1と併せて以下の表1に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0.04mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.49mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0.70mm
 オイル戻し孔の開口幅(C)                 :2.00mm
 オイル戻し孔の開口高さ(D)                :0.50mm
 シリンダボア径に対する張力比                :0.24N/mm
 ここで、比較例1のオイルリングは、オイル戻し溝のオイルリング径方向深さをAとし、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが約0.08となり、当該A/Bが本件発明の条件である0.05~0.50の範囲内となるものである。そして、この比較例1では、実施例1と同様に、シリンダボア径に対する張力比が0.24N/mmのものを用いて、オイル消費量の確認を行った。表1には、本件発明の条件を満足しないオイルリング(以下に示す比較例2)を用いて実機試験をして得られたオイル消費量を基準「1」として、これに対する相対比で表示している。その結果、比較例1のオイル消費量比は0.80となった。
[比較例2]
 比較例2は、実施例1との対比用として用いる。比較例2では、実施例1と同じエンジンを用いて、実施例1と同じ駆動条件でエンジンを駆動させてオイル消費量の確認を行った。そして、比較例2のピストンリングは、実施例1と同様に、ピストンリングは、1stリング、2ndリング、オイルリングを組み合わせたものを使用した。ここで、1stリング及び2ndリングは実施例1で使用したものと同様のものである。また、比較例2のオイルリングに関しては、オイルリング本体にオイル戻し溝が形成されていない点を除き、実施例1と同じ設定条件のものを用いた。具体的には、比較例2で用いるオイルリングは、下記に示す仕様のものである。なお、比較例2で用いるオイルリングのより詳細な設定については、実施例1と併せて以下の表1に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.45mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0mm
 オイル戻し孔の開口幅(C)                 :2.00mm
 オイル戻し孔の開口高さ(D)                :0.50mm
 シリンダボア径に対する張力比          :0.20N/mm
 ここで、比較例2のオイルリングは、オイル戻し溝の形状に関し、オイルリング軸方向断面における外周形状が直線のみで構成されているものを用いた。そして、比較例2のオイルリングは、オイル戻し溝のオイルリング径方向深さをAとし、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0となり、当該A/Bが本件発明の条件である0.05~0.50の範囲外となるものである。そして、この比較例2では、シリンダボア径に対する張力比が0.20N/mmのものを用いてオイル消費量の確認を行った。なお、表1には、上述したように、比較例2のピストンリングの組合せを用いて実機試験をして得られたオイル消費量比を基準「1」として示している。
[比較例3]
 比較例3は、実施例2及び実施例3との対比用として用いる。比較例3では、実施例2及び実施例3と同じエンジンを用いて、実施例2及び実施例3と同じ駆動条件でエンジンを駆動させてオイル消費量の確認を行った。そして、比較例3のピストンリングは、実施例2及び実施例3と同様に、ピストンリングは、1stリング、2ndリング、オイルリングを組み合わせたものを使用した。ここで、1stリング及び2ndリングは実施例2及び実施例3で使用したものと同様のものである。また、比較例3のオイルリングに関しては、オイルリング本体のオイル戻し溝の形状を除き、実施例2と同じ設定条件のものを用いた。ちなみに、比較例3のオイルリングは、オイルリング本体にオイル戻し溝の形成がされているものの、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接する延設曲面が備わっていないものである。具体的には、比較例3で用いるオイルリングは、下記に示す仕様のものである。なお、比較例3で用いるオイルリングのより詳細な設定については、実施例2及び実施例3と併せて以下の表2に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0.09mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.49mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0.65mm
 オイル戻し孔の開口幅(C)                 :1.50mm
 オイル戻し孔の開口高さ(D)                :0.40mm
 シリンダボア径に対する張力比                :0.07N/mm
 ここで、比較例3のオイルリングは、オイル戻し溝のオイルリング径方向深さをAとし、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0となり、当該A/Bが本件発明の条件である0.05~0.50の範囲外となるものである。そして、この比較例3では、実施例2及び実施例3と同様に、シリンダボア径に対する張力比が0.07N/mmのものを用いてオイル消費量の確認を行った。表2には、本件発明の条件を満足しないオイルリング(以下に示す比較例4)を用いて実機試験をして得られたオイル消費量を基準「1」として、これに対する相対比で表示している。その結果、比較例3のオイル消費量比は0.87となった。
[比較例4]
 比較例4は、実施例2及び実施例3との対比用として用いる。比較例4では、実施例2及び実施例3と同じエンジンを用いて、実施例2及び実施例3と同じ駆動条件でエンジンを駆動させてオイル消費量の確認を行った。そして、比較例4のピストンリングは、実施例2及び実施例3と同様に、ピストンリングは、1stリング、2ndリング、オイルリングを組み合わせたものを使用した。ここで、1stリング及び2ndリングは実施例2及び実施例3で使用したものと同様のものである。また、比較例4のオイルリングに関しては、オイルリング本体にオイル戻し溝が形成されていない点を除き、実施例2と同じ設定条件のものを用いた。具体的には、比較例4で用いるオイルリングは、下記に示す仕様のものである。なお、比較例4で用いるオイルリングのより詳細な設定については、実施例2及び実施例3と併せて以下の表2に示してある。
 オイル戻し溝のオイルリング径方向深さ(A)         :0mm
 ウェブのオイル戻し溝形成前におけるオイルリング径方向幅(B):0.49mm
 オイル戻し溝のオイルリング軸方向幅(X)          :0mm
 オイル戻し孔の開口幅(C)                 :1.50mm
 オイル戻し孔の開口高さ(D)                :0.40mm
 シリンダボア径に対する張力比                :0.07N/mm
 ここで、比較例4のオイルリングは、オイル戻し溝のオイルリング径方向深さをAとし、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/Bが0となり、当該A/Bが本件発明の条件である0.05~0.50の範囲外となるものである。そして、この比較例4では、実施例2及び実施例3と同様に、シリンダボア径に対する張力比が0.07N/mmのものを用いてオイル消費量の確認を行った。なお、表2には、上述したように、比較例4のピストンリングの組合せを用いて実機試験をして得られたオイル消費量比を基準「1」として示している。
[実施例と比較例との対比]
実施例1と比較例1及び比較例2との対比: 図8は、軸方向幅が2.00mmのオイルリングを用いた場合において、オイル戻し溝のオイルリング軸方向断面形状とオイル消費量比との関係を示すグラフである。図8には、以下の表1に示したオイルリングの形状がそれぞれ異なる、実施例1、比較例1、及び比較例2について、オイル消費量を対比した結果を示している。この図8のオイル消費量比は、比較例2のオイルリング(オイル戻し溝なし)を用いたときのオイル消費量(g/h)の数値を1.00とした場合の比率である。これらの結果を対比可能なように、図8に纏めて示す。図8より、最もオイル消費量の少ない結果となったのが実施例1のオイルリングを用いた場合であり、オイルリング本体に形成されるオイル戻し溝が、コイルエキスパンダ収容凹部から連接した延設曲面(曲率半径が0.10mm)を備えたものである。その次にオイル消費量の少ない結果となったのが比較例1のオイルリングを用いた場合であり、オイルリング本体にオイル戻し溝の形成がされているものの、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接した延設曲面が備わっていないものである。そして、最もオイル消費量が多い結果となったのが比較例2のオイルリングであり、オイル戻し溝の形成されていないものである。
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、軸方向幅が2.00mmのオイルリングを用いた場合において、オイルリングは、オイルリング本体にオイル戻し溝を形成することでオイル消費量を大幅に削減することができることが分かった。また、このときに、当該オイル戻し溝のオイルリング径方向深さAが、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bとの関係において、本件発明に規定する条件(A/B=0.05~0.50)を満足することで、更にオイル消費量の削減効果の向上が図られることが分かった。また、実施例1と比較例1との対比結果より、オイルリング本体に形成されるオイル戻し溝が、コイルエキスパンダ収容凹部から連接した延設曲面を本件発明に規定する条件の曲率半径(0.01~0.30mm)により備えることが、オイル消費の削減の観点からみてより好ましいことが分かった。
実施例2及び実施例3と比較例3及び比較例4との対比: 図9は、軸方向幅が1.50mmのオイルリングを用いた場合において、オイル戻し溝のオイルリング軸方向断面形状とオイル消費量比との関係を示すグラフである。図9には、以下の表2に示したオイルリングの形状がそれぞれ異なる、実施例2、実施例3、比較例3、及び比較例4について、オイル消費量を対比した結果を示している。この図9のオイル消費量比は、比較例4のオイルリング(オイル戻し溝なし)を用いたときのオイル消費量(g/h)の数値を1.00とした場合の比率である。これらの結果を対比可能なように、図9に纏めて示す。図9より、最もオイル消費量の少ない結果となったのが実施例2及び実施例3のオイルリングを用いた場合であり、オイルリング本体に形成されるオイル戻し溝が、コイルエキスパンダ収容凹部から連接した延設曲面(曲率半径が0.09mm)を備えたものである。その次にオイル消費量の少ない結果となったのが比較例3のオイルリングを用いた場合であり、オイルリング本体にオイル戻し溝の形成がされているものの、当該オイル戻し溝にコイルエキスパンダ収容凹部から連接した延設曲面が備わっていないものである。そして、最もオイル消費量が多い結果となったのが比較例4のオイルリングであり、オイル戻し溝の形成されていないものである。
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、軸方向幅が1.50mmのオイルリングを用いた場合においても、上述の軸方向幅が2.00mmのオイルリングを用いて試験を行った場合と同様に、オイルリングは、オイルリング本体にオイル戻し溝を形成することでオイル消費量を大幅に削減することができることが分かった。また、このときに、当該オイル戻し溝のオイルリング径方向深さAが、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bとの関係において、本件発明に規定する条件(A/B=0.05~0.50)を満足することで、更にオイル消費量の削減効果の向上が図られることが分かった。ここで、当該A/Bが0.18の実施例2と、当該A/Bが0.30の実施例3とは、共にオイル消費量比が0.85であることから、本件発明に規定する条件(A/B=0.05~0.50)を満足する限りにおいて、オイル消費量に及ぼす影響に差が生じないと考えられる。また、実施例2及び実施例3と比較例1との対比結果より、オイルリング本体に形成されるオイル戻し溝が、コイルエキスパンダ収容凹部から連接した延設曲面を本件発明に規定する条件の曲率半径(0.01~0.30mm)により備えることが、オイル消費の削減の観点からみてより好ましいことが分かった。
 以上において、本件発明に規定する条件を満たした実施例のオイルリングは、当該条件を満たさない比較例のオイルリングと比較してオイル消費量の削減効果が得られることを示したが、オイルリング本体の寸法を本件発明で規定する条件範囲内に設定することが好ましい根拠を、更に以下の確認試験を行うことにより示す。
[オイルリング本体を構成するウェブのオイルリング径方向幅に対する発生応力確認試験]
 オイルリング本体を構成するウェブのオイルリング径方向幅と発生応力との関係を確認するために、実施例と同じ運転条件でエンジンを稼働させた場合にオイルリングにかかる荷重を想定し、当該荷重をオイルリングに負荷したときに発生する応力σを測定した。具体的には、コイルエキスパンダを配置した状態でオイルリングをシリンダに装着した時に、オイルリング本体を構成するウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bと発生応力との関係を算出した。
 図10は、オイルリング本体を構成するウェブのオイルリング径方向幅と発生応力との関係を示すグラフである。図10には、上述した応力測定方法に基づいて試験を実施し、オイルリング本体を構成するウェブのオイルリング径方向幅と発生応力との関係についての結果が示してある。図10に示すように、当該ウェブのオイルリング径方向幅が0.06mmのときの発生応力は約550MPa、当該ウェブのオイルリング径方向幅が0.20mmのときの発生応力は約250MPa、当該ウェブのオイルリング径方向幅が0.45mmのときの発生応力は約220MPaとなった。図10には、ここで得られた各データを平滑線でつないだものを示している。
 内燃機関用オイルリングに必要とされる耐久性を考慮した場合、500MPa以下であることが好ましい。図10より、オイルリング本体に発生する応力が500MPaを超えるのは、オイルリングを構成するウェブのオイルリング径方向幅が約0.08mm未満となるときであることが分かる。この結果より、内燃機関用オイルリングに必要とされる耐久性を考慮すると、オイルリング本体を構成するウェブのオイルリング径方向幅は約0.08mm以上必要であることが分かる。但し、本件発明に係る内燃機関用オイルリングのように、ウェブにオイル戻し溝を形成する形態においては、本件発明に規定する条件「オイル戻し溝のオイルリング径方向深さをAとし、ウェブの当該オイル戻し溝形成前におけるオイルリング径方向幅をBとした場合に、A/B=0.05~0.50」を満足する必要がある。ここで、当該A/Bが0.50の場合を考慮すると、オイルリング本体を構成するウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bは、計算上約0.16mm以上の幅が必要になる。なお、内燃機関用オイルリングは、例えばディーゼルエンジン用オイルリング等のように過酷な条件下での使用を考慮すると、経験的に約350MPa以下であることがより好ましい。図10より、オイルリング本体に発生する応力が350MPaを超えるのは、オイルリングを構成するウェブのオイルリング径方向幅が、約0.15mm未満となるときであることが分かる。ここで、当該A/Bが0.50の場合を考慮すると、ウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bは、計算上約0.30mm以上の幅が必要になる。以上のことから、本件発明に係る内燃機関用オイルリングは、過酷な条件下での使用を考慮すると、オイルリング本体を構成するウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bが、0.30mm以上あることがより好ましい。
 以上のことから、本件発明に係る内燃機関用オイルリングは、オイルリング本体の内周側に連接して形成するオイル戻し溝をオイルリング軸方向断面でみて、その外周形状が直線と当該直線に連続する曲線とで構成されることで、内燃機関の駆動時のオイル消費量を確実に低減させることができることとなる。また、本件発明に係る内燃機関用オイルリングによれば、当該オイル戻し溝が本件発明に規定する条件を満足する形状となることによって、シリンダ内壁面の余分なオイルを掻き取り、ピストン裏面に流下させる機能を長期間安定して得ることができる。
 本件発明に係る内燃機関用オイルリングは、あらゆる内燃機関に適用可能なものであり、このオイルリングを用いることで、内燃機関の駆動時のオイル消費の低減化、及び、オイルリング自身の耐摩耗性能の向上を図ることができ、また同時に、これら機能を高めるために必要なシリンダ内壁面に対する押圧力の安定化と設計自由度の向上化を図ることができる。従って、自動車用内燃機関に本件発明に係る内燃機関用オイルリングを用いることで、オイル供給頻度の低減と資源の有効利用、環境負荷の低減化が可能となり好ましい。
1   内燃機関用オイルリング
2   オイルリング本体
2a  合口部
2b  コイルエキスパンダ収容凹部
2c  外周溝
2d  オイル戻し溝
3   コイルエキスパンダ
4   ウェブ
5   第1レール
6   第2レール
7   オイル戻し孔
10  ピストン
12  オイルドレイン孔
20  シリンダ
21  シリンダ内壁面
A   オイル戻し溝のオイルリング径方向深さ
B   ウェブの当該オイル戻し溝形成前におけるオイルリング径方向幅
C   オイル戻し孔の開口幅
D   オイル戻し孔の開口高さ
E   オイル戻し孔のピッチ
F   窒化層の厚さ
G   オイル戻し溝の曲面
X   オイル戻し溝のオイルリング軸方向幅
h1  オイルリング本体の軸方向幅

Claims (9)

  1. オイルリング軸方向断面が略I字型のオイルリング本体と当該オイルリング本体内周側に配置されるコイルエキスパンダとからなり、
     当該オイルリング本体は、シリンダ内壁面を摺動する第1レールと、第2レールと、当該第1レール及び第2レールがシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔を備えるウェブとで構成され、
     当該オイルリング本体は、その内周面に沿って、オイルリング軸方向の断面が略半円状のコイルエキスパンダ収容凹部を備え、
     更に、当該コイルエキスパンダ収容凹部の内周面には、その内周方向に沿って、掻き落としたオイルをピストン裏面へスムーズに戻すためのオイル戻し溝が形成され、
     当該オイル戻し溝は、オイルリング軸方向断面において、その外周形状が直線と当該直線に連続する曲線とから構成されることを特徴とする内燃機関用オイルリング。
  2. 前記オイルリング本体に備わるコイルエキスパンダ収容凹部のオイルリング軸方向断面における曲率半径をr1、前記コイルエキスパンダのオイルリング軸方向断面における曲率半径をr2とした場合、r2/r1=0.8~1.0未満である請求項1に記載の内燃機関用オイルリング。
  3. 前記オイルリング本体は、前記オイル戻し溝のオイルリング径方向深さをAとし、前記ウェブの当該オイル戻し溝形成前におけるオイルリング径方向幅をBとした場合、A/B=0.05~0.50である請求項1又は請求項2に記載の内燃機関用オイルリング。
  4. 前記オイルリング本体を構成するウェブのオイル戻し溝形成前におけるオイルリング径方向幅Bは、0.3mm以上である請求項1~請求項3のいずれかに記載の内燃機関用オイルリング。
  5. 前記オイルリング本体を構成するウェブに設けるオイル戻し孔は、当該オイルリング本体の円周方向に沿った開口幅が0.5mm~5.0mmであり、且つ、オイルリング軸方向に沿った開口高さが0.2mm~0.8mmである請求項1~請求項4のいずれかに記載の内燃機関用オイルリング。
  6. 前記オイルリング本体のオイルリング軸方向幅h1は、1.0mm~2.5mmである請求項1~請求項5のいずれかに記載の内燃機関用オイルリング。
  7. 前記オイルリングのシリンダボア径に対する張力比は、0.05N/mm~0.5N/mmである請求項1~請求項6のいずれかに記載の内燃機関用オイルリング。
  8. 前記オイルリング本体に形成されるオイル戻し溝の当該オイルリング軸方向断面において構成される曲線は、前記コイルエキスパンダ収容凹部から連接する延設曲線の曲率半径が、0.01~0.30mmである請求項1~請求項7のいずれかに記載の内燃機関用オイルリング。
  9. 前記オイルリング本体を構成するウェブに備わるオイル戻し孔の当該ウェブの周方向におけるピッチをE、当該オイル戻し孔の当該ウェブの周方向における長さをCとした場合、C/(E-C)=0.1~1.2である請求項1~請求項8のいずれかに記載の内燃機関用オイルリング。
PCT/JP2011/059642 2010-04-19 2011-04-19 内燃機関用オイルリング WO2011132679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/641,791 US20130049305A1 (en) 2010-04-19 2011-04-19 Internal combustion engine oil ring
JP2012511671A JP5773500B2 (ja) 2010-04-19 2011-04-19 内燃機関用オイルリング
CN201180020064.2A CN102859241B (zh) 2010-04-19 2011-04-19 内燃机用油环
EP11772014.4A EP2562448B1 (en) 2010-04-19 2011-04-19 Oil ring for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-096385 2010-04-19
JP2010096385 2010-04-19

Publications (1)

Publication Number Publication Date
WO2011132679A1 true WO2011132679A1 (ja) 2011-10-27

Family

ID=44834197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059642 WO2011132679A1 (ja) 2010-04-19 2011-04-19 内燃機関用オイルリング

Country Status (5)

Country Link
US (1) US20130049305A1 (ja)
EP (1) EP2562448B1 (ja)
JP (1) JP5773500B2 (ja)
CN (1) CN102859241B (ja)
WO (1) WO2011132679A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638321B2 (en) 2012-05-31 2017-05-02 Federal-Mogul Burscheid Gmbh Method for producing an oil scraper piston ring
WO2020067539A1 (ja) * 2018-09-28 2020-04-02 日本ピストンリング株式会社 内燃機関用オイルリング

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014020382B1 (pt) * 2012-02-17 2020-09-24 Tenneco Inc. Anel de pistão para um motor de combustão interna e montagem de cilindro de potência
WO2015101938A1 (en) * 2013-12-30 2015-07-09 Mahle International Gmbh Oil control ring assembly
CN104061087A (zh) * 2014-06-24 2014-09-24 仪征亚新科双环活塞环有限公司 油环及其加工工艺
JP6530200B2 (ja) * 2015-02-23 2019-06-12 株式会社リケン サイドレール
JP6572581B2 (ja) * 2015-03-24 2019-09-11 出光興産株式会社 火花点火式内燃機関用潤滑油組成物、該潤滑油組成物の製造方法、該潤滑油組成物を用いた火花点火式内燃機関、及び該内燃機関の潤滑方法
DE102017107009B4 (de) * 2017-03-31 2018-11-08 Federal-Mogul Burscheid Gmbh Spielfreier Ölabstreifring
DE102017113354A1 (de) * 2017-06-19 2018-12-20 Federal-Mogul Burscheid Gmbh Ölabstreifkolbenring
JP7045383B2 (ja) * 2017-09-29 2022-03-31 日本ピストンリング株式会社 ピストンリング
JP6603284B2 (ja) * 2017-10-05 2019-11-06 株式会社リケン サイドレール
CN109026428B (zh) * 2018-08-16 2020-12-22 全椒县全动机械有限公司 一种内燃机顶岸活塞槽结构
CN109707528A (zh) * 2018-12-26 2019-05-03 仪征亚新科双环活塞环有限公司 一种组合式油环及活塞式发动机
JP7148667B1 (ja) 2021-03-31 2022-10-05 Tpr株式会社 オイルコントロールリング

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172036U (ja) * 1982-05-11 1983-11-17 日本ピストンリング株式会社 鋼製組合せオイルリング
JPS6145172A (ja) 1982-10-26 1986-03-05 Teikoku Piston Ring Co Ltd コイルエキスパンダ付オイルリング
JPH09144881A (ja) * 1995-11-21 1997-06-03 Teikoku Piston Ring Co Ltd 組合せオイルリング
JPH09210203A (ja) * 1996-01-29 1997-08-12 Teikoku Piston Ring Co Ltd ピストンリング
JP2002521257A (ja) * 1998-07-20 2002-07-16 ティーアールダブリュー・オキュパント・リストレイント・システムズ・ゲーエムベーハー・ウント・コンパニー・カーゲー 車両用膝拘束装置
JP2006194272A (ja) 2005-01-11 2006-07-27 Hitachi Metals Ltd オイルリング用線材およびその製造方法
JP2008291991A (ja) * 2007-04-27 2008-12-04 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
WO2008153041A1 (ja) * 2007-06-11 2008-12-18 Hitachi Metals, Ltd. I型オイルリング用線材およびその製造方法
JP2010054039A (ja) * 2008-08-29 2010-03-11 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
JP2010060126A (ja) * 2008-08-08 2010-03-18 Jtekt Corp 転がり軸受装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522412A (en) * 1982-10-26 1985-06-11 Keikoku Piston Ring Co., Ltd. Oil ring with coil expander
GB8420545D0 (en) * 1984-08-13 1984-09-19 Ae Plc Piston rings
DE3603690A1 (de) * 1986-02-06 1987-08-13 Goetze Ag Oelabstreifkolbenring
JPH04117956U (ja) * 1991-04-04 1992-10-22 帝国ピストンリング株式会社 組合せオイルリング
EP0594042B1 (en) * 1992-10-23 1997-01-29 Hitachi Metals Co. Ltd. A section steel wire for an oil ring and a method of producing the same
JP3266468B2 (ja) * 1995-07-27 2002-03-18 帝国ピストンリング株式会社 組合せオイルリングおよびそれとピストンとの組合せ
JP2003287128A (ja) * 2002-03-29 2003-10-10 Nippon Piston Ring Co Ltd 2ピース型組合せオイルリング
TWI238233B (en) * 2003-02-20 2005-08-21 Riken Kk Combined oil control ring
JP2007278401A (ja) * 2006-04-07 2007-10-25 Hitachi Metals Ltd オイルリング用線材の製造方法
JP2010216628A (ja) * 2009-03-19 2010-09-30 Hitachi Metals Ltd オイルリング用線材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172036U (ja) * 1982-05-11 1983-11-17 日本ピストンリング株式会社 鋼製組合せオイルリング
JPS6145172A (ja) 1982-10-26 1986-03-05 Teikoku Piston Ring Co Ltd コイルエキスパンダ付オイルリング
JPH09144881A (ja) * 1995-11-21 1997-06-03 Teikoku Piston Ring Co Ltd 組合せオイルリング
JPH09210203A (ja) * 1996-01-29 1997-08-12 Teikoku Piston Ring Co Ltd ピストンリング
JP2002521257A (ja) * 1998-07-20 2002-07-16 ティーアールダブリュー・オキュパント・リストレイント・システムズ・ゲーエムベーハー・ウント・コンパニー・カーゲー 車両用膝拘束装置
JP2006194272A (ja) 2005-01-11 2006-07-27 Hitachi Metals Ltd オイルリング用線材およびその製造方法
JP2008291991A (ja) * 2007-04-27 2008-12-04 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
WO2008153041A1 (ja) * 2007-06-11 2008-12-18 Hitachi Metals, Ltd. I型オイルリング用線材およびその製造方法
JP2010060126A (ja) * 2008-08-08 2010-03-18 Jtekt Corp 転がり軸受装置
JP2010054039A (ja) * 2008-08-29 2010-03-11 Nippon Piston Ring Co Ltd 内燃機関用オイルリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562448A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638321B2 (en) 2012-05-31 2017-05-02 Federal-Mogul Burscheid Gmbh Method for producing an oil scraper piston ring
EP2855981B1 (de) * 2012-05-31 2019-05-15 Federal-Mogul Burscheid GmbH Verfahren zur herstellung eines ölabstreifkolbenrings
WO2020067539A1 (ja) * 2018-09-28 2020-04-02 日本ピストンリング株式会社 内燃機関用オイルリング
JPWO2020067539A1 (ja) * 2018-09-28 2021-10-07 日本ピストンリング株式会社 内燃機関用オイルリング
JP7182097B2 (ja) 2018-09-28 2022-12-02 日本ピストンリング株式会社 内燃機関用オイルリング

Also Published As

Publication number Publication date
CN102859241B (zh) 2015-07-15
EP2562448B1 (en) 2018-11-21
JPWO2011132679A1 (ja) 2013-07-18
CN102859241A (zh) 2013-01-02
JP5773500B2 (ja) 2015-09-02
EP2562448A1 (en) 2013-02-27
EP2562448A4 (en) 2016-10-26
US20130049305A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5773500B2 (ja) 内燃機関用オイルリング
WO2011152114A1 (ja) 内燃機関用オイルリング
JP4633639B2 (ja) 3ピースオイルリング及び3ピースオイルリングとピストンとの組合せ
US7207571B2 (en) Steel piston ring
US8419285B2 (en) Sliding bearing for internal combustion engine and sliding bearing device
JP5099910B2 (ja) 内燃機関用オイルリング
WO2017090287A1 (ja) 半割軸受
JP2012215238A (ja) ガソリンエンジン用ピストンリングの組合せ
JP2011075065A (ja) 内燃機関用オイルリング
JP2008291991A (ja) 内燃機関用オイルリング
WO2020158949A1 (ja) 組合せオイルリング
JP6894879B2 (ja) 内燃機関のシリンダ及び製造方法
JP2005264978A (ja) 圧力リング
JP2022187021A (ja) 内燃機関用オイルリング
EP3534021A1 (en) Half thrust bearing
JP6914291B2 (ja) 内燃機関のシリンダ
CN111148924A (zh) 活塞环
JP7284308B1 (ja) ピストンリング
EP4290066A1 (en) Compression ring
US11835084B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
US11619256B2 (en) Half thrust bearing and bearing device for crankshaft of internal combustion engine
JP2012052590A (ja) 回転防止用2ピースオイルリング及びそれを用いた2ピースオイルリングの回転防止構造
JP5871277B2 (ja) 内燃機関用オイルリング
JP5020009B2 (ja) すべり軸受
JP2020148209A (ja) すべり軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020064.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511671

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 8242/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13641791

Country of ref document: US

Ref document number: 2011772014

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE