WO2020067539A1 - 内燃機関用オイルリング - Google Patents

内燃機関用オイルリング Download PDF

Info

Publication number
WO2020067539A1
WO2020067539A1 PCT/JP2019/038419 JP2019038419W WO2020067539A1 WO 2020067539 A1 WO2020067539 A1 WO 2020067539A1 JP 2019038419 W JP2019038419 W JP 2019038419W WO 2020067539 A1 WO2020067539 A1 WO 2020067539A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil ring
oil
main body
ring main
internal combustion
Prior art date
Application number
PCT/JP2019/038419
Other languages
English (en)
French (fr)
Inventor
倫浩 伊藤
蓮見 良介
務 矢澤
剛 牧田
Original Assignee
日本ピストンリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピストンリング株式会社 filed Critical 日本ピストンリング株式会社
Priority to JP2020549495A priority Critical patent/JP7182097B2/ja
Priority to CN201980063841.8A priority patent/CN112771290B/zh
Priority to DE112019004898.8T priority patent/DE112019004898T5/de
Publication of WO2020067539A1 publication Critical patent/WO2020067539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • F16J9/061Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging using metallic coiled or blade springs
    • F16J9/062Coiled spring along the entire circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown

Definitions

  • the present invention relates to a two-piece oil ring for an internal combustion engine including an oil ring main body and a coil expander.
  • oil rings used in automobile engines are also required to satisfy both the reduction of frictional force and the reduction of engine oil consumption. Have been. Therefore, various measures have been taken on the shape of the oil ring and the like. For example, an oil ring arranged in a cylinder bore with a low tension in order to reduce frictional force and a thin oil ring in order to improve oil consumption are used.
  • oil rings having different configurations called a two-piece oil ring and a three-piece oil ring exist.
  • the two-piece oil ring has a high rigidity and a high heat load, and is therefore mainly used for diesel engine engines.
  • the oil ring main body of the two-piece oil ring has a substantially I-shaped cross section, and an upper rail (first rail) constituting an upper part of the oil ring main body and a lower rail (a first rail) constituting a lower part of the oil ring main body.
  • the web is provided with a plurality of oil return holes for letting the oil scraped off from the inner wall surface of the cylinder by these rails flow down to the back surface of the piston.
  • the outer rail slides on the upper rail and the lower rail with the oil film interposed on the inner wall surface of the cylinder.
  • the oil ring has the function of scraping off excess engine oil on the cylinder inner wall surface and the function of forming an appropriate oil film on the cylinder inner wall surface to prevent piston seizure. Is indispensable.
  • a wire material for an oil ring having a substantially I-shaped cross section has been manufactured by a wire material maker, and then a coiling molding (winding process) is performed by a piston ring maker, so that an oil ring main body of a two-piece oil ring is formed. Is the mainstream.
  • the oil return hole is generally already formed in the state of a wire for an oil ring.
  • Patent Document 1 discloses a method of manufacturing a two-piece oil ring by forming an oil return hole in the state of such an oil ring wire and then performing coiling molding. Further, Patent Document 2 discloses a pitch and a length of an oil return hole provided in an oil ring main body of a two-piece oil ring. The oil ring has been set to allow the oil scraped off by the oil ring to quickly escape to the back side of the piston, but the oil seal performance required for the two-piece oil ring has not been considered.
  • the outer peripheral sliding surface of the rail end portion of the oil ring main body is polished by barrel polishing or the like to thereby form a perfect circle of the outer peripheral sliding surface of the rail end portion of the oil ring main body. It is conceivable to improve the oil seal performance by increasing the degree. However, in the case of oil rings, it is also required to reduce the amount of engine oil consumed by suppressing excessive oil scraping when the piston goes up and scraping excess oil on the cylinder inner wall when the piston goes down. Is done. Therefore, for the following reason, it is not possible to employ a method of improving the oil sealing property by polishing the outer peripheral sliding surface of the rail end portion of the oil ring main body by barrel polishing or the like.
  • the distal ends of the first rail and the second rail in the oil ring main body are, for example, shown in sectional views cut along a plane parallel to the axial direction of the oil ring main body, for example, as shown in FIGS. 3A to 3C.
  • the distal end portion 8 includes a substantially flat first flat portion (outer peripheral sliding surface) 8A that contacts the inner wall surface 21 of the cylinder 20 and a first flat portion 8A.
  • a first reduced-diameter portion 8B whose diameter is reduced along one of the axial directions (up and down directions in FIGS. 3A and 3B) of the oil ring main body, and an oil ring main body from the first flat portion 8A.
  • a second reduced diameter portion 8C that reduces in diameter along the other axial direction (downward in the figure) and a second flat portion that is continuous with the first reduced diameter portion 8B and substantially perpendicular to the cylinder inner wall surface 21 8D, and a third flat portion 8E that is continuous with the second reduced diameter portion 8C and that is substantially perpendicular to the cylinder inner wall surface 21.
  • the distance ab between a and b is:
  • the angle ⁇ ab formed by a line longer than the distance cd between c and d and connecting a and b, and a straight line parallel to the cylinder inner wall surface 21 is a straight line connecting c and d, and a cylinder inner wall surface. 21 is smaller than an angle ⁇ cd formed by a straight line parallel to 21.
  • the oil ring is attached to the piston such that the first reduced diameter portion 8B is on the upper side of the piston and the second reduced diameter portion 8C is on the lower side of the piston.
  • the distance ab is long, and the first reduced-diameter portion 8B angle theta ab is small, by rides the oil film of engine oil, suppresses scraping up the oil.
  • the second reduced diameter portion 8C in which the distance cd is short and the angle ⁇ cd is large, scrapes off excess oil on the inner wall surface of the cylinder, so that the oil pan can be efficiently oiled. , It is possible to reduce oil consumption.
  • the above-mentioned distal end portion 8 does not have the second reduced diameter portion 8C as shown in FIGS. 3A and 3B, and is directly connected to the first flat portion 8A. Even if the oil ring has the flat portion 8E, the same effect as described above can be obtained by arranging the first reduced diameter portion 8B to be located above the piston.
  • the distal ends of the first rail and the second rail in the oil ring main body are, for example, shown in FIG. 4A in a cross-sectional view cut along a plane parallel to the axial direction of the oil ring main body.
  • Such a shape may be used.
  • the tip end 8 has a recessed step 8F at the corner of the outer peripheral sliding surface 8A on the side facing the web 4.
  • the above-described oil ring in which the distal ends of the first rail and the second rail in the oil ring main body have a specific shape is a part that can become the distal end of the rail after coiling in the state of the oil ring wire. Is processed into a predetermined shape.
  • the outer peripheral sliding surface of the oil ring main body is polished by barrel polishing or the like after the coiling is formed, the shape of the above-mentioned distal end portion is greatly different between a portion protruding by undulation and a portion that is not so, and the outer peripheral sliding surface has The contact width with the cylinder becomes uneven.
  • the oil ring main body has different scraping performance of oil at each location in the circumferential direction, there is a possibility that the effect of reducing the oil consumption cannot be sufficiently obtained.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the waviness generated at the time of manufacturing an oil ring while improving the oil consumption, and to improve the oil seal performance.
  • An object of the present invention is to provide an oil ring for an internal combustion engine that can be used.
  • the present invention has the following configuration (1).
  • An oil ring body having a substantially I-shaped cross section of an oil ring, and a coil expander arranged on the inner peripheral side of the oil ring body,
  • the oil ring main body includes a first rail and a second rail that are in contact with an inner wall surface of the cylinder, and a plurality of oil rails that allow the first rail and the second rail to allow oil scraped off from the inner wall surface of the cylinder to flow down to the back surface of the piston.
  • a web with an oil return hole The waviness of at least one of a portion excluding the inner peripheral groove and the oil return groove on the inner peripheral side of the oil ring main body and a portion excluding the sliding surface on the outer peripheral side of the oil ring main body is 6.0 ⁇ m or less.
  • a preferred embodiment according to the present invention has the following configurations (2) to (13).
  • (3) the oil ring window angle theta w of the oil return hole in the body is 10.0 ° or less, (1) or an internal combustion engine oil ring according to (2).
  • (6) The oil ring for an internal combustion engine according to any one of (1) to (5), wherein the oil ring main body is made of steel.
  • (7) The oil ring for an internal combustion engine according to any one of (1) to (6), wherein a surface of the oil ring main body is subjected to a nitriding treatment.
  • (8) Any one of (1) to (7), wherein the sliding surface of the oil ring main body is coated with at least one of a PVD coating, a DLC coating, and a resin coating as a hard coating.
  • the oil ring for an internal combustion engine according to any one of (1) to (8), wherein a concave step is formed at a corner of the sliding surface.
  • the tip of the first rail and the tip of the second rail are: A substantially flat first flat portion abutting on the cylinder inner wall surface; A first diameter-reducing portion that reduces the diameter from the first flat portion along one of the axial directions of the oil ring main body; A second flat portion continuous with the first reduced diameter portion; A third flat portion which is continuous with the first flat portion or directly via a second reduced diameter portion which is reduced in diameter along the other axial direction of the oil ring main body from the first flat portion;
  • the oil ring for an internal combustion engine according to any one of (1) to (8) comprising: (11) In a case where the distal end portion includes the second reduced diameter portion, In a sectional view cut along a plane parallel to the axial direction of the oil ring main body, When one end of the first reduced diameter portion is a, the other end is b, one end of the second reduced
  • the distance ab between the a and the b is longer than the distance cd between the c and the d
  • An angle ⁇ ab formed by a straight line connecting the a and the b and a straight line parallel to the cylinder inner wall surface is an angle formed by a straight line connecting the c and the d and a straight line parallel to the cylinder inner wall surface.
  • the oil ring for an internal combustion engine of the present invention it is possible to reduce the swell generated at the time of manufacturing the oil ring and to improve the oil sealing performance while securing the effect of reducing the oil consumption.
  • FIG. 1 is a perspective view of an oil ring (two-piece oil ring) for an internal combustion engine according to an embodiment of the present invention, which includes an oil ring main body and a coil expander disposed on the inner peripheral side of the oil ring main body. is there.
  • FIG. 2 is a cross-sectional view taken along a plane parallel to the axial direction of the piston to explain a state in which the oil ring for an internal combustion engine according to the embodiment of the present invention is mounted in an oil ring groove of the piston.
  • FIG. 3A is a cross-sectional view illustrating an example of a case where the distal end of the first rail or the second rail is cut along a plane parallel to the axial direction of the oil ring main body.
  • FIG. 3B is a cross-sectional view showing another example in which the tip of the first rail or the second rail is cut along a plane parallel to the axial direction of the oil ring main body.
  • FIG. 3C is a cross-sectional view illustrating another example of a case where the distal end of the first rail or the second rail is cut along a plane parallel to the axial direction of the oil ring main body.
  • FIG. 4A is a cross-sectional view illustrating an example of the shape of the rail outer peripheral surface of the oil ring main body when the oil ring main body is cut along a plane parallel to the axial direction of the oil ring main body.
  • FIG. 4B is a cross-sectional view showing another example of the shape of the rail outer peripheral surface of the oil ring main body when the oil ring main body is cut along a plane parallel to the axial direction of the oil ring main body.
  • FIG. 5A is a front view of the oil ring main body according to the embodiment of the present invention when viewed from the radial outside of the oil ring main body.
  • FIG. 5B is a sectional view taken along line II of FIG. 5A.
  • FIG. 5C is a schematic view showing a range from 45 ° to 315 ° in a clockwise direction from the abutting portion with the abutting portion of the oil ring body being 0 °.
  • FIG. 5A is a front view of the oil ring main body according to the embodiment of the present invention when viewed from the radial outside of the oil ring main body.
  • FIG. 5B is a sectional view taken along line II of FIG. 5A.
  • FIG. 5C is a schematic
  • FIG. 6 is a developed view showing an example of the result of measuring the ring circumferential direction with a roundness measuring device.
  • FIG. 7 is a cross-sectional view showing a measuring method on the inner peripheral side of the oil ring for an internal combustion engine.
  • FIG. 8 is an enlarged view for explaining a measuring method on the inner peripheral side of the oil ring for an internal combustion engine.
  • FIG. 9 is a cross-sectional view showing a measuring method on the outer peripheral side of the oil ring for an internal combustion engine.
  • FIG. 10 is an enlarged view for explaining a method of measuring the outer peripheral side of the oil ring for an internal combustion engine.
  • FIG. 11 is a front view of the oil ring main body according to the embodiment of the present invention, as viewed from the radial outside of the oil ring main body, for describing the shape of the oil return hole.
  • FIG. 12 is a cross-sectional view taken along a plane parallel to the axial direction of the oil ring main body to explain a state where the outer surface of the oil ring main body according to the embodiment of the present invention has been subjected to nitriding treatment.
  • FIG. 13 is a graph showing the correlation between the window angle and the amount of undulation based on the results of Test Example 2 (d).
  • FIG. 1 is a perspective view of an oil ring (two-piece oil ring) 1 for an internal combustion engine including an oil ring main body 2 according to the present embodiment and a coil expander 3 arranged on the inner peripheral side of the oil ring main body 2.
  • an oil ring 1 for an internal combustion engine includes an oil ring main body 2 and a coil expander 3.
  • the oil ring main body 2 is a ring having a substantially I-shaped cross section, and includes an abutment 2a.
  • the oil ring main body 2 is formed by integrating an upper first rail 5, a lower second rail 6, and a web 4 which connects these rails and is located at an intermediate portion of the oil ring main body 2. ing.
  • the first rail 5 and the second rail 6 that constitute the oil ring main body 2 are formed in a substantially circular shape in the circumferential direction of the oil ring 1 for the internal combustion engine.
  • the outer peripheral sliding surface 8A (see FIG. 2), which is a sliding surface on the outer peripheral side of each of the first rail 5 and the second rail 6, is formed by the inner wall surface 21 (see FIG. 2) of the cylinder 20 and the oil film. And slides in the axial direction of the piston.
  • the web 4 has an oil return hole 7 which is substantially circular in the circumferential direction of the oil ring main body 2 and is formed to penetrate in the radial direction.
  • a plurality of ring bodies 2 are arranged in the circumferential direction.
  • the coil expander 3 is obtained by forming a spiral spring into an arc shape.
  • a joint core wire is used in the joint 2a to connect the joint 2a of the coil expander 3 to form an annular coil.
  • FIG. 2 is a cross-sectional view taken along a plane parallel to the axial direction of the piston 10 to explain a state in which the oil ring 1 for an internal combustion engine according to the present embodiment is mounted in the oil ring groove 11 of the piston 10. is there.
  • a coil expander accommodating recess 2 b is formed on the inner peripheral surface of the oil ring main body 2 by the first rail 5, the second rail 6, and the web 4 along the circumferential direction of the oil ring main body 2.
  • the first rail 5, the second rail 6, and the web 4 show a concave shape when viewed in a cross section cut along a plane parallel to the axial direction of the oil ring main body 2.
  • An outer peripheral groove 2 c is formed along the circumferential direction of the oil ring main body 2.
  • the oil ring 1 for an internal combustion engine is provided with an inner circumferential groove 2 e having an arc-shaped cross section on the inner circumferential side, and is formed by the inner circumferential groove 2 e.
  • the coil expander accommodating recess 2b has a substantially semicircular shape when viewed in a cross section taken along a plane parallel to the axial direction of the oil ring main body 2.
  • the coil expander 3 is housed in a state of being wrapped in a substantially semicircular portion when viewed in a cross section cut along a plane parallel to the axial direction of the oil ring main body 2.
  • the oil ring 1 for an internal combustion engine according to the present embodiment when the inner circumference of the oil ring main body 2 has an arc shape, a large contact area between the oil ring main body 2 and the coil expander 3 is ensured. Thus, the pressing force against the cylinder inner wall surface 21 can be stabilized. Further, as in the oil ring 1 for an internal combustion engine according to the present embodiment, the inner circumference of the oil ring main body 2 is formed into an arc shape, so that the pressing force against the cylinder inner wall surface 21 in the circumferential direction of the oil ring main body 2 is locally increased. Variation is less likely to occur, and unscraped oil is less likely to occur.
  • the scraped oil is passed through the oil return hole 7 and the coil expander housing recess.
  • obstruction of oil flow can be prevented. This is because the oil return groove 2d is formed between the oil ring main body 2 and the coil expander 3 so that the oil return hole 7 formed in the oil ring main body 2 is not closed.
  • the oil ring 1 for an internal combustion engine even if the shape of the oil ring main body 2 on the coil expander arrangement side is substantially semicircular, the presence of the oil return groove 2d allows The oil scraped off by the engine oil ring 1 can be immediately released to the oil drain hole 12 provided on the rear side of the oil ring, and the oil consumption can be reduced.
  • the amount of engine oil consumed is reduced by suppressing scraping of oil when the piston goes up and by scraping off excess oil on the inner wall of the cylinder when the piston goes down. Is required.
  • the tip portions 8 of the first rail 5 and the second rail 6 have different shapes between the upper side of the piston and the lower side of the piston when the oil ring 1 for the internal combustion engine is attached to the piston 10.
  • the distal end portion 8 includes a substantially flat first flat portion (outer peripheral sliding surface) 8A that contacts the inner wall surface 21 of the cylinder 20 and a first flat portion 8A.
  • a first reduced-diameter portion 8B whose diameter is reduced along one of the axial directions of the oil ring main body (the vertical direction in FIG. 3A) (upward in the figure), and an axial direction of the oil ring main body from the first flat portion 8A.
  • a second reduced diameter portion 8C that reduces in diameter along the other (lower side in the figure), a second flat portion 8D that is continuous with the first reduced diameter portion 8B and that is substantially perpendicular to the cylinder inner wall surface 21;
  • a third flat portion 8E that is continuous with the second reduced diameter portion 8C and that is substantially perpendicular to the cylinder inner wall surface 21;
  • the oil ring 1 for the internal combustion engine is attached to the piston 10 such that the first reduced diameter portion 8B is on the upper side of the piston and the second reduced diameter portion 8C is on the lower side of the piston.
  • the distance ab is long, and the first reduced-diameter portion 8B angle theta ab is small, by rides the oil film of engine oil, suppresses scraping up the oil.
  • the second reduced diameter portion 8C having a short distance cd and having a large angle ⁇ cd scrapes off excess oil on the cylinder inner wall surface 21 so that the oil pan can be efficiently moved. By returning the oil, the oil consumption can be reduced.
  • the second reduced diameter portion 8C is shown by a gentle curve, but the second reduced diameter portion 8C is reduced in diameter along the other axial direction of the oil ring main body from the first flat portion 8A. If so, for example, a straight line may be used.
  • the distal end portion 8 does not have the second reduced diameter portion 8C as shown in FIGS. 3A and 3B, and is directly connected to the first flat portion 8A. (That is, the first flat portion 8A and the third flat portion 8E intersect at the intersection point e), the first reduced diameter portion 8B is on the upper side of the piston. With such a position, the same effect as above can be obtained.
  • the tip portions 8 of the first rail 5 and the second rail 6 have desired shapes on the upper side and the lower side of the piston, respectively. That is, the distal end portions 8 of the first rail 5 and the second rail 6 have a vertically asymmetric shape (ie, asymmetric with respect to the center in the thickness direction of the first rail 5 or the second rail 6). . This makes it possible to reduce the oil consumption both when the piston is raised and when the piston is lowered.
  • first flat portion 8A described above does not have to be strictly flat as long as it can abut the cylinder inner wall surface 21.
  • first reduced diameter portion 8B may have a tapered (linear) shape as shown in FIG. 3A or a shape as shown in FIG. It may be a gently curved surface.
  • the second flat portion 8D and the third flat portion 8E do not have to be strictly perpendicular to the cylinder inner wall surface 21, and the second flat portion 8D and the third flat portion 8E and the inner It is preferable that the angle formed by a straight line parallel to the wall surface 21 is 45 to 90 °.
  • 3A may be used for both rails
  • the shape shown in FIG. 3B may be used for both rails.
  • 3C may be used for both rails.
  • a combination of rails having differently shaped tips 8 such that one rail has the shape shown in FIG. 3A and the other rail has the shape shown in FIG. 3B may be used.
  • both the first rail 5 and the second rail 6 need to be configured such that the first reduced diameter portion 8B is located above the piston.
  • the distal end portion 8 has a recessed step 8F formed at a corner on the side facing the web 4 on the outer peripheral sliding surface 8A.
  • the predetermined recessed step 8F as the outer peripheral shape of the first rail 5 and the second rail 6, even if the oil ring is used for a long time, the outer peripheral surfaces of the first rail 5 and the second rail 6 can be used.
  • the area of the sliding surface 8A hardly changes, and the effect of suppressing an increase in oil consumption can be stably obtained for a long period of time.
  • the oil ring 1 for the internal combustion engine can quickly release the oil scraped by itself into the oil drain hole provided on the back side of the oil ring, and reduce the oil consumption.
  • the contact width X (see FIG. 4A) of the outer peripheral sliding surface 8A with the cylinder 20 can be set to, for example, about 0.01 to 0.25 mm. .
  • the contact width X is smaller than 0.01 mm as described above, the strength of the outer peripheral sliding surface 8A may be reduced, which may cause breakage such as chipping of the distal end portion 8, which is not preferable.
  • the contact width X is larger than 0.25 mm, the sliding area of the outer peripheral sliding surface 8A increases, which leads to an increase in friction and oil consumption, which is not preferable. Therefore, it is preferable that the contact width X be 0.01 to 0.25 mm.
  • the recessed step 8F As a specific processing method for forming the recessed step 8F, various types of grinding and cutting may be appropriately selected. However, in the process of manufacturing the piston ring wire, the recessed step 8F is preferably formed in advance. This is preferable because the number of steps for grinding and cutting can be reduced.
  • a surface treatment layer 8G at least in the vicinity of the outer peripheral sliding surface 8A (portion surrounded by ⁇ in FIG. 4A).
  • the surface treatment layer 8G may be subjected to any treatment as long as the surface treatment layer 8G has been subjected to a hard surface treatment so as to improve the hardness with respect to the outer peripheral sliding surface 8A.
  • a nitriding layer, a composite coating in which a DLC coating is formed on a PVD coating, a resin coating containing a solid lubricant (molybdenum disulfide, graphite, or the like) in polyamideimide, or the like is preferably used.
  • the thickness of the surface treatment layer 8G is preferably 1 to 30 ⁇ m.
  • the distal end portion 8 has different desired shapes on the upper side and the lower side of the piston, similarly to the above. That is, the distal ends 8 of the first rail 5 and the second rail 6 are located symmetrically with respect to the web 4. In the case of such a shape, there is no possibility that the upper and lower parts are erroneously assembled.
  • the shape of the tip 8 of the first rail 5 and the second rail 6 is not limited to the shapes shown in FIGS. 3A to 3C and 4A described above.
  • As shown in FIG. 8 may have no concave step.
  • the oil ring body 2 will be described in detail waviness occurring in the window angle theta W and the outer peripheral sliding surface 8A of the oil return hole 7.
  • the present inventors coiled (rolled up) an oil ring wire, and then set the outer peripheral sliding surface 8A of the rail tip 8 in the oil ring body 2 to a barrel.
  • intensive studies have been made.
  • a window angle theta W of the oil return hole 7 in the oil ring body 2 by setting a predetermined range, the outer peripheral sliding surface 8A of the rail front end portion 8 of the oil ring body 2 It has been found that the generated undulation can be reduced.
  • the window angle theta W of the oil return hole 7 in the oil ring body 2 10.0 ° or less. Further, in order to reduce the waviness effectively, it is preferable that the window angle theta W and 8.0 ° or less, preferably set to 7.0 ° or less, further to 6.0 ° or less Is preferred.
  • FIG. 5A is a main part front view of the oil ring main body 2 according to the present embodiment when viewed from the radial outside of the oil ring main body 2.
  • FIG. 5B is a sectional view taken along the line II of FIG. 5A. As shown in FIG.
  • the window angle ⁇ W of the oil return hole 7 in the oil ring main body 2 is, when the abutment 2 a of the oil ring main body 2 is closed, the center point G (center of gravity) of the oil ring main body 2, A straight line GE 1 connecting one end E 1 of the oil ring main body 2 in the circumferential direction of an oil return hole 7, a center point G of the oil ring main body 2, and one end E 2 of the oil ring main body 2 in the adjacent oil return hole 7. It is defined by the angle formed by the straight line GE 2 connecting and.
  • the center point G of the oil ring main body 2, the straight line GE 1 connecting the one end E 1 of the pitch E in the circumferential direction of the web 4 in the oil return hole 7, and the center point G of the oil ring main body 2 in the oil return hole 7, it is defined as the angle which the straight line GE 2 forms connecting the other end E 2 of the pitch E in the circumferential direction of the web 4.
  • the waviness generated on at least one of the portion excluding the inner peripheral groove 2e on the inner peripheral side of the oil ring main body 2 and the portion excluding the sliding surface (outer peripheral sliding surface) 8A on the outer peripheral side of the oil ring main body 2 is 6. It is preferably not more than 0.0 ⁇ m, more preferably not more than 4.0 ⁇ m, and preferably not more than 3.0 ⁇ m.
  • the undulation is generated in at least one of a portion excluding the inner peripheral groove 2e and the oil return groove 2d on the inner peripheral side of the oil ring main body 2 and a portion excluding the sliding surface 8A on the outer peripheral side of the oil ring main body 2.
  • Two consecutive points of the amplitude of the peaks and valleys adjacent in the circumferential direction are taken at two points and defined as an average value.
  • the abutment is set to 0 °, and the angle from the ring abutment 2a is within a range of 45 ° to 315 ° clockwise.
  • FIG. 6 is a developed view showing an example of the result of measuring the ring circumferential direction with a roundness measuring device.
  • the measured undulation is obtained by taking two points (A, B, C and D, E, F) of three consecutive points of the amplitude of peaks and valleys adjacent in the circumferential direction and averaging them.
  • the ring can follow the cylinder bore if it is a low-order deformation, but it may not follow in the case of a high-order deformation, so the roundness should be sufficiently considered Can not.
  • the outer peripheral sliding surface 8A of the first rail 5 or the second rail 6 may change its shape due to grinding, polishing, or the like, or sliding friction with the cylinder inner wall surface after use of the oil ring 1 for an internal combustion engine. Therefore, at least one of a portion excluding the inner peripheral groove 2e and the oil return groove 2d on the inner peripheral side of the oil ring main body 2 and a portion excluding the sliding surface 8A on the outer peripheral side of the oil ring main body 2 are provided. .
  • the inner peripheral surface is not ground or polished, or has no sliding friction with the inner wall surface of the cylinder, the inner peripheral surface does not change its shape even after use, and the outer peripheral surface of the first rail 5 or the second rail 6 and Since the amount of undulation generated on the inner peripheral surface is substantially the same, when determining whether the undulation generated during the production of the oil ring satisfies a predetermined value or less, the inner peripheral groove 2e and the oil return groove of the oil ring main body 2 are determined.
  • the part 2f other than the part 2d is measured (see FIGS. 2 and 4A).
  • the measuring method of the inner peripheral shape or the outer peripheral shape of the oil ring main body 2 is as follows. First, a method for measuring the inner peripheral shape of the oil ring main body 2 will be described. As shown in FIG. 7, the coil expander 3 is attached to the oil ring main body 2 and assembled so that the outer peripheral sliding surface 8A of the rail end portion of the oil ring main body 2 comes into contact with the inner peripheral surface 40A of the perfect circular gauge 40. . At this time, the tension of the coil expander 3 is preferably set to about 5N.
  • the hook-shaped stylus 41 is moved to the inner peripheral groove 2 e and the oil return of the inner circumference of the oil ring main body 2.
  • the circular shape gauge 40 is rotated together with the oil ring main body 2 while being brought into contact with a portion 2f other than the groove 2d to measure the inner peripheral shape.
  • the outer ring sliding surface 8 ⁇ / b> A of the rail end portion of the oil ring main body 2 is brought into contact with the inner peripheral surface 40 ⁇ / b> A of the perfect circular gauge 40, so that the oil ring main body 2 is formed by the perfect circular gauge 40.
  • the oil ring main body 2 is sandwiched between the upper and lower gauges 42 in the axial direction (vertical direction in the figure).
  • the tension of the coil expander 3 is set to about 5N so that the oil ring main body 2 does not fall off from the upper and lower gauges 42, 42 due to the tension of the coil expander 3.
  • the oil return hole 7 provided in the web 4 constituting the oil ring main body 2 has a length (opening width) C (width indicated by C in FIG. 11) in the circumferential direction of the oil ring main body 2 of 1.0 mm or more. Is preferably 1.5 mm or more, and more preferably 2.0 mm or more.
  • FIG. 11 is a front view of the oil ring main body 2 of the present embodiment, as viewed from the outside in the radial direction, for explaining the shape of the oil return hole 7 provided in the oil ring main body 2. As shown in FIG.
  • the opening width C is preferably 4.0 mm or less, more preferably 3.0 mm or less, even more preferably 2.5 mm or less.
  • the opening width C is larger than 4.0 mm, the area of the oil return hole 7 is too large, so that the strength of the oil ring main body 2 is reduced, which is sufficient when the oil ring 1 for an internal combustion engine is applied to an internal combustion engine. Durability cannot be obtained.
  • the oil ring main body 2 is likely to be deformed during processing, and the oil scraping function is reduced.
  • the oil return hole 7 provided in the web 4 constituting the oil ring main body 2 has a height (opening height) D (height indicated by D in FIG. 11) in the axial direction of the oil ring main body 2 of 0.3 mm. It is preferably at least 0.4 mm, more preferably at least 0.4 mm.
  • the opening height D is smaller than 0.3 mm, the opening area of the oil return hole 7 is too small, so that the oil scraped off by the oil ring 1 for the internal combustion engine is quickly removed from the rear side of the oil ring 1 for the internal combustion engine. Can not be discharged to the oil drain hole 12 provided in the oil tank.
  • the opening height D is preferably 1.0 mm or less. If the opening height D is larger than 1.0 mm, the area of the oil return hole 7 is too large, so that the strength of the oil ring main body 2 is reduced, which is sufficient when the oil ring 1 for an internal combustion engine is applied to an internal combustion engine. High durability cannot be obtained. Furthermore, if the area of the oil return hole 7 is too large, the oil ring main body 2 is likely to be deformed during processing, and the oil scraping function is reduced.
  • the shape of the oil return hole 7 is not limited to a shape in which the side corresponding to the opening height D at both ends of the rectangular shape is formed as an arc-shaped side having a constant radius of curvature R as shown in FIG.
  • various shapes such as a rectangle, a circle, an ellipse, and a curve having a side corresponding to the opening height D can be appropriately selected and used as long as the required characteristics as an oil ring are satisfied. .
  • the axial width h1 of the oil ring main body 2 is preferably 1.0 mm to 4.0 mm.
  • the radial width a1 of the oil ring main body 2 (the width indicated by a1 in FIG. 2) is preferably 1.5 mm to 3.0 mm.
  • the radial width a1 of the oil ring main body 2 is smaller than 1.5 mm, the assembling property to the piston may be deteriorated.
  • the radial width a1 of the oil ring main body 2 is larger than 3.0 mm, the rigidity is high, and the followability may be deteriorated.
  • the tension ratio of the oil ring 1 for the internal combustion engine to the cylinder bore diameter is preferably 0.05 N / mm to 0.7 N / mm.
  • the tension ratio (value calculated by [oil ring tension (N)] / [cylinder bore diameter (mm)] to cylinder bore diameter (not shown)) is set to 0. It is set to be from 05 N / mm to 0.5 N / mm.
  • the tension ratio with respect to the cylinder bore diameter is smaller than 0.05 N / mm, the pressing force of the outer peripheral sliding surface 8A of the rail tip 8 in the oil ring main body 2 against the cylinder inner wall surface 21 becomes insufficient. In this case, the outer peripheral sliding surface 8A cannot sufficiently scrape off excess oil, resulting in an increase in oil consumption.
  • the pitch E of the oil return holes 7 provided in the web 4 constituting the oil ring main body 2 in the circumferential direction of the web 4 (pitch indicated by E in FIG. 11). Is preferably 2.0 mm to 6.0 mm.
  • the pitch E in the circumferential direction of the web 4 of the oil return hole 7 provided in the web 4 constituting the oil ring main body 2 is indicated by E.
  • the oil ring 1 for an internal combustion engine according to the present embodiment improves both the durability and the oil consumption performance of the oil ring 1 for an internal combustion engine when the pitch E is in the range of 2.0 mm to 6.0 mm. Can be.
  • the pitch E is less than 2.0 mm, the interval between the oil return holes 7 in the web 4 becomes too short, the strength of the oil ring main body 2 decreases, and the durability of the oil ring 1 for the internal combustion engine decreases. This is inferior and is not preferred.
  • the pitch in the circumferential direction of the web 4 of the oil return hole 7 provided in the web 4 constituting the oil ring main body 2 is E
  • the circumferential direction of the web 4 of the oil return hole is Is preferably C / E ⁇ 3.8, more preferably E / C ⁇ 3.0, and even more preferably E / C ⁇ 2.0.
  • the pitch of the oil return hole 7 in the circumferential direction of the oil ring main body 2 is indicated by E
  • the length of the oil return hole 7 in the circumferential direction of the oil ring main body 2 is indicated by C. I have.
  • the oil ring 1 for an internal combustion engine according to the present embodiment can improve oil consumption performance when the relationship “E / C” between the pitch E and the length C is 3.8 or less.
  • the relationship "E / C" between the pitch E and the length C is more than 3.8, the interval between the oil return holes 7 in the web 4 becomes longer, and the oil ring 1 for the internal combustion engine is scraped.
  • the dropped oil cannot escape to the back side of the piston, which leads to an increase in oil consumption.
  • the thickness F of the nitrided layer 30 is preferably set to 150 ⁇ m or less.
  • the oil ring main body 2 is mainly made of a steel material, and has an extremely hard nitrided layer 30 made of a nitride formed by reacting chromium or iron by performing a nitriding treatment on the oil ring main body 2. That is, by forming the nitrided layer 30 on the surface of the oil ring main body 2, the oil ring main body 2 becomes excellent in wear resistance and scuff resistance against the cylinder, and can be used in an even more severe condition. A ring 1 can be provided. However, when the entire base material of the oil ring main body 2 is nitrided by performing the nitriding treatment, the oil ring main body 2 becomes too hard and brittle, thereby deteriorating breakage resistance. Therefore, when nitriding the oil ring main body 2 of the present embodiment, it is preferable to set the thickness F of the nitrided layer 30 to be 150 ⁇ m or less.
  • FIG. 12 is a cross-sectional view of the state in which the outer surface of the oil ring main body 2 of the present embodiment has been subjected to the nitriding treatment, cut along a plane parallel to the axial direction of the oil ring main body 2.
  • a nitride layer 30 is formed on the outer surface of the oil ring main body 2.
  • the thickness F of the nitride layer 30 is set to be 150 ⁇ m or less.
  • the durability of the oil ring 1 for the internal combustion engine affects the magnitude of the frictional force between the outer peripheral sliding surface 8A of the rail tip 8 in the oil ring main body 2 and the inner wall surface 21 of the cylinder.
  • the magnitude of the tension of the oil ring 1 for the internal combustion engine is taken into consideration, it is also affected by the combination of sliding metals. For example, if the material of the sliding metal is chromium or aluminum, seizure is likely to occur.
  • the outer peripheral sliding surface 8A is preferably coated as necessary with a PVD film, a DLC film, or a resin film as a hard film.
  • chromium nitride Cr 2 N, CrN
  • film comprising chromium nitride Cr 2 N, CrN
  • Cr-BN nitride
  • the material of the oil ring main body 2 is not particularly limited and can be appropriately designed.
  • steel steel
  • it is equivalent to SUS410J1, equivalent to SWRH77B, equivalent to SUS440B.
  • ⁇ Test Example 1 When the rail tip has a shape as shown in FIG. 3B> [(A) Examples 1 to 9 and Comparative Examples 1 and 2: When the cylinder bore diameter is 86 mm] Exhaust amount 2000cc, the cylinder bore diameter perform physical testing of the series 4-cylinder diesel engine of 86 mm, the magnitude of the window angle theta w of the oil return hole, confirmation of whether a difference in undulation amount generated in the oil ring body is generated was done. Further, the difference in oil consumption depending on the size of the opening width C of the oil return hole was also confirmed. The operating conditions of the engine were 4,000 rpm for 8 hours at full load. The combination of the piston rings was a first ring, a second ring, and an oil ring.
  • the 1st ring is made of martensitic stainless steel (JIS standard, equivalent to SUS410J1) with an axial width (h1) of 2.0 mm and a radial width (a1) of 3.1 mm. 100 ⁇ m), and the outer peripheral sliding surface was coated with a 20 ⁇ m-thick film made of a mixture of chromium nitride and chromium by the PVD method.
  • the 2nd ring used was a 10Cr steel having an axial width (h1) of 1.5 mm and a radial width (a1) of 3.1 mm.
  • the martensitic stainless steel constituting the 1st ring is as follows: carbon (C): 0.65% by mass, silicon (Si): 0.30% by mass, manganese (Mn): 0.30% by mass, chromium (Cr): 13.5% by mass, molybdenum (Mo): 0.30% by mass, phosphorus (P): 0.02% by mass, sulfur (S): 0.01% by mass, balance being iron (Fe) and unavoidable impurities , And after the nitriding treatment, the above-mentioned PVD treatment is applied.
  • the 10Cr steel constituting the second ring has carbon (C): 0.50% by mass, silicon (Si): 0.21% by mass, manganese (Mn): 0.30% by mass, and chromium (Cr): 10.1%. % By mass, phosphorus (P): 0.02% by mass, sulfur (S): 0.01% by mass, with the balance being composed of iron (Fe) and inevitable impurities.
  • the oil ring As the oil ring, the two-piece oil ring for an internal combustion engine described in the above embodiment was used.
  • the oil rings used in Examples 1 to 9 and Comparative Examples 1 and 2 were those in which the axial width (h1) of the oil ring main body was set to 2.00 mm and the oil ring radial width (a1) was set to 2.00 mm. Common. Further, as shown in FIG. 3B, the oil rings used in Examples 1 to 9 and Comparative Examples 1 and 2 have a first flat portion 8A, a first reduced diameter, and a first rail and a second rail.
  • Table 1 shows each condition of the opening width C (mm) of the oil return hole, the opening height D (mm) of the oil return hole, and the pitch E (mm) of the oil return hole shown in FIG.
  • the opening height D of the oil return hole was 0.55 mm
  • the opening width C (mm) of the oil return hole and the pitch E (mm) of the oil return hole were determined in Examples and Comparative Examples. The conditions were set to be different for each.
  • the oil ring body constituting the oil ring is composed of: carbon (C): 0.65% by mass, silicon (Si): 0.40% by mass, manganese (Mn): 0.30% by mass, phosphorus (P): 0.01% by mass, sulfur (S): 0.01% by mass, chromium (Cr): 13.6% by mass, molybdenum (Mo): 0.3% by mass, balance being iron (Fe) and unavoidable impurities (JIS standard, equivalent to SUS410J1), and after nitriding, the outer sliding surface is coated with a 20 ⁇ m-thick film made of a mixture of chromium nitride and chromium by PVD method. is there.
  • the contact width X (the distance ac between a and c in FIG. 3B) of the outer peripheral sliding surface 8A with the cylinder 20 was adjusted to 0.02 to 0.10 mm.
  • a nitriding layer (a layer indicated by F in FIG. 12) on the outer peripheral sliding surface was confirmed in an oil ring axial section, and as a result, a nitriding layer having a thickness of 100 ⁇ m was observed in the oil ring radial direction. It was confirmed that a layer was formed.
  • the coil expander has carbon (C): 0.55% by mass, silicon (Si): 1.41% by mass, manganese (Mn): 0.65% by mass, and chromium (Cr): 0.68% by mass. , Copper (Cu): 0.06% by mass, phosphorus (P): 0.01% by mass, sulfur (S): 0.01% by mass, with the balance being iron (Fe) and unavoidable impurities (SWOSC- V material).
  • the material of the cylinder was ordinary cast iron.
  • Example 1 to 9 and Comparative Examples 1 and 2 the oil consumption was confirmed using an oil ring having a tension ratio to the cylinder bore diameter of 0.2 N / mm.
  • Table 1 the oil consumption of Comparative Example 1 is set to the reference "100", and the relative ratio to this is shown as the oil consumption ratio for each test.
  • the undulation ( ⁇ m) of the oil ring main body was measured using a roundness measuring device (product name: RONDCOM55B, manufactured by Tokyo Seimitsu Co., Ltd.), except for the inner peripheral groove 2e and the oil return groove 2d on the inner peripheral side of the oil ring main body. Was calculated by measuring the site 2f.
  • the swell measurement results are also shown in Table 1.
  • the axial width (h1) of the oil ring body was set to 2.00 mm
  • the oil ring radial width (a1) was set to 2.00 mm.
  • Table 2 shows the conditions of the opening width C (mm) of the oil return hole, the opening height D (mm) of the oil return hole, and the pitch E (mm) of the oil return hole.
  • the opening height D of the oil return hole is 0.55 mm, which is common
  • the opening width C (mm) of the oil return hole and the pitch E (mm) of the oil return hole are shown in Examples and Comparative Examples. Conditions were set to be different for each example.
  • Example 10 to 13 and Comparative Examples 3 and 4 no nitriding treatment was performed on the oil ring body, and a mixture of chromium nitride and chromium having a film thickness of 20 ⁇ m was formed on the outer peripheral sliding surface by the PVD method.
  • Example 10 to 13 and Comparative Examples 3 and 4 the oil consumption was confirmed using an oil ring having a tension ratio to the cylinder bore diameter of 0.2 N / mm.
  • the oil consumption of Comparative Example 3 is set to the reference "100", and the relative ratio to the reference is the oil consumption ratio for each test.
  • Table 2 also shows the results of “undulation ( ⁇ m)”.
  • the axial width (h1) of the oil ring main body was set to 3.00 mm, and the oil ring radial width (a1) was set to 2.35 mm.
  • Table 3 shows conditions of the opening width C (mm) of the oil return hole, the opening height D (mm) of the oil return hole, and the pitch E (mm) of the oil return hole. As shown in Table 3, the opening height D of the oil return hole was set to 0.70 mm or 0.55 mm, and the opening width C (mm) of the oil return hole and the pitch E (mm) of the oil return hole were measured. Conditions were set so as to be different for each example and comparative example.
  • Example 14 to 19 and Comparative Examples 5 and 6 only the nitriding treatment was performed on the oil ring main body, and the coating of the mixture of chromium nitride and chromium by the PVD method was not performed.
  • the contact width X (the distance ac between a and c in FIG. 3B) of the outer peripheral sliding surface 8A with the cylinder 20 was adjusted to 0.02 to 0.15 mm. Note that the test conditions other than those described above are the same as those in “Test Example 1 (a): Examples 1 to 9 and Comparative Examples 1 and 2,” and a description thereof will not be repeated.
  • Example 13 to 15 and Comparative Examples 8 to 10 the oil consumption was confirmed using an oil ring having a tension ratio to the cylinder bore diameter of 0.4 N / mm.
  • Table 3 shows the oil consumption ratio of Comparative Example 5 as the reference “100”, and the relative ratio to the reference value, and the oil consumption ratio for each test. Table 3 also shows the results of “undulation ( ⁇ m)”.
  • ⁇ Test Example 2 When the rail tip has a shape as shown in FIG. 4A> [(D) Examples 20 to 40 and Comparative Examples 7 to 13: Measurement of Final Shape in Various Oil Rings] As shown in Test Example 1, the oil rings used in Examples 1 to 19 and Comparative Examples 1 to 6 had a case where the rail tip had a shape as shown in FIG. 3B. As for the oil ring having a recessed step as shown in FIG. 4A, similarly to the above, it was confirmed whether or not the size of the window angle ⁇ w of the oil return hole caused a difference in the amount of undulation generated in the oil ring main body. Was done.
  • the oil ring main body constituting the oil ring was composed of carbon (C): 0.70% by mass, silicon (Si): 0.25% by mass, and manganese ( Mn): 0.30% by mass, phosphorus (P): 0.01% by mass, sulfur (S): 0.01% by mass, chromium (Cr): 8.05% by mass, the balance being iron (Fe) and inevitable
  • the oil ring body was subjected to nitriding treatment with an impurity composition (equivalent to 8Cr steel), and the outer peripheral sliding surface was coated with a 20 ⁇ m-thick film made of a mixture of chromium nitride and chromium by PVD. Was used. Further, the contact width X of the outer peripheral sliding surface 8A with the cylinder 20 shown in FIG. 4A was adjusted to 0.05 to 0.20 mm.
  • the oil ring body constituting the oil ring was composed of carbon (C): 0.70 mass%, silicon (Si) ): 0.25% by mass, manganese (Mn): 0.30% by mass, phosphorus (P): 0.01% by mass, sulfur (S): 0.01% by mass, chromium (Cr): 8.05% by mass %, The balance being iron (Fe) and the composition of unavoidable impurities (equivalent to 8Cr steel).
  • the oil ring main body was subjected to nitriding treatment, and the outer sliding surface was coated with a 20 ⁇ m-thick film made of a mixture of chromium nitride and chromium by the PVD method.
  • the oil ring main body was not subjected to nitriding treatment, but was directly coated with a PVD coating.
  • a PVD film made of a mixture of chromium nitride and chromium having a film thickness of 20 ⁇ m was used.
  • test width X of the outer peripheral sliding surface 8A with the cylinder 20 shown in FIG. 4A was adjusted to 0.05 to 0.20 mm. Note that the test conditions other than those described above are the same as those in “Test Example 1 (a): Examples 1 to 9 and Comparative Examples 1 and 2,” and a description thereof will not be repeated.
  • Table 6 Test Example 2 (e): a test in which the rail tip has the shape shown in FIG. 4A and also includes measurement of the oil consumption ratio
  • Tables 1 to 4 Similar to the results in Table 3, when the swell amount was 6.0 ⁇ m or less, good results were obtained in the oil consumption ratio. However, in the comparative example in which the swell amount exceeded 6.0 ⁇ m, the oil consumption ratio was good. Results were not obtained.
  • the oil ring for an internal combustion engine according to the present invention can improve the oil seal performance by setting the amount of undulation in a predetermined range. It is also found that by setting the window angle of the oil return hole to a predetermined range, the oil scraped off by the oil ring for the internal combustion engine can be discharged to the oil drain hole, and the oil consumption can be reduced.
  • Oil ring for internal combustion engine (2-piece oil ring) 2 Oil ring main body 2a Aperture 2b Coil expander accommodating recess 2c Outer peripheral groove 2d Oil return groove 2e Inner peripheral groove 2f Site other than inner peripheral groove and oil return groove 3 Coil expander 4 Web 5 First rail 6 Second rail 7 Oil return hole 8 (rail) tip 8A Outer sliding surface (first flat portion, sliding surface) 8B First reduced diameter portion 8C Second reduced diameter portion 8D Second flat portion 8E Third flat portion 8F Recessed step 8G Surface treatment layer 10 Piston 11 Oil ring groove 12 Oil drain hole 20 Cylinder 21 (cylinder) Wall surface 30 Nitride layer 40 Round circle gauge 40A Inner peripheral surface 41 of round gauge Gauge 42 Upper and lower gauge C Opening width of oil return hole D Opening height of oil return hole E Pitch of oil return hole E In the circumferential direction of one web One end E of the pitch E 2 The other end F of the pitch in the circumferential direction of the web Thickness G of the nitrided layer G Center point (center of gravity

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

オイル消費量の低減効果を確保しつつ、オイルリングの製造時に生じるうねりを低減し、オイルシール性能を向上させることのできる内燃機関用オイルリングを提供する。内燃機関用オイルリング(1)は、オイルリングの断面形状が略I字型のオイルリング本体(2)と、オイルリング本体(2)内周側に配置されるコイルエキスパンダ(3)とを備え、オイルリング本体(2)は、シリンダ内壁面と当接する第1レール(5)及び第2レール(6)と、第1レール(5)及び第2レール(6)がシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔(7)を備えるウェブ(4)とで構成され、オイルリング本体(2)の内周側における内周溝(2e)及びオイル戻し溝(2d)を除いた部分(2f)、及びオイルリング本体(2)の外周側における摺動面(8A)を除いた部分の少なくとも一方におけるうねりが6.0μm以下である。

Description

内燃機関用オイルリング
 本発明は、オイルリング本体とコイルエキスパンダを備える2ピース構成の内燃機関用オイルリングに関する。
 近年の内燃機関用エンジン(ピストン型往復機関等)の性能の向上に伴い、自動車用エンジンに用いられるオイルリングにも、摩擦力の低下とエンジンオイル消費量の低減とを共に満足するものが求められている。そのため、オイルリングの形状等に種々の工夫が施されている。例えば、摩擦力を低下させるためにシリンダボア内に配置するオイルリングを低張力化し、オイル消費改善のためにオイルリングの薄幅化を図ったもの等が用いられている。
 また、一般的にオイルリングには、2ピース形オイルリングと3ピース形オイルリングと呼ばれる構成の異なるオイルリングが存在している。2ピース形オイルリングは剛性が高く、熱負荷にも強いため、主にディーゼル機関エンジン用として用いられている。
 この2ピースオイルリングにおけるオイルリング本体は断面略I字型であり、オイルリング本体の上側部分を構成する上側レール(第1レール)と、オイルリング本体の下側部分を構成する下側レール(第2レール)と、これらのレールを連結するウェブとを備える。また、ウェブは、これらのレールがシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔を備える。
 そして、上側レール及び下側レールは、ピストンが往復運動する際に、各々の外周摺動面がシリンダの内壁面に対して油膜を介した状態で摺動する。オイルリングは、シリンダ内壁面についている余分なエンジンオイルを掻き落とす機能と、シリンダ内壁面に適度な油膜を形成してピストンの焼付きを防止する機能とを有し、内燃機関用エンジンには必要不可欠なものである。
 ところで、近年、線材メーカーによって断面が略I字型であるオイルリング用線材が製造され、その後、ピストンリングメーカーによってコイリング成形(巻き取り加工)がなされることにより、2ピースオイルリングのオイルリング本体を製造する方法が主流となっている。この場合に、オイル戻し孔は、オイルリング用線材の状態で既に形成されていることが一般的である。
 このような、オイルリング用線材の状態でオイル戻し孔を形成した後、コイリング成形を行うことで2ピースオイルリングを製造する方法が、例えば特許文献1に開示されている。また、特許文献2には、2ピースオイルリングのオイルリング本体に備えられたオイル戻し孔のピッチ及び長さについての開示がある。オイルリングが掻き落としたオイルをピストン裏側に素早く逃がすために設定しているが、2ピースオイルリングに必要なオイルシール性能については考慮されていなかった。
日本国特開昭61-45172号公報 国際公開第2011/132679号
 しかし、オイル戻し孔が形成されたオイルリング用線材にあっては、オイル戻し孔が形成された部分と形成されていない部分とで剛性の差が生じるため、コイリング成形後に、オイルリング本体におけるレール先端部の外周摺動面において、過度のうねりが生じてしまい、オイルシール性能が損なわれる可能性があった。より具体的に説明すると、レール先端部の外周摺動面が、オイルリング本体の径方向にうねることにより、オイルリング本体の軸方向から見て、該外周摺動面がいわゆる花びら状となり、外周摺動面の真円度が低下することで、オイルシール性能が損なわれる可能性があった。
 ここで、コイリング成形(巻き取り加工)後において、オイルリング本体におけるレール先端部の外周摺動面をバレル研磨等により研磨することで、オイルリング本体におけるレール先端部の外周摺動面の真円度を高めてオイルシール性能を向上させることが考えられる。
 しかし、オイルリングにおいては、ピストン上昇時には過剰なオイルの掻き上げを抑制しつつ、ピストン下降時にはシリンダ内壁面の余分なオイルの掻き落としを行うことで、エンジンオイルの消費量を低減させることも要求される。よって、以下の理由により、オイルリング本体におけるレール先端部の外周摺動面をバレル研磨等により研磨してオイルシール性を向上させる方法を採用することはできない。
 すなわち、オイル消費量を低減させるため、オイルリング本体における第1レール及び第2レールの先端部は、オイルリング本体の軸方向に平行な面で切断した断面視において、例えば、図3A~図3Cに示すような形状のものが用いられる。
 具体的には、図3Aや図3Bにおいて、上記先端部8は、シリンダ20の内壁面21に当接する略平坦な第1の平坦部(外周摺動面)8Aと、第1の平坦部8Aからオイルリング本体の軸方向(図3A,図3Bにおける上下方向)の一方(図中、上方)に沿って縮径する第1の縮径部8Bと、第1の平坦部8Aからオイルリング本体の軸方向の他方(図中、下方)に沿って縮径する第2の縮径部8Cと、第1の縮径部8Bに連続し、シリンダ内壁面21に略垂直な第2の平坦部8Dと、第2の縮径部8Cに連続し、シリンダ内壁面21に略垂直な第3の平坦部8Eと、を備える。そして、第1の縮径部8Bの一端をa、他端をbとし、第2の縮径部8Cの一端をc、他端をdとしたときに、aとbとの距離abは、cとdとの距離cdよりも長く、かつ、aとbとをつなぐ直線と、シリンダ内壁面21に平行な直線とのなす角θabは、cとdとをつなぐ直線と、シリンダ内壁面21に平行な直線とのなす角θcdよりも小さくなっている。
 そして、オイルリングは、第1の縮径部8Bがピストン上方側、第2の縮径部8Cがピストン下方側になるように、ピストンに取り付けられる。ピストン上昇時においては、距離abが長く、かつ、角度θabが小さい第1の縮径部8Bが、エンジンオイルの油膜を乗り上げることにより、オイルの掻き上げを抑制する。一方、ピストン下降時においては、距離cdが短く、かつ、角度θcdが大きい第2の縮径部8Cが、シリンダ内壁面の余分なオイルの掻き落としを行うことにより、オイルパンに効率よくオイルを戻すことで、オイル消費量を低減させることができる。
 なお、図3Cに示すように、上記先端部8において、図3Aや図3Bで示すような第2の縮径部8Cを有さず、第1の平坦部8Aに直接的に連続する第3の平坦部8Eを有するオイルリングであっても、第1の縮径部8Bがピストン上方側になるように位置することで、上記と同様の効果を得ることができる。
 また、同じくオイル消費量を低減させるため、オイルリング本体における第1レール及び第2レールの先端部は、オイルリング本体の軸方向に平行な面で切断した断面視において、例えば、図4Aに示すような形状のものが用いられる場合もある。
 すなわち、上記先端部8は、外周摺動面8Aにおけるウェブ4に面した側の隅部に凹部段差8Fが形成されている。第1レール5及び第2レール6の外周形状を、図4Aに示すような形状とすることで、オイルリングを長期間使用したとしても当該第1レール5及び第2レール6の外周摺動面8Aの面積に変化が起こり難く、オイル消費量の増大を抑止する効果を安定して長期間得ることができる。また、シリンダ内壁面の余分なオイルを掻き落とす機能と、シリンダ内壁面の油膜厚さをコントロールする機能との向上及び安定を図ることが可能となる。この結果、内燃機関用オイルリング1は、自身が掻き落としたオイルを速やかにオイルリングの背面側に設けられたオイルドレイン孔に逃がすことができ、オイル消費量を低減させることができる。
 そして、上記のような、オイルリング本体における第1レール及び第2レールの先端部が特定の形状を持つオイルリングは、既にオイルリング用線材の状態において、コイリング成形後にレールの先端部となり得る部分が所定形状に加工されている。そして、コイリング成形後にオイルリング本体の外周摺動面をバレル研磨等により研磨した場合、うねりにより突出した部分とそうでない部分とで、上記先端部の形状が大きく異なってしまい、外周摺動面におけるシリンダとの当たり幅が不均一となってしまう。その結果、オイルリング本体は、その周方向における場所ごとにオイルの掻き落とし性能が異なってしまうため、オイル消費量の低減効果を十分に得ることができないおそれがある。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、オイル消費量の低減効果を確保しつつ、オイルリングの製造時に生じるうねりを低減し、オイルシール性能を向上させることのできる内燃機関用オイルリングを提供することにある。
 本発明は、下記(1)の構成からなる。
(1) オイルリングの断面形状が略I字型のオイルリング本体と、該オイルリング本体の内周側に配置されるコイルエキスパンダとを備え、
 前記オイルリング本体は、シリンダ内壁面と当接する第1レール及び第2レールと、該第1レール及び該第2レールがシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔を備えるウェブとで構成され、
 前記オイルリング本体の内周側における内周溝及びオイル戻し溝を除いた部分、及び前記オイルリング本体の外周側における摺動面を除いた部分の少なくとも一方におけるうねりが6.0μm以下であることを特徴とする内燃機関用オイルリング。
 また、本発明に係る好ましい実施形態は、下記(2)~(13)の構成からなる。
(2) 前記オイルリング本体は、前記オイル戻し孔が形成されたオイルリング用線材の巻き取り加工により形成される、(1)に記載の内燃機関用オイルリング。
(3) 前記オイルリング本体における前記オイル戻し孔の窓角度θが10.0°以下である、(1)又は(2)に記載の内燃機関用オイルリング。
(4) 前記摺動面における前記シリンダとの当たり幅は、0.01~0.25mmである、(1)~(3)のいずれか1つに記載の内燃機関用オイルリング。
(5) 前記オイルリング本体の周方向における、前記オイル戻し孔の長さをC、前記オイル戻し孔のピッチをEとした場合、E/C≦3.8である、(1)~(4)のいずれか1つに記載の内燃機関用オイルリング。
(6) 前記オイルリング本体はスチール製である、(1)~(5)のいずれか1つに記載の内燃機関用オイルリング。
(7) 前記オイルリング本体の表面に窒化処理が施されている、(1)~(6)のいずれか1つに記載の内燃機関用オイルリング。
(8) 前記オイルリング本体の前記摺動面には、硬質皮膜として、PVD皮膜、DLC皮膜、及び樹脂皮膜の少なくとも1つを被覆している、(1)~(7)のいずれか1つに記載の内燃機関用オイルリング。
(9) 前記摺動面の隅部に凹部段差が形成される、(1)~(8)のいずれか1つに記載の内燃機関用オイルリング。
(10) 前記第1レールの先端部及び前記第2レールの先端部は、
 前記シリンダ内壁面に当接する略平坦な第1の平坦部と、
 前記第1の平坦部から前記オイルリング本体の軸方向の一方に沿って縮径する第1の縮径部と、
 前記第1の縮径部に連続する第2の平坦部と、
 前記第1の平坦部から前記オイルリング本体の軸方向の他方に沿って縮径する第2の縮径部を介して、又は直接的に、前記第1の平坦部に連続する第3の平坦部と、を備える、(1)~(8)のいずれか1つに記載の内燃機関用オイルリング。
(11) 前記先端部が前記第2の縮径部を備える場合、
 前記オイルリング本体の軸方向に平行な面で切断した断面視において、
 前記第1の縮径部の一端をa、他端をbとし、前記第2の縮径部の一端をc、他端をdとしたときに、
 前記aと前記bとの距離abは、前記cと前記dとの距離cdよりも長く、かつ、
 前記aと前記bとをつなぐ直線と、前記シリンダ内壁面に平行な直線とのなす角θabは、前記cと前記dとをつなぐ直線と、前記シリンダ内壁面に平行な直線とのなす角θcdよりも小さい、(10)に記載の内燃機関用オイルリング。
(12) 前記オイルリング本体の周方向における、前記オイル戻し孔の長さをCとした場合、C≧1.0mmである、(2)~(11)のいずれか1つに記載の内燃機関用オイルリング。
(13) 前記オイルリング本体の軸方向における、前記オイル戻し孔の高さをDとした場合、D≧0.3mmである、(2)~(12)のいずれか1つに記載の内燃機関用オイルリング。
 本発明の内燃機関用オイルリングによれば、オイル消費量の低減効果を確保しつつ、オイルリングの製造時に生じるうねりを低減し、オイルシール性能を向上させることができる。
図1は、本発明の実施形態に係る、オイルリング本体とオイルリング本体の内周側に配置されるコイルエキスパンダとから構成される内燃機関用オイルリング(2ピースオイルリング)の斜視図である。 図2は、本発明の実施形態に係る本内燃機関用オイルリングをピストンのオイルリング溝に装着した状態を説明するために、ピストンの軸方向に平行な面で切断した場合の断面図である。 図3Aは、第1レール又は第2レールの先端部を、オイルリング本体の軸方向に平行な面で切断した場合の一例を示す断面図である。 図3Bは、第1レール又は第2レールの先端部を、オイルリング本体の軸方向に平行な面で切断した場合の他の例を示す断面図である。 図3Cは、第1レール又は第2レールの先端部を、オイルリング本体の軸方向に平行な面で切断した場合の他の例を示す断面図である。 図4Aは、オイルリング本体のレール外周面の形状について、当該オイルリング本体を、オイルリング本体の軸方向に平行な面で切断した場合の一例を示す断面図である。 図4Bは、オイルリング本体のレール外周面の形状について、当該オイルリング本体を、オイルリング本体の軸方向に平行な面で切断した場合の他の例を示す断面図である。 図5Aは、本発明の実施形態に係るオイルリング本体を、オイルリング本体の径方向外側から見た場合の正面図である。 図5Bは、図5AのI-I断面図である。 図5Cは、オイルリング本体の合口部を0°として、合口部からの角度が時計回りに45°~315°の範囲を示す模式図である。 図6は、真円度測定機でリング周方向を計測した結果の例を示す展開図である。 図7は、内燃機関用オイルリングの内周側の測定方法を示す断面図である。 図8は、内燃機関用オイルリングの内周側の測定方法を説明するための拡大図である。 図9は、内燃機関用オイルリングの外周側の測定方法を示す断面図である。 図10は、内燃機関用オイルリングの外周側の測定方法を説明するための拡大図である。 図11は、本発明の実施形態に係るオイルリング本体に備わるオイル戻し孔の形状を説明するために、オイルリング本体の径方向外側から見た場合の正面図である。 図12は、本発明の実施形態に係るオイルリング本体の外表面に窒化処理を施した状態を説明するために、オイルリング本体の軸方向に平行な面で切断した場合の断面図である。 図13は、試験例2(d)の結果に基づいた、窓角度とうねり量の相関関係を示すグラフである。
 以下、本発明の実施形態(本実施形態)に係る内燃機関用オイルリングについて、図面を参照しつつ詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 図1は、本実施形態に係るオイルリング本体2と、オイルリング本体2の内周側に配置されるコイルエキスパンダ3を備える内燃機関用オイルリング(2ピースオイルリング)1の斜視図である。図1に示すように、内燃機関用オイルリング1は、オイルリング本体2と、コイルエキスパンダ3を備えている。また、オイルリング本体2は、その断面形状が略I字型のリングであり、合口部2aを備えている。そして、オイルリング本体2は、上側の第1レール5と、下側の第2レール6と、これらレールを連結してオイルリング本体2の中間部分に位置するウェブ4とが一体化して構成されている。
 オイルリング本体2を構成する第1レール5及び第2レール6は、内燃機関用オイルリング1の周方向に略円形に形成されている。この第1レール5及び第2レール6の各々の外周側における摺動面である、外周摺動面8A(図2を参照)は、シリンダ20の内壁面21(図2を参照)と油膜を介して接触し、ピストンの軸方向に摺動する。また、ウェブ4は、図1に示すように、オイルリング本体2の周方向に略円形であって、半径方向に貫通形成されたオイル戻し孔7を備えており、そのオイル戻し孔7がオイルリング本体2の周方向に複数配置されている。また、コイルエキスパンダ3は、螺旋状のスプリングを円弧状としたものである。なお、図示しないが、コイルエキスパンダ3には、コイルエキスパンダ3の合口部2aを接続し円環状のコイルとするために、当該合口部2aにジョイント用の芯線が用いられている。
 図2は、本実施形態に係る内燃機関用オイルリング1をピストン10のオイルリング溝11に装着した状態を説明するために、ピストン10の軸方向に平行な面で切断した場合の断面図である。図2に示すように、オイルリング本体2の内周面には、第1レール5、第2レール6及びウェブ4により、コイルエキスパンダ収容凹部2bがオイルリング本体2の周方向に沿って形成されている。そして、オイルリング本体2の外周面側には、第1レール5、第2レール6及びウェブ4により、オイルリング本体2の軸方向に平行な面で切断した断面で見た場合に、凹字状の外周溝2cがオイルリング本体2の周方向に沿って形成されている。
 また、図2に示すように、本実施形態に係る内燃機関用オイルリング1は、その内周側において、断面円弧状の内周溝2eが設けられており、内周溝2eにより形成されたコイルエキスパンダ収容凹部2bが、オイルリング本体2の軸方向に平行な面で切断した断面で見た場合において略半円状となっている。また、コイルエキスパンダ3が、オイルリング本体2の軸方向に平行な面で切断した断面で見た場合において、略半円状部内に包み込まれる状態で収容されている。よって、本実施形態に係る内燃機関用オイルリング1によれば、オイルリング本体2の内周を円弧形状とした場合に、オイルリング本体2とコイルエキスパンダ3との接触面積を大きく確保することができ、シリンダ内壁面21に対する押圧力の安定化を図ることができる。また、本実施形態に係る内燃機関用オイルリング1のように、オイルリング本体2の内周を円弧形状とすることで、オイルリング本体2の周方向において、シリンダ内壁面21に対する押圧力に局所的なばらつきが生じにくく、オイルの掻き残しが起こりにくくなる。
 ここで、図2を参照しつつ、内燃機関用オイルリング1のオイル掻き落とし機能について、一連の流れを説明する。まず、シリンダ20内をピストン10が往復運動する際に、オイルリング本体2に備わる第1レール5及び第2レール6の外周摺動面8Aが、シリンダ内壁面21に付着している余分なオイルを掻き落とす。そして、掻き落とされたオイルは、オイルリング本体2の外周溝2c内で一時的に滞留した後、オイル戻し孔7を通ってコイルエキスパンダ収容凹部2bに流れる。続いて、コイルエキスパンダ収容凹部2bに流されてきたオイルは、オイルリング溝11と連通して設けられたオイルドレイン孔12を通ってピストン10の裏面に流下し、オイルパン(不図示)へ戻される。
 本実施形態に係る内燃機関用オイルリング1によれば、内燃機関用オイルリング1のオイル掻き落とし機能における一連の流れの中で、掻き落としたオイルを、オイル戻し孔7を通してコイルエキスパンダ収容凹部2bへ流す際、オイル流れの阻害を防止することができる。これは、オイルリング本体2とコイルエキスパンダ3との間にオイル戻し溝2dを形成することで、オイルリング本体2に形成されたオイル戻し孔7が塞がれないためである。すなわち、本実施形態に係る内燃機関用オイルリング1においては、オイルリング本体2におけるコイルエキスパンダ配置側の形状が略半円状であったとしても、オイル戻し溝2dが存在することで、内燃機関用オイルリング1が掻き落としたオイルを直ちにオイルリングの背面側に設けられたオイルドレイン孔12に逃がすことができ、オイル消費量を低減させることが可能となる。
 続いて、第1レール5及び第2レール6の先端部8の形状の一例について、図3A~図3Cを用いて説明する。前述したように、内燃機関用オイルリングにおいては、ピストン上昇時にはオイルの掻き上げを抑制しつつ、ピストン下降時にはシリンダ内壁面の余分なオイルの掻き落としを行うことで、エンジンオイルの消費量を低減させることが要求される。
 このため、第1レール5及び第2レール6の先端部8は、内燃機関用オイルリング1がピストン10に取り付けられる際、ピストン上方側とピストン下方側とで、その形状が異なっている。具体的には、図3Aや図3Bにおいて、上記先端部8は、シリンダ20の内壁面21に当接する略平坦な第1の平坦部(外周摺動面)8Aと、第1の平坦部8Aからオイルリング本体の軸方向(図3Aにおける上下方向)の一方(図中、上方)に沿って縮径する第1の縮径部8Bと、第1の平坦部8Aからオイルリング本体の軸方向の他方(図中、下方)に沿って縮径する第2の縮径部8Cと、第1の縮径部8Bに連続し、シリンダ内壁面21に略垂直な第2の平坦部8Dと、第2の縮径部8Cに連続し、シリンダ内壁面21に略垂直な第3の平坦部8Eと、を備えている。そして、第1の縮径部8Bの一端をa、他端をbとし、第2の縮径部8Cの一端をc、他端をdとしたときに、aとbとの距離abは、cとdとの距離cdよりも長く、かつ、aとbとをつなぐ直線と、シリンダ内壁面21に平行な直線とのなす角θabは、cとdとをつなぐ直線と、シリンダ内壁面21に平行な直線とのなす角θcdよりも小さくなっている。なお、第1レール5及び第2レール6の先端部8の形状は、同一形状を有している。
 そして、内燃機関用オイルリング1は、第1の縮径部8Bがピストン上方側、第2の縮径部8Cがピストン下方側になるように、ピストン10に取り付けられる。ピストン上昇時においては、距離abが長く、かつ、角度θabが小さい第1の縮径部8Bが、エンジンオイルの油膜を乗り上げることにより、オイルの掻き上げを抑制する。一方、ピストン下降時においては、距離cdが短く、かつ、角度θcdが大きい第2の縮径部8Cが、シリンダ内壁面21の余分なオイルの掻き落としを行うことにより、オイルパンに効率よくオイルを戻すことで、オイル消費量を低減させることができる。
 なお、図3A及び図3Bにおいては、第2の縮径部8Cは緩やかな曲線で示しているが、第1の平坦部8Aからオイルリング本体の軸方向の他方に沿って縮径するものであれば、例えば直線で示されるものでも良い。
 また、図3Cに示すように、上記先端部8において、図3Aや図3Bで示すような第2の縮径部8Cを有さず、第1の平坦部8Aに直接的に連続する第3の平坦部8Eを有する場合(すなわち、第1の平坦部8Aと第3の平坦部8Eとが、交点eで交わる場合)であっても、第1の縮径部8Bがピストン上方側になるように位置することで、上記と同様の効果を得ることができる。
 このように、第1レール5及び第2レール6の先端部8は、ピストン上方側と下方側とでそれぞれ所望の形状を持たせている。すなわち、第1レール5及び第2レール6の先端部8は、上下に非対称(すなわち、第1レール5又は第2レール6の厚さ方向の中心に対して非対称)な形状を有している。これにより、ピストン上昇時とピストン下降時の両方においてオイル消費量を低減させることが可能となる。
 なお、上記した第1の平坦部8Aは、シリンダ内壁面21に当接できるものであれば、厳密な平坦でなくても良い。また、第1の縮径部8Bは、上記した条件を満足するものであれば、図3Aに示すようなテーパー状(直線状)のものであっても良く、あるいは、図3Bに示すような緩やかな曲面状のものであっても良い。さらに、第2の平坦部8D及び第3の平坦部8Eは、シリンダ内壁面21に対して厳密な垂直でなくても良く、第2の平坦部8Dや第3の平坦部8Eと、シリンダ内壁面21に平行な直線とのなす角度が45~90°であることが好ましい。
 また、第1レール5及び第2レール6の先端部8の形状として、両レールに図3Aに示すような形状を用いても良く、両レールに図3Bに示すような形状を用いても良く、両レールに図3Cに示すような形状を用いても良い。あるいは、一方のレールに図3Aに示す形状を、他方のレールに図3Bに示す形状を用いるような、異なる形状の先端部8を有するレールの組合せであっても良い。ただし、第1レール5及び第2レール6のいずれも、第1の縮径部8Bがピストン上方側になるように構成される必要がある。
 続いて、第1レール5及び第2レール6の先端部8の形状の他の例について、図4Aを用いて説明する。上記先端部8は、外周摺動面8Aにおけるウェブ4に面した側の隅部に凹部段差8Fが形成されている。このように、第1レール5及び第2レール6の外周形状として、所定の凹部段差8Fを形成することで、オイルリングを長期間使用したとしても当該第1レール5及び第2レール6の外周摺動面8Aの面積に変化が起こり難く、オイル消費量の増大を抑止する効果を安定して長期間得ることができる。また、シリンダ内壁面の余分なオイルを掻き落とす機能と、シリンダ内壁面の油膜厚さをコントロールする機能との向上及び安定を図ることが可能となる。この結果、内燃機関用オイルリング1は、自身が掻き落としたオイルを速やかにオイルリングの背面側に設けられたオイルドレイン孔に逃がすことができ、オイル消費量を低減させることができる。
 なお、上記先端部8に凹部段差8Fを形成することで、外周摺動面8Aにおけるシリンダ20との当たり幅X(図4A参照)を、例えば0.01~0.25mm程度にすることができる。
 このように、当たり幅Xを0.01mmよりも小さくすると、外周摺動面8Aの強度低下を招く可能性があり、先端部8の先端が欠けるなど破損の可能性が生じ得るため好ましくない。一方、当たり幅Xを0.25mmよりも大きくすると、外周摺動面8Aの摺動面積が大きくなり、フリクション及びオイル消費量の増加につながるため好ましくない。よって、当たり幅Xは0.01~0.25mmとすることが好ましい。
 なお、凹部段差8Fを形成するための具体的な加工方法としては、各種の研削加工や切削加工を適宜選択してもよいが、ピストンリング線材の製造過程において、当該凹部段差8Fをあらかじめ形成すると、研削加工や切削加工の加工工数が削減できるため、好ましい。
 さらに、少なくとも外周摺動面8A付近(図4Aにおけるαで囲んだ部分)には、表面処理層8Gを形成することが好ましい。表面処理層8Gは、外周摺動面8Aに対して硬度が向上するように硬質な表面処理が行われていれば、どのような処理を行っても構わないが、例えば、PVD皮膜、DLC皮膜、窒化処理層、PVD皮膜の上にDLC皮膜を施した複合処理皮膜、ポリアミドイミドに固体潤滑剤(二硫化モリブデンやグラファイト等)を含有した樹脂皮膜などが好ましく用いられる。なお、表面処理層8Gの厚さは、1~30μmであることが好ましい。
 以上のように、先端部8に上記のような凹部段差8Fが形成する場合においても、上記と同様、先端部8は、ピストン上方側と下方側とでそれぞれ所望の異なる形状を有する。すなわち、第1レール5及び第2レール6の先端部8は、ウェブ4を挟んで対称位置にある。このような形状の場合、上下誤って組み付けてしまうおそれがない。
 なお、第1レール5及び第2レール6の先端部8の形状は、上述した図3A~図3Cや図4Aで示したような形状に限られず、例えば、図4Bに示すような、先端部8に凹部段差を有しない形状としても構わない。また、図4Bで示す形状においても、第1レール5及び第2レール6の先端部8に表面処理層8Gを形成することが好ましい。
 続いて、オイルリング本体2における、オイル戻し孔7の窓角度θ及び外周摺動面8Aに生じるうねりについて詳細に説明する。本発明者らは、オイル消費量の低減効果を確保するために、オイルリング用線材をコイリング成形(巻き取り加工)した後に、オイルリング本体2におけるレール先端部8の外周摺動面8Aをバレル研磨等により研磨することなく、内燃機関用オイルリング1の製造時に生じるうねりを低減し、オイルシール性能を向上させることのできる内燃機関用オイルリングを得るために、鋭意検討を重ねた。
 その結果、下記で定義されるような、オイルリング本体2におけるオイル戻し孔7の窓角度θを所定範囲に設定することで、オイルリング本体2におけるレール先端部8の外周摺動面8Aに生じるうねりを低減できることを見出した。
 本実施形態に係る内燃機関用オイルリング1は、オイルリング本体2におけるオイル戻し孔7の窓角度θを10.0°以下とすることが好ましい。また、上記うねりをより効果的に低減するために、窓角度θを8.0°以下とすることが好ましく、7.0°以下とすることが好ましく、更に6.0°以下とすることが好ましい。
 ここで、図5Aは、本実施形態に係るオイルリング本体2を、オイルリング本体2の径方向外側から見た場合の要部正面図である。また、図5Bは、図5AのI-I断面図である。図5Bに示すように、オイルリング本体2におけるオイル戻し孔7の窓角度θは、オイルリング本体2の合口部2aが閉じた状態において、オイルリング本体2の中心点G(重心)と、あるオイル戻し孔7におけるオイルリング本体2の周方向の一端Eを結ぶ直線GE、及び、オイルリング本体2の中心点Gと、隣接するオイル戻し孔7におけるオイルリング本体2の一端Eとを結ぶ直線GEがなす角度で定義される。言いかえると、オイルリング本体2の中心点Gと、オイル戻し孔7における、ウェブ4の周方向におけるピッチEの一端Eを結ぶ直線GE、及び、オイルリング本体2の中心点Gと、オイル戻し孔7における、ウェブ4の周方向におけるピッチEの他端Eを結ぶ直線GEがなす角度としても定義される。
 この窓角度θを10.0°以下とすることにより、オイル戻し孔7における、ウェブ4の周方向におけるピッチEが小さくなるため、オイルリング本体内で応力の集中が緩和され、ひずみが大きく、窓を有する部分(オイル戻し孔7)と、ひずみが小さく、オイル戻し孔7を有さない部分(ウェブ4)において、ひずみの差が小さくなることにより、オイルリング本体2に生じるうねりを低減することができる。
 なお、上記窓角度θは、シリンダボア径(オイルリング本体2の合口部2aが閉じた状態での、オイルリング本体2の直径)と、オイル戻し孔7における、ウェブ4の周方向におけるピッチEにより、以下の式で表わされる。
 窓角度θ=(360×ピッチE)/(π×シリンダボア径)
 オイルリング本体2の内周側における内周溝2eを除いた部分、及びオイルリング本体2の外周側における摺動面(外周摺動面)8Aを除いた部分の少なくとも一方に生じるうねりは、6.0μm以下であることが好ましく、4.0μm以下であることが好ましく、3.0μm以下であることが好ましい。該うねりが小さければ小さいほど、オイルシール性能をより向上させることができる。例えば、上記うねりを6.0μm以下にするためには、上記窓角度θを10.0°以下に設定すれば良い。また、上記うねりを2.0μm以下にするためには、上記窓角度θを6.0°以下に設定すれば良い。また、上記うねりをより小さくするためには、窓角度θを4.0°よりも更に小さく設定すれば良い。
 なお、上記うねりは、オイルリング本体2の内周側における内周溝2e及びオイル戻し溝2dを除いた部分、及びオイルリング本体2の外周側における摺動面8Aを除いた部分の少なくとも一方において、周方向に隣り合う山谷の振幅の連続する3点を2箇所取り、平均とした値として定義される。なお、周方向は、図5Cに示すように、合口部を0°として、リング合口部2aからの角度が時計回りに45°~315°の範囲内を取ることとする。
 また、上記うねりは、一般的な真円度測定器を用い、第1レール5又は第2レール6の内周形状又は外周形状を測定することにより測定することができる(詳細は後述)。続いて、図6は、真円度測定機でリング周方向を計測した結果の例を示す展開図である。この展開図において、計測されるうねりは、周方向に隣り合う山谷の振幅の連続する3点を2箇所(A,B,CとD,E,F)取り、平均としたものである。シリンダへの追従性を考慮し、オイルの掻き残しが発生しないように、局所的に山谷の振幅の平均を見る必要があり、それを設定する必要がある。真円度では、うねりと同等の数字であっても、低次変形であればリングはシリンダボアへ追従できるが、高次変形の場合は追従しない可能性があるため、真円度では十分に考慮できない。
 なお、第1レール5又は第2レール6の外周摺動面8Aは、研削や研磨加工など、又は、内燃機関用オイルリング1の使用後においてシリンダ内壁面との摺動摩擦により形状が変化するおそれがあるため、オイルリング本体2の内周側における内周溝2e及びオイル戻し溝2dを除いた部分、及びオイルリング本体2の外周側における摺動面8Aを除いた部分の少なくとも一方、としている。内周面は、研削や研磨加工がなく、又はシリンダ内壁面との摺動摩擦がないため、その使用後においても形状が変化するおそれがなく、第1レール5又は第2レール6の外周面及び内周面に生じるうねり量はほぼ同じであるため、オイルリングの製造時に生じるうねりが所定値以下を満足するか否かの判断するにあたっては、オイルリング本体2の内周溝2e及びオイル戻し溝2d以外の部位2fを測定する(図2や図4Aを参照)。
 ここで、オイルリング本体2の内周形状又は外周形状の測定方法は、以下の通りである。まず、オイルリング本体2の内周形状の測定方法について説明する。図7に示すように、オイルリング本体2にコイルエキスパンダ3を取り付け、真円ゲージ40の内周面40Aに、オイルリング本体2におけるレール先端部の外周摺動面8Aが当接するように組み付ける。このとき、コイルエキスパンダ3の張力は、5N程度に設定されていることが好ましい。
 このように、真円ゲージ40にオイルリング本体2を組み付けた状態で、図8に示すように、釜型の触針41をオイルリング本体2の内周のうち、内周溝2e及びオイル戻し溝2d以外の部位2fに接触させて、真円ゲージ40をオイルリング本体2と共に回転させて、内周形状の測定を行う。
 次に、オイルリング本体2の外周形状の測定方法について説明する。図9に示すように、真円ゲージ40の内周面40Aに、オイルリング本体2におけるレール先端部の外周摺動面8Aが当接するように組み付けることで、真円ゲージ40によってオイルリング本体2を保持した状態で、オイルリング本体2を軸方向(図中、上下方向)から上下ゲージ42,42によって挟み込む。続いて、真円ゲージ40を取り外すことで、オイルリング本体2の外周側を露出させる。このとき、コイルエキスパンダ3の張力によって上下ゲージ42,42からオイルリング本体2が脱落しないように、コイルエキスパンダ3の張力は5N程度に設定されていることが好ましい。
 このように、上下ゲージ42,42でオイルリング本体2を挟み込んだ状態で、図10に示すように、釜型の触針41をオイルリング本体2の先端部8における外周のうち、例えば、研削や研磨加工など、あるいは、内燃機関用オイルリング1の使用後においてシリンダ内壁面との摺動摩擦により形状が変化するおそれがない、凹部段差8Fなどに接触させて、上下ゲージ42,42をオイルリング本体2と共に回転させて、外周形状の測定を行う。
 続いて、本実施形態に係る内燃機関用オイルリング1における、その他の好ましい条件について説明する。
 オイルリング本体2を構成するウェブ4に設けるオイル戻し孔7は、当該オイルリング本体2の周方向における長さ(開口幅)C(図11中、Cで示す幅)が1.0mm以上であることが好ましく、1.5mm以上であることがより好ましく、2.0mm以上であることが更に好ましい。
 図11は、本実施形態のオイルリング本体2に備わるオイル戻し孔7の形状を説明するために、オイルリング本体2の径方向外方から見た場合の正面図である。図11より、本実施形態に係るオイルリング本体2は、開口幅Cが1.0mmより小さい場合には、オイル戻し孔7の開口面積が小さすぎるため、内燃機関用オイルリング1が掻き落としたオイルを速やかに内燃機関用オイルリング1の背面側に設けられたオイルドレイン孔12へ排出することができない。
 また、開口幅Cは、4.0mm以下であることが好ましく、3.0mm以下であることがより好ましく、2.5mm以下であることが更に好ましい。開口幅Cが4.0mmより大きい場合には、オイル戻し孔7の面積が大きすぎるため、オイルリング本体2の強度が低下し、内燃機関用オイルリング1を内燃機関に適用した場合に十分な耐久性を得ることができない。更に、オイル戻し孔7の面積が大き過ぎると、オイルリング本体2の加工の際に変形が起こりやすく、オイル掻き機能の低下を招いてしまう。
 また、オイルリング本体2を構成するウェブ4に設けるオイル戻し孔7は、オイルリング本体2の軸方向における高さ(開口高さ)D(図11中、Dで示す高さ)が0.3mm以上であることが好ましく、0.4mm以上であることがより好ましい。
 開口高さDが0.3mmより小さい場合には、オイル戻し孔7の開口面積が小さすぎるため、内燃機関用オイルリング1が掻き落としたオイルを、速やかに内燃機関用オイルリング1の背面側に設けられたオイルドレイン孔12へ排出することができない。
 また、開口高さDは、1.0mm以下であることが好ましい。開口高さDが1.0mmより大きい場合には、オイル戻し孔7の面積が大きすぎるため、オイルリング本体2の強度が低下し、内燃機関用オイルリング1を内燃機関に適用した場合に十分な耐久性を得ることができない。更に、オイル戻し孔7の面積が大き過ぎると、オイルリング本体2の加工の際に変形が起こりやすく、オイル掻き機能の低下を招いてしまう。
 なお、オイル戻し孔7の形状は、図11に示すような、長方形形状の両端部の開口高さDに相当する辺を一定の曲率半径Rを備える弧状辺として形成したものに限定されない。例えば、オイルリングとしての要求特性を満たす限りにおいて、長方形、円形状、楕円形状、開口高さDに相当する辺を曲線形状としたもの等の種々の形状を適宜選択して使用することができる。
 また、本実施形態に係る内燃機関用オイルリング1において、オイルリング本体2の軸方向幅h1(図2中、h1で示す幅)は、1.0mm~4.0mmであることが好ましい。
 また、本実施形態に係る内燃機関用オイルリング1において、オイルリング本体2の径方向幅a1(図2中、a1で示す幅)は、1.5mm~3.0mmであることが好ましい。
 ここで、図2に示すように、オイルリング本体2の径方向幅a1が1.5mmよりも小さい場合には、ピストンへの組み付け性が悪化するおそれがある。一方、オイルリング本体2の径方向幅a1が3.0mmよりも大きい場合には、剛性が高く、追従性が悪くなるおそれがある。
 また、本実施形態に係る内燃機関用オイルリング1において、内燃機関用オイルリング1のシリンダボア径に対する張力比は、0.05N/mm~0.7N/mmであることが好ましい。
 本実施形態に係る内燃機関用オイルリング1は、シリンダボア径(図示せず)に対する張力比([オイルリングの張力(N)]/[シリンダボア径(mm)]で算出される値)を0.05N/mm~0.5N/mmに設定している。ここで、シリンダボア径に対する張力比が0.05N/mmよりも小さい場合には、オイルリング本体2におけるレール先端部8の外周摺動面8Aのシリンダ内壁面21に対する押圧力が不十分となる。この場合、外周摺動面8Aは余分なオイルを十分に掻き落とすことができず、オイル消費量の増大を招いてしまう。また、シリンダボア径に対する張力比が0.5N/mmよりも大きい場合には、外周摺動面8Aのシリンダ内壁面21に対する押圧力が大きくなり過ぎて摩擦力が高くなり、燃費の低下を招いてしまう。一般的に、シリンダとオイルリングとの摩擦力は、オイルリングの張力の大きさに比例する傾向にある。
 また、本実施形態に係る内燃機関用オイルリング1において、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7の当該ウェブ4の周方向におけるピッチE(図11中、Eで示すピッチ)は、2.0mm~6.0mmであることが好ましい。
 図11には、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7の当該ウェブ4の周方向におけるピッチがEにより示されている。本実施形態に係る内燃機関用オイルリング1は、ピッチEが2.0mm~6.0mmの範囲内であることで、内燃機関用オイルリング1の耐久性とオイル消費性能とを共に向上させることができる。ここで、ピッチEが2.0mm未満の場合には、ウェブ4におけるオイル戻し孔7の間隔が短くなり過ぎて、オイルリング本体2の強度が低くなり、内燃機関用オイルリング1の耐久性が劣ることとなり、好ましくない。また、ピッチEが6.0mmを超える場合には、ウェブ4におけるオイル戻し孔7の間隔が長くなり過ぎて、内燃機関用オイルリング1が掻き落としたオイルをピストン裏側に逃がすことができなくなるため、オイル消費の増大を招いてしまう。
 また、本実施形態に係る内燃機関用オイルリング1において、オイルリング本体2を構成するウェブ4に備わるオイル戻し孔7のウェブ4の周方向におけるピッチをE、オイル戻し孔のウェブ4の周方向における長さをCとした場合、E/C≦3.8であることが好ましく、E/C≦3.0であることがより好ましく、E/C<2.0であることが更に好ましい。
 図11には、オイル戻し孔7における、オイルリング本体2の周方向におけるピッチがEにより示され、また、オイル戻し孔7における、オイルリング本体2の周方向における長さがCにより示されている。本実施形態に係る内燃機関用オイルリング1は、ピッチEと長さCとの関係「E/C」が、3.8以下であることで、オイル消費性能を向上させることができる。
 ここで、ピッチEと長さCとの関係「E/C」が、3.8超の場合には、ウェブ4におけるオイル戻し孔7の間隔が長くなるため、内燃機関用オイルリング1が掻き落としたオイルをピストン裏側に逃がすことができなくなり、オイル消費の増大を招くこととなる。
 また、本実施形態に係る内燃機関用オイルリング1は、オイルリング本体2の外表面に窒化処理を施す際に、窒化層30の厚さFを150μm以下に設定するのが好ましい。オイルリング本体2は、窒化処理を施すことで、外表面を硬化させて耐久性を向上させることができる。これは、近年の自動車用内燃機関の高速化及び高負荷化により、オイルリング本体2についてもより高い耐摩耗性が要求されているためである。
 オイルリング本体2は、その材質として主に鉄鋼材料が用いられ、オイルリング本体2に窒化処理を行うことでクロムや鉄と反応して作られる窒化物からなる極めて硬い窒化層30を備える。すなわち、オイルリング本体2は、その表面に窒化層30を形成することで、耐摩耗性及びシリンダに対する耐スカッフ性に優れたものとなり、より過酷な状況下での使用に耐え得る内燃機関用オイルリング1を提供することができる。しかし、窒化処理を行うことによって、オイルリング本体2の母材全体が窒化されることとなると、オイルリング本体2は硬くなり過ぎて脆くなり、耐折損性を低下させてしまう。そのため、本実施形態のオイルリング本体2に窒化を施す場合には、窒化層30の厚さFが150μm以下となるように設定することが好ましい。
 図12は、本実施形態のオイルリング本体2の外表面に窒化処理を施した状態を、オイルリング本体2の軸方向に平行な面で切断した断面図である。図12に示すように、オイルリング本体2の外表面に窒化層30が形成されている。ここで、窒化層30の厚さFは、150μm以下となるように設定することが好ましい。
 また、内燃機関用オイルリング1の耐久性は、オイルリング本体2におけるレール先端部8の外周摺動面8Aと、シリンダ内壁面21との摩擦力の大きさに影響するため、上述したように、内燃機関用オイルリング1の張力の大きさを考慮するが、摺動する金属の組み合わせ方によっても影響を受ける。例えば、摺動する金属の材質をクロム同士やアルミニウム同士にすると、焼き付きを起こし易くなる。
 そこで、金属の材質を考えた上で、耐摩耗性に優れたコーティングを施すのが一般的であり、オイルリング本体2の外表面に窒化処理を施すのも同じ理由による。同様に、外周摺動面8Aには、必要に応じ、硬質皮膜としてPVD皮膜、DLC皮膜、樹脂被膜を被覆するのが好ましい。特に、クロム窒化物(CrN、CrN)からなる皮膜や、クロム窒化物(CrN、CrN)とクロム(Cr)の混合物からなるイオンプレーティング皮膜を形成することも耐摩耗性の観点から好ましく、また、クロム-ボロンよりなる窒化物(Cr-B-N)、DLC(水素フリーDLC、水素含有DLC、金属含有DLC等)等の皮膜を形成することによってもオイルリングの耐久性を向上させることができる。
 なお、オイルリング本体2の材質については、特に限定されることはなく適宜設計が可能であるが、例えば、スチール製(鋼製)であることが、強度の観点より好ましく、特に、8Cr鋼、SUS410J1相当、SWRH77B相当、SUS440B相当であることが好ましい。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<試験例1:レール先端部が図3Bで示すような形状を有する場合>
[(a)実施例1~9及び比較例1~2:シリンダボア径が86mmの場合]
 排気量が2000cc、シリンダボア径が86mmの直列4気筒ディーゼルエンジンの実機試験を行い、オイル戻し孔の窓角度θの大小により、オイルリング本体に生じるうねり量に違いが生じるか否かについての確認を行った。また、オイル戻し孔の開口幅Cの大小による、オイル消費量の違いについても確認を行った。なお、エンジンの運転条件は、全負荷で回転数4000rpm、8時間とした。
 また、ピストンリングの組み合わせは、1stリング、2ndリング、オイルリングとした。
 1stリングは、マルテンサイト系ステンレス鋼(JIS規格で、SUS410J1相当)からなる軸方向幅(h1)2.0mm、径方向幅(a1)3.1mmのものに窒化処理(窒化層の厚さ:100μm)を施した後、PVD法により、外周摺動面に対し、膜厚20μmのクロム窒化物とクロムの混合物からなる皮膜を被覆したものを用いた。2ndリングは、10Cr鋼からなる軸方向幅(h1)1.5mm、径方向幅(a1)3.1mmのものを用いた。
 1stリングを構成するマルテンサイト系ステンレス鋼は、炭素(C):0.65質量%、ケイ素(Si):0.30質量%、マンガン(Mn):0.30質量%、クロム(Cr):13.5質量%、モリブデン(Mo):0.30質量%、リン(P):0.02質量%、硫黄(S):0.01質量%、残部が鉄(Fe)及び不可避不純物の組成を備え、かつ、窒化処理を施した後、上記PVD処理を施したものである。
 2ndリングを構成する10Cr鋼は、炭素(C):0.50質量%、ケイ素(Si):0.21質量%、マンガン(Mn):0.30質量%、クロム(Cr):10.1質量%、リン(P):0.02質量%、硫黄(S):0.01質量%、残部が鉄(Fe)及び不可避不純物の組成を備えたものである。
 オイルリングは、上述の実施形態で述べた2ピース構成の内燃機関用オイルリングを使用した。実施例1~9及び比較例1~2で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が2.00mm、オイルリング径方向幅(a1)が2.00mmに設定されたもので共通とした。
 また、実施例1~9及び比較例1~2で用いるオイルリングは、図3Bで示すような、第1レール及び第2レールの先端部が、第1の平坦部8A、第1の縮径部8B、第2の縮径部8C、第2の平坦部8D及び第3の平坦部8Eを有するとともに、距離abが距離cdよりも長く、かつ、角θabが角θcdよりも小さいもので共通とし(距離ab=96.8μm、距離cd=65.0μm、角θab=7.7°、角θcd=36.6°)、第1の縮径部8Bがピストン上方側、第2の縮径部8Cがピストン下方側になるように、ピストンに取り付けた。なお、実施例1~9及び比較例1~2の全てにおいて、第1レールの先端部及び第2レールの先端部の形状は略同一形状のものとした。
 図11で示される、オイル戻し孔の開口幅C(mm)、オイル戻し孔の開口高さD(mm)及びオイル戻し孔のピッチE(mm)の各条件を表1に示す。表1に示すように、オイル戻し孔の開口高さDは0.55mmで共通とし、オイル戻し孔の開口幅C(mm)及びオイル戻し孔のピッチE(mm)は、実施例及び比較例ごとに条件が異なるように設定した。
 なお、オイルリングを構成するオイルリング本体は、炭素(C):0.65質量%、ケイ素(Si):0.40質量%、マンガン(Mn):0.30質量%、リン(P):0.01質量%、硫黄(S):0.01質量%、クロム(Cr):13.6質量%、モリブデン(Mo):0.3質量%、残部が鉄(Fe)及び不可避不純物の組成(JIS規格で、SUS410J1相当)を備え、かつ、窒化処理を施した後、PVD法により、外周摺動面に対し、膜厚20μmのクロム窒化物とクロムの混合物からなる皮膜を被覆したものである。また、外周摺動面8Aにおけるシリンダ20との当たり幅X(図3Bにおけるaとcとの距離ac)は、0.02~0.10mmで調整した。
 なお、窒化処理を施した際に、オイルリング軸方向断面にて外周摺動面の窒化層(図12中、Fで示す層)を確認した結果、オイルリング径方向において、厚さ100μmの窒化層が形成されていることを確認した。そして、コイルエキスパンダは、炭素(C):0.55質量%、ケイ素(Si):1.41質量%、マンガン(Mn):0.65質量%、クロム(Cr):0.68質量%、銅(Cu):0.06質量%、リン(P):0.01質量%、硫黄(S):0.01質量%、残部が鉄(Fe)及び不可避不純物の組成のもの(SWOSC-V材相当)を用いた。
 また、シリンダの材質は、普通鋳鉄とした。
 実施例1~9及び比較例1~2では、シリンダボア径に対する張力比を0.2N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表1には、比較例1のオイル消費量を基準「100」とし、これに対する相対比で、試験ごとのオイル消費量比を示している。
 また、オイルリング本体におけるうねり(μm)は、真円度測定器(製品名:RONDCOM55B、株式会社東京精密製)を用い、オイルリング本体の内周側における内周溝2e及びオイル戻し溝2d以外の部位2fを測定することにより、算出した。うねりの測定結果についても、表1に合わせて示す。
Figure JPOXMLDOC01-appb-T000001
[(b)実施例10~13及び比較例3~4:シリンダボア径が70mmの場合]
 排気量が1500cc、シリンダボア径が70mmの直列4気筒ディーゼルエンジンの実機試験を行い、オイル戻し孔の窓角度θの大小により、オイルリング本体に生じるうねり量に違いが生じるか否かについての確認を行った。また、オイル戻し孔の開口幅Cの大小による、オイル消費量の違いについても確認をおこなった。
 なお、実施例10~13及び比較例3~4で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が2.00mm、オイルリング径方向幅(a1)が2.00mmに設定されたものを使用した。
 また、オイル戻し孔の開口幅C(mm)、オイル戻し孔の開口高さD(mm)及びオイル戻し孔のピッチE(mm)の各条件は表2に示すとおりである。表2に示すように、オイル戻し孔の開口高さDは0.55mmで共通とし、オイル戻し孔の開口幅C(mm)及びオイル戻し孔のピッチE(mm)については、実施例及び比較例ごとに条件が異なるように設定した。
 また、実施例10~13及び比較例3~4においては、オイルリング本体に対して窒化処理は行わず、PVD法により、外周摺動面に対し、膜厚20μmのクロム窒化物とクロムの混合物からなる皮膜を被覆したものを用いた。また、外周摺動面8Aにおけるシリンダ20との当たり幅X(図3Bにおけるaとcとの距離ac)は、0.02~0.10mmで調整した。
 なお、上記以外の試験条件については、「試験例1(a):実施例1~9及び比較例1~2」と同一であるため、説明を省略する。
 実施例10~13及び比較例3~4では、シリンダボア径に対する張力比を0.2N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表2には、比較例3のオイル消費量を基準「100」とし、これに対する相対比で、試験ごとのオイル消費量比を示している。
 また、「うねり(μm)」の結果についても、合わせて表2に示す。
Figure JPOXMLDOC01-appb-T000002
[(c)実施例14~19及び比較例5~6:シリンダボア径が116mmの場合]
 排気量が10000cc、シリンダボア径が116mmの直列6気筒ディーゼルエンジンの実機試験を行い、オイル戻し孔の窓角度θの大小により、オイルリング本体に生じるうねり量に違いが生じるか否かについての確認を行った。また、オイル戻し孔の開口幅Cの大小による、オイル消費量の違いについても確認をおこなった。
 なお、実施例14~19及び比較例5~6で用いるオイルリングは、オイルリング本体の軸方向幅(h1)が3.00mm、オイルリング径方向幅(a1)が2.35mmに設定されたものを使用した。
 また、オイル戻し孔の開口幅C(mm)、オイル戻し孔の開口高さD(mm)及びオイル戻し孔のピッチE(mm)の各条件は表3に示すとおりである。表3に示すように、オイル戻し孔の開口高さDは、0.70mm又は0.55mmとし、オイル戻し孔の開口幅C(mm)及びオイル戻し孔のピッチE(mm)については、実施例及び比較例ごとに条件が異なるように設定した。
 また、実施例14~19及び比較例5~6においては、オイルリング本体に対して窒化処理のみを行い、PVD法によるクロム窒化物とクロムの混合物からなる皮膜の被覆は行わなかった。また、外周摺動面8Aにおけるシリンダ20との当たり幅X(図3Bにおけるaとcとの距離ac)は、0.02~0.15mmで調整した。
 なお、上記以外の試験条件については、「試験例1(a):実施例1~9及び比較例1~2」と同一であるため、説明を省略する。
 実施例13~15及び比較例8~10では、シリンダボア径に対する張力比を0.4N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表3には、比較例5のオイル消費量を基準「100」とし、これに対する相対比で、試験ごとのオイル消費量比を示している。
 また、「うねり(μm)」の結果についても、合わせて表3に示す。
Figure JPOXMLDOC01-appb-T000003
<試験例2:レール先端部が図4Aで示すような形状を有する場合>
[(d)実施例20~40及び比較例7~13:種々のオイルリングにおける最終形状の測定]
 試験例1で示したように、実施例1~19及び比較例1~6で用いたオイルリングは、レール先端部が図3Bで示すような形状を有する場合であったが、レール先端部が図4Aで示すような凹部段差を有する場合のオイルリングについても、上記と同様、オイル戻し孔の窓角度θの大小により、オイルリング本体に生じるうねり量に違いが生じるか否かについての確認を行った。
 本試験例では、シリンダボア径が64.0~147.0mmのオイルリングの最終形状を測定した。なお、実施例20~40及び比較例7~13で用いるオイルリングは、表4及び表5に示すように、実施例及び比較例ごとに条件が異なるように設定した。
 なお、実施例20~40及び比較例7~13においては、オイルリングを構成するオイルリング本体は、炭素(C):0.70質量%、ケイ素(Si):0.25質量%、マンガン(Mn):0.30質量%、リン(P):0.01質量%、硫黄(S):0.01質量%、クロム(Cr):8.05質量%、残部が鉄(Fe)及び不可避不純物の組成(8Cr鋼相当)とし、オイルリング本体に対して窒化処理をして、PVD法により、外周摺動面に対し、膜厚20μmのクロム窒化物とクロムの混合物からなる皮膜を被覆したものを用いた。また、図4Aで示す、外周摺動面8Aにおけるシリンダ20との当たり幅Xは、0.05~0.20mmで調整した。
 「うねり(μm)」の結果についても、合わせて表4及び表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[(e)実施例41~51及び比較例14~17:オイル消費量比の測定も含めた試験] 実施例20~40及び比較例7~13と同様、レール先端部が図4Aで示すような凹部段差を有する場合のオイルリングについて、オイル戻し孔の窓角度θの大小により、オイルリング本体に生じるうねり量に違いが生じるか否かについての確認を行った。また本試験例では、更に、オイル戻し孔の開口幅Cの大小による、オイル消費量の違いについても確認をおこなった。
 本試験例では、シリンダボア径が83.0mm又は95.0mmのオイルリングの直列4気筒ディーゼルエンジンの実機試験を行った。なお、実施例41~51及び比較例14~17で用いるオイルリングは、表6に示すように、実施例及び比較例ごとに条件が異なるように設定した。
 なお、実施例41~51及び比較例14~17においては、上記試験例2(d)と同様、オイルリングを構成するオイルリング本体は、炭素(C):0.70質量%、ケイ素(Si):0.25質量%、マンガン(Mn):0.30質量%、リン(P):0.01質量%、硫黄(S):0.01質量%、クロム(Cr):8.05質量%、残部が鉄(Fe)及び不可避不純物の組成(8Cr鋼相当)とした。そして、シリンダボア径が95.0mmの場合は、オイルリング本体に窒化処理をして、PVD法により、外周摺動面に対し、膜厚20μmのクロム窒化物とクロムの混合物からなる皮膜を被覆したものを用いた。また、シリンダボア径が83.0mmの場合は、オイルリング本体に窒化処理はせず、直接PVD皮膜を被覆した。なお、シリンダボア径が83.0mmの場合も、膜厚20μmのクロム窒化物とクロムの混合物からなるPVD皮膜を用いた。更に、図4Aで示す、外周摺動面8Aにおけるシリンダ20との当たり幅Xは、0.05~0.20mmで調整した。
 なお、上記以外の試験条件については、「試験例1(a):実施例1~9及び比較例1~2」と同一であるため、説明を省略する。
 実施例41~51及び比較例14~17では、シリンダボア径が95.0mmの場合は、シリンダボア径に対する張力比を0.26N/mmとしたオイルリングを使用し、シリンダボア径が83.0mmの場合は、シリンダボア径に対する張力比を0.2N/mmとしたオイルリングを使用して、オイル消費量の確認を行った。表6には、比較例14又は比較例16のオイル消費量を基準「100」とし、これに対する相対比で、試験ごとのオイル消費量比を示している。
 また、「うねり(μm)」の結果についても、合わせて表6に示す。
Figure JPOXMLDOC01-appb-T000006
<実施例と比較例との対比>
 表1(試験例1(a):レール先端部が図3Bで示すような形状を有し、かつ、シリンダボア径が86mmの場合)の結果に示すように、実施例1~9は、うねり量が6.0μm以下と良好な結果が得られた。なお、窓角度θが5.33°以下を満足する実施例1~8は、うねり量が2.0μm以下とより良好な結果が得られ、窓角度θが4.0°以下を満足する実施例2~8は、うねり量が1.0μm以下と更に良好な結果が得られた。
 一方、比較例1~2は、うねり量が6.0μm超であることから、オイル消費量比は良好な結果が得られなかった。
 続いて、表2(試験例1(b):レール先端部が図3Bで示すような形状を有し、かつ、シリンダボア径が70mmの場合)や表3(試験例1(c):レール先端部が図3Bで示すような形状を有し、かつ、シリンダボア径が116mmの場合)の結果についても表1の結果と同様、うねり量が6.0μm以下の場合は、オイル消費量比は良好な結果が得られたが、うねり量が6.0μmを超える比較例は、オイル消費量比は良好な結果が得られなかった。
 また、表4及び表5(試験例2(d):レール先端部が図4Aで示すような形状を有し、かつ、種々のオイルリングにおける最終形状の測定を行った場合)の結果については、図13に示すように、窓角度とうねり量の相関があり、オイルリングの形状が種々の場合であっても、窓角度が小さくなると、うねり量も小さくなることが分かる。
 さらに、表6(試験例2(e):レール先端部が図4Aで示すような形状を有し、かつ、オイル消費量比の測定も含めた試験の場合)の結果についても、表1~表3の結果と同様、うねり量が6.0μm以下の場合は、オイル消費量比は良好な結果が得られたが、うねり量が6.0μmを超える比較例は、オイル消費量比は良好な結果が得られなかった。
 以上の結果より、本発明に係る内燃機関用オイルリングは、うねり量を所定範囲に設定することで、オイルシール性能を向上させることができることが分かった。また、オイル戻し孔の窓角度を所定範囲に設定することで、内燃機関用オイルリングが掻き落としたオイルをオイルドレイン孔へ排出することが可能となり、オイル消費量を低減することができることも分かった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2018年9月28日付けで出願された日本特許出願(特願2018-184525)に基づいており、その全体が引用により援用される。
1   内燃機関用オイルリング(2ピースオイルリング)
2   オイルリング本体
2a  合口部
2b  コイルエキスパンダ収容凹部
2c  外周溝
2d  オイル戻し溝
2e  内周溝
2f  内周溝及びオイル戻し溝以外の部位
3   コイルエキスパンダ
4   ウェブ
5   第1レール
6   第2レール
7   オイル戻し孔
8   (レール)先端部
8A  外周摺動面(第1の平坦部、摺動面)
8B  第1の縮径部
8C  第2の縮径部
8D  第2の平坦部
8E  第3の平坦部
8F  凹部段差
8G  表面処理層
10  ピストン
11  オイルリング溝
12  オイルドレイン孔
20  シリンダ
21  (シリンダ)内壁面
30  窒化層
40  真円ゲージ
40A 真円ゲージの内周面
41  触針
42  上下ゲージ
C   オイル戻し孔の開口幅
D   オイル戻し孔の開口高さ
E   オイル戻し孔のピッチ
  ウェブの周方向におけるピッチの一端
  ウェブの周方向におけるピッチの他端
F   窒化層の厚さ
G   オイルリング本体2の中心点(重心)
a1  オイルリング本体の径方向幅
h1  オイルリング本体の軸方向幅
θ  オイル戻し孔の窓角度

Claims (13)

  1.  オイルリングの断面形状が略I字型のオイルリング本体と、該オイルリング本体の内周側に配置されるコイルエキスパンダとを備え、
     前記オイルリング本体は、シリンダ内壁面と当接する第1レール及び第2レールと、該第1レール及び該第2レールがシリンダの内壁面より掻き落としたオイルをピストン裏面へ流下させるための複数のオイル戻し孔を備えるウェブとで構成され、
     前記オイルリング本体の内周側における内周溝及びオイル戻し溝を除いた部分、及び前記オイルリング本体の外周側における摺動面を除いた部分の少なくとも一方におけるうねりが6.0μm以下であることを特徴とする内燃機関用オイルリング。
  2.  前記オイルリング本体は、前記オイル戻し孔が形成されたオイルリング用線材の巻き取り加工により形成される、請求項1に記載の内燃機関用オイルリング。
  3.  前記オイルリング本体における前記オイル戻し孔の窓角度θが10.0°以下である、請求項1又は2に記載の内燃機関用オイルリング。
  4.  前記摺動面における前記シリンダとの当たり幅は、0.01~0.25mmである、請求項1~3のいずれか1項に記載の内燃機関用オイルリング。
  5.  前記オイルリング本体の周方向における、前記オイル戻し孔の長さをC、前記オイル戻し孔のピッチをEとした場合、E/C≦3.8である、請求項1~4のいずれか1項に記載の内燃機関用オイルリング。
  6.  前記オイルリング本体はスチール製である、請求項1~5のいずれか1項に記載の内燃機関用オイルリング。
  7.  前記オイルリング本体の表面に窒化処理が施されている、請求項1~6のいずれか1項に記載の内燃機関用オイルリング。
  8.  前記オイルリング本体の前記摺動面には、硬質皮膜として、PVD皮膜、DLC皮膜、及び樹脂皮膜の少なくとも1つを被覆している、請求項1~7のいずれか1項に記載の内燃機関用オイルリング。
  9.  前記摺動面の隅部に凹部段差が形成される、請求項1~8のいずれか1項に記載の内燃機関用オイルリング。
  10.  前記第1レールの先端部及び前記第2レールの先端部は、
     前記シリンダ内壁面に当接する略平坦な第1の平坦部と、
     前記第1の平坦部から前記オイルリング本体の軸方向の一方に沿って縮径する第1の縮径部と、
     前記第1の縮径部に連続する第2の平坦部と、
     前記第1の平坦部から前記オイルリング本体の軸方向の他方に沿って縮径する第2の縮径部を介して、又は直接的に、前記第1の平坦部に連続する第3の平坦部と、を備える、請求項1~8のいずれか1項に記載の内燃機関用オイルリング。
  11.  前記先端部が前記第2の縮径部を備える場合、
     前記オイルリング本体の軸方向に平行な面で切断した断面視において、
     前記第1の縮径部の一端をa、他端をbとし、前記第2の縮径部の一端をc、他端をdとしたときに、
     前記aと前記bとの距離abは、前記cと前記dとの距離cdよりも長く、かつ、
     前記aと前記bとをつなぐ直線と、前記シリンダ内壁面に平行な直線とのなす角θabは、前記cと前記dとをつなぐ直線と、前記シリンダ内壁面に平行な直線とのなす角θcdよりも小さい、請求項10に記載の内燃機関用オイルリング。
  12.  前記オイルリング本体の周方向における、前記オイル戻し孔の長さをCとした場合、C≧1.0mmである、請求項2~11のいずれか1項に記載の内燃機関用オイルリング。
  13.  前記オイルリング本体の軸方向における、前記オイル戻し孔の高さをDとした場合、D≧0.3mmである、請求項2~12のいずれか1項に記載の内燃機関用オイルリング。
PCT/JP2019/038419 2018-09-28 2019-09-27 内燃機関用オイルリング WO2020067539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020549495A JP7182097B2 (ja) 2018-09-28 2019-09-27 内燃機関用オイルリング
CN201980063841.8A CN112771290B (zh) 2018-09-28 2019-09-27 内燃机用油环
DE112019004898.8T DE112019004898T5 (de) 2018-09-28 2019-09-27 Ölring für einen Verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018184525 2018-09-28
JP2018-184525 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067539A1 true WO2020067539A1 (ja) 2020-04-02

Family

ID=69949825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038419 WO2020067539A1 (ja) 2018-09-28 2019-09-27 内燃機関用オイルリング

Country Status (4)

Country Link
JP (2) JP7182097B2 (ja)
CN (1) CN112771290B (ja)
DE (1) DE112019004898T5 (ja)
WO (1) WO2020067539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4310370A1 (en) * 2022-07-19 2024-01-24 MAHLE International GmbH Piston ring
US12117085B2 (en) 2022-07-19 2024-10-15 Mahle International Gmbh Piston ring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148667B1 (ja) * 2021-03-31 2022-10-05 Tpr株式会社 オイルコントロールリング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478375A (ja) * 1990-07-20 1992-03-12 Riken Corp ピストン用オイルリング
WO2011132679A1 (ja) * 2010-04-19 2011-10-27 日本ピストンリング株式会社 内燃機関用オイルリング
WO2011152114A1 (ja) * 2010-06-04 2011-12-08 日本ピストンリング株式会社 内燃機関用オイルリング
WO2016038916A1 (ja) * 2014-09-12 2016-03-17 Tpr株式会社 組合せオイルリング

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966063U (ja) * 1982-10-26 1984-05-02 帝国ピストリング株式会社 コイルエキスパンダ付オイルリング
JPH08261326A (ja) * 1995-03-27 1996-10-11 Nippon Piston Ring Co Ltd エキスパンダ付きオイルリング
JPH10169778A (ja) * 1996-12-06 1998-06-26 Toyota Motor Corp ピストンリング
JP2003074704A (ja) * 2001-08-31 2003-03-12 Riken Corp 組合せオイルリング
JP2003194223A (ja) * 2001-12-28 2003-07-09 Nippon Piston Ring Co Ltd 組合せオイルリング
WO2005066482A1 (ja) * 2004-01-09 2005-07-21 Nippon Piston Ring Co., Ltd. コイルエキスパンダ用線材およびコイルエキスパンダ
JP2008133923A (ja) * 2006-11-29 2008-06-12 Teikoku Piston Ring Co Ltd 組合せオイルリング
JP5270765B2 (ja) 2009-09-30 2013-08-21 日本ピストンリング株式会社 組み合わせオイルリング
JP5536442B2 (ja) * 2009-12-25 2014-07-02 日本ピストンリング株式会社 回転防止用2ピースオイルリング
CN104220792B (zh) * 2012-02-17 2016-10-19 费德罗-莫格尔公司 用于内燃机的活塞环
JP2017172616A (ja) * 2016-03-22 2017-09-28 株式会社リケン 組合せオイルコントロールリング

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478375A (ja) * 1990-07-20 1992-03-12 Riken Corp ピストン用オイルリング
WO2011132679A1 (ja) * 2010-04-19 2011-10-27 日本ピストンリング株式会社 内燃機関用オイルリング
WO2011152114A1 (ja) * 2010-06-04 2011-12-08 日本ピストンリング株式会社 内燃機関用オイルリング
WO2016038916A1 (ja) * 2014-09-12 2016-03-17 Tpr株式会社 組合せオイルリング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4310370A1 (en) * 2022-07-19 2024-01-24 MAHLE International GmbH Piston ring
US12117085B2 (en) 2022-07-19 2024-10-15 Mahle International Gmbh Piston ring

Also Published As

Publication number Publication date
JP7182097B2 (ja) 2022-12-02
DE112019004898T5 (de) 2021-06-10
CN112771290A (zh) 2021-05-07
CN112771290B (zh) 2023-10-27
JP2022187021A (ja) 2022-12-15
JPWO2020067539A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020067539A1 (ja) 内燃機関用オイルリング
US8820750B2 (en) Internal combustion engine oil ring
JP3228116B2 (ja) 組合せオイルリング
US10330198B2 (en) Multi-piece oil ring
US8123227B2 (en) Sliding member
EP1557594B1 (en) Oil ring
US10571024B2 (en) Combination oil ring
EP2562448B1 (en) Oil ring for internal combustion engine
KR20030030037A (ko) 강(鋼)제 피스톤링
JP5099910B2 (ja) 内燃機関用オイルリング
US7510196B2 (en) Oil ring for internal combustion engine
CN112204275A (zh) 间隔外胀环及具备它的控油环
KR20030055292A (ko) 질화표면층을 가진 2조각 오일제어링
JP2002147459A (ja) オーバレイ層を改質したすべり軸受
JPH11190430A (ja) ピストンリングおよびその製造方法
WO2024134774A1 (ja) オイルコントロールリング
JP7284308B1 (ja) ピストンリング
WO2019142668A1 (ja) オイルリング
JP5871277B2 (ja) 内燃機関用オイルリング
JPH06336951A (ja) コイルエキスパンダ付き鋼製オイルリングおよびそのオイルリングの窒化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549495

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19867809

Country of ref document: EP

Kind code of ref document: A1