WO2011132391A1 - 透湿度測定装置及び透湿度測定方法 - Google Patents

透湿度測定装置及び透湿度測定方法 Download PDF

Info

Publication number
WO2011132391A1
WO2011132391A1 PCT/JP2011/002230 JP2011002230W WO2011132391A1 WO 2011132391 A1 WO2011132391 A1 WO 2011132391A1 JP 2011002230 W JP2011002230 W JP 2011002230W WO 2011132391 A1 WO2011132391 A1 WO 2011132391A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water vapor
valve
measurement
measuring device
Prior art date
Application number
PCT/JP2011/002230
Other languages
English (en)
French (fr)
Inventor
庄太 金井
裕彦 村上
智啓 永田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012511537A priority Critical patent/JPWO2011132391A1/ja
Publication of WO2011132391A1 publication Critical patent/WO2011132391A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Definitions

  • the present invention relates to a moisture permeability measuring device and a moisture permeability measuring method for measuring the moisture permeability of a measurement object.
  • Moisture permeability is the rate at which water vapor permeates the measurement object, and is represented by the amount of water vapor permeated per unit time and unit area (g / m 2 / day). Moisture permeability is very small, especially when the speed at which water vapor passes through the measurement object is low, and water vapor is present in the air, and is required to be measured with high accuracy. ing.
  • Patent Document 1 describes “apparatus and method for measuring water vapor permeability”.
  • the first chamber and the second chamber are partitioned by the measurement object, and a circulation path is connected to the second chamber.
  • the circuit is provided with a pump and a dew point meter.
  • purge gas is circulated through the circulation path including the second chamber to remove moisture.
  • water vapor that has passed through the measurement object and reached the second chamber circulates in the circulation path by a pump.
  • the amount of water vapor flowing through the circulation path is measured by the dew point meter, and the water vapor permeability of the measurement object is determined.
  • an object of the present invention is to provide a moisture permeability measuring apparatus and a measuring method for measuring moisture permeability with high accuracy and in a short time.
  • a moisture permeability measuring apparatus includes a chamber, a dry gas introduction system path, a dry gas discharge path, a water vapor supply unit, a control unit, and a water vapor amount measuring device. It comprises.
  • the chamber is divided into a first chamber and a second chamber by a measurement object.
  • the dry gas introduction path has a first valve, is connected to the second chamber, and introduces the dry gas into the second chamber when the first valve is opened.
  • the dry gas discharge path has a second valve, is connected to the second chamber, and discharges the dry gas from the second chamber when the second valve is opened.
  • the water vapor supply unit can supply water vapor to the first chamber.
  • the control unit humidifies the object to be measured when the first valve and the second valve are opened, and the control unit performs the above operation when the first valve and the second valve are closed.
  • the water vapor supply unit is controlled to supply water vapor to the first chamber.
  • the water vapor amount measuring device is directed to a measurement space formed by closing the first valve and the second valve when the first valve and the second valve are closed. Then, the amount of water vapor that has passed through the measurement object from the first chamber is measured.
  • a method for measuring moisture permeability provides a dry gas in a second chamber of a chamber partitioned into a first chamber and a second chamber by a measurement object.
  • the measurement object is humidified while being circulated.
  • the flow of the dry gas in the second chamber is stopped, and water vapor is supplied to the first chamber.
  • the amount of water vapor that has passed through the measurement object from the first chamber toward the second chamber is measured by a water vapor amount measuring device connected to the second chamber.
  • a moisture permeability measuring apparatus includes a chamber, a dry gas introduction system path, a dry gas discharge path, a water vapor supply unit, a control unit, and a water vapor amount measuring device.
  • the chamber is divided into a first chamber and a second chamber by a measurement object.
  • the dry gas introduction path has a first valve, is connected to the second chamber, and introduces the dry gas into the second chamber when the first valve is opened.
  • the dry gas discharge path has a second valve, is connected to the second chamber, and discharges the dry gas from the second chamber when the second valve is opened.
  • the water vapor supply unit can supply water vapor to the first chamber.
  • the control unit humidifies the object to be measured when the first valve and the second valve are opened, and the control unit performs the above operation when the first valve and the second valve are closed.
  • the water vapor supply unit is controlled to supply water vapor to the first chamber.
  • the water vapor amount measuring device is directed to a measurement space formed by closing the first valve and the second valve when the first valve and the second valve are closed. Then, the amount of water vapor that has passed through the measurement object from the first chamber is measured.
  • the dry gas is introduced into the second chamber from the dry gas introduction system path and is discharged from the dry gas discharge path.
  • the measurement space is dried.
  • the measurement object is humidified by the water vapor supply unit controlled by the control unit.
  • the water vapor supplied to the first chamber by the water vapor supply unit controlled by the control unit passes through the measurement object toward the measurement space, and It is measured by a water vapor meter. Since the 1st valve and the 2nd valve are closed at the time of measurement, even if the amount of water vapor which permeate
  • the measurement object is humidified at the stage of measurement preparation, there is no need for time to infiltrate the measurement object at the time of measurement, and until the water vapor is detected by the water vapor amount measuring device after the measurement is started. It is possible to shorten the time.
  • the water vapor supply unit may have a humidified gas introduction system that is connected to the first chamber and introduces a humidified gas into the first chamber.
  • the humidity and temperature in the first chamber can be maintained. Thereby, it is possible to humidify the measurement object in the measurement preparation stage, and to quantitatively supply water vapor to the first chamber in the measurement stage.
  • the water vapor amount measuring device may be disposed in the measurement space between the first valve and the chamber.
  • the dry gas is introduced into the second chamber from the dry gas introduction path and is discharged from the dry gas discharge path.
  • the water vapor amount measuring device between the first valve, which is upstream of the flowing dry gas, and the chamber, moisture removed from the chamber in the measurement preparation stage adheres to the water vapor amount measuring device, and the measurement accuracy is improved. It is possible to prevent the decrease.
  • the water vapor amount measuring device may be a dew point meter.
  • the moisture permeability measurement method is the measurement object while circulating a dry gas in the second chamber of a chamber partitioned into a first chamber and a second chamber by the measurement object. Humidify things. During measurement, the flow of the dry gas in the second chamber is stopped, and water vapor is supplied to the first chamber. The amount of water vapor that has passed through the measurement object from the first chamber toward the second chamber is measured by a water vapor amount measuring device connected to the second chamber.
  • a humidified gas may be circulated through the first chamber.
  • the water vapor amount measuring device may be arranged upstream of the chamber with respect to the dry gas.
  • the water vapor amount measuring device may be a dew point meter.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a moisture permeability measuring apparatus 1 according to the first embodiment.
  • the moisture permeability measuring device 1 includes a chamber 2, a gas supply system 3, a humidified gas introduction path 4, a dry gas introduction path 5, a humidified gas discharge path 6, a dry gas discharge path 7, a dew point meter 8, and A control unit 30 is included.
  • the humidified gas introduction path 4, the dry gas introduction path 5, the humidified gas discharge path 6 and the dry gas discharge path 7 are connected to the chamber 2, respectively.
  • the gas supply system 3 is connected to a humidified gas introduction path 4 and a dry gas introduction path 5.
  • the dew point meter 8 is disposed on the dry gas introduction path 5.
  • the control part 30 is connected to each part mentioned later.
  • a film F that is a measurement object is attached to the chamber 2.
  • FIG. 2 is a cross-sectional view showing the configuration of the chamber 2.
  • the chamber 2 includes a first chamber portion 9, a second chamber portion 10, a fastener 11, and a gasket 12.
  • the first chamber portion 9 and the second chamber portion 10 are fastened by a fastener 11, and the gasket 12 is disposed at a joint portion between the first chamber portion 9 and the second chamber portion 10.
  • the first chamber portion 9 is made of a material such as stainless steel, and has a concave portion 9a and a flange portion 9b.
  • the concave portion 9a is a concave portion having an opening.
  • a flange portion 9b is formed at the opening edge of the recess 9a, and a groove is formed in the flange portion 9b along the opening of the recess 9a.
  • a hole for connecting the pipe 18 of the humidified gas introduction path 4 and the pipe 26 of the humidified gas discharge path 6 is formed in the recess 9a.
  • the second chamber portion 10 is made of a material having low adsorptivity and permeability to water vapor such as stainless steel, and is formed with a concave portion 10a and a flange portion 10b.
  • the concave portion 10a is a concave portion having an opening.
  • a flange portion 10b is formed at the opening edge of the recess 10a, and a groove is formed in the flange portion 10b along the opening of the recess 10a.
  • the recess 10a is formed with a hole to which the pipe 22 of the dry gas introduction path 5 and the pipe 28 of the dry gas discharge path 7 are connected.
  • the first chamber portion 9 and the second chamber portion 10 may be formed in the same shape or different shapes. However, the opening shapes of the recess 9a and the recess 10a and the joint surfaces of the flange portion 9b and the flange portion 10b need to correspond. In addition, the time required for the water vapor
  • the fastener 11 fastens the flange portion 9b and the flange portion 10b.
  • the fastener 11 for example, a bolt, a nut, a clamp, or the like that can be easily attached and detached is used.
  • the gasket 12 seals the inside and the outside of the chamber 2.
  • the gasket 12 is, for example, an O-ring made of rubber.
  • One gasket 12 is fitted into each of the groove of the flange portion 9b and the groove of the flange portion 10b. When the flange portion 9b and the flange portion 10b are fastened, the gasket 12 faces through the film F and blocks the gas communication between the film F and the flange portion 9b and between the film F and the flange portion 10b.
  • the first chamber portion 9 and the second chamber portion 10 are coupled with the film F attached, the first chamber 13 surrounded by the recess 9a and the film F, the recess 10a, and the film are contained in the chamber 2.
  • Two chambers of the second chamber 14 surrounded by F are formed.
  • the gas supply system 3 includes a gas source 15 and a pipe 16.
  • the gas source 15 is connected to the humidifier 17 in the humidified gas introduction path 4 and the purification / heater 20 in the dry gas introduction path 5 by a pipe 16.
  • the gas source 15 is a gas cylinder or the like, and supplies a source gas that is a source of the humidified gas and the dry gas to the humidified gas introduction path 4 and the dry gas introduction path 5.
  • the source gas is, for example, nitrogen.
  • the humidified gas introduction path 4 includes a humidifier 17, a pipe 18 and a third valve 19.
  • the humidifier 17 is connected to the first chamber 13 of the chamber 2 by a pipe 18.
  • the humidifier 17 contains the water vapor in the raw material gas supplied from the gas supply system 3 by, for example, bubbling or the like to generate a humidified gas.
  • the third valve 19 is provided in the pipe 18 and opens and closes the pipe 18.
  • the dry gas introduction path 5 has a purification / heater 20, a pipe 22, a first valve 24 and a fourth valve 25.
  • the purifier / heater 20 is connected to the second chamber 14 of the chamber 2 by a pipe 22 via a dew point meter 8 described later.
  • the purifier / heater 20 removes moisture and impurities from the source gas supplied from the gas supply system 3 and heats the source gas to generate a dry gas.
  • the first valve 24 is provided between the purifier / heater 20 of the pipe 22 and the dew point meter 8 and opens and closes the pipe 22.
  • the fourth valve 25 is provided between the dew point meter 8 of the pipe 22 and the chamber 2 and opens and closes the pipe 22.
  • the humidified gas discharge path 6 has a pipe 26 and a fifth valve 27.
  • One end of the pipe 26 is connected to the first chamber 13 of the chamber 2, and the other end is connected to an exhaust system (not shown).
  • the exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere.
  • the fifth valve 27 is provided in the pipe 26 and opens and closes the pipe 26.
  • the dry gas discharge path 7 has a pipe 28 and a second valve 29.
  • One end of the pipe 28 is connected to the second chamber 14 of the chamber 2, and the other end is connected to the exhaust system.
  • the exhaust system may be an exhaust mechanism such as a vacuum pump or may be open to the atmosphere.
  • the second valve 29 is provided in the pipe 28 and opens and closes the pipe 28.
  • the dew point meter 8 is disposed between the first valve 24 and the second chamber 14 of the chamber 2 in the pipe 22 of the dry gas introduction path 5.
  • the dew point meter 8 can be, for example, a lithium chloride dew point meter, a mirror-cooled dew point meter, an alpha ray dew point meter, or the like. By using a dew point meter, a minute amount of water vapor can be measured with high accuracy.
  • dew point meters those that can measure water vapor (humidity), such as polymer resistance hygrometers, polymer capacitive hygrometers, aluminum oxide capacitive hygrometers, infrared hygrometers, microwaves A hygrometer or the like can be used.
  • the control unit 30 is connected to the first valve 24, the second valve 29 and the humidifier 17.
  • the control unit 30 detects the open / closed state of the first valve 24 and the second valve 29 and controls the humidifier 17 according to the state. Specifically, when the first valve 24 and the second valve 29 are open, the film F generates moisture in an amount to be humidified, and the first valve 24 and the second valve 29 are closed. When it is, the water vapor is generated so that the humidified gas has a predetermined humidity. Further, the control unit 30 may open and close the first valve 24 and the second valve 29 by itself.
  • the moisture permeability measuring device 1 is configured as described above. When the first valve 24 and the second valve 29 are closed, the second chamber 14 and the pipe 22 are measured by the chamber 2 side from the first valve 24 and the second valve 29 of the pipe 28 by the chamber 2 side. A space is formed.
  • the moisture permeability measuring device 1 includes a heater (not shown) that maintains the temperature of the chamber 2 and each pipe at a predetermined temperature.
  • the film F as the measurement object is set between the flange portion 9b of the first chamber portion 9 and the flange portion 10b of the second chamber portion 10, and the temperature of the moisture permeability measuring device 1 is kept constant.
  • dry gas is circulated in the second chamber 14.
  • the second valve 29, the fourth valve 25, and the first valve 24 are opened in this order, and the source gas is supplied from the gas source 15 through the pipe 16 to the purification / heater 20. Drying, impurity removal and heating produce dry gas.
  • the dry gas is introduced into the second chamber 14 through the pipe 22 and the dew point meter 8.
  • the dry gas introduced into the second chamber 14 is discharged through the pipe 28.
  • the humidified gas is circulated in the first chamber 13.
  • the fifth valve 27 and the third valve 19 are opened in this order, and the source gas is supplied from the gas source 15 through the pipe 16 to the humidifier 17 and is humidified by the humidifier 17 to generate humidified gas.
  • the humidified gas is introduced into the first chamber 13 through the pipe 18.
  • the humidified gas introduced into the first chamber 13 is discharged through the pipe 26.
  • the moisture permeability measuring device 1 is maintained in this state for a predetermined time.
  • the water vapor present in the measurement space is removed by the circulation of the dry gas.
  • the dew point meter 8 is provided in the pipe 22 upstream of the second chamber 14, the water vapor released from the second chamber 14 does not adhere to the dew point meter 8. Further, the film F is humidified (hydrated) by the circulation of the humidified gas.
  • the first valve 24 and the second valve 29 are closed in this order, and the flow of the dry gas is stopped.
  • the humidified gas is circulated in order to supply water vapor to the first chamber 13 as it is.
  • the flow rate may be adjusted, and the gas temperature and humidity may be adjusted.
  • a part of the water vapor contained in the humidified gas introduced into the first chamber 13 is transmitted from the film F, which is a measurement object, into the measurement space.
  • the permeated water vapor diffuses in the measurement space and is measured by the dew point meter 8.
  • the moisture permeability (g / m 2 / day) is obtained from the dew point temperature measured by the dew point meter 8, the area of the film F, and the measurement elapsed time.
  • the dew point temperature is converted into moisture pressure using the son-ntag equation (see JIS Z-8806) shown in the following [Equation 1].
  • P H2O is the moisture pressure (Pa)
  • T DP is the dew point temperature (K).
  • W is the moisture weight (g)
  • V is the volume (m 3 ) of the second chamber 14
  • R is the gas constant (8.314 (JK / mol))
  • T gas is the gas temperature.
  • K Mw H2O is the molecular weight of water (18.02 (g / mol)).
  • WVTR moisture permeability (g / m 2 / day)
  • A is the area (m 2 ) of the film F.
  • the moisture permeability is obtained from the dew point temperature.
  • the film F is humidified at the stage of measurement preparation, there is no need to infiltrate the measurement object at the time of measurement, and water vapor is measured by a water vapor meter after the measurement is started. It is possible to shorten the time until the detection.
  • the water vapor released from the second chamber 14 does not adhere to the dew point meter 8 at the stage of measurement preparation, the influence of the water vapor on the measurement value is eliminated, and the moisture permeability is increased with high accuracy. It becomes possible to measure.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of a moisture permeability measuring apparatus 100 according to the second embodiment. Note that in the second embodiment, parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the position of the dew point meter 8 is different and is disposed on the dry gas discharge path 7. Accordingly, the fourth valve 25 is also arranged between the chamber 2 and the dew point meter 8 on the dry gas discharge path 7.
  • the operation of the moisture permeability measuring apparatus 100 is the same as that of the moisture permeability measuring apparatus 1. Specifically, the film F as a measurement object is set between the flange portion 9b of the first chamber portion 9 and the flange portion 10b of the second chamber portion 10, and the temperature of the moisture permeability measuring device 100 is kept constant. Is done.
  • dry gas is circulated in the second chamber 14.
  • the second valve 29, the fourth valve 25, and the first valve 24 are opened in this order, and the source gas is supplied from the gas source 15 through the pipe 16 to the purification / heater 20. Drying, impurity removal and heating produce dry gas.
  • the dry gas is introduced into the second chamber 14 through the pipe 22 and the dew point meter 8.
  • the dry gas introduced into the second chamber 14 is discharged through the pipe 28.
  • the humidified gas is circulated in the first chamber 13.
  • the fifth valve 27 and the third valve 19 are opened in this order, and the source gas is supplied from the gas source 15 through the pipe 16 to the humidifier 17 and is humidified by the humidifier 17 to generate humidified gas.
  • the humidified gas is introduced into the first chamber 13 through the pipe 18.
  • the humidified gas introduced into the first chamber 13 is discharged through the pipe 26.
  • the moisture permeability measuring device 1 is maintained in this state for a predetermined time.
  • the water vapor present in the measurement space is removed by the circulation of the dry gas.
  • the film F is humidified by the circulation of the humidified gas.
  • the first valve 24 and the second valve 29 are closed in this order, and the flow of the dry gas is stopped.
  • the humidified gas is circulated in order to supply water vapor to the first chamber 13 as it is.
  • the flow rate may be adjusted, and the gas temperature and humidity may be adjusted.
  • the moisture permeability (g / m 2 / day) is obtained from the dew point temperature measured by the dew point meter 8, the area of the film F, and the measurement elapsed time.
  • the film F is humidified at the stage of measurement preparation, there is no need for time to infiltrate the measurement object at the time of measurement, and water vapor is detected by the water vapor meter after the measurement is started. It is possible to shorten the time until completion.
  • the moisture permeability of the sample (film F) was measured using the moisture permeability measuring apparatus 1 according to the first embodiment described above.
  • the volume (V in Formula 2) of the second chamber 14 is 8.54 ⁇ 10 ⁇ 5 m 3 .
  • Samples were an Al 2 O 3 / PU (Polyurethane) / PET (Polyethylene Terephthalate) barrier film and an Al / Acryl / PET barrier film.
  • the area of each sample (A in Equation 3) is 3.32 ⁇ 10 ⁇ 3 m 2 .
  • the sample was set in the chamber 2, the temperature of the chamber 2 was set to 80 ° C, and the temperature of each pipe was set to 50 ° C.
  • a dry gas was introduced into the second chamber 14 and a humidified gas was introduced into the first chamber 13.
  • the drying gas was nitrogen gas at 40 ° C. and 0% RH (relative humidity), and the flow rate was 1 L / min.
  • the humidifying gas was nitrogen gas at 40 ° C. and 90% RH, and the flow rate was 5 L / min. This state was maintained for 20 hours.
  • the humidified gas was not circulated in the first chamber in the measurement preparation stage, but a dry gas (40 ° C., 0% RH nitrogen gas) was circulated at a flow rate of 5 L / min.
  • a dry gas 40 ° C., 0% RH nitrogen gas
  • a dry gas 40 ° C., 0% RH nitrogen gas
  • FIG. 4 shows a sample of Al 2 O 3 / PU / PET barrier film
  • FIG. 5 shows a sample of Al / Acryl / PET barrier film.
  • the horizontal axis represents the measurement time
  • the vertical axis represents the water vapor transmission rate (WVTR).
  • the measurement results of the examples are indicated by solid lines
  • the measurement results of the comparative examples are indicated by broken lines.
  • the gas temperature (T gas in Equation 2) was 313K.
  • the peak is detected earlier in the example plot, that is, the water vapor amount can be detected earlier.
  • the moisture permeability of 0.05 g / m 2 / day was measured 18 minutes earlier.
  • the moisture permeability of 0.005 g / m 2 / day was measured 32 minutes earlier. As described above, this measurement method is more effective for a sample having a smaller moisture permeability, which originally takes time for measurement.
  • the present invention is not limited to the above-described embodiment, and can be modified within the scope not departing from the gist of the present invention.
  • the film is humidified by the humidified gas, but is not limited thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】透湿度を高精度かつ短時間で測定するための透湿度測定装置及びその測定方法を提供すること 【解決手段】本発明の透湿度測定装置1は、チャンバ2と、乾燥ガス導入系路5と、乾燥ガス排出経路6と、水蒸気供給部17と、制御部30と、水蒸気量測定器8とを具備する。 チャンバ2は、測定対象物Fにより第1の室13と第2の室14とに区画される。水蒸気供給部27は、第1の室13に水蒸気を供給することが可能である。制御部30は、第1のバルブ13及び第2のバルブ14が開放されているときに測定対象物Fを加湿し、第1のバルブ13及び第2のバルブ14が閉止されているときに第1の室13に水蒸気を供給するように水蒸気供給部8を制御する。水蒸気量測定器8は、第1のバルブ24及び第2のバルブ29が閉止されているときに、測定空間に向けて第1の室13から測定対象物Fを透過した水蒸気の量を測定する。

Description

透湿度測定装置及び透湿度測定方法
 本発明は、測定対象物の透湿度を測定するための透湿度測定装置及び透湿度測定方法に関する。
 食品包装用のフィルム等の評価要件の一つに透湿度がある。透湿度は水蒸気が測定対象物を透過する速度であり、単位時間、単位面積当たりの水蒸気の透過量(g/m/day)で表される。透湿度は、特に水蒸気が測定対象物を透過する速度が小さい場合等には非常に小さい値になり、また水蒸気は空気中に存在することもあって、高精度に測定されることが求められている。
 透湿度を測定するための測定装置及び測定方法には種々の形態のものが存在する。例えば、特許文献1には、「水蒸気透過度を測定するための装置とその方法」が記載されている。当該装置では、測定対象物によって第1の室と第2の室とが区画され、第2の室には循環路が接続されている。循環路にはポンプと露点計が設けられている。測定前に、第2の室を含む循環路にパージガスが流通され、水分が除去される。測定では、測定対象物を透過して第2の室に到達した水蒸気はポンプによって循環路を循環する。露点計によって循環路を流通する水蒸気の量が測定され、測定対象物の水蒸気透過性が判断される。
国際公開WO 2009/041632号公報(段落[0010]、図1)
 しかしながら、特許文献1に記載の装置では、高精度を得るために第2の室の水分をできる限り除去しているが、そのために測定が開始された際、第1の室に供給された水蒸気が測定対象物を浸潤させた後、測定対象物を透過する。このため、水蒸気が測定対象物に浸潤するまでに時間を要し、その分測定時間が長くなってしまう。
 以上のような事情に鑑み、本発明の目的は、透湿度を高精度かつ短時間で測定するための透湿度測定装置及びその測定方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る透湿度測定装置は、チャンバと、乾燥ガス導入系路と、乾燥ガス排出経路と、水蒸気供給部と、制御部と、水蒸気量測定器とを具備する。
 上記チャンバは、測定対象物により第1の室と第2の室とに区画される。
 上記乾燥ガス導入経路は、第1のバルブを有し、上記第2の室に接続され、上記第1のバルブが開放されているときに上記第2の室に乾燥ガスを導入する。
 上記乾燥ガス排出経路は、第2のバルブを有し、上記第2の室に接続され、上記第2のバルブが開放されているときに上記第2の室から上記乾燥ガスを排出する。
 上記水蒸気供給部は、上記第1の室に水蒸気を供給することが可能である。
 上記制御部は、上記第1のバルブ及び上記第2のバルブが開放されているときに上記測定対象物を加湿し、上記第1のバルブ及び上記第2のバルブが閉止されているときに上記第1の室に水蒸気を供給するように上記水蒸気供給部を制御する。
 上記水蒸気量測定器は、上記第1のバルブ及び上記第2のバルブが閉止されているときに、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記第1の室から上記測定対象物を透過した水蒸気の量を測定する。
 上記目的を達成するため、本発明の一形態に係る透湿度測定方法は、測定対象物により第1の室と第2の室とに区画されるチャンバの、上記第2の室に乾燥ガスを流通させながら上記測定対象物を加湿する。
 測定時には、第2室の上記乾燥ガスの流通を停止させ、水蒸気は上記第1の室に供給される。
 上記第1の室から上記第2の室へ向けて上記測定対象物を透過した水蒸気の量は、上記第2の室に接続された水蒸気量測定器によって測定される。
第1の実施形態に係る透湿度度測定装置の概略構成を示す図である。 同透湿度測定装置のチャンバの構成を示す断面図である。 第2の実施形態に係る透湿度測定装置の概略構成を示す図である。 実施例及び比較例にかかる透湿度の測定結果を示すグラフである。 実施例及び比較例にかかる透湿度の測定結果を示すグラフである。
 本発明の一実施形態に係る透湿度測定装置は、チャンバと、乾燥ガス導入系路と、乾燥ガス排出経路と、水蒸気供給部と、制御部と、水蒸気量測定器とを具備する。
 上記チャンバは、測定対象物により第1の室と第2の室とに区画される。
 上記乾燥ガス導入経路は、第1のバルブを有し、上記第2の室に接続され、上記第1のバルブが開放されているときに上記第2の室に乾燥ガスを導入する。
 上記乾燥ガス排出経路は、第2のバルブを有し、上記第2の室に接続され、上記第2のバルブが開放されているときに上記第2の室から上記乾燥ガスを排出する。
 上記水蒸気供給部は、上記第1の室に水蒸気を供給することが可能である。
 上記制御部は、上記第1のバルブ及び上記第2のバルブが開放されているときに上記測定対象物を加湿し、上記第1のバルブ及び上記第2のバルブが閉止されているときに上記第1の室に水蒸気を供給するように上記水蒸気供給部を制御する。
 上記水蒸気量測定器は、上記第1のバルブ及び上記第2のバルブが閉止されているときに、上記第1のバルブ及び上記第2のバルブが閉止されることで形成される測定空間に向けて上記第1の室から上記測定対象物を透過した水蒸気の量を測定する。
 第1のバルブ及び第2のバルブが開放されている測定準備の段階では、第2の室に乾燥ガス導入系路から乾燥ガスが導入され、乾燥ガス排出経路から排出される。これにより測定空間が乾燥される。同時に、制御部が制御する水蒸気供給部によって測定対象物が加湿される。第1のバルブ及び第2のバルブが閉止されている測定の段階では、制御部が制御する水蒸気供給部によって第1の室に供給された水蒸気が測定空間に向けて測定対象物を透過し、水蒸気量測定器によって測定される。測定時には第1のバルブ及び第2のバルブが閉止されているため、測定対象物を透過した水蒸気量が微量であっても精度よく検出することが可能である。また、測定準備の段階で測定対象物は加湿されているため、測定の際に測定対象物に浸潤する時間が不要であり、測定が開始されてから水蒸気量測定器によって水蒸気が検出されるまでの時間を短縮することが可能である。
 上記水蒸気供給部は、上記第1の室に接続され上記第1の室に加湿ガスを導入する加湿ガス導入系路を有してもよい。
 加湿ガス導入系路から第1の室に加湿ガスを導入することにより、第1の室内の湿度及び温度を維持することができる。これにより、測定準備段階では測定対象物を加湿し、測定段階では第1の室に水蒸気を定量供給することが可能である。
 上記水蒸気量測定器は、上記第1のバルブと上記チャンバの間の上記測定空間に配置されていてもよい。
 上述のように、測定準備段階では、乾燥ガス導入系路から第2の室に乾燥ガスが導入され、乾燥ガス排出経路から排出される。水蒸気量測定器を、流通する乾燥ガスの上流に当たる第1のバルブとチャンバの間に配置することにより、測定準備段階においてチャンバ内から除去された水分が水蒸気量測定器に付着して測定精度が低下することを防止することが可能である。
 上記水蒸気量測定器は露点計であってもよい。
 露点計によって、微少な透湿度を高精度に測定することが可能である。
 本発明の一実施形態に係る透湿度測定方法は、測定対象物により第1の室と第2の室とに区画されるチャンバの、上記第2の室に乾燥ガスを流通させながら上記測定対象物を加湿する。
 測定時には第2の室の上記乾燥ガスの流通を停止させて、水蒸気は上記第1の室に供給される。
 上記第1の室から上記第2の室へ向けて上記測定対象物を透過した水蒸気の量は、上記第2の室に接続された水蒸気量測定器によって測定される。
 上記測定対象物を加湿する工程では、上記第1の室に加湿ガスを流通させてもよい。
 上記水蒸気量測定器は、上記乾燥ガスについて上記チャンバの上流側に配置されていてもよい。
 上記水蒸気量測定器は、露点計であってもよい。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 (第1の実施形態)
 図1は、第1の実施形態に係る透湿度測定装置1の概略構成を示す模式図である。
 同図に示すように、透湿度測定装置1は、チャンバ2、ガス供給系3、加湿ガス導入経路4、乾燥ガス導入経路5、加湿ガス排出経路6、乾燥ガス排出経路7、露点計8及び制御部30を有する。
 加湿ガス導入経路4、乾燥ガス導入経路5、加湿ガス排出経路6及び乾燥ガス排出経路7はそれぞれチャンバ2に接続されている。ガス供給系3は、加湿ガス導入経路4及び乾燥ガス導入経路5に接続されている。露点計8は乾燥ガス導入経路5上に配置されている。制御部30は後述する各部に接続されている。チャンバ2には、測定対象物であるフィルムFが取り付けられている。
 図2はチャンバ2の構成を示す断面図である。
 同図に示すように、チャンバ2は、第1チャンバ部9、第2チャンバ部10、締結具11及びガスケット12を有する。第1チャンバ部9と第2チャンバ部10とが締結具11により締結され、ガスケット12は第1チャンバ部9と第2チャンバ部10の接合箇所に配置される。
 第1チャンバ部9はステンレス等の材料からなり、凹部9aと、フランジ部9bとが形成されている。凹部9aは開口を有する凹状部分である。凹部9aの開口縁にフランジ部9bが形成され、フランジ部9bに、凹部9aの開口に沿って溝が形成されている。また凹部9aには加湿ガス導入経路4の配管18及び加湿ガス排出経路6の配管26が接続される孔が形成されている。
 第2チャンバ部10はステンレス等の水蒸気に対する吸着性、透過性が低い材料からなり、凹部10aと、フランジ部10bとが形成されている。凹部10aは開口を有する凹状部分である。凹部10aの開口縁にフランジ部10bが形成され、フランジ部10bに、凹部10aの開口に沿って溝が形成されている。また、凹部10aには乾燥ガス導入経路5の配管22及び乾燥ガス排出経路7の配管28が接続される孔が形成されている。
 第1チャンバ部9と第2チャンバ部10とは同一形状に形成されてもよく、異なる形状に形成されてもよい。ただし、凹部9aと凹部10aの開口形状及びフランジ部9bとフランジ部10bの接合面は対応する必要がある。なお、凹部10aの容積が小さくなるように第2チャンバ部10を形成することにより、フィルムFを透過した水蒸気が拡散するのに必要な時間を低減することができる。
 締結具11はフランジ部9bとフランジ部10bを締結する。締結具11は例えばボルトとナット、クランプ等、着脱が容易なものが用いられる。
 ガスケット12は、チャンバ2の内部と外部とをシールする。ガスケット12は例えばゴムからなるOリング等である。ガスケット12は、フランジ部9bの溝、フランジ部10bの溝にそれぞれ一つずつ嵌めこまれる。ガスケット12はフランジ部9bとフランジ部10bが締結されるとフィルムFを介して対向し、フィルムFとフランジ部9b、フィルムFとフランジ部10bとの間のガスの連通を遮断する。
 フィルムFが取り付けられた状態で第1チャンバ部9と第2チャンバ部10が結合されると、チャンバ2内に、凹部9aとフィルムFで囲まれた第1の室13と、凹部10aとフィルムFで囲まれた第2の室14の二室が形成される。
 図1に示すように、ガス供給系3はガス源15と配管16を有する。ガス源15は配管16によって加湿ガス導入経路4の加湿器17及び乾燥ガス導入経路5の純化・加熱器20に接続されている。ガス源15はガスボンベ等であり、加湿ガス導入経路4及び乾燥ガス導入経路5に加湿ガス及び乾燥ガスの元となる原料ガスを供給する。原料ガスは例えば窒素である。
 加湿ガス導入経路4は、加湿器17、配管18及び第3のバルブ19を有する。加湿器17は配管18によってチャンバ2の第1の室13に接続されている。加湿器17はガス供給系3から供給される原料ガスに、例えばバブリング等により水蒸気を含有させ加湿ガスを生成する。第3のバルブ19は配管18に設けられ、配管18を開閉する。
 乾燥ガス導入経路5は、純化・加熱器20、配管22、第1のバルブ24及び第4のバルブ25を有する。純化・加熱器20は、配管22によって、後述する露点計8を介してチャンバ2の第2の室14に接続されている。純化・加熱器20はガス供給系3から供給される原料ガスから水分及び不純物を除去すると共に原料ガスを加熱し、乾燥ガスを生成する。第1のバルブ24は配管22の純化・加熱器20と露点計8の間に設けられ、配管22を開閉する。第4のバルブ25は配管22の露点計8とチャンバ2の間に設けられ、配管22を開閉する。
 加湿ガス排出経路6は、配管26及び第5のバルブ27を有する。配管26は一端がチャンバ2の第1の室13に接続され、他端は図示しない排気系に接続されている。排気系は、真空ポンプ等の排気機構であってもよく、また大気開放であってもよい。第5のバルブ27は配管26に設けられ、配管26を開閉する。
 乾燥ガス排出経路7は、配管28及び第2のバルブ29を有する。配管28は一端がチャンバ2の第2の室14に接続され、他端は排気系に接続されている。排気系は、真空ポンプ等の排気機構であってもよく、また大気開放であってもよい。第2のバルブ29は配管28に設けられ、配管28を開閉する。
 露点計8は、乾燥ガス導入経路5の配管22の、第1のバルブ24とチャンバ2の第2の室14の間に配置されている。露点計8は、例えば、塩化リチウム露点計、鏡面冷却式露点計、アルファ線露点計等とすることができる。露点計を用いることにより、微少な水蒸気量を高精度に測定することが可能である。また、露点計以外にも、水蒸気量(湿度)を測定することが可能なもの、例えば高分子抵抗式湿度計、高分子容量式湿度計、酸化アルミ容量式湿度計、赤外線湿度計、マイクロ波湿度計等を用いることが可能である。
 制御部30は、第1のバルブ24、第2のバルブ29及び加湿器17に接続されている。制御部30は、第1のバルブ24及び第2のバルブ29の開閉状態を検出し、その状態に応じて加湿器17を制御する。具体的には、第1のバルブ24及び第2のバルブ29が開放されているときには、フィルムFが加湿される量の水蒸気を生成させ、第1のバルブ24及び第2のバルブ29が閉止されているときには、加湿ガスが所定の湿度となるように水蒸気を生成させる。また、制御部30は、自らが第1のバルブ24及び第2のバルブ29の開閉を行ってもよい。
 透湿度測定装置1は以上のように構成される。第1のバルブ24及び第2のバルブ29が閉止されると、第2の室14、配管22の第1のバルブ24よりチャンバ2側及び配管28の第2のバルブ29よりチャンバ2側によって測定空間が形成される。なお、透湿度測定装置1は、チャンバ2及び各配管の温度をそれぞれ所定の温度に維持する図示しないヒータを備える。
 以下、透湿度測定装置1の動作を説明する。
 フィルムFの透湿度を測定する前に、以下のようにして測定準備工程が行われる。
 第1チャンバ部9のフランジ部9bと、第2チャンバ部10のフランジ部10bの間に測定対象物であるフィルムFがセットされ、透湿度測定装置1の温度が一定に維持される。
 この状態で、第2の室14に乾燥ガスが流通される。第2のバルブ29、第4のバルブ25及び第1のバルブ24がこの順に開放され、原料ガスがガス源15から配管16を通って純化・加熱器20に供給され、純化・加熱器20によって乾燥、不純物除去及び加熱され、乾燥ガスが生成される。乾燥ガスは配管22及び露点計8を通って第2の室14に導入される。第2の室14に導入された乾燥ガスは、配管28を通って排出される。
 乾燥ガスの流通と同時に、第1の室13に加湿ガスが流通される。第5のバルブ27及び第3のバルブ19がこの順に開放され、原料ガスがガス源15から配管16を通って加湿器17に供給され、加湿器17によって加湿され、加湿ガスが生成される。加湿ガスは配管18を通って第1の室13に導入される。第1の室13に導入された加湿ガスは、配管26を通って排出される。
 透湿度測定装置1は、この状態で所定時間維持される。乾燥ガスの流通により、測定空間に存在する水蒸気が除去される。ここで、露点計8は、第2の室14の上流にあたる配管22に設けられているため、第2の室14から放出された水蒸気が露点計8に付着することがない。また、加湿ガスの流通によりフィルムFが加湿(含水)される。
 所定時間経過後、フィルムFの透湿度の測定が開始される。第1のバルブ24及び第2のバルブ29がこの順で閉止され、乾燥ガスの流通が停止される。加湿ガスは、このまま第1の室13に水蒸気を供給するために流通させる。ここで、流量の調整、ガス温度や湿度の調整を施してもよい。
 第1の室13に導入された加湿ガスに含まれる水蒸気の一部は、測定対象物であるフィルムFから測定空間に透過する。透過した水蒸気は測定空間内を拡散し、露点計8によって測定される。露点計8により測定された露点温度と、フィルムFの面積と、測定経過時間から、透湿度(g/m/day)が得られる。
 具体的には、以下の[数1]に示したson-ntagの式(JIS Z-8806参照)を用いて露点温度を水分圧に変換する。
Figure JPOXMLDOC01-appb-M000001
 [数1]の式において、PH2Oは水分圧(Pa)、TDPは露点温度(K)である。
 次に、[数1]の式により求めた水分圧を、以下の[数2]に示す式を用いて水分重量に変換する。ここで、水蒸気が理想気体であるものとして近似する。
Figure JPOXMLDOC01-appb-M000002
 [数2]の式において、Wは水分重量(g)、Vは第2の室14の体積(m)、Rは気体定数(8.314(JK/mol))、Tgasはガス温度(K)、MwH2Oは水の分子量(18.02(g/mol))である。
 次に、[数2]の式で得られた水分重量を、以下の[数3]に示す式を用いて、測定時間及びフィルムFの面積で規格化し、透湿度を求める。
Figure JPOXMLDOC01-appb-M000003
 [数3]の式において、WVTRは透湿度(g/m/day)、AはフィルムFの面積(m)である。
 以上のようにして、露点温度から透湿度が求められる。ここで、上述のように、測定準備の段階でフィルムFが加湿されているため、測定の際に測定対象物に浸潤する時間が不要であり、測定が開始されてから水蒸気量測定器によって水蒸気が検出されるまでの時間を短縮することが可能である。また、測定準備の段階において、第2の室14から放出された水蒸気が露点計8に付着することがないため、このような水蒸気による測定値への影響が排除され、高精度に透湿度を測定することが可能となる。
 (第2の実施形態)
 図3は、第2の実施形態に係る透湿度測定装置100の概略構成を示す模式図である。なお、第2の実施形態において第1の実施形態と同様の構成を有する箇所には同様の符号を付し、説明を省略する。
 図3に示すように、透湿度測定装置100では、露点計8の位置が異なり、乾燥ガス排出経路7上に配置されている。また、それに伴ない、第4のバルブ25も乾燥ガス排出経路7上の、チャンバ2と露点計8の間に配置されている。
 透湿度測定装置100の動作も透湿度測定装置1と同様である。
 具体的には、第1チャンバ部9のフランジ部9bと、第2チャンバ部10のフランジ部10bの間に測定対象物であるフィルムFがセットされ、透湿度測定装置100の温度が一定に維持される。
 この状態で、第2の室14に乾燥ガスが流通される。第2のバルブ29、第4のバルブ25及び第1のバルブ24がこの順に開放され、原料ガスがガス源15から配管16を通って純化・加熱器20に供給され、純化・加熱器20によって乾燥、不純物除去及び加熱され、乾燥ガスが生成される。乾燥ガスは配管22及び露点計8を通って第2の室14に導入される。第2の室14に導入された乾燥ガスは、配管28を通って排出される。
 乾燥ガスの流通と同時に、第1の室13に加湿ガスが流通される。第5のバルブ27及び第3のバルブ19がこの順に開放され、原料ガスがガス源15から配管16を通って加湿器17に供給され、加湿器17によって加湿され、加湿ガスが生成される。加湿ガスは配管18を通って第1の室13に導入される。第1の室13に導入された加湿ガスは、配管26を通って排出される。
 透湿度測定装置1は、この状態で所定時間維持される。乾燥ガスの流通により、測定空間に存在する水蒸気が除去される。ここで、加湿ガスの流通によりフィルムFが加湿される。
 所定時間経過後、フィルムFの透湿度の測定が開始される。第1のバルブ24及び第2のバルブ29がこの順で閉止され、乾燥ガスの流通が停止される。加湿ガスは、このまま第1の室13に水蒸気を供給するために流通させる。ここで、流量の調整、ガス温度や湿度の調整を施してもよい。
 第1の実施形態と同様に、露点計8により測定された露点温度と、フィルムFの面積と、測定経過時間から、透湿度(g/m/day)が得られる。上述のように、測定準備の段階でフィルムFが加湿されているため、測定の際に測定対象物に浸潤する時間が不要であり、測定が開始されてから水蒸気量測定器によって水蒸気が検出されるまでの時間を短縮することが可能である。
 以下、実施例について説明する。
 上述の第1の実施形態に係る透湿度測定装置1を用いてサンプル(フィルムF)の透湿度を測定した。第2の室14の体積(数2のV)は8.54×10-5である。Al/PU(Polyurethane)/PET(Polyethylene Terephthalate)バリア膜とAl/Acryl/PETバリア膜をサンプルとした。それぞれのサンプルの面積(数3のA)は3.32×10-3である。
 チャンバ2にサンプルをセットし、チャンバ2の温度を80℃、各配管の温度を50℃とした。測定準備段階として、乾燥ガスを第2の室14に、加湿ガスを第1の室13に導入した。乾燥ガスは40℃0%RH(相対湿度)の窒素ガスとし、流量は1L/minとした。加湿ガスは40℃90%RHの窒素ガスとし、流量は5L/minとした。この状態で20時間維持した。
 また、比較例として、測定準備段階において第1の室に加湿ガスを流通させず、乾燥ガス(40℃0%RHの窒素ガス)を5L/minの流量で流通させた。第2の室には実施例と同様に乾燥ガス(40℃0%RHの窒素ガス)を5L/minの流量で流通させた。この状態で20時間維持した
 実施例及び比較例に示した測定準備段階の終了後、乾燥ガスの流通を停止させ、露点温度の測定を開始した。図4及び図5は、測定された露点温度から、上述のようにして透湿度を算出した結果のグラフである。図4はAl/PU/PETバリア膜、図5はAl/Acryl/PETバリア膜をそれぞれサンプルとしたものである。これらの図において横軸は測定時間であり、縦軸は水蒸気透過量(WVTR)である。実施例の測定結果を実線、比較例の測定結果を破線で示す。なおガス温度(数2のTgas)は313Kであった。
 図4及び図5に示すように、実施例及び比較例のプロットを比較すると、実施例のプロットの方がより早くピークが検出され、即ちより早く水蒸気量を検出することが可能である。具体的には、図4に示すプロットでは0.05g/m/dayの透湿度が18分早く測定された。また、図5に示すプロットでは0.005g/m/dayの透湿度が32分早く測定された。このように、本測定方法は、本来測定に時間を要する透湿度が小さいサンプルほど有効である。
 本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更され得る。
 上述の実施形態では、加湿ガスによってフィルムを加湿するものとしたがこれに限られない。例えば、チャンバの外からフィルムに直接水分を供給して加湿するものとすることも可能である。
 1  透湿度測定装置
 2  チャンバ
 5  乾燥ガス導入経路
 7  乾燥ガス排出経路
 8  露点計
 17 加湿器
 13 第1の室
 14 第2の室
 24 第1のバルブ
 29 第2のバルブ

Claims (8)

  1.  測定対象物により第1の室と第2の室とに区画されるチャンバと、
     第1のバルブを有し、前記第2の室に接続され、前記第1のバルブが開放されているときに前記第2の室に乾燥ガスを導入する乾燥ガス導入経路と、
     第2のバルブを有し、前記第2の室に接続され、前記第2のバルブが開放されているときに前記第2の室から前記乾燥ガスを排出する乾燥ガス排出経路と、
     前記第1の室に水蒸気を供給することが可能な水蒸気供給部と、
     前記第1のバルブ及び前記第2のバルブが開放されているときに前記測定対象物を加湿し、前記第1のバルブ及び前記第2のバルブが閉止されているときに前記第1の室に水蒸気を供給するように前記水蒸気供給部を制御する制御部と、
     前記第1のバルブ及び前記第2のバルブが閉止されているときに、前記第1のバルブ及び前記第2のバルブが閉止されることで形成される測定空間に向けて前記第1の室から前記測定対象物を透過した水蒸気の量を測定する水蒸気量測定器と
     を具備する透湿度測定装置。
  2.  請求項1に記載の透湿度測定装置であって、
     前記水蒸気供給部は、前記第1の室に接続され前記第1の室に加湿ガスを導入する加湿ガス導入系路を有する
     透湿度測定装置。
  3.  請求項2に記載の透湿度測定装置であって、
     前記水蒸気量測定器は、前記第1のバルブと前記チャンバの間の前記測定空間に配置されている
     透湿度測定装置。
  4.  請求項3に記載の透湿度測定装置であって、
     前記水蒸気量測定器は露点計である
     透湿度測定装置。
  5.  測定対象物により第1の室と第2の室とに区画されるチャンバの、前記第2の室に乾燥ガスを流通させながら前記測定対象物を加湿し、
     前記乾燥ガスの流通を停止させて前記第1の室に水蒸気を供給し、
     前記第1の室から前記第2の室へ向けて前記測定対象物を透過した水蒸気の量を、前記第2の室に接続された水蒸気量測定器によって測定する
     透湿度測定方法。
  6.  請求項5に記載の透湿度測定方法であって、
     前記測定対象物を加湿する工程では、前記第1の室に加湿ガスを流通させる
     透湿度測定方法。
  7.  請求項6に記載の透湿度測定方法であって、
     前記水蒸気量測定器は、前記乾燥ガスについて前記チャンバの上流側に配置されている
     透湿度測定方法。
  8.  請求項7に記載の透湿度測定方法であって、
     前記水蒸気量測定器は、露点計である
     透湿度測定方法。
PCT/JP2011/002230 2010-04-23 2011-04-15 透湿度測定装置及び透湿度測定方法 WO2011132391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012511537A JPWO2011132391A1 (ja) 2010-04-23 2011-04-15 透湿度測定装置及び透湿度測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010099583 2010-04-23
JP2010-099583 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011132391A1 true WO2011132391A1 (ja) 2011-10-27

Family

ID=44833935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002230 WO2011132391A1 (ja) 2010-04-23 2011-04-15 透湿度測定装置及び透湿度測定方法

Country Status (3)

Country Link
JP (1) JPWO2011132391A1 (ja)
TW (1) TW201142268A (ja)
WO (1) WO2011132391A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208040A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd フィルタの検査方法、およびフィルタの検査装置
JP2014160069A (ja) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev バリア材の透過度を測定する方法及び装置
CN104634694A (zh) * 2015-01-23 2015-05-20 山东科技大学 一种测量非均质砂岩高速注气过程中损失气体的实验装置
EP3299798A1 (en) * 2016-09-23 2018-03-28 Nitto Denko Corporation Dynamic moisture permeability evaluation apparatus, method for evaluating dynamic moisture permeability, and dynamic moisture permeability evaluation program
WO2019131967A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 シート体、電子部品収納ケース、シート体の透湿性評価方法、透湿度測定方法およびシート体の透湿性評価装置
FR3081050A1 (fr) * 2018-05-09 2019-11-15 Ateq Installation de detection de fuite, procede, utilisation, et moyens de stockage de programme d'ordinateur correspondants.
JP2019218532A (ja) * 2017-12-28 2019-12-26 日東電工株式会社 シート体、電子部品収納ケース、シート体の透湿性評価方法、透湿度測定方法およびシート体の透湿性評価装置
CN111122416A (zh) * 2020-01-17 2020-05-08 同济大学 测量多场多相耦合条件下超低渗介质气体渗透参数的试验系统
US11300472B2 (en) 2017-11-16 2022-04-12 Ateq Installation and method for detecting and locating a leak in a fluid transport circuit, notably of an aircraft
CN114441379A (zh) * 2022-01-13 2022-05-06 中国乐凯集团有限公司 气体除湿膜的除湿量测试装置及测试方法
CN115112543A (zh) * 2022-06-29 2022-09-27 济南赛成电子科技有限公司 一种压力传感器法塑料薄膜和薄板水蒸气透过率测试系统及其方法
US11543324B2 (en) 2020-01-28 2023-01-03 Ateq Leak detection device
US11693057B2 (en) 2018-08-31 2023-07-04 Ateq Corporation Battery leak test device and methods
US11719591B2 (en) 2017-07-06 2023-08-08 Ateq Method for detecting leakage of a hollow component and installation for implementing such a method
US11906393B2 (en) 2019-01-29 2024-02-20 Ateq Tracer gas leak detection system and corresponding use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403476A (zh) * 2015-12-23 2016-03-16 济南兰光机电技术有限公司 一种多腔体称重法透湿测试系统及测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233943A (ja) * 2004-01-21 2005-09-02 Taiyo Nippon Sanso Corp フィルム材料のガス透過度測定装置及びガス透過度測定方法
WO2009041632A1 (ja) * 2007-09-28 2009-04-02 Ulvac, Inc. 水蒸気透過度を測定するための装置とその方法
JP2009271073A (ja) * 2008-05-02 2009-11-19 Mocon Inc 検体透過検査装置の検出セル用湿度制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233943A (ja) * 2004-01-21 2005-09-02 Taiyo Nippon Sanso Corp フィルム材料のガス透過度測定装置及びガス透過度測定方法
WO2009041632A1 (ja) * 2007-09-28 2009-04-02 Ulvac, Inc. 水蒸気透過度を測定するための装置とその方法
JP2009271073A (ja) * 2008-05-02 2009-11-19 Mocon Inc 検体透過検査装置の検出セル用湿度制御システム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208040A (ja) * 2011-03-30 2012-10-25 Ngk Insulators Ltd フィルタの検査方法、およびフィルタの検査装置
JP2014160069A (ja) * 2013-02-12 2014-09-04 Fraunhofer-Ges Zur Foerderung Der Angewandten Forschung Ev バリア材の透過度を測定する方法及び装置
CN104634694A (zh) * 2015-01-23 2015-05-20 山东科技大学 一种测量非均质砂岩高速注气过程中损失气体的实验装置
EP3299798A1 (en) * 2016-09-23 2018-03-28 Nitto Denko Corporation Dynamic moisture permeability evaluation apparatus, method for evaluating dynamic moisture permeability, and dynamic moisture permeability evaluation program
JP2018048982A (ja) * 2016-09-23 2018-03-29 日東電工株式会社 動的透湿性評価装置、動的透湿性評価方法及び動的透湿性評価プログラム
US10571382B2 (en) 2016-09-23 2020-02-25 Nitto Denko Corporation Dynamic moisture permeability evaluation apparatus
US11719591B2 (en) 2017-07-06 2023-08-08 Ateq Method for detecting leakage of a hollow component and installation for implementing such a method
US11300472B2 (en) 2017-11-16 2022-04-12 Ateq Installation and method for detecting and locating a leak in a fluid transport circuit, notably of an aircraft
WO2019131967A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 シート体、電子部品収納ケース、シート体の透湿性評価方法、透湿度測定方法およびシート体の透湿性評価装置
JP2019218532A (ja) * 2017-12-28 2019-12-26 日東電工株式会社 シート体、電子部品収納ケース、シート体の透湿性評価方法、透湿度測定方法およびシート体の透湿性評価装置
US11060944B2 (en) 2018-05-09 2021-07-13 Ateq Leak detection installation, method, usage and corresponding computer program storage means
FR3081050A1 (fr) * 2018-05-09 2019-11-15 Ateq Installation de detection de fuite, procede, utilisation, et moyens de stockage de programme d'ordinateur correspondants.
US11693057B2 (en) 2018-08-31 2023-07-04 Ateq Corporation Battery leak test device and methods
US11906393B2 (en) 2019-01-29 2024-02-20 Ateq Tracer gas leak detection system and corresponding use
CN111122416B (zh) * 2020-01-17 2021-12-07 同济大学 测量多场多相耦合条件下超低渗介质气体渗透参数的试验系统
CN111122416A (zh) * 2020-01-17 2020-05-08 同济大学 测量多场多相耦合条件下超低渗介质气体渗透参数的试验系统
US11543324B2 (en) 2020-01-28 2023-01-03 Ateq Leak detection device
US11808665B2 (en) 2020-01-28 2023-11-07 Ateq Leak detection device
CN114441379A (zh) * 2022-01-13 2022-05-06 中国乐凯集团有限公司 气体除湿膜的除湿量测试装置及测试方法
CN115112543A (zh) * 2022-06-29 2022-09-27 济南赛成电子科技有限公司 一种压力传感器法塑料薄膜和薄板水蒸气透过率测试系统及其方法

Also Published As

Publication number Publication date
JPWO2011132391A1 (ja) 2013-07-18
TW201142268A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011132391A1 (ja) 透湿度測定装置及び透湿度測定方法
TWI429895B (zh) Measurement device for water vapor permeability and method thereof
CN101587021B (zh) 汽车用干燥器性能检测装置及检测方法
JP2010249609A (ja) 水蒸気透過量測定装置及び水蒸気透過量測定方法
CN107966532A (zh) 甲醛或voc释放量测试及预处理简易舱
US20220074890A1 (en) System having a pre-separation unit
TWI455870B (zh) 臭氧氣體供給系統
CN110140041B (zh) 气体阻隔性评价装置及气体阻隔性评价方法
JP2009098006A (ja) 揮発物測定装置
JP2011043386A (ja) 氷結トラップを有する透過量測定装置
CN211652646U (zh) 气体湿度的测量装置
JP6002404B2 (ja) 質量分析装置及びその使用方法、並びにガス透過特性測定方法
US20150226629A1 (en) System and method for leak inspection
CN110631971A (zh) β射线颗粒物监测仪的去除干扰装置及方法
JP5275473B2 (ja) 水蒸気透過量測定装置及び水蒸気透過量測定方法
WO1999066300A1 (fr) Procede et appareil permettant de tester l'etancheite a l'air d'un espace clos equipe d'un dispositif de commande du mouvement de la vapeur
CN104181014B (zh) 一种大气气态汞采样装置
CN111024763A (zh) 气体湿度的测量装置及测量方法
JP5025627B2 (ja) シリコーンゴム硬化物中の低分子シロキサン濃度をリアルタイムで評価できる乾燥機システム及び評価方法
JP2011002303A (ja) 水蒸気透過量測定装置
JP4642440B2 (ja) 密閉チャンバの湿度調整装置
JPH1090227A (ja) 試料導入装置及びガス分析装置及び配管のリーク検査方法
CN116413404B (zh) 试验系统和试验方法
KR101224418B1 (ko) 노점 센서 보호 장치
KR101542145B1 (ko) 프로세스 챔버의 정제장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012511537

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11771734

Country of ref document: EP

Kind code of ref document: A1