WO2011131541A1 - Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung - Google Patents

Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung Download PDF

Info

Publication number
WO2011131541A1
WO2011131541A1 PCT/EP2011/055853 EP2011055853W WO2011131541A1 WO 2011131541 A1 WO2011131541 A1 WO 2011131541A1 EP 2011055853 W EP2011055853 W EP 2011055853W WO 2011131541 A1 WO2011131541 A1 WO 2011131541A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
focus
strahiformungseinheit
laser beam
laser
Prior art date
Application number
PCT/EP2011/055853
Other languages
English (en)
French (fr)
Inventor
Thomas Rupp
Jens Braun
Dominik Vees
Jürgen-Michael Weick
Dieter Burger
Original Assignee
Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Werkzeugmaschinen Gmbh + Co. Kg filed Critical Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority to EP11715904.6A priority Critical patent/EP2560783B1/de
Priority to KR1020127030439A priority patent/KR101502672B1/ko
Priority to PL11715904T priority patent/PL2560783T3/pl
Priority to CN201180030924.0A priority patent/CN102985214B/zh
Priority to JP2013505406A priority patent/JP5767315B2/ja
Publication of WO2011131541A1 publication Critical patent/WO2011131541A1/de
Priority to US13/657,170 priority patent/US8804238B2/en
Priority to US14/317,809 priority patent/US9329368B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • Beamforming unit for focusing a laser beam and method for its
  • the invention relates to a beam shaping unit for focusing a laser beam for laser material processing on a workpiece and to a method for the
  • this beam shaping unit In laser material processing, the laser beam has to be adapted again and again for different processes and applications. In addition to the setting of the required performance levels in particular play the
  • Focus diameter and the focus position of the laser beam a significant role. In many cases, for example when changing from thin to thick sheets or from thick to thin sheets during laser cutting, this requires
  • JP 2009226473 discloses a device and a method in which a divergent
  • Focus diameter which is imaged onto a workpiece by a focusing optic downstream in the beam propagation direction, is dependent on the position of the collimating lens in the beam propagation direction, i. along the
  • Laser beam axis can be adjusted. This change in diameter, however, also affects the focal position, so that it maintains a constant
  • Adjustment range e.g. in conjunction with a focusing lens with a focal length of 200 mm at less than 10 mm.
  • Another disadvantage of the adaptive mirror is the resulting more complex design, since in this case a linear design is not possible.
  • the focusing optics comparable to the collimation lens in JP 2009226473 can also be used
  • Strahiausbungsungsrion be movably arranged to the focus position
  • a beam shaping unit which makes possible in a structurally simple manner a flexible adjustment of the focus diameter and focus position and in particular an extension of the rearward range of the focus position, and a method for controlling this beam shaping unit.
  • Beam focusing direction downstream focusing optics comprises, wherein the first optical element is associated with a setting of a focus diameter by influencing the first optical element, wherein the second optical element is associated with a second einsteli worn for setting a iage in beam propagation direction of the laser beam by influencing the second optical element , and wherein the laser beam is imaged by the first optical element via an intermediate focus on the second optical element.
  • the focus diameter can be varied over a larger range.
  • the first optical element as a transmissive optical element, in particular as a lens, formed, which preferably has a focal length of less than 50 mm, more preferably a focal length of less than 40 mm, in particular a focal length in the range of about 30 mm.
  • the change of the imaging properties of the first optical element is advantageously carried out by the first optical element along the optical axis of the laser beam via the associated therewith the first einstell noise
  • the focus adjustment device provides a motor or comparable drive means
  • the second optical element is also preferably formed as a transmissive optical element, in particular as a lens.
  • the focus position on the second optical element is comparable to the first optical element changed by the second optical element ebenfails along the optical axis of the laser beam via its associated second einsteil vibration is movable.
  • the movements of the first and the second focus adjusting device can be coupled together or independently.
  • the second focus adjusting device may be designed such that it has the radius of curvature of the second optical element and thus its
  • the second optical element is preferably designed as an adaptive lens, which with the second einsteil adopted for changing the
  • Imaging properties e.g. by adjusting a pressure applied to the adaptive lens to change its radius of curvature.
  • Adjustment of the focus diameter and / or the focal position preferably by a control unit depending on application-specific default as well as current correction values, which are based in particular on measurement data of a process monitoring, controllable.
  • application-specific default values to be set in this context beam properties for a particular processing task to understand, if necessary, from these
  • a corresponding control unit can be both a component of the radiation shaping unit and peripheral components, for example part of a laser processing installation, which is the basis of the invention
  • Beam forming unit contains.
  • the beam shaping unit has a housing, which is divided into chambers by the first optical element and the second optical element and by their holders, with overflow channels being provided for the gas and pressure exchange between the chambers. This takes into account the fact that clean room conditions should be present in the region of the beam shaping unit as far as the focusing optics. Movement of the first and / or second optical elements, however, causes altered volumes in the chambers bounded by these elements and would be without
  • the beam shaping unit is integrated into the machining head of a laser processing machine, in particular a laser cutting machine, or forms at least one component of this machining head.
  • Focusing optics and the workpiece to be machined can be another, the
  • Focusing optics in Strahlausbreitungsnchtung downstream optics in particular a protective glass (plan window) to seal the beam forming unit to be provided against gas pressure.
  • the protective glass in the form of a plane-parallel (glass) window is held in the beam-shaping unit or the machining head. This is the Beam forming unit on the one hand sealed against gas pressure, but also just a replacement or cleaning of the bayssteiie facing last optics, in this case the protective glass without recentering of
  • a Trennsteiie a Koilisionstikes is provided between the focusing optics and the further optics, wherein the region of the separation point is covered by an elastic Baig.
  • Kolüsionsschufz allows a separation between the holder of the protective glass and the focusing optics in case of overload.
  • an elastic bellows for example in the form of a bellows, so that in the separation no particles penetrate into the area between protective gels and focusing optics and settle in particular on the focusing optics.
  • the beam shaping unit according to the invention can preferably be used in this case
  • the Laserstrahiqueile a solid state laser, i. a laser having a laser baseline length in the near-infrared region of about 1 ⁇ .
  • the supply of the laser radiation from the laser beam line to the beam shaping unit or to the machining head takes place in such a structure preferably via a transport fiber.
  • Strahlformungseinheii is located in the beam propagation direction following the transport fiber, so that the laser beam divergently impinges on the first optical element.
  • the invention relates to a method for controlling the beam shaping unit described above, in which the focus adjustment devices are controlled as a function of application-specific default values and current correction values are taken into account when activating the focus adjustment units.
  • a control unit is provided, the first and the second
  • the controller uses both application-specific default and current
  • the application-specific default values relate to beam properties to be set for a specific machining task, if necessary, even taking into account the interactions between the focus diameter and focus position resulting from these settings when changing at least one of these variables.
  • control unit for example, access to stored maps or functional relationships.
  • a compensation is made only when defined limit values are exceeded.
  • the additional correction values to be taken into account additionally result from measurement data of a possibly provided process monitoring or likewise from characteristic terms, which are e.g. are dependent on the radiation power and the duration of the irradiation.
  • the current correction values are used to compensate for thermally induced aberrations of the beamforming unit, which occur in particular with increasing irradiation time of the optical components and / or their contamination and which primarily relate to an unwanted change in the focus position.
  • Focus adjustment devices also incorporate the known interactions between focus diameter and focus location in changing at least one of these magnitudes.
  • the current correction values are based on the
  • the thermally induced aberrations in this case are dependent on laser guidance and
  • Irradiation duration stored for example in the control unit.
  • Temperature measurement the currently determined temperature with a can be correlated according to thermally induced aberrations.
  • the temperature in the center of the at least one optical component is particularly preferably determined.
  • the measurement is performed by way of measuring means (heat sensors) known to the person skilled in the art, possibly touch-sensitive.
  • the temperature of the last optical component in the propagation direction of the laser radiation is determined, i. the temperature of the focusing optics or the protective glass.
  • the determined correction value takes into account in this case not only the focus position shift due to the laser power and irradiation time with respect to the absorption of the protective glass as such, but by means of temperature measurement also increased by process-related contamination absorption of the protective glass.
  • Such a protective glass monitoring which determines the degree of soiling via the temperature measurement, may possibly also occur in the case of
  • Temperature measurement be used for focus position control.
  • the current correction value primarily refers to the focal position in the case of thermally induced aberrations, so that the compensation used
  • Control signal usually has to be transmitted only to the second einsteii comfortable.
  • FIGS. 1 ac is a schematic representation of an embodiment of the
  • a beam shaping unit 1 in which a laser beam 3 divergent to a first lens 5 with short focal length (typically less than about 50 mm, in particular in the range of about 30 mm) meets and on an intermediate focus 6 on a second lens 7 (with beam diameter D1) is imaged.
  • the laser beam collimated by the second lens 7! 3 is focused on a workpiece surface 9 for laser material processing via a (fixed) further lens, which serves as focusing optics 8.
  • the laser focus formed at the working point on the workpiece surface 9 in this case has a diameter d1.
  • a first focus adjustment device 10 is provided on the beam shaping unit 1, which can move the first lens 5 along the optical axis 1 1 of the laser beam 3 by means of a drive (not shown), for example a linear motor.
  • the beam diameter of the laser beam 3 incident on the second lens 7 can be reduced (D2 ⁇ D1).
  • the displacement Az L i of the first lens 5 is here chosen such that the reduction of the beam diameter at the second lens 7 (from D1 to D2) gives the desired reduction of the focus diameter (from d1 to d2).
  • the displacement of the first lens 5 leads to a focus position shift ⁇ Z F in the beam propagation direction of the laser beam 3.
  • Focus adjustment 12 uses which the second lens 7 in
  • the change in the position of the second lens 7 does indeed lead to a change in the focus position, but does not influence the focus diameter d2. If the second lens 7 is an adaptive lens (with einsteiibarem
  • a compensation of the focal position shift ⁇ Z F can also take place in that the second focus adjusting device 12 adjusts the curvature of the second lens 7 suitably.
  • the beam-shaping unit 1 is shown in an installed state in a housing 2, into which the laser beam 3 is coupled with a laser basic length in the near-infrared range of approximately 1 pm via a transport fiber 4.
  • respective lens holders 13, 14 for guiding the first lens 5 and the second lens 7 during the displacement along the optical axis 11 of the laser beam 3 are shown.
  • the lens holders 13, 14 also close with the movement of the lenses 5, 7 sealingly with the housing 2, so that the two lenses 5, 7 together with the lens holders 13, 14 three chambers 17, 18, 19 limit.
  • the lens holders 13, 14 for guiding the first and second lenses 5, 7 have overflow channels 15, 16, which ensure a pressure equalization between the chambers 17, TS, 19 during the movement of the lenses 5, 7.
  • Beam forming unit 1 on a protective glass / pressure window 20 A not shown in detail collision protection provides that a collision-related separation 21 a in the area between the focusing optics 8 and protective slides / pressure window 20th An attached around this area on the housing 2 of the beam shape ungseinneit 1 mounted bellows 21 prevents in such a case, the penetration of dirt particles that could settle in the worst case directly to the focusing optics 8.
  • Focus adjustment means 10, 12 is effected by control signals predetermined by a control 22. These control signals are dependent on
  • the control signals determined by the default values 23 are forwarded both to the first and to the second focus adjusting device 10, 12 and converted into corresponding movements of the first and the second lens 5, 7.
  • the case illustrated in FIG. 2 is based on a compensation of thermally induced aberrations, which substantially influence the focus position, with respect to the current correction values, such that a signal used to compensate the focus position shift due to a change in a current correction value
  • Control signal must be forwarded here only to the second einsteli worn 12. It is possible that a compensation of the focus position shift due to current correction values only when exceeding defined limits
  • Result in measurement data of a process monitoring which is formed in the example shown in FIG. 2 by a temperature sensor 25 for monitoring the temperature of the protective glass 20.
  • the temperature currently determined by the temperature sensor 25 is correlated in the control unit 22 with a correspondingly thermally induced aberration and from this the current correction value 24 for correcting the focus position is calculated.
  • control unit 22 can also use load-dependent characteristic curves for determining the current correction values 24, in which the thermally induced aberrations of the beam shaping unit 1 or individual components of the beam shaping unit 1 are deposited as a function of laser power and irradiation duration.
  • load-dependent characteristic curves for determining the current correction values 24, in which the thermally induced aberrations of the beam shaping unit 1 or individual components of the beam shaping unit 1 are deposited as a function of laser power and irradiation duration.
  • the current correction value 24 may also be an input variable for the calculation of the application-specific

Abstract

Die Erfindung betrifft eine Strahtformungseinheit (1) zur Fokussierung eines Lasersirahis (3) zur Lasermaterialbearbeitung auf ein Werkstück (9), umfassend: ein erstes optisches Element (5), auf das der Laserstrahl (3) trifft, ein zweites optisches Element (7), das dem ersten optischen Element (5) in Strahlausbreitungsrichtung nachgeordnet ist, und eine dem zweiten optischen Element (7) in Strahlausbreitungsrichtung nachgeordnete Fokussieroptik (8), wobei dem ersten optischen Element (5) eine erste Fokuseinstelleinrichtung (10) zur Einsteilung eines Fokusdurchmessers (D) durch Beeinflussung des ersten optischen Elements (5) zugeordnet äst, wobei dem zweiten optischen Element (7) eine zweite Fokuseinsteileinrichtung (12) zur Einstellung einer Fokuslage in Strahlausbreitungsrichtung des Laserstrahls (3) durch Beeinflussung des zweiten optischen Elements (7) zugeordnet ist, und wobei der Laserstrahl (3) durch das erste optische Element (5) über einen Zwischenfokus (6) auf das zweite optische Element (7) abgebildet wird. Die Erfindung betrifft auch ein Verfahren zum Ansteuern der Strahlformungseinheit (1).

Description

Strahlformungseinheit zur Fokussierunq eines Laserstrahls und Verfahren zu ihrer
Ansteuerung Die Erfindung betrifft eine Strahlformungseinheit zur Fokussierung eines Laserstrahls zur Lasermateriaibearbeitung auf ein Werkstück sowie ein Verfahren zur
Ansteuerung dieser Strahiformungseinheit. In der Lasermaterialbearbeitung muss der Laserstrahl für unterschiedliche Prozesse und Applikationen immer wieder angepasst werden. Neben der Einstellung der jeweils erforderlichen Leistungsniveaus spielen insbesondere auch der
Fokusdurchmesser sowie die Fokuslage des Laserstrahls eine erhebliche Rolle. In vielen Fällen, beispielsweise bei einem Wechsel von dünnen zu dicken Blechen oder von dicken zu dünnen Blechen beim Laserschneiden, erfordert diese
Anpassung einen Austausch der Bearbeitungsoptik, ggf. sogar des gesamten Bearbeitungskopfes. Die damit verbundenen Rüstzeiten reduzieren die Produktivität der eingesetzten Laserbearbeitungsanlagen.
Zur Einstellung verschiedener Fokusdurchmesser an einem Arbeitspunkt mit minimalem Strahldurchmesser des Laserstrahls ist aus der JP 2009226473 eine Vorrichtung und ein Verfahren bekannt geworden, bei dem ein divergenter
Laserstrahl zunächst auf eine verschiebbare Koliimationslinse trifft. Der
Fokusdurchmesser, der durch eine in Strahiausbreitungsrichtung nachgelagerte Fokussieroptik auf ein Werkstück abgebildet wird, ist in Abhängigkeit von der Position der Koliimationslinse in Strahiausbreitungsrichtung, d.h. entlang der
Laserstrahlachse, einsteilbar. Durch diese Durchmesseränderung wird jedoch auch die Fokuslage beeinflusst, so dass diese zur Erhaltung eines konstanten
Arbeitspunkts nachgestellt werden muss. Dies kann beispielsweise durch einen zwischen Koliimationslinse und Fokussieroptik angeordneten adaptiven Spiegel erfolgen, der über seinen variablen Krümmungsradius eine Nachstellung der Fokusiage ermöglicht. Der über den adaptiven Spiegel realisierbare Nachstellbereich ist allerdings vergleichsweise gering. Bei guter Abbildungsqualität liegt der
Nachstellbereich z.B. in Verbindung mit einer Fokussierlinse mit einer Brennweite von 200 mm bei weniger als 10 mm. Ein weiterer Nachteil des adaptiven Spiegels ist die daraus resultierende aufwendigere Bauform, da in diesem Fall eine lineare Bauweise nicht möglich ist. Alternativ zur Verwendung eines adaptiven Spiegels kann in der JP 2009226473 auch die Fokussieroptik vergleichbar zur Koliimationslinse in
Strahiausbreitungsrichtung bewegbar angeordnet sein, um die Fokuslage
entsprechend der Fokusdurchmesseränderung anzupassen. Eine Bewegung der Fokussieroptik erfordert jedoch einerseits präzise FührungseSemente sowie anderseits Dichtungseiemente, um den Optikraum bei der Bewegung der Fokussieroptik hermetisch abdichten zu können. Diese Anforderungen resultieren in einem komplexen Aufbau des Strahlführungssystems. Zudem erschwert der auf der dem Öptikraum abgewandten Seite der Fokussieroptik herrschende Gasdruck eine entsprechende Bewegung.
Aufgabe der Erfindung
Es ist die Aufgabe der vorliegenden Erfindung, eine Strahiformungseinheit, die in bautechnisch einfacher Weise eine flexible Einstellung von Fokusdurchmesser und Fokusiage und insbesondere eine Erweiterung des Nachsteübereichs der Fokusiage ermöglicht, sowie ein Verfahren zur Ansteuerung dieser Strahlformungseinheit bereitzustellen. Gegenstand der Erfindung
Diese Aufgabe wird erfindungsgemäß durch eine Strahiformungseinheit zur
Fokussierung eines Laserstrahls zur Lasermaterialbearbeitung auf ein Werkstück gelöst, die ein erstes optisches Element, auf das ein Laserstrahl trifft, ein zweites optisches Element, das dem ersten optischen Element in Strahlausbreitungsrichtung nachgeordnet ist, und eine dem zweiten optischen Element in
Strahlausbreitungsrichtung nachgeordnete Fokussieroptik umfasst, wobei dem ersten optischen Element eine erste Fokuseinsteileinrichtung zur Einstellung eines Fokusdurchmessers durch Beeinflussung des ersten optischen Elements zugeordnet ist, wobei dem zweiten optischen Element eine zweite Fokuseinstelieinrichtung zur Einstellung einer Fokusiage in Strahlausbreitungsrichtung des Laserstrahls durch Beeinflussung des zweiten optischen Elements zugeordnet ist, und wobei der Laserstrahl durch das erste optische Element über einen Zwischenfokus auf dem zweiten optischen Element abgebildet wird.
Durch das errindungsgemäße Vorsehen eines Zwischenfokus zwischen dem ersten und zweiten optischen Element kann der Fokusdurchmesser über einen größeren Bereich variiert werden. In einer vorteilhaften Ausführungsform wird hierzu das erste optische Element als transmissives optisches Element, insbesondere als Linse, ausgebildet, die bevorzugt eine Brennweite von weniger als 50 mm, besonders bevorzugt eine Brennweite von weniger als 40 mm, insbesondere eine Brennweite im Bereich um ca. 30 mm aufweist. Die Änderung der Abbildungseigenschaften des ersten optischen Elements erfolgt vorteilhafter Weise, indem das erste optische Element entlang der optischen Achse des Laserstrahls über die ihr zugeordnete erste Fokuseinstelleinrichtung zur
Einstellung des Fokusdurchmessers bewegbar ist. Die Fokuseinstelleinrichtung sieht hierzu einen Motor oder vergleichbare Antriebsmittel vor,
Das zweite optische Element wird ebenfalls bevorzugt als transmissives optisches Element, insbesondere als Linse, ausgebildet Durch die Verwendung transmissiver Elemente in der Strahlformungseinheit, d.h. vom ersten optischen Element bis zur abschließenden Fokussieroptik, ergibt sich ein linearer Aufbau, der es ermöglicht, die Komplexität und den Bauraum der Strahlformungseinheit zu reduzieren.
In einer besonders bevorzugten Äusführungsform der Erfindung wird die Fokuslage über das zweite optische Element vergleichbar zum ersten optischen Element verändert, indem das zweite optische Element ebenfails entlang der optischen Achse des Laserstrahls über die ihr zugeordnete zweite Fokuseinsteileinrichtung bewegbar ist. Die Bewegungsabläufe der ersten und der zweiten Fokuseinsteileinrichtung können dabei miteinander gekoppelt oder unabhängig voneinander erfolgen.
Alternativ kann die zweite Fokuseinsteileinrichtung derart ausgelegt sein, dass sie den Krümmungsradius des zweiten optischen Elements und somit seine
Abbildungseigenschaften verändern kann, um die Fokuslage einzustellen. Das zweite optische Element ist dabei vorzugsweise als adaptive Linse ausgebildet, die mit der zweiten Fokuseinsteileinrichtung zur Veränderung der
Abbiidungseigenschaften z.B. durch Einstellung eines auf die adaptive Linse ausgeübten Drucks zur Veränderung von deren Krümmungsradius zusammenwirkt.
Sowohl die erste als auch die zweite Fokuseinsteileinrichtung sind dabei zur
Einstellung des Fokusdurchmessers und/oder der Fokuslage bevorzugt durch eine Steuereinheit in Abhängigkeit von applikationsspezifischen Vorgabe- als auch von aktuellen Korrekturwerten, die insbesondere auf Messdaten einer Prozessüberwachung basieren, ansteuerbar. Unter applikationsspezifischen Vorgabewerten sind in diesem Zusammenhang einzustellende Strahleigenschaften für eine bestimmte Bearbeitungsaufgabe zu verstehen, die ggf. auch die aus diesen
Einsteilungen resultierenden Wechselwirkungen zwischen Fokusdurchmesser und Fokuslage bei der Veränderung zumindest einer dieser Größen berücksichtigen bzw, kompensieren, im Gegensatz hierzu ergeben sich aktuelle Korrekturwerte während des Prozesses, beispielsweise durch thermisch induzierte Veränderungen der Abbildungseigenschaften der einzelnen Komponenten der Strahlformungseinheit oder aber auf durch Abstandsänderungen zwischen Strahlformungseinheit und Werkstück, die ggf. aufgrund von an dem Werkstück gebildeten Konturen
kompensiert werden müssen. Eine entsprechende Steuerungseinheit kann dabei sowohl Bestandteil der Strah!formungseinheit als auch peripherer Komponenten sein, beispielsweise Teil einer Laserbearbeitungsanlage, weiche die
Strahlformungseinheit enthält.
In einer bevorzugten Ausführungsform weist die Strahlformungseinheit ein Gehäuse auf, weiches durch das erste optische Element und das zweite optischen Element sowie durch deren Halterungen in Kammern aufgeteilt ist, wobei Überströmkanäie zum Gas- und Druckaustausch zwischen den Kammern vorgesehen sind. Dies berücksichtigt den Umstand, dass im Bereich der Strahlformungseinheit bis zur Fokussieroptik möglichst Reinraumbedingungen vorliegen sollten. Eine Bewegung der ersten und/oder zweiten optischen Elemente bedingt jedoch veränderte Volumen in den durch diese Elemente begrenzten Kammern und würde ohne
Überströmkanäie in entsprechende Unter- oder Überdrucksituationen resultieren.
Vorteilhafterweise wird die Strahlformungseinheit in den Bearbeitungskopf einer Laserbearbeitungsmaschine, insbesondere einer Laserschneidanlage, integriert bzw. bildet zumindest einen Bestandteil dieses Bearbeitungskopfes. Zwischen der
Fokussieroptik und dem zu bearbeitenden Werkstück kann eine weitere, der
Fokussieroptik in Strahlausbreitungsnchtung nachgeordnete Optik, insbesondere ein Schutzglas (Planfenster) zur Abdichtung der Strahlformungseinheit gegen Gasdruck vorgesehen sein. Das Schutzglas in Form eines plan parallelen (Glas-)Fensters wird in der Strahlformungseinheit oder dem Bearbeitungskopf gehalten. Hierdurch ist die Strahlformungseinheit zum einen gegen Gasdruck abgedichtet, wobei aber auch gerade ein Austausch oder eine Reinigung der der Bearbeitungssteiie zugewandten letzten Optik, in diesem Falle des Schutzglases, ohne Nachzentrierung des
Laserstrahls erfolgen kann, in einer bevorzugten Weiterbildung der Erfindung ist zwischen der Fokussieroptik und der weiteren Optik eine Trennsteiie eines Koilisionsschutzes vorgesehen, wobei der Bereich der Trennstelle von einem elastischen Baig überdeckt ist. Der
Kolüsionsschufz ermöglicht eine Trennung zwischen dem Halter des Schutzglases und der Fokussieroptik bei Überlast. Der Bereich, in dem die Trennung
vorgenommen wird, ist dabei von einem elastischen Balg, beispielsweise in Form eines Faltenbalgs, umgeben, so dass bei der Trennung keine Partikel in den Bereich zwischen Schutzgias und Fokussieroptik eindringen und sich insbesondere auf der Fokussieroptik absetzen können.
Die erfindungsgemäße Strahlformungseinheit kann dabei bevorzugt bei
Laserbearbeitungsmaschinen zum Einsatz kommen, deren Laserstrahiqueile ein Festkörperlaser, d.h. ein Laser mit einer Lasergrundweilenlänge im Nah-lnfrarot- Bereich von ca. 1 μππ ist. Die Zuführung der Laserstrahlung von der Laserstrahiqueile zur Strahlformungseinheit bzw. zum Bearbeiiungskopf erfolgt in einem solchen Aufbau bevorzugt über eine Transportfaser. Das erste optische Element der
Strahlformungseinheii befindet sich dabei in Strahiausbreitungsrichtung im Anschluss an die Transportfaser, so dass der Laserstrahl divergent auf das erste optische Element auftrifft.
Die Erfindung betrifft in einem weiteren Aspekt ein Verfahren zur Ansteuerung der oben beschriebenen Strahlformungseinheii, bei dem die Fokuseinstelleinrichtungen in Abhängigkeit von appükationsspezifischen Vorgabewerten angesteuert und bei der Ansteuerung der Fokuseinsteileinrichtungen aktuelle Korrekturwerte berücksichtigt werden.
Hierzu ist eine Steuerungseinheit vorgesehen, die der ersten und der zweiten
Fokuseinsteilvorrichtung Steuersignale vorgibt, über die das erste und/oder zweite optische Element derart eingestellt werden, dass sich die gewünschte Strahleigenschaft über die Fokussierung im Bearbeitungspunkt ergibt. Hierzu greift die Steuerung sowohl auf appükationsspezifische Vorgabe- als auch aktuelle
Korrekturwerte zurück. Wie bereits weiter oben ausgeführt, beziehen sich die applikationsspezifischen Vorgabewerte auf einzustellende Strahleigenschaften für eine bestimmte Bearbeitungsaufgabe, ggf, auch unter Berücksichtigung der aus diesen Einsteilungen resultierenden Wechselwirkungen zwischen Fokusdurchmesser und Fokuslage bei der Veränderung zumindest einer dieser Größen. Für die
Kompensation der angeführten Wechselwirkungen kann die Steuerungseinheit beispielsweise auf hinterlegte Kennfelder oder funktionale Zusammenhänge zugreifen. Zudem kann vorgesehen werden, dass eine Kompensation erst bei Überschreitung definierter Grenzwerte vorgenommen wird. Die zusätzlich zu berücksichtigenden aktuellen Korrekturwerte ergeben sich aus Messdaten einer ggf. vorzusehenden Prozessüberwachung oder ebenfalls aus Kennlinienfeidern, die z.B. von der Strahlungsleistung und der Bestrahiungsdauer abhängig sind.
In einer bevorzugten Variante des Verfahrens werden die aktuellen Korrekturwerte zur Kompensation thermisch induzierter Abbiidungsfehier der Strahlformungseinheit herangezogen, die insbesondere mit zunehmender Bestrahiungszeit der optischen Komponenten und/oder deren Verschmutzung auftreten und die vornehmlich eine ungewollte Veränderung der Fokuslage betreffen. Bei der Ermittlung der
Korrekturwerte und entsprechenden Steuersignalen zur Ansteuerung der
Fokuseinstelleinrichtungen fließen ebenfalls die bekannten Wechselwirkungen zwischen Fokusdurchmesser und Fokusiage bei der Veränderung zumindest einer dieser Größen ein.
Vorzugsweise werden die aktuellen Korrekturwerte basierend auf der
Bestrahlungsdauer und der Laserleistung ermittelt, die zumindest einer optischen Komponente der Strahiformungseinheit zugeführt wird. Die thermisch induzierten Abbildungsfehler sind in diesem Fall in Abhängigkeit von Laserleisfung und
Bestrahlungsdauer beispielsweise in der Steuereinheit hinterlegt.
Alternativ hierzu kann auch zur Ermittlung der aktuellen Korrekturwerte an zumindest einer der optischen Komponenten der Strahlformungseinheit eine
Temperaturmessung erfolgen, wobei die aktuell ermittelte Temperatur mit einem entsprechend thermisch induzierten Abbildungsfehler korreliert werden kann.
Besonders bevorzugt wird dabei die Temperatur im Zentrum der zumindest einen optischen Komponente ermittelt. Die Messung erfoigt dabei über dem Fachmann bekannte, ggf. berührungsiose Messmittel (Wärmesensoren).
In einer im Rahmen der Temperaturmessung besonders bevorzugten Variante wird lediglich die Temperatur der in Ausbreitungsrichtung der Laserstrahlung letzten optischen Komponente ermittelt, d.h. die Temperatur der Fokussieroptik oder des Schutzglases. Der ermittelte Korrekturwert berücksichtigt in diesem Fall nicht nur die Fokuslagenverschiebung infolge der Laserleistung und Bestrahlungsdauer hinsichtlich der Absorption des Schutzglases als solches, sondern mittels der Temperaturmessung auch eine durch prozessbedingte Verschmutzung erhöhte Absorption des Schutzglases. Eine solche Schutzglasüberwachung, die über die Temperaturmessung den Verschmutzungsgrad ermittelt, kann ggf. auch bei
Erreichen eines zuvor definierten Grenzwertes ein Abschalten des Prozesses gewährleisten. Über eine weitere Signalverwertung (s.o.) kann der
Temperaturmesswert zur Fokuslagenregelung herangezogen werden.
Der aktuelle Korrekturwert bezieht sich bei thermisch induzierten Abbildungsfehlern vornehmlich auf die Fokuslage, so dass das zur Kompensation verwendete
Steuerungssignal in der Regel nur an die zweite Fokuseinsteiieinrichtung übermittelt werden muss.
Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeich- nung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigen: Fign. 1 a-c eine schematische Darstellung einer Ausführungsform der
Strahlformungseinheit bei drei unterschiedlichen Einstellungen des Fokusdurchmessers bzw. der Fokuslage, und die Strahlformungseinheit von Fign. 1a-c in einer in ein Gehäuse integrierten Bauform.
In Fig. 1a ist eine Strahlformungseinheit 1 gezeigt, bei der ein Laserstrahl 3 divergent auf eine erste Linse 5 mit kurzer Brennweite (typischer Weise kleiner als ca. 50 mm, insbesondere im Bereich um ca. 30 mm) trifft und über einen Zwischenfokus 6 auf eine zweite Linse 7 (mit Strahldurchmesser D1 ) abgebildet wird. Der durch die zweite Linse 7 kollimierte Laserstrah! 3 wird über eine (ortsfeste) weitere Linse, die als Fokussieroptik 8 dient, auf eine Werkstückoberfläche 9 zur Lasermaterialbearbeitung fokussiert. Der am Arbeitspunkt auf der Werkstückoberfläche 9 gebildete Laserfokus weist hierbei einen Durchmesser d1 auf.
Bei einem Wechsel der Applikation, beispielsweise beim Umsteilen auf eine andere Blechdicke oder ein anderes Material von zu schneidenden Werkstücken (Blechen), kann es erforderlich sein, den Fokusdurchmesser d1 auf der Werkstückoberfläche 9 zu verändern und beispielsweise einen kleineren Fokusdurchmesser d2 (< d1 ) zu wählen.
Zur variablen Einstellung des Fokusdurchmessers ist an der Strahlformungseinheit 1 eine erste Fokuseinstelleinrichtung 10 vorgesehen, welche mitteis eines (nicht gezeigten) Antriebs, beispieisweise eines Linearmotors, die erste Linse 5 entlang der optischen Achse 1 1 des Laserstrahls 3 bewegen kann.
Wie in Fig. 1b gezeigt ist, kann bei einer Verschiebung ΔzL1 der ersten Linse 5 in Strahlausbreitungsrichtung des Laserstrahls 3 entlang der optischen Achse 1 1 der Strahldurchmesser des auf die zweite Linse 7 auftreffenden Laserstrahls 3 verringert werden (D2 < D1 ). Die Verschiebung AzLi der ersten Linse 5 wird hierbei so gewählt, dass die Reduzierung des Strahldurchmessers an der zweiten Linse 7 (von D1 auf D2) die gewünschte Verringerung des Fokusdurchmessers (von d1 auf d2) ergibt. Wie in Fig. 1 b ebenfalls zu erkennen ist, führt die Verschiebung der ersten Linse 5 zu einer Fokuslagenverschiebung ΔZF in Strahiausbreitungsrichtung des Laserstrahls 3. Um die Fokuslagenverschiebung ΔZF zu kompensieren und den Laserfokus wieder an der Werkstückoberseite 9 zu positionieren, wird eine zweite
Fokuseinstelleinrichtung 12 verwendet, welche die zweite Linse 7 in
Strahiausbreitungsrichtung entlang der optischen Achse 11 des Laserstrahls 3 um einen Betrag ΔzL2 verschiebt, der so gewählt ist, dass die werkstückseltige
Fokuslage wieder mit der Arbeitsposition an der Werkstückoberseite 9
übereinstimmt, wie in Fig. 1c dargestellt ist. Hierbei kann ausgenutzt werden, dass die Veränderung der Position der zweiten Linse 7 zwar zu einer Veränderung der Fokuslage führt, den Fokusdurchmesser d2 aber nicht beeinflusst. Handelt es sich bei der zweiten Linse 7 um eine adaptive Linse (mit einsteiibarem
Krümmungsradius), so kann alternativ oder zusätzlich zu einer Verschiebung der zweiten Linse 7 eine Kompensation der Fokuslagenverschiebung ΔZF auch dadurch erfolgen, dass die zweite Fokuseinsteileinrichtung 12 die Krümmung der zweiten Linse 7 geeignet einstellt.
In Fig. 2 ist die Strahlformungseinheit 1 in einem Einbauzustand in einem Gehäuse 2 gezeigt, in das der Laserstrahl 3 mit einer Lasergrundweilenlänge im Nah-Infrarot- Bereich von ca. 1 pm über eine Transportfaser 4 eingekoppelt wird. Zusätzlich zu den Fokuseinstelleinrichtungen 10, 12 sind jeweils Linsenhalterungen 13, 14 zur Führung der ersten Linse 5 bzw. der zweiten Linse 7 bei der Verschiebung entlang der optischen Achse 11 des Laserstrahls 3 gezeigt. Die Linsenhalterungen 13, 14 schließen auch bei der Bewegung der Linsen 5, 7 dichtend mit dem Gehäuse 2 ab, so dass die beiden Linsen 5, 7 zusammen mit den Linsenhalterungen 13, 14 drei Kammern 17, 18, 19 begrenzen. Die Linsenhalterungen 13, 14 zur Führung der ersten bzw. zweiten Linse 5, 7 weisen dabei Überströmungskanäle 15, 16 auf, die für einen Druckausglesch zwischen den Kammern 17, TS, 19 beim Bewegen der Linsen 5, 7 sorgen.
In Strahiausbreitungsrichtung der Fokussieroptik 8 nachgeordnet weist die
Strahlformungseinheit 1 ein Schutzglas/Druckfenster 20 auf. Ein nicht näher gezeigter Kollisionsschutz sieht dabei vor, dass eine kollisionsbedingte Trennung 21 a in dem Bereich zwischen Fokussieroptik 8 und Schutzgias/Druckfenster 20 erfolgt Ein um diesen Bereich an dem Gehäuse 2 der Strahlform ungseinneit 1 angebrachter Faitenbalg 21 verhindert in einem solchen Fall das Eindringen von Schmutzpartikeln, die sich im ungünstigsten Fall direkt an der Fokussieroptik 8 absetzen könnten.
Die Einstellung der Fokusiage und des Fokusdurchmessers über die
Fokuseinstelieinrichtungen 10, 12 erfolgt durch von einer Steuerung 22 vorgegebene Steuersignale. Diese Steuersignale werden in Abhängigkeit von
applikationsspezifischen Vorgabewerten 23 als auch aktuellen Korrekturwerten 24 bestimmt. Die durch die Vorgabewerte 23 ermittelten Steuersignale werden sowohl an die erste als auch an die zweite Fokuseinstelieinrichtung 10, 12 weitergeleitet und in entsprechende Bewegungen der ersten bzw. der zweiten Linse 5, 7 umgesetzt. Der in Fig. 2 dargestellte Fall geht hinsichtlich der aktuellen Korrekturwerte von einer Kompensation thermisch induzierter Abbildungsfehler aus, die im Wesentlichen die Fokusiage beeinflussen, so dass ein aufgrund einer Änderung eines aktuellen Korrekturwerts zur Kompensation der Fokuslagenverschiebung verwendetes
Steuersignal hier nur an die zweite Fokuseinstelieinrichtung 12 weitergeleitet werden muss. Es ist möglich, dass eine Kompensation der Fokuslagenverschiebung aufgrund aktueller Korrekturwerte erst bei Überschreitung definierter Grenzwerte
vorgenommen wird, um zu verhindern, dass die Unsen 5, 7 auch dann bewegt werden müssen, wenn nur geringe Veränderungen der Fokuslage auftreten. Die zusätzlich zu berücksichtigenden aktuellen Korrekturwerte können sich aus
Messdaten einer Prozessüberwachung ergeben, die bei dem in Fig. 2 gezeigten Beispiel von einem Temperatursensor 25 zur Überwachung der Temperatur des Schutzglases 20 gebildet wird. Die aktuell von dem Temperatursensor 25 ermittelte Temperatur wird in der Steuerungseinheit 22 mit einem entsprechend thermisch induzierten Abbildungsfehler korreliert und daraus der aktuelle Korrekturwert 24 zur Korrektur der Fokuslage berechnet.
Alternativ oder zusätzlich kann die Steuerungseinheit 22 für die Bestimmung der aktuellen Korrekturwerte 24 auch auf lastabhängige Kennlinienfelder zurückgreifen, in denen die thermisch induzierten Abbildungsfehler der Strahlformungseinheit 1 bzw. einzelner Komponenten der Strahlformungseinheit 1 in Abhängigkeit von Laserleistung und Bestrahlungsdauer hinterlegt sind. Durch eine Kombination der iastabhängigen Kennlinien mit der Temperaturmessung äst es hierbei möglich, die Verschmutzung des Schutzglases 20 zu bestimmen und deren Auswirkung bei der Bestimmung des aktuellen Korrekturwerts 24 zur Fokusiageregeiung zu
berücksichtigen. in einer nicht weiter dargestellten Variante kann der aktuelle Korrekturwert 24 auch ais eine Eingangsgröße für die Berechnung des applikationsspezifischen
Vorgabewertes 23 dienen.

Claims

Patentansprüche
1. Strahiformungseinheit {1 ) zur Fokussierung eines Laserstrahls (3) zur
Lasermaterialbearbeitung auf ein Werkstück (9), umfassend:
ein erstes optisches Element (5), auf das der Laserstrahl (3) trifft,
ein zweites optisches Element (7), das dem ersten optischen Element (5) in
Strahlausbreitungsrichtung nachgeordnet ist, und
eine dem zweiten optischen Element (7) in Strahlausbreitungsrichtung nachgeordnete Fokussieroptik (8), wobei
dem ersten optischen Element (5) eine erste Fokuseinsteileinrichtung (10) zur Einstellung eines Fokusdurchmessers (D) durch Beeinflussung des ersten optischen Elements (5) zugeordnet ist, und wobei
dem zweiten optischen Element (7) eine zweite Fokuseinsteileinrichtung (12) zur Einstellung einer Fokuslage in Strahlausbreitungsrichtung des
Laserstrahls (3) durch Beeinflussung des zweiten optischen Elements (7) zugeordnet ist,
dadurch gekennzeichnet, dass
der Laserstrah! (3) durch das erste optische Element (5) über einen
Zwischenfokus (6) auf das zweite optische Element (7) abgebildet wird.
2. Strahiformungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass das erste optische Element durch ein transmissives optisches Element, bevorzugt eine Linse (5), gebildet ist, die bevorzugt eine Brennweite von weniger als 50 mm, besonders bevorzugt eine Brennweite von weniger als 40 mm aufweist.
3. Strahiformungseinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste optische Element (5) über die erste Fokuseinsteileinrichtung (10) zur Einsteilung des Fokusdurchmessers (D) entlang der optischen Achse (11 ) des Laserstrahls (3) bewegbar ist.
4. Strahiformungseinheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite optische Element, das bevorzugt durch ein transmissives optisches Element, insbesondere durch eine Linse (7), gebildet ist, über die zweite Fokuseinstelieinrichtung (12) zur Einstellung der
Fokusiage entiang der optischen Achse (11 ) des Laserstrahls (12) bewegbar und/oder über zweite Fokuseinstelleinrichtung (12) in seinen
Abbildungseigenschaften veränderbar ist.
5. Strahiformungseinheit nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch eine Steuereinheit (22) zur Ansteuerung der ersten Fokuseinstelieinrichtung (10) und/oder der zweiten Fokuseinsteileinrichtung (12) in Abhängigkeit von applikationsspezifischen Vorgabewerten (23) und von aktuellen Korrekturwerten (24), die insbesondere auf Messdaten einer Prozessüberwachung (25) basieren.
6. Strahiformungseinheit nach einem der vorhergehenden Ansprüche, weiter umfassend ein Gehäuse (2), weiches durch das erste optische Element (13) und das zweite optischen Element (7) sowie durch deren Halterungen (13, 14) in Kammern (17, 18, 19) aufgeteilt ist, wobei Überströmkanäle (15, 16) zum Gas- und Druckaustausch zwischen den Kammern (17, 18, 19) vorgesehen sind.
7. Strahiformungseinheit nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch eine weitere, der Fokussieroptik (8) in
Strahlausbreitungsrichtung nachgeordnete Optik, insbesondere ein
Pianfenster (20), zur Abdichtung der Strahiformungseinheit (1 ) gegen
Gasdruck.
8. Strahiformungseinheit nach Anspruch 7, dadurch gekennzeichnet, dass
zwischen der Fokussieroptik (8) und der weiteren Optik (20) eine Trennstelle (21a) eines Kollisionsschutzes vorgesehen ist, wobei der Bereich der
Trennstelle (21 a) von einem elastischen Balg (21 ) überdeckt ist
9. Verfahren zum Ansteuern einer Strahiformungseinheit (1 ) nach einem der vorhergehenden Ansprüche, bei dem den Fokuseinstelleinrichtungen (10, 12) in Abhängigkeit von appükationsspezifischen Vorgabewerten (23) angesteuert werden,
dadurch gekennzeichnet,
dass bei der Ansteuerung der Fokuseinstelleinrichtungen (10, 12) aktuelle Korrekturwerte (24) berücksichtigt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die aktuellen
Korrekturwerte (24) zur Kompensation thermisch induzierter Abbildungsfehler der Strahiformungseinheit (1 ) herangezogen werden.
11.Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die
aktuellen Korrekturwerte (24) basierend auf der Bestrahlungsdauer und der Laserieistung ermittelt werden, die zumindest einer optischen Komponente (20) der Strahiformungseinheit (1 ) zugeführt wird.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass die aktuellen Korrekturwerte (24) anhand von Temperaturmessungen an mindestens einer optischen Komponente der Strahiformungseinheit (1 ), insbesondere an einer in Strahläusbreitungsrichiung zufetzt angeordneten optischen Komponente (20), ermittelt werden.
PCT/EP2011/055853 2010-04-22 2011-04-13 Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung WO2011131541A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11715904.6A EP2560783B1 (de) 2010-04-22 2011-04-13 Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung
KR1020127030439A KR101502672B1 (ko) 2010-04-22 2011-04-13 비임 형성 유닛 및 비임 형성 유닛을 제어하는 방법
PL11715904T PL2560783T3 (pl) 2010-04-22 2011-04-13 Jednostka kształtowania promienia do ogniskowania promienia laserowego i sposób sterowania tą jednostką
CN201180030924.0A CN102985214B (zh) 2010-04-22 2011-04-13 用于使激光射束聚焦的射束成型单元及其控制方法
JP2013505406A JP5767315B2 (ja) 2010-04-22 2011-04-13 レーザー光をフォーカシングするためのビーム整形ユニット、および、ビーム整形ユニットの駆動方法
US13/657,170 US8804238B2 (en) 2010-04-22 2012-10-22 Beam shaping unit for focusing a laser beam
US14/317,809 US9329368B2 (en) 2010-04-22 2014-06-27 Beam shaping unit for focusing a laser beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202010006047U DE202010006047U1 (de) 2010-04-22 2010-04-22 Strahlformungseinheit zur Fokussierung eines Laserstrahls
DE202010006047.8 2010-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/657,170 Continuation US8804238B2 (en) 2010-04-22 2012-10-22 Beam shaping unit for focusing a laser beam

Publications (1)

Publication Number Publication Date
WO2011131541A1 true WO2011131541A1 (de) 2011-10-27

Family

ID=42357189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/055853 WO2011131541A1 (de) 2010-04-22 2011-04-13 Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung

Country Status (8)

Country Link
US (2) US8804238B2 (de)
EP (1) EP2560783B1 (de)
JP (2) JP5767315B2 (de)
KR (1) KR101502672B1 (de)
CN (1) CN102985214B (de)
DE (1) DE202010006047U1 (de)
PL (1) PL2560783T3 (de)
WO (1) WO2011131541A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445832B1 (ko) * 2012-11-15 2014-09-30 주식회사 이오테크닉스 레이저 가공장치 및 레이저 가공방법
DE102013210845A1 (de) 2013-06-11 2014-12-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Einstechen in metallische Werkstücke mittels eines Laserstrahls
WO2014198395A1 (de) 2013-06-11 2014-12-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum einstechen in metallische werkstücke mittels eines laserstrahls
DE102014209308A1 (de) 2014-05-16 2015-11-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungskopf mit Linsenwechselsystem
DE202018107281U1 (de) 2018-12-19 2019-01-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Strahlformungseinheit mit Kühlsystem für Hochleistungslaser
US11103958B2 (en) 2016-05-04 2021-08-31 Precitec Gmbh & Co. Kg Imaging optic for material machining by means of laser radiation and laser machining head having same

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117607B4 (de) 2011-10-28 2017-03-30 Highyag Lasertechnologie Gmbh Optisches System und Verwendung des optischen Systems
DE102012001609B3 (de) * 2012-01-26 2013-02-21 Precitec Kg Laserbearbeitungskopf
US11517978B2 (en) 2012-10-19 2022-12-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser cutting machine and method for cutting workpieces of different thicknesses
DE102012219074A1 (de) 2012-10-19 2014-04-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserschneidmaschine und Verfahren zum Schneiden von Werkstücken unterschiedlicher Dicke
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
CN105102170A (zh) * 2013-04-17 2015-11-25 村田机械株式会社 激光加工机以及激光加工方法
DE102013008645B3 (de) * 2013-05-21 2014-08-21 Alsitec S.A.R.L. Bearbeitungskopf für eine Laserbearbeitungsvorrichtung, Laserbearbeitungsvorrichtung sowie Verfahren zum Messen von Veränderungen der Brennweite einer in einem Bearbeitungskopf enthaltenen Fokussieroptik
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
JP6420550B2 (ja) * 2014-02-12 2018-11-07 三菱重工業株式会社 レーザ切断装置
US11204506B2 (en) * 2014-03-05 2021-12-21 TeraDiode, Inc. Polarization-adjusted and shape-adjusted beam operation for materials processing
US11780029B2 (en) * 2014-03-05 2023-10-10 Panasonic Connect North America, division of Panasonic Corporation of North America Material processing utilizing a laser having a variable beam shape
JP6264970B2 (ja) * 2014-03-17 2018-01-24 株式会社リコー 負荷推定装置、レーザー光照射システム、負荷推定方法
JP6254036B2 (ja) * 2014-03-31 2017-12-27 三菱重工業株式会社 三次元積層装置及び三次元積層方法
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
CN107073642B (zh) * 2014-07-14 2020-07-28 康宁股份有限公司 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法
CN107073641B (zh) 2014-07-14 2020-11-10 康宁股份有限公司 接口块;用于使用这种接口块切割在波长范围内透明的衬底的系统和方法
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
EP3536440A1 (de) * 2014-07-14 2019-09-11 Corning Incorporated Glasartikel mit einem defektweg
TWI576186B (zh) * 2014-08-20 2017-04-01 Lever focusing module for laser processing
DE102014224182A1 (de) * 2014-11-26 2016-06-02 Robert Bosch Gmbh Vorrichtung und Verfahren zur Lasermaterialbearbeitung
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
EP3245166B1 (de) 2015-01-12 2020-05-27 Corning Incorporated Laserschneiden von thermisch vorgespannten substraten mit einem multi-photonenabsorptionsverfahren
HUE055461T2 (hu) 2015-03-24 2021-11-29 Corning Inc Kijelzõ üveg kompozíciók lézeres vágása és feldolgozása
CN107666983B (zh) 2015-03-27 2020-10-02 康宁股份有限公司 可透气窗及其制造方法
DE102015108248B4 (de) 2015-05-26 2024-02-08 Scanlab Gmbh System für Lasermaterialbearbeitung und Verfahren zum Einstellen der Größe und Position eines Laserfokus
US10201878B2 (en) * 2015-06-19 2019-02-12 Ipg Photonics Corporation Laser cutting head with controllable collimator having movable lenses for controlling beam diameter and/or focal point location
JP6667555B2 (ja) 2015-06-23 2020-03-18 テラダイオード, インコーポレーテッド レーザ送達システムにおけるビームパラメータ積を変動させるための光学要素配置
WO2017011296A1 (en) 2015-07-10 2017-01-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
JP6114431B1 (ja) * 2016-04-01 2017-04-12 株式会社アマダホールディングス レーザ加工機
SG11201809797PA (en) 2016-05-06 2018-12-28 Corning Inc Laser cutting and removal of contoured shapes from transparent substrates
JPWO2017203613A1 (ja) * 2016-05-24 2018-06-07 三菱電機株式会社 加工ヘッド及びレーザ加工機
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2018022476A1 (en) 2016-07-29 2018-02-01 Corning Incorporated Apparatuses and methods for laser processing
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
DE112017004557T5 (de) * 2016-09-09 2019-05-23 Mitsubishi Electric Corporation Laserbearbeitungsvorrichtung
KR102078294B1 (ko) 2016-09-30 2020-02-17 코닝 인코포레이티드 비-축대칭 빔 스폿을 이용하여 투명 워크피스를 레이저 가공하기 위한 기기 및 방법
KR102428350B1 (ko) 2016-10-24 2022-08-02 코닝 인코포레이티드 시트형 유리 기판의 레이저 기반 기계 가공을 위한 기판 프로세싱 스테이션
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
WO2019054964A2 (en) * 2016-12-22 2019-03-21 Ermaksan Makina Sanayi Ve Ticaret Anonim Sirketi LASER CUTTING SYSTEM AND METHOD FOR FOCUSING ON TREATED MATERIAL IN LASER CUTTING MACHINES
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
JP6955684B2 (ja) * 2017-03-09 2021-10-27 株式会社リコー 光加工装置、及び光加工物の生産方法
DE102017107402B4 (de) * 2017-04-06 2019-05-29 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zur Regelung einer Fokuslage eines Arbeitslaserstrahls sowie Laserbearbeitungskopf mit einer derartigen Vorrichtung
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
JP6419901B1 (ja) * 2017-06-20 2018-11-07 株式会社アマダホールディングス レーザ加工機
CN107363416A (zh) * 2017-07-12 2017-11-21 上海柏楚电子科技有限公司 一种激光环切割装置及其控制方法
CN107350619A (zh) * 2017-07-12 2017-11-17 上海柏楚电子科技有限公司 一种激光光束可调的激光切割头及其控制方法
CN107138854A (zh) * 2017-07-12 2017-09-08 上海柏楚电子科技有限公司 一种光斑直径和焦点位置可调的激光加工头及其控制方法
CN107335927B (zh) * 2017-07-21 2019-01-08 温州市镭诺科技有限公司 自动调焦高效激光切割装置
EP3672755A1 (de) * 2017-08-25 2020-07-01 Corning Incorporated Vorrichtung und verfahren zur laserbearbeitung transparenter werkstücke unter verwendung einer anordnung zur anpassung eines afokalen strahls
IT201700121730A1 (it) * 2017-10-26 2019-04-26 Salvagnini Italia Spa Testa di taglio laser per macchina utensile
IT201700121656A1 (it) * 2017-10-26 2019-04-26 Salvagnini Italia Spa Testa di taglio laser per macchina utensile
JP6507278B2 (ja) * 2018-02-16 2019-04-24 三菱重工業株式会社 レーザ切断装置
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
DE102018206729A1 (de) 2018-05-02 2019-11-07 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungskopf und Laserbearbeitungsmaschine damit
US11318558B2 (en) 2018-05-15 2022-05-03 The Chancellor, Masters And Scholars Of The University Of Cambridge Fabrication of components using shaped energy beam profiles
DE102019106443A1 (de) * 2018-09-10 2020-03-12 Jenoptik Optical Systems Gmbh Vorrichtung und Verfahren zur Fokusverstellung für ein Gerät zur Materialbearbeitung und Gerät zur Lasermaterialbearbeitung
DE102018133020A1 (de) * 2018-12-20 2020-06-25 Precitec Gmbh & Co. Kg Vorrichtung für ein Laserbearbeitungssystem und Laserbearbeitungssystem mit einer derartigen Vorrichtung
KR102238950B1 (ko) * 2019-02-21 2021-04-12 주식회사 아스타 극세초점 ldi 장치 및 방법
CN109759723A (zh) * 2019-03-05 2019-05-17 奔腾激光(温州)有限公司 一种激光切割头
EP3842176A1 (de) * 2019-12-23 2021-06-30 Bystronic Laser AG Optische einheit zur laserbearbeitung eines werkstücks laserbearbeitungsvorrichtung
DE102020201207A1 (de) 2020-01-31 2021-08-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur Materialbearbeitung mit einem Laserstrahl, insbesondere zum Laserstrahl-Bohren
US20220283416A1 (en) * 2021-03-04 2022-09-08 Ii-Vi Delaware, Inc. Dynamic Focus For Laser Processing Head

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108190A (ja) * 1983-11-17 1985-06-13 Asahi Optical Co Ltd レ−ザ応用機の集光レンズ冷却装置
JPS645694A (en) * 1987-06-29 1989-01-10 Mitsubishi Electric Corp Laser beam machine
DE19701516C1 (de) * 1997-01-17 1998-02-12 Precitec Gmbh Einrichtung zur Bearbeitung eines Werkstücks mittels eines Laserstrahls
CN1286654A (zh) * 1997-12-26 2001-03-07 三菱电机株式会社 激光加工装置
WO2001038036A1 (de) * 1999-11-29 2001-05-31 Siemens Production And Logistics Systems Ag Verfahren und vorrichtung zum bearbeiten von substraten mittels laserstrahlen
WO2001039920A1 (de) * 1999-11-29 2001-06-07 Siemens Aktiengesellschaft Vorrichtung zum bearbeiten von substraten und verfahren unter verwendung einer solchen vorrichtung
EP1643284A1 (de) * 2004-09-30 2006-04-05 TRUMPF Laser GmbH + Co.KG Vorrichtung zur Fokussierung eines Laserstrahls
JP2009226473A (ja) 2008-03-25 2009-10-08 Amada Co Ltd ファイバレーザ加工機における集光直径の変換制御方法及びその装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316816A (ja) 1987-06-19 1988-12-26 Canon Inc スポット形状可変光学系
JP3645013B2 (ja) * 1994-10-14 2005-05-11 三菱電機株式会社 光伝送装置、固体レーザ装置、及びこれらを用いたレーザ加工装置
US5991102A (en) * 1994-11-25 1999-11-23 Asahi Kogaku Kogyo Kabushiki Kaisha Beam protecting device
JP2873670B2 (ja) * 1995-01-24 1999-03-24 三菱マテリアル株式会社 レーザマーキング装置
JP3237441B2 (ja) 1995-02-28 2001-12-10 三菱電機株式会社 レーザ加工装置
GB9611942D0 (en) * 1996-06-07 1996-08-07 Lumonics Ltd Focus control of lasers in material processing operations
JPH105694A (ja) 1996-06-21 1998-01-13 Shinko Electric Co Ltd 振動選別装置
JP3789999B2 (ja) * 1997-01-20 2006-06-28 株式会社アマダ レーザ加工装置
WO1999033603A1 (fr) 1997-12-26 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Appareil d'usinage au laser
JP3745899B2 (ja) * 1998-04-13 2006-02-15 ヤマザキマザック株式会社 レーザ加工機
DE19825092C2 (de) 1998-06-05 2000-03-16 Baasel Carl Lasertech Lasersystem zur Erzeugung eines fokussierten Laserstrahls mit variablem Fokusdurchmesser
JP2000334585A (ja) * 1999-05-25 2000-12-05 Ando Electric Co Ltd レーザマーキング装置、及びレーザマーキング方法
JP2003037020A (ja) * 2001-07-25 2003-02-07 Matsushita Electric Ind Co Ltd 電子部品形成体の加工装置
JP2003200286A (ja) * 2001-12-28 2003-07-15 Fujitsu Ltd レーザマイクロスポット溶接装置
JP2004188422A (ja) * 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP2005088053A (ja) * 2003-09-18 2005-04-07 Disco Abrasive Syst Ltd レーザー加工装置
JP2006015399A (ja) * 2004-06-04 2006-01-19 Mitsubishi Heavy Ind Ltd 配管の残留応力改善装置
KR100786922B1 (ko) * 2006-05-30 2007-12-17 미쓰비시덴키 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
JP2008093682A (ja) * 2006-10-10 2008-04-24 Tokyo Electron Ltd レーザ発光装置の位置調整方法
JP2009166104A (ja) * 2008-01-17 2009-07-30 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定プログラム並びにコンピュータで読取可能な記録媒体
US8648279B2 (en) * 2008-04-04 2014-02-11 Mitsubishi Electric Corporation Process control apparatus and laser processing apparatus
GB2460648A (en) * 2008-06-03 2009-12-09 M Solv Ltd Method and apparatus for laser focal spot size control
DE112009001200B4 (de) * 2008-06-04 2016-03-10 Mitsubishi Electric Corp. Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung hierfür
DE102008048502A1 (de) 2008-09-23 2010-04-01 Precitec Kg Optische Vorrichtung zur Fokussierung eines Laserstrahls in einen Arbeitsfokus, insbesondere zur Fokussierung eines Laserstrahls in einem Laserbearbeitungskopf zur Materialbearbeitung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108190A (ja) * 1983-11-17 1985-06-13 Asahi Optical Co Ltd レ−ザ応用機の集光レンズ冷却装置
JPS645694A (en) * 1987-06-29 1989-01-10 Mitsubishi Electric Corp Laser beam machine
DE19701516C1 (de) * 1997-01-17 1998-02-12 Precitec Gmbh Einrichtung zur Bearbeitung eines Werkstücks mittels eines Laserstrahls
CN1286654A (zh) * 1997-12-26 2001-03-07 三菱电机株式会社 激光加工装置
WO2001038036A1 (de) * 1999-11-29 2001-05-31 Siemens Production And Logistics Systems Ag Verfahren und vorrichtung zum bearbeiten von substraten mittels laserstrahlen
WO2001039920A1 (de) * 1999-11-29 2001-06-07 Siemens Aktiengesellschaft Vorrichtung zum bearbeiten von substraten und verfahren unter verwendung einer solchen vorrichtung
EP1643284A1 (de) * 2004-09-30 2006-04-05 TRUMPF Laser GmbH + Co.KG Vorrichtung zur Fokussierung eines Laserstrahls
JP2009226473A (ja) 2008-03-25 2009-10-08 Amada Co Ltd ファイバレーザ加工機における集光直径の変換制御方法及びその装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445832B1 (ko) * 2012-11-15 2014-09-30 주식회사 이오테크닉스 레이저 가공장치 및 레이저 가공방법
DE102013210845A1 (de) 2013-06-11 2014-12-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Einstechen in metallische Werkstücke mittels eines Laserstrahls
WO2014198395A1 (de) 2013-06-11 2014-12-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum einstechen in metallische werkstücke mittels eines laserstrahls
DE102013210845B4 (de) * 2013-06-11 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Einstechen in metallische Werkstücke mittels eines Laserstrahls
US9956648B2 (en) 2013-06-11 2018-05-01 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Piercing metal workpieces by a laser beam
DE102014209308A1 (de) 2014-05-16 2015-11-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungskopf mit Linsenwechselsystem
WO2015173313A1 (de) 2014-05-16 2015-11-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungskopf mit linsenwechselsystem
DE102014209308B4 (de) * 2014-05-16 2016-12-15 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserbearbeitungskopf mit Linsenwechselsystem
US10583524B2 (en) 2014-05-16 2020-03-10 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser processing head comprising a lens interchange system
US11103958B2 (en) 2016-05-04 2021-08-31 Precitec Gmbh & Co. Kg Imaging optic for material machining by means of laser radiation and laser machining head having same
DE202018107281U1 (de) 2018-12-19 2019-01-08 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Strahlformungseinheit mit Kühlsystem für Hochleistungslaser
US11679448B2 (en) 2018-12-19 2023-06-20 TRUMPF Werkzeugmaschinen SE + Co. KG Beam-forming units with cooling systems for high-power lasers

Also Published As

Publication number Publication date
US20130044371A1 (en) 2013-02-21
DE202010006047U1 (de) 2010-07-22
US9329368B2 (en) 2016-05-03
JP2013528494A (ja) 2013-07-11
CN102985214A (zh) 2013-03-20
JP6092309B2 (ja) 2017-03-08
JP2015205346A (ja) 2015-11-19
KR101502672B1 (ko) 2015-03-13
JP5767315B2 (ja) 2015-08-19
US20140307312A1 (en) 2014-10-16
KR20130020892A (ko) 2013-03-04
CN102985214B (zh) 2015-02-11
EP2560783B1 (de) 2017-05-31
PL2560783T3 (pl) 2017-10-31
US8804238B2 (en) 2014-08-12
EP2560783A1 (de) 2013-02-27

Similar Documents

Publication Publication Date Title
EP2560783B1 (de) Strahlformungseinheit zur fokussierung eines laserstrahls und verfahren zu ihrer ansteuerung
DE102015108248B4 (de) System für Lasermaterialbearbeitung und Verfahren zum Einstellen der Größe und Position eines Laserfokus
EP3452246A1 (de) Abbildungsoptik für die materialbearbeitung mittels laserstrahlung und laserbearbeitungskopf mit einer solchen
DE102011054941B3 (de) Vorrichtung und Verfahren zur Korrektur der thermischen Verschiebung der Fokuslage von über Optiken geführten Laserstrahlen
DE102011117607B4 (de) Optisches System und Verwendung des optischen Systems
EP1716963A1 (de) Optische Anordnung für die Remote-Laser-Materialbearbeitung zur Erzeugung eines dreidimensionalen Arbeitsraumes
EP3313607B1 (de) Laserbearbeitungskopf und laserbearbeitungsmaschine damit
DE10045191A1 (de) Verfahren und Vorrichtung zur Echtzeitsteuerung der Strahlcharakteristiken bei einer mit einem Laser ausgerüsteten Werkzeugmaschine
DE202007018689U1 (de) Vorrichtung zur Stabilisierung der Fokuslage bei Optiken für Hochleistungs-Laserstrahlung zur Lasermaterialbearbeitung
DE102013008647B4 (de) Laserbearbeitungsvorrichtung mit zwei adaptiven Spiegeln
DE102017213511A1 (de) Verfahren zur Lasermaterialbearbeitung und Lasermaschine
DE102009046485A1 (de) Verfahren und Vorrichtung zum Laserschweißen
DE102019115554A1 (de) Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks und Verfahren zur Laserbearbeitung eines Werkstücks
DE102015106618B4 (de) Verfahren zur Anpassung der Fokuslage in einer laserbasierten Werkzeugmaschine und Werkzeugmaschine
DE102018124627B4 (de) Vorrichtung zum Einstellen einer Fokuslage eines Laserstrahls in einem Laserbearbeitungssystem, Laserbearbeitungssystem mit derselben und Verfahren zum Einstellen einer Fokuslage eines Laserstrahls in einem Laserbearbeitungssystem
EP3606696B1 (de) Verfahren und vorrichtung zur regelung einer fokuslage eines arbeitslaserstrahls sowie laserbearbeitungskopf mit einer derartigen vorrichtung
DE102013008646A1 (de) Adaptiver Spiegel für eine Laserbearbeitungsvorrichtung
DE4108419C2 (de) Einrichtung zur Beeinflussung der Divergenz eines Laserstrahles
WO2022033923A1 (de) Vorrichtung zum erzeugen einer definierten laserlinie auf einer arbeitsebene
DE202013004725U1 (de) Bearbeitungskopf für eine Laserbearbeitungsvorrichtung
EP2648666A1 (de) Lasereinrichtung, insbesondere für die ophthalmologische laserchirurgie
EP3815835B1 (de) Laserbearbeitungskopf und verfahren zum laserbearbeiten eines werkstücks
DE102004057799A1 (de) Verfahren und Vorrichtung zum Regeln eines Pulverbeschichtungsprozesses
WO2023160920A1 (de) Linienoptiksystem
DE202013004724U1 (de) Adaptiver Spiegel für eine Laserbearbeitungsvorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030924.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11715904

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011715904

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011715904

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013505406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030439

Country of ref document: KR

Kind code of ref document: A