WO2011129413A1 - 複層塗膜形成方法及び塗装物品 - Google Patents

複層塗膜形成方法及び塗装物品 Download PDF

Info

Publication number
WO2011129413A1
WO2011129413A1 PCT/JP2011/059307 JP2011059307W WO2011129413A1 WO 2011129413 A1 WO2011129413 A1 WO 2011129413A1 JP 2011059307 W JP2011059307 W JP 2011059307W WO 2011129413 A1 WO2011129413 A1 WO 2011129413A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
group
meth
compound
Prior art date
Application number
PCT/JP2011/059307
Other languages
English (en)
French (fr)
Inventor
加藤 敦也
彰典 永井
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010093096A external-priority patent/JP5643535B2/ja
Priority claimed from JP2010093094A external-priority patent/JP5643533B2/ja
Priority claimed from JP2010093095A external-priority patent/JP5643534B2/ja
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to US13/640,794 priority Critical patent/US9138778B2/en
Priority to CN201180024447.7A priority patent/CN102892518B/zh
Publication of WO2011129413A1 publication Critical patent/WO2011129413A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0209Multistage baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a method for forming a multilayer coating film capable of forming a multilayer coating film excellent in adhesion to a substrate, particularly a plastic material, and having excellent weather resistance and scratch resistance, and the multilayer coating film. It relates to the coated article which has.
  • Plastic materials such as polymethyl methacrylate resin, polystyrene resin, and polycarbonate resin are excellent in impact resistance, transparency, light weight, and easy to process. Used in windows, lamp lenses, and instrument covers. However, since plastic materials are inferior to glass in terms of surface properties such as scratch resistance, chemical resistance, and weather resistance, the surface properties of plastic materials have been improved. As methods for improving the surface properties of plastic materials, methods for applying polyorganosiloxane-based and melamine-based thermosetting coating compositions and methods for applying polyfunctional acrylate-based active energy ray-curable coating compositions have been proposed. ing.
  • Patent Documents 1 and 2 disclose poly (meth) acrylates of mono- or polypentaerythritol, urethane (meth) acrylates having at least two (meth) acryloyl groups in the molecule, and poly (meth) acrylates.
  • An invention relating to a coating composition obtained by blending [(meth) acryloyloxyalkyl] (iso) cyanurate in a specific ratio is disclosed. This coating composition is excellent in scratch resistance and weather resistance.
  • Patent Documents 3 and 4 disclose a phyllosilicate mineral type composed of a 2: 1 type or 1: 1 type laminate of a tetrahedral sheet having silicon as a central atom and an octahedral sheet having a metal as a central atom.
  • a layered silicon polymer having an organic group having a layered structure and having an organic group covalently bonded to at least a part of silicon is disclosed.
  • Patent Document 5 describes a coating composition using the layered silicon polymer described in Patent Documents 3 and 4 as a filler.
  • the coating composition described in Patent Document 5 cannot provide a coating composition that forms a cured film having excellent scratch resistance, weather resistance, and adhesion to a plastic substrate that satisfies the above requirements. Further, even when the layered silicon polymer described in Patent Documents 3 and 4 is blended with the coating composition described in Patent Documents 1 and 2, excellent scratch resistance, weather resistance, and adhesion to a plastic substrate satisfying the above requirements. The coating composition which forms the cured film which has the property cannot be obtained.
  • Patent Document 6 proposes a multilayer coating film forming method using a specific undercoat.
  • the composition of the top coating composition is mainly composed of organic components, and weather resistance and scratch resistance compared to the composition containing the inorganic material or inorganic-organic hybrid material described in Patent Documents 3 to 5 above. There was a problem that the property was insufficient.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a multilayer coating film that is excellent in adhesion to a substrate, particularly a plastic material, and very excellent in weather resistance and scratch resistance. Is a multilayer coating film forming method, and a coated article having the multilayer coating film.
  • the present inventors have solved the above problems by using an active energy ray-curable top coat composition containing a specific silsesquioxane compound and a photopolymerization initiator. The inventors have found that this can be solved, and have completed the present invention.
  • the present invention mainly relates to the following: Item 1, (1) A step of forming an undercoat film on the substrate using the undercoat paint composition (I), and (2) After forming the undercoat film, silicon is formed on the undercoat film.
  • Layer coating film forming method Item 2. The method for forming a multilayer coating film according to Item 1, wherein the organic group having the urethane bond and one (meth) acryloyloxy group in component (a) is an organic group represented by the following general formula (A): .
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Y is
  • R 4 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms
  • the active energy ray-curable top coating composition (II) contains 1 to 20 parts by mass of the photopolymerization initiator (b) with respect to 100 parts by mass of the nonvolatile content of the silsesquioxane compound (a).
  • Item 3. The method for forming a multilayer coating film according to Item 1 or 2.
  • Item 4. The method for forming a multilayer coating film according to any one of Items 1 to 3, wherein the active energy ray-curable top coating composition (II) further contains a polymerizable unsaturated compound (c).
  • the active energy ray-curable top coating composition (II) is 0.1 to 1000 parts by mass of the polymerizable unsaturated compound (c) with respect to 100 parts by mass of the nonvolatile content of the silsesquioxane compound (a).
  • Item 5. The method for forming a multilayer coating film according to Item 4.
  • Item 6, the undercoating composition (I) is a polymerizable unsaturated compound containing a urethane (meth) acrylate having two or more (meth) acryloyl groups in the molecule, a photopolymerization initiator, an ultraviolet absorber, and light stability Item 6.
  • the method for forming a multilayer coating film according to any one of Items 1 to 5, which is an active energy ray-curable undercoat coating composition (Ia) containing an agent.
  • the active energy ray-curable undercoat coating composition (Ia) comprises a polymerizable unsaturated compound in an amount of 30 to 97 parts by mass with respect to 100 parts by mass of the nonvolatile content of the coating composition, and a photopolymerization initiator as a polymerizable unsaturated.
  • the compound contains 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonvolatile content of the compound, and 0.5 to 20 parts by mass of the ultraviolet absorber with respect to 100 parts by mass of the nonvolatile content of the polymerizable unsaturated compound.
  • a method for forming a multilayer coating film Item 8. The multilayer coating film according to Item 6 or 7, wherein the polymerizable unsaturated compound contains 30 to 100 parts by mass of urethane (meth) acrylate with respect to 100 parts by mass of the nonvolatile content of the polymerizable unsaturated compound. Forming method.
  • the undercoat paint composition (I) is a light and thermosetting undercoat paint composition (Ib) containing a polymerizable unsaturated compound, a hydroxyl group-containing resin, a photopolymerization initiator, an ultraviolet absorber and a light stabilizer. 6. The method for forming a multilayer coating film according to any one of items 1 to 5.
  • Item 12 The multilayer coating film formation according to Item 9, which contains 0.5 to 20 parts by mass with respect to part and 0.1 to 10 parts by mass of the light stabilizer with respect to 100 parts by mass of the nonvolatile content of the coating composition. Method.
  • Item 11 The method for forming a multilayer coating film according to Item 9 or 10, wherein the polymerizable unsaturated compound further contains an isocyanate group-containing compound.
  • the undercoating composition (I) is a room temperature curing or thermosetting undercoating composition (Ic) containing an acrylic resin, an ultraviolet absorber and a light stabilizer.
  • Item 14 normal temperature or thermosetting undercoat coating composition (Ic), acrylic resin is 50 to 99.4 parts by mass with respect to 100 parts by mass of non-volatile content of the coating composition
  • ultraviolet absorber is the coating composition Item 14.
  • the undercoat coating composition (I) contains an acrylic resin obtained by copolymerizing a polymerizable unsaturated monomer mixture containing a UV-absorbing polymerizable unsaturated monomer and / or a UV-stable polymerizable unsaturated monomer Item 6.
  • Film forming method. Item 17. A coated article having a multilayer coating film formed by the method according to any one of items 1 to 16.
  • a multilayer coating film excellent in scratch resistance, weather resistance and adhesion to a substrate can be obtained by using a specific active energy ray-curable top coating composition. Moreover, the coated article which has this multilayer coating film can be obtained.
  • the undercoat paint composition (I) used in the present invention is not particularly limited as long as it is used as an undercoat paint composition, and a conventionally known undercoat paint composition can be used.
  • Preferred specific examples of the undercoating composition (I) include an active energy ray-curable undercoating composition (Ia), a light and thermosetting undercoating composition (Ib), a room temperature curing or a thermosetting undercoating composition. (Ic).
  • the active energy ray-curable undercoating composition (Ia) is not particularly limited as long as it can be cured by active energy rays.
  • a coating composition can be used.
  • An active energy ray-curable coating composition containing a polymerizable unsaturated compound, a photopolymerization initiator, an ultraviolet absorber and a light stabilizer, particularly from the viewpoint of the weather resistance of a multilayer coating film obtained when the substrate is a plastic. can be suitably used.
  • the polymerizable unsaturated compound is not particularly limited as long as it is a compound having at least one polymerizable unsaturated double bond in its chemical structure.
  • Examples of the polymerizable unsaturated compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide.
  • an esterified product of a polyhydric alcohol and (meth) acrylic acid can be used.
  • Meth) acrylate compounds glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, tris (2-acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate, 1,6-hexamethylene diisocyanate isocyanurate ring addition Product and hydroxyalkyl (meth) acrylate equimolar reaction product, hexamethylene diisocyanate having iminooxadiazinedione group Isocyanurate cycloadducts and hydroxyalkyl (meth) acrylates,
  • Urethane (meth) acrylate is obtained by using, for example, a polyisocyanate compound, a hydroxylalkyl (meth) acrylate, and a polyol compound as raw materials, and reacting them in an amount such that the hydroxyl group is equimolar or excessive with respect to the isocyanate group. be able to.
  • These polymerizable unsaturated compounds can be used alone or in combination of two or more.
  • the content of the polymerizable unsaturated compound in the active energy ray-curable undercoat coating composition (Ia) is based on 100 parts by mass of the nonvolatile content of the coating composition from the viewpoint of the weather resistance of the resulting multilayer coating film. A range of 30 to 97 parts by mass, preferably 60 to 97 parts by mass is appropriate.
  • the polymerizable unsaturated compound contained in the active energy ray-curable undercoat coating composition (Ia) is a part of its components from the viewpoint of the weather resistance (adhesion with the substrate, cracking) of the obtained multilayer coating film.
  • a polymerizable unsaturated compound containing urethane (meth) acrylate is particularly suitable.
  • the urethane (meth) acrylate is a urethane (meth) acrylate having two or more (meth) acryloyl groups in the molecule.
  • Urethane (meth) acrylate can be used as a single type or a mixture of two or more types.
  • urethane (meth) acrylates examples include CN9001 (trade name, manufactured by Sartomer, urethane acrylate), Ebecryl 1290k (trade name, manufactured by Daicel Cytec, urethane acrylate), UN952 (trade name, Negami Industrial Co., Ltd.) And polyfunctional urethane acrylate).
  • the urethane (meth) acrylate is used in an amount of 30 to 100 parts by mass, preferably 50 parts per 100 parts by mass of the nonvolatile content of the polymerizable unsaturated compound.
  • the content is preferably in the range of ⁇ 100 parts by mass.
  • the polymerizable unsaturated compound may also contain an unsaturated group-containing acrylic resin as a part of its components.
  • the unsaturated group-containing acrylic resin is an acrylic resin containing two or more radically polymerizable unsaturated groups in one molecule, and a conventionally known method is particularly limited as a method for introducing the polymerizable unsaturated group. Applicable without any problem.
  • reacting a carboxyl group-containing acrylic resin with glycidyl (meth) acrylate reacting a hydroxyl group-containing acrylic resin with maleic anhydride or itaconic anhydride, or reacting isocyanatoethyl (meth) acrylate with an isocyanate group-containing acrylic
  • It can be obtained by reacting a resin with 2-hydroxyethyl (meth) acrylate or the like, or reacting an equimolar reaction product of 2-hydroxyethyl (meth) acrylate or the like with a diisocyanate compound with a hydroxyl group-containing acrylic resin. it can.
  • the weight average molecular weight of the unsaturated group-containing acrylic resin is not particularly limited. A range of 5,000 to 200,000, more preferably a weight average molecular weight of 5,000 to 100,000 is suitable.
  • the weight average molecular weight is a value obtained by converting the weight average molecular weight measured with a gel permeation chromatograph [manufactured by Tosoh Corporation, “HLC8120GPC”] based on the weight average molecular weight of polystyrene. is there.
  • Columns are “TSK-gel G4000H ⁇ L ”, “TSK-gel G3000H ⁇ L ”, “TSK-gel G2500H ⁇ L ”, “TSKgel G2000H ⁇ L ” (both manufactured by Tosoh Corporation, trade name).
  • mobile phase tetrahydrofuran
  • measurement temperature 40 ° C.
  • flow rate 1 ml / min
  • detector detector: RI.
  • the unsaturated group-containing acrylic resin preferably has an ultraviolet-absorbing functional group or an ultraviolet-stable functional group from the viewpoint of improving the weather resistance of the coating film.
  • an ultraviolet-absorbing functional group-containing polymerizable unsaturated monomer containing a benzophenone group or a benzotriazole group or an ultraviolet-stable functional group-containing polymerizable unsaturated monomer containing a piperidine group is acrylic.
  • the method used as a copolymerization component of resin can be adopted.
  • the active energy ray-curable undercoat coating composition does not contain any UV absorber or light stabilizer described later. good.
  • the polymerizable unsaturated compound contains an unsaturated group-containing acrylic resin
  • the polymerizable unsaturated compound contains 60 parts by mass or less, preferably 10 to 50 parts by mass with respect to 100 parts by mass of the nonvolatile content. It is suitable from the point of the weather resistance (adhesion with a base material, crack) of the obtained multilayer coating film.
  • the photopolymerization initiator is not particularly limited as long as it is an initiator that absorbs active energy rays and generates radicals.
  • photopolymerization initiators include ⁇ -diketone compounds such as benzyl and diacetyl; acyloin compounds such as benzoin; acyloin ether compounds such as benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; thioxanthone, 2,4-diethyl Thioxanthone compounds such as thioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenone compounds such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketone compound; Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ '-dime
  • photopolymerization initiators examples include IRGACURE-184, IRGACURE-127, IRGACURE-261, IRGACURE-500, IRGACURE-651, IRGACURE-819, IRGACURE-907, IRGACURE-CGI-1700 (BASF).
  • DAROCUR-1173, DAROCURE-1116, DAROCURE-2959, DAROCURE-1664, DAROCURE-4043 (trade name, manufactured by Merck Japan Ltd.), KAYACURE-MBP, KayaCure-DETX- S, Kayacure-DMBI, Kayacure-EPA, Kayacure-OA (trade name, manufactured by Nippon Kayaku Co., Ltd.), Vicure-10, Vicure-55 (product name, manufactured by STAUFFER Co., Ltd., LTD.) , TRIGONAL P1 [AKZO Corporation AKZO Co., DLTD.), Product name], SANDORAY 1000 [Sands Corporation (SANDOZ Co., LTD.) Product name], Deep (DEAP) [APJOHN Co., LTD.) Product name], CANTACURE-PDO, CANTACURE-ITX, CANTACURE-EPD (manufactured by WARD BLEKINSOP Co., Ltd., product name), ESACURE-K
  • the photopolymerization initiator is preferably a thioxanthone compound, an acetophenone compound and an acyl phosphine oxide compound or a mixture of two or more of thioxanthone compounds, acetophenone compounds and acyl phosphine oxide compounds from the viewpoint of photocurability. It is particularly preferred to be a mixture with.
  • the content of the photopolymerization initiator is not particularly limited. Usually, the amount in the range of 0.1 to 10 parts by weight, preferably 2 to 8 parts by weight is appropriate for 100 parts by weight of the nonvolatile content of the polymerizable unsaturated compound.
  • the ultraviolet absorber has an action of absorbing the incident light and converting the light energy into a harmless form such as heat, thereby preventing the film from starting to deteriorate.
  • ultraviolet absorber conventionally known ones can be used, for example, benzotriazole compounds, triazine compounds, salicylic acid derivatives, benzophenone compounds and the like can be used.
  • ultraviolet absorber examples include known polymerizable ultraviolet absorbers such as 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole, 2,2′-dihydroxy-4 (3- Methacryloxy-2-hydroxypropoxy) benzophenone can also be used.
  • known polymerizable ultraviolet absorbers such as 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole, 2,2′-dihydroxy-4 (3- Methacryloxy-2-hydroxypropoxy) benzophenone can also be used.
  • Examples of commercially available ultraviolet absorbers include TINUVIN900, TINUVIN928, TINUVIN348-2, TINUVIN479, TINUVIN405 (trade name, manufactured by BASF), and RUVA93 (trade name, manufactured by Otsuka Chemical Co., Ltd.).
  • the content of the ultraviolet absorber is not particularly limited, but is usually in the range of 1 to 20 parts by mass, preferably 2 to 15 parts by mass with respect to 100 parts by mass of the nonvolatile content of the polymerizable unsaturated compound. Is appropriate.
  • the light stabilizer is used as a radical chain inhibitor that traps active radical species generated during the deterioration process of the coating film, and examples thereof include hindered amine compounds.
  • a hindered piperidine compound may be mentioned as a light stabilizer exhibiting an excellent light stabilizing action.
  • the hindered piperidine compound include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis ( N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 4-benzoyloxy-2,2 ′, 6,6′-tetramethylpiperidine, bis (1,2,2,6, Monomer type such as 6-pentamethyl-4-piperidyl) ⁇ [3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl ⁇ butyl malonate; poly ⁇ [6- (1,1 , 3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-te
  • Examples of commercially available light stabilizers include TINUVIN 123, TINUVIN 152, TINUVIN 292 (trade name, manufactured by BASF), HOSTAVIN 3058 (trade name, manufactured by Clariant), ADK STAB LA-82 (trade name, manufactured by ADEKA Corporation), and the like. Is mentioned.
  • the content of the light stabilizer is not particularly limited, but is usually 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the nonvolatile content of the polymerizable unsaturated compound.
  • the range of is suitable.
  • the active energy ray-curable undercoat coating composition (Ia) used in the present invention may further contain various additives, saturated resins, and the like as necessary.
  • the active energy ray-curable undercoat coating composition (Ia) may contain a solvent if desired, and may be diluted with the solvent.
  • the additive include a sensitizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, a pigment, and a filler.
  • the saturated resin include saturated acrylic resin, saturated polyester resin, saturated urethane resin, and the like.
  • Examples of the solvent that can be used for dilution include ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester compounds such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; tetrahydrofuran, dioxane, dimethoxyethane, and the like.
  • Ether compounds; glycol ether compounds such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; aromatic hydrocarbon compounds, aliphatic hydrocarbon compounds, etc. . These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
  • the non-volatile content of the active energy ray-curable undercoat coating composition (Ia) is not particularly limited. For example, it is preferably 20 to 90% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
  • the light and thermosetting primer coating composition (Ib) is not particularly limited as long as it can be cured by irradiation with active energy rays and heating.
  • a thermosetting coating composition can be used.
  • a light and thermosetting undercoat coating composition containing a polymerizable unsaturated compound, a hydroxyl group-containing resin, a photopolymerization initiator, an ultraviolet absorber, and a light stabilizer, particularly from the viewpoint of ensuring weather resistance when the substrate is a plastic. can be suitably used.
  • the polymerizable unsaturated compound is not particularly limited as long as it is a compound having at least one polymerizable unsaturated double bond in its chemical structure.
  • the above-mentioned polymerizable unsaturated compound for example, one or more kinds selected from those listed in the description of the active energy ray-curable undercoat coating composition (Ia) can be appropriately used.
  • the content of the polymerizable unsaturated compound in the light and thermosetting undercoat coating composition (Ib) is 10 to 80 parts by mass with respect to 100 parts by mass of the nonvolatile content of the coating composition from the viewpoint of weather resistance, etc. A range of 20 to 70 parts by mass is preferable.
  • the polymerizable unsaturated compound in the light and thermosetting undercoat coating composition (Ib) can also contain an isocyanate group-containing compound as at least a part of its components.
  • the isocyanate group-containing compound is a radically polymerizable unsaturated group-containing compound (ib) [below] obtained by reacting caprolactone-modified hydroxyalkyl (meth) acrylate with a polyisocyanate compound and having an isocyanate equivalent weight in the range of 300 to 3,800. May be abbreviated simply as “compound (ib)”.
  • Such a compound (ib) is excellent in curability by irradiation with active energy rays and excellent in curability at a low temperature (specifically, normal temperature to 100 ° C.).
  • the light and thermosetting undercoat coating composition (Ib) containing the compound (ib) can reduce the heating temperature and shorten the heating time in the coating process.
  • the caprolactone-modified hydroxyalkyl (meth) acrylate includes “Placcel FA-1”, “Placcel FA-2”, “Placcel FA-2D”, “Placcel FA-3”, “Placcel FA-4”, “Placcel FA-5”, “Plaxel FM-1”, “Plaxel FM-2”, “Plaxel FM-2D”, “Plaxel FM-3”, “Plaxel FM-4”, “Plaxel FM-5” Can also be mentioned by Daicel Chemical Industries, trade name).
  • caprolactone-modified hydroxyethyl acrylate is preferable from the viewpoint of active energy ray curability.
  • the polyisocyanate compound is a compound having two or more isocyanate groups in one molecule.
  • aliphatic polyisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimer acid diisocyanate, lysine diisocyanate, and burette-type adducts, isocyanurate cycloadducts of these polyisocyanates; isophorone diisocyanate, 4,4′- Methylene bis (cyclohexyl isocyanate), methylcyclohexane-2,4-diisocyanate, methylcyclohexane-2,6-diisocyanate, 1,3-di (isocyanatomethyl) cyclohexane, 1,4-di (isocyanatomethyl) cyclohexane, 1, Alicyclic diisocyanates such as 4-cyclohexane diisocyanate, 1,3-cyclopentane di
  • hydroxy acid Urethane adduct isocyanate groups obtained by reacting a polyisocyanate compound in a ratio comprising an excess and biuret type adducts of these polyisocyanates, isocyanurate ring adducts, and the like in. These can be used as one or a mixture of two or more.
  • an isocyanurate cycloadduct of an aliphatic polyisocyanate compound is preferable, and an isocyanurate cycloadduct of hexamethylene diisocyanate is particularly preferable.
  • the reaction between the caprolactone-modified hydroxyalkyl (meth) acrylate and the polyisocyanate compound can be carried out by a known method for reacting the hydroxy group-containing compound with the polyisocyanate compound.
  • the above reaction can be usually carried out in an organic solvent.
  • organic solvent include aromatic hydrocarbon compounds such as toluene and xylene, ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and ester compounds such as ethyl acetate, propyl acetate, isobutyl acetate, and butyl acetate. These can be used as one or a mixture of two or more.
  • the reaction temperature is preferably from room temperature to 100 ° C., and the reaction time is preferably from 1 to 10 hours.
  • a catalyst such as dibutyltin dilaurate, dibutyltin diethylhexoate or dibutyltin sulfite may be used as necessary.
  • the addition amount of the catalyst is preferably 0.01 to 1 part by mass, more preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of the total amount of reaction raw materials.
  • a polymerization inhibitor such as hydroquinone monomethyl ether may be used.
  • the addition amount of the polymerization inhibitor is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of reaction raw materials.
  • the mixing ratio in the reaction of caprolactone-modified hydroxyalkyl (meth) acrylate and polyisocyanate compound is usually such that the isocyanate group of the polyisocyanate compound is caprolactone-modified hydroxyalkyl (meth) acrylate.
  • the mixing ratio is excessive (isocyanate group / hydroxyl group> 1.0) in an equivalent ratio with respect to the hydroxyl group.
  • the isocyanate equivalent of compound (i) can be adjusted by adjusting a mixing ratio.
  • Compound (i) has an isocyanate equivalent weight ranging from 300 to 3,800.
  • the light and thermosetting undercoat coating composition (Ib) used in the present invention is excellent in curability at a low temperature.
  • compound (i) can react with the hydroxyl-containing resin mentioned later and can form a tough undercoat film.
  • the isocyanate equivalent of the compound (i) is preferably in the range of 500 to 2,500 from the viewpoint of scratch resistance of the multilayer coating film.
  • the isocyanate equivalent is an isocyanate equivalent determined by back titration using dibutylamine.
  • the reverse titration is carried out by adding excess dibutylamine to the sample for reaction, and titrating the remaining dibutylamine with an aqueous hydrochloric acid solution using bromophenol blue as a titration indicator.
  • Compound (i) preferably has an unsaturated group equivalent of 300 to 2,000. More preferably, it is 500 to 1,000. When the unsaturated group equivalent is within these ranges, a multilayer coating film having more excellent scratch resistance and weather resistance can be obtained.
  • the unsaturated group equivalent is determined by adding dodecyl mercaptan to a radical polymerizable unsaturated group and back titrating the remaining dodecyl mercaptan with an iodine solution.
  • the molecular weight of compound (i) is not particularly limited.
  • the weight average molecular weight is preferably 500 to 2,000, more preferably 800 to 1,500. It is significant that the weight average molecular weight is within these ranges in that the viscosity of the paint can be easily handled.
  • the compound (i) is suitably contained in the polymerizable unsaturated compound in the range of 10 to 80 parts by mass, preferably 20 to 70 parts by mass with respect to 100 parts by mass of the nonvolatile content.
  • the hydroxyl group-containing resin is a resin having at least one hydroxyl group in one molecule.
  • the hydroxyl group-containing resin include a polyester resin, an acrylic resin, a polyether resin, a polycarbonate resin, a polyurethane resin, an epoxy resin, and an alkyd resin having a hydroxyl group. These can be used alone or in combination of two or more.
  • a hydroxyl-containing resin is a hydroxyl-containing acrylic resin from the point of the weather resistance of the coating film obtained.
  • the hydroxyl group-containing acrylic resin is usually prepared by a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer in a manner known per se, for example, in an organic solvent. It can manufacture by making it copolymerize by methods, such as the solution polymerization method of this, and the emulsion polymerization method in water.
  • the hydroxyl group-containing polymerizable unsaturated monomer is a compound having at least one hydroxyl group and one polymerizable unsaturated bond in one molecule, and specifically includes, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Monoesterified products of (meth) acrylic acid such as propyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and dihydric alcohols having 2 to 8 carbon atoms; ⁇ -caprolactone modified product of monoesterified product of acrylic acid and dihydric alcohol having 2 to 8 carbon atoms; N-hydroxymethyl (meth) acrylamide; allyl alcohol, and further polyoxyethylene chain having a hydroxyl group at the molecular end A (meth) acrylate etc. can be mentioned.
  • polymerizable unsaturated monomers copolymerizable with a hydroxyl group-containing polymerizable unsaturated monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl ( (Meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, nonyl (meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, “isostearyl acrylate” (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd
  • the hydroxyl group-containing resin is generally 30 to 300 mgKOH / g, particularly 40 to 40 mg from the viewpoint of curability at low temperature of the light and thermosetting undercoat coating composition (Ib) and water resistance of the resulting multilayer coating film. It preferably has a hydroxyl value in the range of 250 mg KOH / g, more particularly 50 to 200 mg KOH / g.
  • the hydroxyl group-containing resin has an acid group from the viewpoint of increasing the reactivity with the compound (i). Preferably it is.
  • the hydroxyl group-containing resin preferably has an acid value in the range of 1 to 25 mgKOH / g, particularly 1 to 20 mgKOH / g.
  • the hydroxyl group-containing resin generally has a weight average molecular weight within the range of 3,000 to 100,000, particularly 4,000 to 50,000, and more particularly 5,000 to 30,000.
  • the content of the hydroxyl group-containing resin in the light and thermosetting undercoat coating composition (Ib) is from 10 to 80 parts by weight, preferably from 100 parts by weight of the nonvolatile content of the coating composition, preferably from the viewpoint of weather resistance and the like. A range of 20 to 70 parts by mass is appropriate.
  • the light and thermosetting undercoat coating composition (Ib) may further contain an isocyanate compound other than the compound (i) as necessary.
  • the isocyanate compound is a compound having an isocyanate group in the molecule, and examples thereof include the polyisocyanate compounds exemplified in the description of the compound (i).
  • an isocyanurate cycloadduct of aliphatic polyisocyanates is preferable, and an isocyanurate cycloadduct of hexamethylene diisocyanate is particularly preferable.
  • the photopolymerization initiator is not particularly limited as long as it is an initiator that absorbs active energy rays and generates radicals.
  • photopolymerization initiator for example, one or two or more kinds selected from those listed in the description of the active energy ray-curable undercoat coating composition (Ia) can be appropriately used.
  • the content of the photopolymerization initiator in the light and thermosetting undercoat coating composition (Ib) is not particularly limited. Usually, the amount in the range of 1 to 20 parts by weight, preferably 2 to 10 parts by weight is appropriate for 100 parts by weight of the nonvolatile content of the polymerizable unsaturated compound.
  • the ultraviolet absorber has an action of absorbing the incident light and converting the light energy into a harmless form such as heat, thereby preventing the film from starting to deteriorate.
  • the ultraviolet absorber for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoating composition (Ia).
  • the content of the ultraviolet absorber in the light and thermosetting undercoat coating composition (Ib) is 0.5 to 20 parts by mass with respect to 100 parts by mass of the nonvolatile content of the coating composition from the viewpoint of weather resistance, etc.
  • the range of 1 to 15 parts by mass is preferable.
  • the light stabilizer is used as a radical chain inhibitor that traps active radical species generated during the deterioration process of the film, and examples thereof include hindered amine compounds.
  • the light stabilizer for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoat paint composition (Ia).
  • the content of the light stabilizer in the light and thermosetting undercoat coating composition (Ib) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonvolatile content of the coating composition from the viewpoint of weather resistance, etc. A range of 0.5 to 5 parts by mass is preferable.
  • the light and thermosetting undercoating composition (Ib) used in the present invention may further contain various additives as necessary. Further, the light and thermosetting undercoat coating composition (Ib) may contain a solvent if desired, and may be diluted with the solvent. Examples of the additive include a sensitizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, a pigment, and a filler.
  • the solvent for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoating composition (Ia). These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
  • the content of non-volatile components in the light and thermosetting undercoating composition (Ib) is not particularly limited.
  • the content is preferably 20 to 100% by mass, and more preferably 25 to 70% by mass with respect to 100% by mass of the undercoat coating composition. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
  • Room-temperature-curing or thermosetting primer coating composition (Ic) used in the present invention can be dried / cured at room temperature or can be cured by heating. If there is no particular limitation, a conventionally known room temperature curing or thermosetting coating composition can be used. In particular, from the viewpoint of ensuring the weather resistance of the multilayer coating film obtained when the base material is plastic, a room temperature curing or thermosetting undercoat coating composition containing an acrylic resin, an ultraviolet absorber, and a light stabilizer is preferably used. it can.
  • the acrylic resin conventionally known acrylic resins can be used without limitation.
  • the acrylic resin may contain at least one crosslinkable functional group such as a hydroxyl group, a carboxyl group, an alkoxysilyl group, and an epoxy group, and is usually obtained by copolymerizing a polymerizable unsaturated monomer mixture. What is obtained can be suitably used.
  • Examples of the polymerizable unsaturated monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl ( (Meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, tridecyl (meth) acrylate, lauryl ( (Meth) acrylate, stearyl (meth) acrylate, “isostearyl acrylate” (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.), cyclohexyl (meth) acrylate, methylcyclohexy
  • Nitrogen-containing polymerizable unsaturated monomers polymerizable unsaturated monomers having two or more polymerizable unsaturated groups in one molecule such as allyl (meth) acrylate and 1,6-hexanediol di (meth) acrylate; glycidyl (meta ) Acrylate, ⁇ -methylglycidyl (meta Epoxy group-containing polymerizable unsaturation such as acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, 3,4-epoxycyclohexylpropyl (meth) acrylate, and allyl glycidyl ether Monomer; (Meth) acrylate having a polyoxyethylene chain whose molecular end is an alkoxy group; 2-acrylamido-2-methylpropanesulfonic acid, allylsulfonic acid, sty
  • a melamine resin or a polyisocyanate compound described later can be used as a crosslinking agent.
  • the polymerizable unsaturated monomer uses an ultraviolet absorbing polymerizable unsaturated monomer and / or an ultraviolet stable polymerizable unsaturated monomer as at least a part of its components, an ultraviolet absorbing functional group or Since an ultraviolet-stable functional group is introduced, it is not necessary to add an ultraviolet absorber or a light stabilizer, which will be described later, to the undercoating composition (Ic).
  • the copolymerization of the polymerizable unsaturated monomer can be performed by a method known per se, for example, a solution polymerization method in an organic solvent.
  • a solution polymerization method in an organic solvent for example, a mixture of the monomer component and the radical polymerization initiator is dissolved or dispersed in an organic solvent, and usually at a temperature of about 80 ° C. to 200 ° C., usually about 1 to 10 hours.
  • a method of polymerizing by heating while stirring can be mentioned.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; tetrahydrofuran, dioxane, dimethoxyethane, and the like.
  • Ethers of ethylene; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; aromatic hydrocarbons, aliphatic hydrocarbons, etc. be able to.
  • These organic solvents can be used alone or in combination of two or more.
  • the weight average molecular weight of the acrylic resin obtained as described above is not particularly limited, but is usually in the range of 1,000 to 200,000, particularly 2,000 to 100,000 from the viewpoint of weather resistance. Preferably there is.
  • the content of the acrylic resin in the room temperature-curing or thermosetting undercoat coating composition (Ic) is from 50 to 100 parts by mass with respect to 100 parts by mass of the non-volatile content of the coating composition from the viewpoint of the weather resistance of the resulting multilayer coating film.
  • the range of 99.4 parts by mass, preferably 70 to 99.4 parts by mass is appropriate.
  • the acrylic resin is an acrylic resin obtained by copolymerizing a polymerizable unsaturated monomer mixture containing a UV-absorbing polymerizable unsaturated monomer and / or a UV-stable polymerizable unsaturated monomer
  • the content of the acrylic resin is
  • the coating composition may have a range of 50 to 100 parts by mass, preferably 70 to 100 parts by mass with respect to 100 parts by mass of the nonvolatile content.
  • the ultraviolet absorber has an action of absorbing the incident light and converting the light energy into a harmless form such as heat, thereby preventing the film from starting to deteriorate.
  • the ultraviolet absorber for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoating composition (Ia).
  • the content of the ultraviolet absorber in the undercoat coating composition (Ic) is 0.5 to 20 parts by weight, preferably 1 to 15 parts per 100 parts by weight of the nonvolatile content of the coating composition from the viewpoint of weather resistance and the like.
  • the range of parts by mass is appropriate.
  • the light stabilizer is used as a radical chain inhibitor that traps active radical species generated during the deterioration process of the film, and examples thereof include hindered amine compounds.
  • the light stabilizer for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoat paint composition (Ia).
  • the content of the light stabilizer in the room temperature curing or thermosetting undercoat coating composition (Ic) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the nonvolatile content of the coating composition in terms of weather resistance and the like. A range of 0.5 to 5 parts by mass is preferable.
  • the coating composition (Ic) can contain a crosslinking agent as necessary.
  • the crosslinking agent has a functional group capable of reacting with the functional group in the acrylic resin, for example, melamine resin, urea resin, (block) polyisocyanate compound, epoxy compound, carboxyl group-containing compound, acid anhydride, alkoxysilane group Examples thereof include compounds.
  • the room temperature curing or thermosetting undercoating composition (Ic) used in the present invention may further contain other resins and various additives as required. Moreover, the room temperature curing or thermosetting undercoat coating composition (Ic) may contain a solvent as desired and diluted with the solvent. Examples of other resins include polyester resins, alkyd resins, urethane resins, epoxy resins, silicone resins, fluororesins, and fiber derivatives. Examples of additives include curing catalysts, polymerization inhibitors, and antioxidants. , Antifoaming agents, surface conditioners, plasticizers, pigments, fillers and the like.
  • the solvent for example, it can be appropriately selected from those listed in the description of the active energy ray-curable undercoating composition (Ia). These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
  • the non-volatile content of the room temperature curing or thermosetting undercoating composition (Ic) is not particularly limited. For example, it is preferably 20 to 90% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
  • Active energy ray-curable top coat composition (II) Active energy ray-curable top coat composition
  • the active energy ray-curable top coat composition (II) of the present invention contains a silsesquioxane compound (a) and a photopolymerization initiator (b).
  • silsesquioxane compound (a) is a silsesquioxane compound having an organic group bonded directly to a silicon atom, and is an organic compound bonded directly to the silicon atom.
  • a silsesquioxane compound in which at least one of the groups is an organic group having a urethane bond and one (meth) acryloyloxy group.
  • the “silsesquioxane compound” does not mean only a silsesquioxane compound having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed, but Si—OH A ladder structure in which groups remain, an incomplete cage structure, and a silsesquioxane compound of a random condensate can also be included.
  • the ratio of the silsesquioxane compound having a structure in which all Si—OH groups are hydrolyzed and condensed is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably. Is preferably 100% by mass from the viewpoint of liquid stability and weather resistance.
  • silsesquioxane compound (a) for example, a cissesquioxane compound in which the organic group having the urethane bond and one (meth) acryloyloxy group is an organic group represented by the following general formula (A) You can mention:
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Y is
  • R 4 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms
  • R 5 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • silsesquioxane compound (a) even if it has one type among the organic groups represented by the said general formula (A), it may have multiple types of organic groups. .
  • silsesquioxane compound (a) for example, an organic group having the urethane bond and one (meth) acryloyloxy group is represented by the following general formulas (I) to (III):
  • the silsesquioxane compound which is at least 1 type selected from the group which consists of can be mentioned.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • n represents an integer of 0 to 9.
  • R 1 to R 3 are the same as defined above.
  • R 4 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 1 to R 3 are the same as above.
  • R 5 represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms. ].
  • R 2 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group, a xylylene group, and a biphenylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group, a 1,2-propylene group, or a 1,4-butylene group has high heat resistance, scratch resistance, and high polarizability. It is preferable from the viewpoint of better compatibility with unsaturated compounds.
  • R 3 is not particularly limited as long as it is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • an alkylene group such as methylene group, ethylene group, 1,2-propylene group, 1,3-propylene group, 1,2-butylene group, 1,4-butylene group, hexylene group; cyclohexylene group And aralkylene groups such as a phenylene group, a xylylene group, and a biphenylene group.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms, particularly an ethylene group or a 1,3-propylene group is compatible with heat-resistant, scratch-resistant and highly polar polymerizable unsaturated compounds. Is preferable from the viewpoint of more excellent.
  • n is not particularly limited as long as it is an integer of 0 to 9.
  • n is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and particularly preferably 0 or 1.
  • the R 4 is not particularly limited as long as it is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • a non-cyclic aliphatic monovalent hydrocarbon group or a cyclic aliphatic monovalent hydrocarbon group such as a straight chain or branched alkyl group such as a group, n-hexyl group, isohexyl group, cyclohexyl group; trifluoromethyl group, 3, And fluorine-containing alkyl groups such as 3,3-trifluoro-n-propyl group.
  • a methyl group is preferable from the viewpoint
  • R 5 is not particularly limited as long as it is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • a non-cyclic aliphatic monovalent hydrocarbon group or a cyclic aliphatic monovalent hydrocarbon group such as a straight chain or branched alkyl group such as a group, n-hexyl group, isohexyl group, cyclohexyl group; trifluoromethyl group, 3, And fluorine-containing alkyl groups such as 3,3-trifluoro-n-propyl group.
  • a methyl group is preferable from the viewpoint of
  • R 1 is hydrogen from the viewpoint that heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound and active energy ray curability are more excellent.
  • R 4 is methyl from the viewpoint of better heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound and active energy ray curability.
  • R 3 is an ethylene group or a 1,3-propylene group
  • R 1 is a hydrogen atom
  • R 2 is an ethylene group.
  • Examples of the organic group represented by the general formula (III) include heat resistance, scratch resistance, compatibility with a highly polar polymerizable unsaturated compound, and active energy ray curability, so that R 5 is methyl. And an organic group in which R 3 is an ethylene group or a 1,3-propylene group, R 1 is a hydrogen atom, and R 2 is an ethylene group.
  • the silsesquioxane compound (a) may be a compound having a single composition or a mixture of compounds having different compositions.
  • the weight average molecular weight of the silsesquioxane compound (a) is not particularly limited.
  • the weight average molecular weight is preferably 1,000 to 100,000, more preferably the weight average molecular weight is 1,000 to 10,000. These ranges are significant in terms of the heat resistance of the coating film obtained from the silsesquioxane compound (a), and the viscosity and paintability of the active energy ray-curable top coating composition (II).
  • the silsesquioxane compound (a) can be produced by various methods.
  • the silsesquioxane compound (a) can be produced by the following production method A or B.
  • Manufacturing method A is a production method using a starting material containing a hydrolyzable silane which is an organic group directly bonded to a silicon atom and has a urethane bond and an organic group having one (meth) acryloyloxy group Is mentioned.
  • a hydrolyzable silane represented by the following general formula (IV) and, if necessary, a hydrolyzable silane other than the hydrolyzable silane represented by the following general formula (IV) are used as a starting material.
  • a method of producing a silsesquioxane compound (a) by hydrolytic condensation in the presence of a catalyst are used as a starting material.
  • R 6 in the general formula (IV) is an organic group having a urethane bond and one (meth) acryloyloxy group.
  • X is the same or different and represents chlorine or an alkoxy group having 1 to 6 carbon atoms.
  • alkoxy group having 1 to 6 carbon atoms examples include linear or branched alkoxy groups having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms). More specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, 1-ethylpropoxy, isopentyloxy, neopentyloxy, n -Hexyloxy, 1,2,2-trimethylpropoxy, 3,3-dimethylbutoxy, 2-ethylbutoxy, isohexyloxy, 3-methylpentyloxy group and the like are included.
  • X examples include chlorine, methoxy group, ethoxy group, propoxy group, butoxy group and the like.
  • the hydrolyzable silane other than the general formula (IV) is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane represented by the general formula (IV). Is not to be done.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • the hydrolyzable silane represented by the general formula (IV) can be obtained, for example, by reacting a trialkoxysilane having an isocyanate group and a (meth) acrylic acid ester having a hydroxyl group.
  • hydrolyzable silane represented by the general formula (IV) examples include hydrolyzable silanes represented by the following general formula (V).
  • the hydrolyzable silane represented by the general formula (V) is obtained by, for example, reacting a hydrolyzable silane represented by the following general formula (VI) with a compound represented by the following general formula (VII). Can be obtained.
  • R 1 , R 2 and n are the same as above.
  • Examples of the compound represented by the general formula (VI) include 3-isocyanatopropyltrimethoxysilane and 3-isocyanatepropyltriethoxysilane.
  • Examples of the compound represented by the general formula (VII) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth).
  • Examples include acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, and dipropylene glycol mono (meth) acrylate.
  • the reaction between the hydrolyzable silane represented by the general formula (VI) and the compound represented by the general formula (VII) can be performed according to a conventional method in which an isocyanate group and a hydroxyl group are reacted.
  • the ratio of the hydrolyzable silane represented by the general formula (VI) and the compound represented by the general formula (VII) is usually 0.90 to 1.10 with respect to 1 mole of the former. About a mole, preferably about 0.95 to 1.05 mole.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • a solvent may be appropriately used.
  • the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, propion Esters such as methyl acid; Ethers such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ethers such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons And the like.
  • hydrolyzable silane represented by the general formula (IV) are represented by the hydrolyzable silane represented by the following general formula (VIII) and the following general formula (IX). Hydrolyzable silanes.
  • the hydrolyzable silane represented by the general formula (VIII) is, for example, a product obtained by reacting a hydrolyzable silane represented by the following general formula (X) with a compound represented by the following general formula (XI). Then, the product can be further reacted with a compound represented by the following general formula (XII).
  • R 4 is the same as defined above.
  • R 1 and R 2 are the same as above.
  • Specific examples of the hydrolyzable silane represented by the general formula (X) include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • Specific examples of the compound represented by the general formula (XI) include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, trifluoroacetic acid, 3,3,3-trifluoropropionic acid. Etc.
  • Specific examples of the compound represented by the general formula (XII) include isocyanate methyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatepropyl (meth) acrylate, and isocyanate octyl (meth). An acrylate etc. are mentioned.
  • the hydrolyzable silane represented by the general formula (IX) is, for example, a product obtained by reacting a hydrolyzable silane represented by the following general formula (XIII) with a compound represented by the following general formula (XIV). Then, the product can be obtained by further reacting the product with a compound represented by the following general formula (XV).
  • R 5 is the same as defined above.
  • R 1 and R 2 are the same as above.
  • Specific examples of the hydrolyzable silane represented by the general formula (XIII) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrisilane. An ethoxysilane etc. are mentioned.
  • the reaction with the compound represented by (XIV) can be carried out according to a conventional method in which a carboxyl group and an epoxy group are reacted.
  • the proportion of the hydrolyzable silane represented by the general formula (X) and the compound represented by the general formula (XI) is usually 0.80 to 1.20 with respect to 1 mole of the former. About a mole, preferably about 0.90 to 1.10 mole.
  • the ratio of the hydrolyzable silane represented by the general formula (XIII) and the compound represented by the general formula (XIV) is usually 0.80 to 1.20 with respect to 1 mole of the former. About a mole, preferably about 0.90 to 1.10 mole.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • the reaction is usually completed in about 10 to 24 hours.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine
  • the amount of the catalyst used is not particularly limited, but is 0.01 to 5% by mass with respect to the reaction raw material.
  • a solvent may be appropriately used.
  • the solvent is not particularly limited. Specifically, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.
  • Esters such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; toluene, xylene and the like Aromatic hydrocarbons, aliphatic hydrocarbons and the like.
  • reaction product (X-XI) A reaction product obtained by reacting the hydrolyzable silane represented by the general formula (X) with the compound represented by the general formula (XI) (hereinafter simply referred to as reaction product (X-XI)). And a compound represented by the general formula (XII), a hydrolyzable silane represented by the general formula (XIII) and a compound represented by the general formula (XIV).
  • the reaction between the reaction product obtained by the reaction hereinafter sometimes simply referred to as reaction product (XIII-XIV)
  • reaction product (XV) is a reaction between a hydroxyl group and an isocyanate group. Can be done according to conventional methods.
  • the ratio of the reaction product (X-XI) and the compound represented by the general formula (XII) used in the above reaction is usually about 0.90 to 1.10 mol of the latter with respect to 1 mol of the former, preferably The amount may be about 0.95 to 1.05 mol.
  • the proportion of the reaction product (XIII-XIV) and the compound represented by the general formula (XV) used in the above reaction is usually about 0.90 to 1.10 mol of the latter with respect to 1 mol of the former, preferably The amount may be about 0.95 to 1.05 mol.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 2 to 10 hours.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • a solvent may be appropriately used.
  • the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, and methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, propion Esters such as methyl acid; Ethers such as tetrahydrofuran, dioxane and dimethoxyethane; Glycol ethers such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; Aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons And the like.
  • a basic catalyst is preferably used as the catalyst.
  • the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl
  • ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
  • the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
  • the quantity ratio of hydrolyzable silane and water is not particularly limited.
  • the amount of water used is preferably a ratio of 0.1 to 100 mol, more preferably 0.5 to 3 mol, of water relative to 1 mol of hydrolyzable silane. If the amount of water is too small, the reaction slows down, and the yield of the desired silsesquioxane compound of the present invention may be lowered. If the amount of water is too large, the molecular weight increases and the desired structure is obtained. Product may be reduced.
  • the water to be used may be substituted with the water, and water may be added separately.
  • an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production.
  • organic solvent polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
  • polar organic solvent lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved.
  • nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible.
  • mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
  • the reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • This reaction can be carried out regardless of pressure, but a pressure range of 0.02 to 0.2 MPa, particularly 0.08 to 0.15 MPa is preferred.
  • the reaction is usually completed in about 1 to 12 hours.
  • the condensation reaction proceeds with hydrolysis, and most of the hydrolyzable group of the hydrolyzable silane [specifically, for example, X in the general formula (IV), preferably 100%, It is liquid stability and weather resistance that it is hydrolyzed to a hydroxyl group (OH group), and further, most of the OH group, preferably 80% or more, more preferably 90% or more, particularly preferably 100%, is condensed.
  • X hydrolyzable group of the hydrolyzable silane
  • the solvent, the alcohol generated by the reaction, and the catalyst may be removed by a known method.
  • the obtained product may be further purified by removing the catalyst by various purification methods such as washing, column separation, and solid adsorbent according to the purpose.
  • the catalyst is removed by washing with water from the viewpoint of efficiency.
  • the silsesquioxane compound (a) is produced by the above production method.
  • the product obtained by the above production method includes a silsesquioxane having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a silsesquioxane compound obtained by the above production method may be included in addition to the compound, which may include a ladder structure in which Si—OH groups remain, an incomplete cage structure, and / or a random condensate silsesquioxane compound. (A) may contain those ladder structures, incomplete cage structures and / or random condensates.
  • Manufacturing method B As the production method B, using a hydrolyzable silane having an epoxy group, a step B1 for producing a silsesquioxane compound having an epoxy group, an epoxy group of the silsesquioxane compound obtained by the step B1 To the second hydroxyl group of the silsesquioxane compound obtained by the second step B2 in which the carboxyl group of the compound having a carboxyl group is reacted to produce a silsesquioxane compound having a secondary hydroxyl group. And a production method including Step B3 in which the isocyanate group of the compound having a (meth) acryloyloxy group and an isocyanate group is reacted.
  • Step B1 Specific examples of the hydrolyzable silane having an epoxy group used in Step B1 include a hydrolyzable silane represented by the following general formula (XVI) and a general formula (XVII) below. Hydrolyzable silanes.
  • the hydrolyzable silane other than the hydrolyzable silane having an epoxy group is particularly limited as long as it can produce a silsesquioxane compound by hydrolytic condensation together with the hydrolyzable silane having the epoxy group. It is not a thing.
  • alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples include 3- (meth) acryloyloxypropyltrialkoxysilane such as oxypropyltriethoxysilane; vinyltrialkoxysilane such as vinyltrimethoxysilane and vinyltriethoxysilane.
  • a basic catalyst is preferably used as the catalyst.
  • the basic catalyst include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethyl
  • ammonium hydroxide salts such as ammonium hydroxide and ammonium fluoride salts such as tetrabutylammonium fluoride.
  • the amount of the catalyst used is not particularly limited. However, if the amount is too large, there are problems such as high cost and difficulty in removal. On the other hand, if the amount is too small, the reaction becomes slow. Therefore, the amount of the catalyst used is preferably in the range of 0.0001 to 1.0 mol, more preferably 0.0005 to 0.1 mol, relative to 1 mol of hydrolyzable silane.
  • the quantity ratio of hydrolyzable silane and water is not particularly limited.
  • the amount of water used is preferably a ratio of 0.1 to 100 mol, more preferably 0.5 to 3 mol, of water relative to 1 mol of hydrolyzable silane. If the amount of water is too small, the reaction may be slowed and the yield of the desired silsesquioxane may be reduced. If the amount of water is too large, the molecular weight will increase and the product of the desired structure will decrease. There is a risk.
  • the water to be used may be substituted with the water, and water may be added separately.
  • an organic solvent may or may not be used. It is preferable to use an organic solvent from the viewpoint of preventing gelation and adjusting the viscosity during production.
  • organic solvent polar organic solvents and nonpolar organic solvents can be used alone or as a mixture.
  • polar organic solvent lower alcohols such as methanol, ethanol and 2-propanol, ketones such as acetone and methyl isobutyl ketone, and ethers such as tetrahydrofuran are used. Particularly, acetone and tetrahydrofuran have a low boiling point and the system is uniform. It is preferable because the reactivity is improved.
  • nonpolar organic solvent a hydrocarbon solvent is preferable, and an organic solvent having a boiling point higher than that of water such as toluene and xylene is preferable. In particular, an organic solvent azeotropic with water such as toluene efficiently removes water from the system. This is preferable because it is possible.
  • mixing a polar organic solvent and a nonpolar organic solvent provides the above-described advantages, so that it is preferably used as a mixed solvent.
  • the reaction temperature during the hydrolysis condensation is 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • the reaction is usually completed in about 1 to 12 hours.
  • the condensation reaction proceeds with hydrolysis, and the hydrolyzable group of the hydrolyzable silane [specifically, for example, X in the general formula (XVI) or the general formula (XVII)] X
  • the hydrolyzable group of the hydrolyzable silane specifically, for example, X in the general formula (XVI) or the general formula (XVII)
  • X Most of the OH group, preferably 100% is hydrolyzed to hydroxyl groups (OH groups), and most of the OH groups are condensed, preferably 80% or more, more preferably 90% or more, particularly preferably 100%. Is preferable from the viewpoint of liquid stability.
  • Step B2 In the step B2, specifically, for example, a silsesquioxane having an organic group represented by the following general formula (XVIII) as an organic group directly bonded to the silicon atom obtained in the step B1 A compound represented by the following general formula (XIX) is reacted with the compound to produce a silsesquioxane compound having an organic group represented by the following general formula (XX) as an organic group directly bonded to a silicon atom. .
  • the reaction for producing the silsesquioxane compound having the organic group represented can be performed according to a conventional method in which an epoxy group and a carboxyl group are reacted.
  • the reaction temperature is, for example, 0 to 200 ° C., preferably 20 to 200 ° C., more preferably 20 to 120 ° C.
  • the reaction is usually completed in about 10 to 24 hours.
  • the ratio of the silsesquioxane compound having an organic group represented by the general formula (XVIII) and the compound represented by the general formula (XIX) in the above reaction is represented by the general formula (
  • the compound represented by the general formula (XIX) is usually about 0.80 to 1.20 moles, preferably about 0.90 to 1.10 moles per mole of the organic group represented by XVIII). Good.
  • the ratio of the silsesquioxane compound having an organic group represented by the general formula (XXI) and the compound represented by the general formula (XXII) in the above reaction is represented by the general formula (
  • the amount of the compound represented by the general formula (XXII) is usually about 0.80 to 1.20 mol, preferably about 0.80 to 1.20 mol, relative to 1 mol of the organic group represented by XXI) Good.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium bromide and tetrabutylammonium bromide; acetates and formates such as diethylamine
  • the amount of the catalyst used is not particularly limited, but is 0.01 to 5% by mass with respect to the reaction raw material.
  • a solvent may be appropriately used.
  • the solvent is not particularly limited. Specifically, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate, etc.
  • Esters such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; toluene, xylene and the like Aromatic hydrocarbons, aliphatic hydrocarbons and the like.
  • Step B3 In the step B3, specifically, for example, a silsesquioxane having an organic group represented by the general formula (XX) as an organic group directly bonded to the silicon atom obtained in the step B2 The compound is reacted with a compound represented by the following general formula (XXIV).
  • a silsesquioxane compound having an organic group represented by the above general formula (XXIII) as an organic group directly bonded to a silicon atom obtained in the step B2 can be represented by the following general formula.
  • the compound represented by (XXV) is reacted.
  • the reaction temperature of the reaction can be carried out according to a conventional method of reacting a hydroxyl group with an isocyanate group, and is, for example, 0 to 200 ° C., preferably 10 to 200 ° C., more preferably 10 to 120 ° C.
  • the reaction is usually completed in about 2 to 10 hours.
  • the use ratio of the silsesquioxane compound having an organic group represented by the general formula (XX) and the compound represented by the general formula (XXIV) in the above reaction is represented by the general formula ( XX)
  • the amount of the compound represented by the general formula (XXIV) is usually about 0.90 to 1.10 mol, preferably about 0.95 to 1.05 mol with respect to 1 mol of the organic group represented by XX). Good.
  • the ratio of the silsesquioxane compound having an organic group represented by the general formula (XXIII) and the compound represented by the general formula (XXV) in the above reaction is represented by the general formula ( XXIII)
  • the amount of the compound represented by the general formula (XXV) is usually about 0.90 to 1.10 mol, preferably about 0.95 to 1.05 mol per mol of the organic group represented by XXIII). Good.
  • a catalyst may be used as appropriate.
  • the catalyst include tertiary amines such as triethylamine and organometallic compounds such as dibutyltin dilaurate.
  • the silsesquioxane compound (a) is produced by the above production method.
  • the target compound obtained by the above reactions can be separated from the reaction system by ordinary separation means and further purified.
  • this separation and purification means for example, distillation method, solvent extraction method, dilution method, recrystallization method, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, etc. can be used.
  • the product obtained by the production method B includes a silyl having a structure in which all Si—OH groups (hydroxysilyl groups) are hydrolyzed and condensed.
  • a silsesquioxane compound having a ladder structure in which a Si—OH group remains, an incomplete cage structure, and / or a random condensate may be included.
  • the sesquioxane compound (a) may contain a ladder structure, an incomplete cage structure and / or a random condensate.
  • photopolymerization initiator (b) is not particularly limited as long as it is an initiator that absorbs active energy rays and generates radicals.
  • Examples of the photopolymerization initiator (b) include ⁇ -diketone compounds such as benzyl and diacetyl; acyloin compounds such as benzoin; acyloin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; thioxanthone, 2, 4 Thioxanthone compounds such as diethylthioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenone compounds such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketone Compound: acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, ⁇ , ⁇ '
  • Examples of commercially available photopolymerization initiators (b) include IRGACURE-184, IRGACURE-127, IRGACURE-261, IRGACURE-500, IRGACURE-651, IRGACURE-819, IRGACURE-907, IRGACURE-CGI- 1700 (trade name, manufactured by BASF), Darocur-1173, Darocur-1116, Darocur-2959, Darocur-1664, Darocur-4064 (trade name, manufactured by Merck Japan), KAYACURE-MBP, Kayacure -DETX-S, Kayacure-DMBI, Kayacure-EPA, Kayacure-OA (Nippon Kayaku Co., Ltd., trade name), Vicure-10, Vicure-55 (STAUFFER Co., Ltd., Ltd., Product name], TRIGONAL P1 [A Product name], SANDORAY 1000 (product name: SANDOZ Co., Ltd., product name), Deep (DEAP) [APJOHN Co., Ltd.
  • the photopolymerization initiator (b) is preferably one or a mixture of two or more of a thioxanthone compound, an acetophenone compound and an acylphosphine oxide compound from the viewpoint of photocurability, and among them, an acetophenone compound and an acylphosphine are preferable. Particularly preferred is a mixture with a fin oxide compound.
  • the content ratio of the silsesquioxane compound (a) and the photopolymerization initiator (b) is not particularly limited. Usually, the latter may be 1 to 20 parts by mass, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the former non-volatile content.
  • the active energy ray-curable top coating composition (II) used in the present invention essentially comprises the components (a) and (b), and, if necessary, polymerizable properties other than the component (a).
  • An unsaturated compound (c) can be contained.
  • the polymerizable unsaturated compound (c) is not particularly limited as long as it is a compound other than the silsesquioxane compound of the present invention and has at least one polymerizable unsaturated double bond in its chemical structure. .
  • Examples of the polymerizable unsaturated compound (c) include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide.
  • an esterified product of a polyhydric alcohol and (meth) acrylic acid can be used.
  • Meth) acrylate compounds glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, tris (2-acryloyloxyethyl) isocyanurate, tris (2-acryloyloxypropyl) isocyanurate, ⁇ -caprolactone modified tris (acryloxyethyl) isocyanurate, 1,6-hexamethylene diisocyanate isocyanurate ring addition Product and hydroxyalkyl (meth) acrylate equimolar reaction product, hexamethylene diisocyanate having iminooxadiazinedione group Isocyanurate cycloadducts and hydroxyalkyl (meth) acrylates,
  • Urethane (meth) acrylate is obtained by using, for example, a polyisocyanate compound, a hydroxylalkyl (meth) acrylate, and a polyol compound as raw materials, and reacting them in an amount such that the hydroxyl group is equimolar or excessive with respect to the isocyanate group. be able to.
  • These polymerizable unsaturated compounds can be used alone or in combination of two or more.
  • the amount used when the polymerizable unsaturated compound (c) is contained is not particularly limited, but from the viewpoint of the physical properties of the resulting multilayer coating film, the non-volatile content of the silsesquioxane compound (a).
  • the amount is preferably 0.1 to 1000 parts by mass, more preferably 1 to 200 parts by mass with respect to 100 parts by mass.
  • the active energy ray-curable top coating composition (II) used in the present invention may contain colloidal silica as necessary from the viewpoint of improving scratch resistance and abrasion resistance.
  • Colloidal silica is usually obtained by dispersing ultrafine particles of silicic anhydride having a primary particle diameter of 1 to 200 ⁇ m in water or an organic solvent. Such colloidal silica may be treated with a hydrolyzable silane compound or a polymerizable silane compound.
  • the content of the colloidal silica is not particularly limited, but the non-volatile content of the silsesquioxane compound (a) is 100 in terms of improving scratch resistance and wear resistance of the resulting coating film and preventing cracks.
  • the amount is preferably 1 to 60 parts by mass, more preferably 5 to 30 parts by mass with respect to parts by mass.
  • the active energy ray-curable top coating composition (II) used in the present invention may further contain various additives, saturated resins and the like as necessary.
  • the active energy ray-curable top coating composition (II) may contain a solvent if desired, and may be diluted with the solvent.
  • the additive include a sensitizer, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a surface conditioner, a plasticizer, and a colorant.
  • the saturated resin include saturated acrylic resin, saturated polyester resin, saturated urethane resin, and the like. As an ultraviolet absorber and a light stabilizer, it can use suitably selecting from what was listed by description of the above-mentioned undercoat coating composition (I).
  • Examples of the solvent that can be used for dilution include ketone compounds such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ester compounds such as ethyl acetate, butyl acetate, methyl benzoate, and methyl propionate; tetrahydrofuran, dioxane, dimethoxyethane, and the like.
  • Ether compounds; glycol ether compounds such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; aromatic hydrocarbon compounds, aliphatic hydrocarbon compounds, etc. . These can be used in appropriate combination depending on the purpose such as adjustment of viscosity and adjustment of coating property.
  • the non-volatile content of the active energy ray-curable top coating composition (II) is not particularly limited. For example, it is preferably 20 to 90% by mass, and more preferably 25 to 70% by mass. These ranges are significant in terms of smoothness of the coating film and shortening of the drying time.
  • Multi-layer coating film forming method The multi-layer coating film forming method of the present invention, (1) On the base material, the above-mentioned active energy ray-curable undercoating composition (Ia), light and thermosetting undercoating composition (Ib), and room temperature curing or thermosetting undercoating composition (Ic) A step of forming an undercoat film using at least one undercoat paint composition (I) selected from the group consisting of: and (2) after forming the undercoat film, on the undercoat film, Comprising a step of forming a top coat film using the active energy ray-curable top coat composition (II).
  • Substrate The substrate to which the method of the present invention is applied is not particularly limited.
  • metal materials such as iron, aluminum, brass, copper, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn-Al, Zn-Ni, Zn-Fe, etc.) plated steel; polyethylene resin, polypropylene resin, acrylonitrile -Butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin and other plastic materials such as FRP; glass, cement, concrete and other inorganic materials; wood A fiber material (paper, cloth, etc.) and the like.
  • a plastic material is preferable, and a polycarbonate resin is particularly preferable.
  • the use of the coated article obtained by the method of the present invention is not particularly limited.
  • the outer plate of an automobile body such as a passenger car, a truck, a motorcycle, and a bus; automobile parts; Examples of the outer plate portion of the product and the like. Among them, the outer plate portion of the automobile body and the automobile part are preferable.
  • Step of forming undercoat coating film The method of forming the undercoat coating film on the above-mentioned base material using the undercoat coating composition (I), that is, the method of applying the undercoat coating composition (I) is particularly limited. Examples thereof include roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, spray coating, electrostatic coating, immersion coating, silk printing, and spin coating.
  • the film thickness of the undercoat film is appropriately set according to the purpose.
  • the film thickness is preferably 3 to 30 ⁇ m, and more preferably 5 to 15 ⁇ m.
  • the film thickness is preferably 3 to 50 ⁇ m, and more preferably 5 to 40 ⁇ m.
  • the film thickness is preferably 3 to 50 ⁇ m, and more preferably 5 to 40 ⁇ m.
  • the film thickness is preferably at least the lower limit of these ranges. Moreover, it is preferable that a film thickness is below the upper limit of these ranges from the point of the adhesiveness of the undercoat film and a base material after a weather resistance test.
  • Drying is not particularly limited as long as it is a condition capable of removing the solvent contained in the active energy ray-curable undercoat coating composition (Ia).
  • the drying can be performed at a drying temperature of 20 to 100 ° C. for a drying time of 3 to 20 minutes.
  • a cured coating film may be formed by irradiation with active energy rays, or the top coating composition of the next step may be applied uncured. good.
  • the irradiation source and irradiation amount of active energy ray irradiation are not particularly limited.
  • the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like.
  • the irradiation dose is, for example, preferably in the range of 100 to 5000 mJ / cm 2 , more preferably 300 to 3000 mJ / cm 2 . From the viewpoint of adhesion between the undercoat film and the topcoat film, it is preferable that the irradiation dose not exceed 5000 mJ / cm 2 .
  • the active energy ray irradiation may be performed in an air atmosphere or in an inert gas atmosphere.
  • the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an air atmosphere is preferable from the viewpoint of adhesion to the top coat film.
  • the primer coating composition (I) when the light and thermosetting primer composition (Ib) is used as the primer coating composition (I), when the primer coating film is formed from the light and thermosetting primer composition (Ib), the coating immediately after coating is applied.
  • preheating can be usually carried out by directly or indirectly heating the coated article in a drying oven at a temperature of 50 to 140 ° C., preferably 60 to 100 ° C. for 1 to 30 minutes.
  • the air blow can be usually performed by blowing air heated to a normal temperature or a temperature of 25 ° C. to 80 ° C. on the coated surface of the object to be coated.
  • a cured coating film may be formed by heating and irradiation with active energy rays as described above, and the top coating composition of the next step with the unsaturated group remaining unreacted only by heating. It may be applied.
  • heating and active energy ray irradiation are usually performed.
  • the order of heating and active energy ray irradiation is not particularly limited, and active energy ray irradiation may be performed after heating, heating may be performed after active energy ray irradiation, and heating and active energy ray irradiation are performed simultaneously. May be.
  • heat from an active energy ray irradiation source for example, heat generated by a lamp
  • the active energy ray irradiation may be performed in a state where the object to be coated is heated (a state having a residual heat).
  • the heating conditions are not particularly limited. For example, heating can be performed at a temperature of 50 to 140 ° C. for 1 to 30 minutes.
  • the coating composition (Ib) has curability at a low temperature, and desired performance such as weather resistance can be obtained without heating at a high temperature (for example, 100 ° C. or higher). It is preferable to heat at the temperature.
  • the coating composition (Ib) is also cured with active energy rays, so that desired performance such as weather resistance can be obtained without heating for a long time. Therefore, the coating composition (Ib) is preferably heated for 1 to 30 minutes. It is more preferable to heat for a minute.
  • the irradiation source and irradiation amount of active energy ray irradiation are not particularly limited.
  • the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like.
  • the irradiation dose is usually in the range of 100 to 5000 mJ / cm 2 , more preferably 300 to 3000 mJ / cm 2 . If the irradiation amount exceeds 5000 mJ / cm 2 , the adhesion with the top coat film may be lowered, which is not preferable.
  • the active energy ray irradiation may be performed in an air atmosphere or in an inert gas atmosphere.
  • the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an air atmosphere is preferred from the viewpoint of adhesion to the top coat film.
  • a cold-curing or thermosetting undercoating composition (Ic) as the undercoating composition (I)
  • preheating usually involves directly coating an object coated with room temperature curing or thermosetting primer coating composition (Ic) in a drying oven at a temperature of 50 to 110 ° C., preferably 60 to 90 ° C. for 1 to 30 minutes. It can be carried out by heating manually or indirectly.
  • the air blow can be usually performed by blowing air heated to a normal temperature or a temperature of 25 ° C. to 80 ° C. on the coated surface of the object to be coated.
  • the top coating composition of the next step may be applied in a dry / uncured state.
  • heating conditions for curing the coating film with the above room temperature curing or thermosetting undercoat coating composition (Ic) are not particularly limited.
  • heating can be performed at a temperature of 50 to 140 ° C. for 1 to 60 minutes.
  • the top coat film is formed using the active energy ray-curable top coat composition (II), that is, the active energy ray.
  • the method for applying the curable top coating composition (II) is not particularly limited. For example, roller coating, roll coater coating, spin coater coating, curtain roll coater coating, slit coater coating, spray coating, electrostatic coating. Dip coating, silk printing, spin coating and the like.
  • drying can be performed as necessary.
  • the drying is not particularly limited as long as the solvent that is added can be removed.
  • the drying can be performed at a drying temperature of 20 to 100 ° C. for a drying time of 3 to 20 minutes.
  • the film thickness of the top coat film is appropriately set according to the purpose.
  • the film thickness is preferably 1 to 15 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the film thickness is preferably at least the lower limit of these ranges.
  • it is preferable that a film thickness is below the upper limit of these ranges from the sclerosing
  • active energy ray irradiation is performed and a cured coating film is formed.
  • the irradiation source and irradiation amount of the active energy ray are not particularly limited.
  • the active energy ray irradiation source includes ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide lamp, fluorescent lamp, tungsten lamp, sunlight and the like. Dose, for example preferably 100 ⁇ 10000mJ / cm 2, more preferably include a range of 500 ⁇ 5000mJ / cm 2.
  • the active energy ray irradiation may be performed in an air atmosphere or in an inert gas atmosphere.
  • the inert gas include nitrogen and carbon dioxide. Active energy ray irradiation in an inert gas atmosphere is preferable from the viewpoint of curability.
  • the coating film may be heated as necessary.
  • the heating may improve the hardness or adhesion of the coating film.
  • the heating can usually be performed at an ambient temperature of 80 to 150 ° C. for 1 to 30 minutes.
  • Part and % indicate “part by mass” and “% by mass” unless otherwise specified.
  • structural analysis and measurement in the production example were performed by the following analyzer and measurement method in addition to the analyzer described in this specification.
  • SP value measurement method The SP value in this example is a solubility parameter, which can be measured by cloud point titration, which is a simple measurement method.
  • Formula SP ( ⁇ Vml ⁇ ⁇ H + ⁇ Vmh ⁇ ⁇ D) / ( ⁇ Vml + ⁇ Vmh)
  • cloud point titration when 0.5 g of sample was dissolved in 10 ml of acetone, n-hexane was added and the titration amount H (ml) at the cloud point was read.
  • deionized water was added to the acetone solution.
  • the titration amount D (ml) at the cloud point is read and applied to the following formula to calculate Vml, Vmh, ⁇ H, and ⁇ D.
  • the molecular volume (mol / ml) of each solvent is acetone: 74.4, n-hexane: 130.3, deionized water: 18, and the SP of each solvent is acetone: 9.75, n- Hexane: 7.24, deionized water: 23.43.
  • Vml 74.4 ⁇ 130.3 / ((1 ⁇ VH) ⁇ 130.3 + VH ⁇ 74.4)
  • Vmh 74.4 ⁇ 18 / ((1 ⁇ VD) ⁇ 18 + VD ⁇ 74.4)
  • VH H / (10 + H)
  • the product (P2) was subjected to gel permeation chromatography (GPC) analysis. As a result, the weight average molecular weight was 2,500.
  • silsesquioxane compound is a silsesquioxane compound having a weight average molecular weight of 2,500 having a structure in which almost all Si—OH groups are hydrolyzed and condensed. It was done. The resulting silsesquioxane compound had an SP value of 10.7.
  • the weight average molecular weight was 3,000.
  • the silsesquioxane compound is a silsesquioxane compound having a weight average molecular weight of 3,000, wherein the silsesquioxane compound has a structure in which almost all Si—OH groups are hydrolyzed and condensed. It was done.
  • the SP value of the obtained silsesquioxane compound was 10.5.
  • silsesquioxane compound is a silsesquioxane compound having a weight average molecular weight of 2,000 having a structure in which almost all Si—OH groups are hydrolyzed and condensed. It was done.
  • the SP value of the obtained silsesquioxane compound was 10.4.
  • Glycidyl POSS cage mixture used as a raw material was a 3-glycidoxypropyl group-containing cage-type polysilsesquioxane having a weight average molecular weight of 1,800 and an epoxy equivalent of 168 g / eq.
  • the mixture was aged at 100 ° C. for 30 minutes, and then an additional catalyst mixture composed of 10 parts of 1-methoxy-2-propanol and 0.2 part of azobisisobutyronitrile was added dropwise over 1 hour.
  • an additional catalyst mixture composed of 10 parts of 1-methoxy-2-propanol and 0.2 part of azobisisobutyronitrile was added dropwise over 1 hour.
  • 0.05 part of p-methoxyphenol and 5 parts of acrylic acid were added and reacted for 6 hours while blowing dry air.
  • 1-methoxy-2-propanol 40 The mixture was added and cooled to obtain an unsaturated group-containing acrylic resin A solution having a nonvolatile content of 40%.
  • the weight average molecular weight of the unsaturated group-containing acrylic resin A was about 25,000.
  • Plaxel FA-2D (trade name, manufactured by Daicel Chemical Industries, Caprolactone-modified hydroxyethyl acrylate) was added dropwise over 8 hours so that the temperature of the mixture did not exceed 60 ° C.
  • the mixture was further stirred at 60 ° C. for 1 hour to obtain a product (ib-1) solution having a nonvolatile content of 80%.
  • the resulting product (ib-1) had an isocyanate equivalent weight of 1,852, an unsaturated group equivalent weight of 564, and a weight average molecular weight of 1,297.
  • hydroxyl group-containing acrylic resin had an acid value of 15.6 mgKOH / g, a hydroxyl value of 96.6 mgKOH / g, and a weight average molecular weight of 20,000.
  • the mixture was aged at 100 ° C. for 30 minutes, and then an additional catalyst mixture composed of 10 parts of 1-methoxy-2-propanol and 0.2 part of azobisisobutyronitrile was added dropwise over 1 hour. Then, after aging at 100 ° C. for 1 hour, 40 parts of 1-methoxy-2-propanol was added and cooled to obtain an acrylic resin (ic-1) solution having a nonvolatile content of 40%.
  • Production Examples 16 to 20 The same operations as in Production Example 5 were carried out except that the monomer composition shown in Table 2 was used in Production Example 15 to obtain acrylic resin solutions (ic-2) to (ic-6).
  • Table 2 shows the nonvolatile content, weight average molecular weight, and the like of these acrylic resin solutions (ic-1) to (ic-6).
  • Production and production example b1 of light and thermosetting undercoating composition (Ib) 65.5 parts of 80% solution of the product (ib-1) obtained in Production Example 8 (nonvolatile content 52.4 parts), 86.6 parts of 55% solution of the hydroxyl group-containing acrylic resin obtained in Production Example 14 ( Nonvolatile content 47.6 parts), Darocur 1173 (trade name, manufactured by Merck Japan, photopolymerization initiator) 3.0 parts, TINUVIN 384 (trade name, manufactured by Ciba Specialty Chemicals, UV absorber) 6.0 parts, TINUVIN 123 Mix 1 part (trade name, manufactured by BASF, light stabilizer) and 0.05 part BYK-315 (trade name, manufactured by BYK Chemie) as a surface conditioner, and remove the nonvolatile content with 1-methoxy-2-propanol. By adjusting, a light and thermosetting undercoating composition (Ib-1) having a nonvolatile content of 30% was obtained.
  • Preparation example c1 of room temperature curing or thermosetting primer coating composition (Ic) 250 parts of a 40% solution of acrylic resin obtained in Production Example c1 (100 parts of non-volatile content) and 0.05 part of BYK-315 (trade name, manufactured by BYK Chemie) as a surface conditioner were uniformly mixed, and 1-methoxy The non-volatile content was adjusted with -2-propanol to obtain a cold-curing or thermosetting undercoat coating composition (Ic-1) having a non-volatile content of 30%.
  • Preparation example 1 of active energy ray-curable top coating composition (II) 200 parts of product (P2) solution obtained in Production Example 1 (100 parts of non-volatile content), 3 parts of Irgacure-184, Irgacure-819 (trade name, manufactured by BASF, 2,4,6-trimethylbenzoyldiphenylphosphine) Oxide) 1 part, RUVA93 (trade name, manufactured by Otsuka Chemical Co., Ltd., UV absorber) 2 parts, TINUVIN123 (trade name, manufactured by BASF Corp., light stabilizer) 1 part, and BYK-3500 (trade name, The non-volatile content was adjusted with 1-methoxy-2-propanol to obtain an active energy ray-curable top coating composition (II-1) having a non-volatile content of 30%.
  • the compounding quantity in the said Table 6 is a non-volatile content. (Note 11) to (Note 14) in the table are as follows.
  • Aronix-M408 trade name, manufactured by Toagosei Co., Ltd., ditrimethylolpropane tetraacrylate
  • IRR214K trade name, manufactured by Daicel-Cytec, Inc., tricyclodecane dimethanol dimethacrylate
  • MEK-ST Product name, manufactured by Nissan Chemical Co., Ltd., colloidal silica.
  • Polymerizable silane-modified colloidal silica produced as follows. In a separable flask equipped with a reflux condenser, a thermometer, an air introduction tube and a stirrer, colloidal silica fine particles (dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, (Nissan Chemical Industries Co., Ltd.) 333 parts (100 parts of silica fine particles), 10 parts of 3-methacryloyloxypropyltrimethoxysilane, 0.2 parts of p-methoxyphenol and 233 parts of isopropanol were mixed and stirred while blowing dry air.
  • colloidal silica fine particles dispersion medium: isopropanol, silica concentration: 30% by mass, average primary particle size: 12 nm, trade name: IPA-ST, (Nissan Chemical Industries Co., Ltd.) 333 parts (100 parts of silica fine particles
  • Examples a1 to a36 and comparative examples a1 to a18 The polycarbonate resin plate was air spray-coated with the active energy ray-curable undercoat coating composition shown in Table 7 so that the dry film thickness was 8 ⁇ m. Subsequently, after preheating at 80 ° C. for 10 minutes, the coating film was cured by irradiating active energy rays at a dose of 2,000 mJ / cm 2 using a metal halide lamp. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 3 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 7.
  • Examples a37 to a58 and Comparative examples a19 to a28 An active energy ray-curable undercoat coating composition shown in Table 8 was air spray-coated on a polycarbonate resin plate so that the dry film thickness was 8 ⁇ m. Subsequently, preheating was performed at 80 ° C. for 10 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 4 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 8.
  • Examples b1 to b39 and comparative examples b1 to b14 The polycarbonate resin plate was air spray-coated with the light and thermosetting primer coating composition shown in Table 9 so that the dry film thickness was 8 ⁇ m. Subsequently, after preheating at 60 ° C. for 5 minutes, active energy rays were irradiated at a dose of 1,500 mJ / cm 2 using a metal halide lamp, followed by drying at 90 ° C. for 10 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 4 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 9.
  • Examples b40 to b78 and comparative examples b15 to b28 The polycarbonate resin plate was air spray-coated with the light and thermosetting undercoat composition shown in Table 10 so that the dry film thickness was 8 ⁇ m, and heated at 90 ° C. for 10 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 5 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 10.
  • Examples b79 to b96 and comparative examples b29 to b33 The polycarbonate resin plate was air spray-coated with the light and thermosetting primer coating composition shown in Table 11 so that the dry film thickness was 30 ⁇ m. Subsequently, after preheating at 60 ° C. for 5 minutes, active energy rays were irradiated at a dose of 1,000 mJ / cm 2 using a metal halide lamp, followed by drying at 90 ° C. for 10 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 6 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 11.
  • Examples b97 to b114 and comparative examples b34 to b38 The polycarbonate resin plate was air spray-coated with a light and thermosetting undercoating composition shown in Table 12 to a dry film thickness of 30 ⁇ m and heated at 90 ° C. for 10 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 7 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 12.
  • Examples c1 to c32 and comparative examples c1 to c15 The undercoat paint composition shown in Table 13 was applied to a polycarbonate resin plate by air spray so that the dry film thickness was 8 ⁇ m. Then, after setting for 5 minutes, it heated at 80 degreeC for 30 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 4 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 13.
  • Examples c33 to c38 and comparative examples c16 to c17 The undercoat paint composition shown in Table 14 was air spray-coated on a polycarbonate resin plate so that the dry film thickness was 8 ⁇ m. Then, after setting for 5 minutes, it heated at 120 degreeC for 30 minutes. Subsequently, after the object to be coated became 50 ° C. or lower, the active energy ray-curable top coating composition shown in Table 5 was applied thereon by air spray so that the dry film thickness was 5 ⁇ m.
  • the coating film was hardened by irradiating an active energy ray with the irradiation amount of 4,000 mJ / cm ⁇ 2 > using the ultrahigh pressure mercury lamp, and each test coating plate was obtained. About each obtained test coating plate, it used for the following evaluation test. The evaluation results are also shown in Table 14.
  • ⁇ H is less than 15 A: ⁇ H is 15 or more and less than 20 B: ⁇ H is 20 or more and less than 30 C: ⁇ H is 30 or more.
  • remaining number / total number 100/100
  • remaining number / total number 99 to 90/100
  • remaining number / total number 89 or less / 100
  • S Scratch resistance evaluation is S
  • initial adhesion and weather resistance evaluation is A
  • A Scratch resistance evaluation is A
  • initial adhesion and weather resistance evaluation is A
  • B Scratch resistance, initial adhesion, and weather resistance are all S, A, or B, and at least one is B.
  • C At least one of the scratch resistance, initial adhesion, and weather resistance evaluations. One is C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、基材、特にプラスチック材料との付着性に優れ、しかも耐候性、耐擦り傷性に非常に優れた複層塗膜を形成しうる複層塗膜形成方法、及び該複層塗膜を有する塗装物品を提供することを課題とする。 当該課題を解決する手段として、(1)基材上に、下塗り塗料組成物(I)を用いて下塗り塗膜を形成する工程、及び(2)下塗り塗膜を形成した後、該下塗り塗膜の上に、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物(a)、及び光重合開始剤(b)を含有する活性エネルギー線硬化型上塗り塗料組成物(II)を用いて上塗り塗膜を形成する工程からなることを特徴とする複層塗膜形成方法を提供する。

Description

複層塗膜形成方法及び塗装物品
 [関連出願の相互参照]
 本出願は、2010年4月14日に出願された日本国出願第2010-093094号明細書、日本国出願第2010-093095号明細書および日本国出願第2010-093096号明細書(それらの開示全体が参照により本明細書中に援用される。)に基づく優先権を主張する。
本発明は、基材、特にプラスチック材料との付着性に優れ、しかも耐候性、耐擦り傷性に非常に優れた複層塗膜を形成しうる複層塗膜形成方法、及び該複層塗膜を有する塗装物品に関する。
 ポリメチルメタクリレート樹脂、ポリスチレン樹脂、ポリカーボネート樹脂等のプラスチック材料は、耐衝撃性、透明性に優れ、軽量であり、加工が容易であることなどから、ガラスに代わる材料として、建物の採光材、車両の窓、ランプレンズ、計器カバー等に用いられている。しかしながら、プラスチック材料は、ガラスと比較して耐擦り傷性、耐薬品性、耐候性等の表面特性に劣ることから、プラスチック材料の表面特性を改良することが行われている。プラスチック材料の表面特性を改良する方法としてポリオルガノシロキサン系、メラミン系等の熱硬化性塗料組成物を塗装する方法や多官能アクリレート系の活性エネルギー線硬化型塗料組成物を塗装する方法が提案されている。
 これら方法に関連して、特許文献1及び2には、モノ又はポリペンタエリスリトールのポリ(メタ)アクリレート、1分子内に少なくとも2個の(メタ)アクリロイル基を有するウレタン(メタ)アクリレート、及びポリ[(メタ)アクリロイルオキシアルキル](イソ)シアヌレートを特定の割合で配合して得られる塗料組成物に関する発明が開示されている。この塗料組成物は、耐擦り傷性、耐候性に優れる。
 一方、一般的な塗料組成物の耐擦り傷性、耐候性を向上させる方法として、塗料組成物中に無機材料や無機-有機ハイブリッド材料を配合する方法がある。例えば、特許文献3及び4には、ケイ素を中心原子とする4面体シートと金属を中心原子とする8面体シートとの2:1型又は1:1型の積層体からなるフィロ珪酸塩鉱物型の層状構造を有し、ケイ素の少なくとも一部と共有結合する有機基をもつ層状ケイ素ポリマーが開示されている。また、特許文献5には、特許文献3及び4に記載の層状ケイ素ポリマーをフィラーとして用いた塗料組成物が記載されている。
 近年、プラスチック材料の屋外での用途が広がるに従い、プラスチック材料の表面特性(耐擦り傷性、耐候性)のさらなる向上が要求されている。しかし、特許文献5に記載の塗料組成物では、上記要求を満足する優れた耐擦り傷性、耐候性及びプラスチック基材に対する付着性を有する硬化被膜を形成する塗料組成物は得られない。また、特許文献3及び4に記載の層状ケイ素ポリマーを特許文献1及び2に記載の塗料組成物に配合しても、上記要求を満足する優れた耐擦り傷性、耐候性、プラスチック基材に対する付着性を有する硬化被膜を形成する塗料組成物は得られない。
 また上記のような塗料組成物による1コート塗膜の不具合を解消するために、特許文献6では特定の下塗り塗料を用いた複層塗膜形成方法が提案されている。しかしながら、特許文献6に記載の方法では、上塗り塗料の組成が有機成分主体であり、上述の特許文献3~5の無機材料や無機-有機ハイブリッド材料を配合する組成と比べて耐候性や耐擦り傷性が不十分であるという問題があった。
特開平5-230397号公報 特開平6-128502号公報 特開平6-200034号公報 特開平7-126396号公報 特開平8-12899号公報 特開2006-263616号公報
 本発明は上記の事情に鑑みてなされたものであり、本発明の目的は、基材、特にプラスチック材料との付着性に優れ、しかも耐候性、耐擦り傷性に非常に優れた複層塗膜を形成しうる複層塗膜形成方法、及び該複層塗膜を有する塗装物品を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定のシルセスキオキサン化合物、及び光重合開始剤を含有する活性エネルギー線硬化型上塗り塗料組成物を用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、主に下記に関する:
項1、(1)基材上に、下塗り塗料組成物(I)を用いて下塗り塗膜を形成する工程、及び
(2)下塗り塗膜を形成した後、該下塗り塗膜の上に、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物(a)、及び光重合開始剤(b)を含有する活性エネルギー線硬化型上塗り塗料組成物(II)を用いて上塗り塗膜を形成する工程
を含むことを特徴とする複層塗膜形成方法。
項2、(a)成分における前記ウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(A)で表される有機基である項1記載の複層塗膜形成方法。
Figure JPOXMLDOC01-appb-C000005
[式(A)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Yは
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、前記に同じ。nは0~9の整数を示す。)、
Figure JPOXMLDOC01-appb-C000007
(式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)、又は
Figure JPOXMLDOC01-appb-C000008
(式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)を示す。]
項3、活性エネルギー線硬化型上塗り塗料組成物(II)が、シルセスキオキサン化合物(a)の不揮発分100質量部に対し、光重合開始剤(b)を1~20質量部含有する、項1又は2記載の複層塗膜形成方法。
項4、活性エネルギー線硬化型上塗り塗料組成物(II)が、さらに重合性不飽和化合物(c)を含有する項1ないし3のいずれか1項に記載の複層塗膜形成方法。
項5、活性エネルギー線硬化型上塗り塗料組成物(II)が、シルセスキオキサン化合物(a)の不揮発分100質量部に対し、重合性不飽和化合物(c)を0.1~1000質量部含有する、項4記載の複層塗膜形成方法。
項6、下塗り塗料組成物(I)が、分子中に2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートを含む重合性不飽和化合物、光重合開始剤、紫外線吸収剤及び光安定剤を含有する活性エネルギー線硬化型下塗り塗料組成物(Ia)である項1ないし5のいずれか1項に記載の複層塗膜形成方法。
項7、活性エネルギー線硬化型下塗り塗料組成物(Ia)が重合性不飽和化合物を該塗料組成物の不揮発分100質量部に対して30~97質量部、光重合開始剤を重合性不飽和化合物の不揮発分100質量部に対し0.1~10質量部、及び紫外線吸収剤を重合性不飽和化合物の不揮発分100質量部に対し0.5~20質量部をそれぞれ含有する、項6記載の複層塗膜形成方法。
項8、重合性不飽和化合物が、ウレタン(メタ)アクリレートを重合性不飽和化合物の不揮発分100質量部に対して、30~100質量部含有する、項6又は7に記載の複層塗膜形成方法。
項9、下塗り塗料組成物(I)が、重合性不飽和化合物、水酸基含有樹脂、光重合開始剤、紫外線吸収剤及び光安定剤を含有する光及び熱硬化性下塗り塗料組成物(Ib)である項1ないし5のいずれか1項に記載の複層塗膜形成方法。
項10、光及び熱硬化性下塗り塗料組成物(Ib)が、重合性不飽和化合物を該塗料組成物の不揮発分100質量部に対し10~80質量部、水酸基含有樹脂を該塗料組成物の不揮発分100質量部に対し10~80質量部、光重合開始剤を重合性不飽和化合物の不揮発分100質量部に対し1~20質量部、紫外線吸収剤を該塗料組成物の不揮発分100質量部に対して0.5~20質量部、及び光安定剤を該塗料組成物の不揮発分100質量部に対して0.1~10質量部それぞれ含有する、項9記載の複層塗膜形成方法。
項11、重合性不飽和化合物が、さらにイソシアネート基含有化合物を含有するものである項9又は10に記載の複層塗膜形成方法。
項12、イソシアネート基含有化合物が、300~3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物である項11記載の複層塗膜形成方法。
項13、下塗り塗料組成物(I)が、アクリル樹脂、紫外線吸収剤及び光安定剤を含有する常温硬化又は熱硬化性下塗り塗料組成物(Ic)である項1ないし5のいずれか1項に記載の複層塗膜形成方法。
項14、常温硬化又は熱硬化性下塗り塗料組成物(Ic)が、アクリル樹脂を該塗料組成物の不揮発分100質量部に対して50~99.4質量部、紫外線吸収剤を該塗料組成物の不揮発分100質量部に対して0.5~20質量部、及び光安定剤を該塗料組成物の不揮発分100質量部に対して0.1~10質量部それぞれ含有する項13記載の複層塗膜形成方法。
項15、下塗り塗料組成物(I)が、紫外線吸収性重合性不飽和モノマー及び/又は紫外線安定性重合性不飽和モノマーを含む重合性不飽和モノマー混合物を共重合して得られるアクリル樹脂を含有する常温硬化又は熱硬化性下塗り塗料組成物(Ic)’である項1ないし5のいずれか1項に記載の複層塗膜形成方法。
項16、常温硬化又は熱硬化性下塗り塗料組成物(Ic)’が、アクリル樹脂を該塗料組成物の不揮発分100質量部に対して50~100質量部含有する項15に記載の複層塗膜形成方法。
項17、項1ないし16のいずれか1項に記載の方法により形成される複層塗膜を有する塗装物品。
 本発明によれば、特定の活性エネルギー線硬化型上塗り塗料組成物を用いることにより、耐擦り傷性、耐候性及び基材に対する付着性に優れた複層塗膜を得ることができる。また該複層塗膜を有する塗装物品を得ることができる。
 (I)下塗り塗料組成物
 本発明で用いられる下塗り塗料組成物(I)は、下塗り塗料組成物として用いられるものであれば特に制限なく、従来公知の下塗り塗料組成物を用いることができる。下塗り塗料組成物(I)の好適な具体例として、活性エネルギー線硬化型下塗り塗料組成物(Ia)、光及び熱硬化性下塗り塗料組成物(Ib)、常温硬化又は熱硬化性下塗り塗料組成物(Ic)などが挙げられる。
 (Ia)活性エネルギー線硬化型下塗り塗料組成物
 上記活性エネルギー線硬化型下塗り塗料組成物(Ia)は、活性エネルギー線により硬化し得るものであれば特に制限なく、従来公知の活性エネルギー線硬化型塗料組成物を用いることができる。特に基材がプラスチックの場合に得られる複層塗膜の耐候性の観点から、重合性不飽和化合物、光重合開始剤、紫外線吸収剤及び光安定剤を含有する活性エネルギー線硬化型塗料組成物が好適に使用できる。
 上記重合性不飽和化合物としては、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
 上記重合性不飽和化合物としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリス(2-アクリロイルオキシプロピル)イソシアヌレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、1,6-ヘキサメチレンジイソシアネートのイソシアヌレート環付加物とヒドロキシアルキル(メタ)アクリレートとの等モル反応物、イミノオキサジアジンジオン基を有するヘキサメチレンジイソシアネートのイソシアヌレート環付加物とヒドロキシアルキル(メタ)アクリレートとの等モル反応物、等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、不飽和基含有アクリル樹脂等が挙げられる。ウレタン(メタ)アクリレートは、例えばポリイソシアネート化合物、ヒドロキシルアルキル(メタ)アクリレート及びポリオール化合物を原料として用い、イソシアネート基に対してヒドロキシル基が等モル量もしくは過剰になるような量で反応させることで得ることができる。これら重合性不飽和化合物は単独で又は2種以上組合せて使用することができる。
 活性エネルギー線硬化型下塗り塗料組成物(Ia)における上記重合性不飽和化合物の含有量は、得られる複層塗膜の耐候性の点から、該塗料組成物の不揮発分100質量部に対して30~97質量部、好ましくは60~97質量部の範囲が適当である。
 活性エネルギー線硬化型下塗り塗料組成物(Ia)が含有する重合性不飽和化合物は、得られる複層塗膜の耐候性(基材との付着性、ワレ)の点から、その成分の一部として、ウレタン(メタ)アクリレートを含む重合性不飽和化合物が特に好適である。該ウレタン(メタ)アクリレートは、分子中に2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートである。ウレタン(メタ)アクリレートは1種又は2種以上の混合物として使用できる。
 前記ウレタン(メタ)アクリレートの市販品としては、例えば、CN9001(商品名、サートマー社製、ウレタンアクリレート)、Ebecryl1290k(商品名、ダイセル・サイテック社製、ウレタンアクリレート)、UN952(商品名、根上工業社製、多官能ウレタンアクリレート)等が挙げられる。
 前記重合性不飽和化合物が前記ウレタン(メタ)アクリレートを含有する場合、該重合性不飽和化合物の不揮発分100質量部に対して、該ウレタン(メタ)アクリレートを30~100質量部、好ましくは50~100質量部の範囲で含有することが好適である。
 前記重合性不飽和化合物は、またその成分の一部として、不飽和基含有アクリル樹脂を含有しても良い。
 上記不飽和基含有アクリル樹脂としては、1分子中にラジカル重合性不飽和基を2個以上含有するアクリル樹脂であり、該重合性不飽和基を導入する手法としては従来公知の方法が特に制限なく適用できる。例えばカルボキシル基含有アクリル樹脂とグリシジル(メタ)アクリレートとを反応させる、水酸基含有アクリル樹脂に無水マレイン酸や無水イタコン酸とを反応させる、あるいはイソシアナトエチル(メタ)アクリレートを反応させる、イソシアネート基含有アクリル樹脂と2-ヒドロキシエチル(メタ)アクリレート等とを反応させる、2-ヒドロキシエチル(メタ)アクリレート等とジイソシアネート化合物との当モル反応物を水酸基含有アクリル樹脂に反応させる、などの方法により得ることができる。
 上記不飽和基含有アクリル樹脂の重量平均分子量は、特に限定されるものではない。好ましくは5,000~200,000、より好ましくは重量平均分子量が5,000~100,000の範囲が適当である。
 ここで、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフ[東ソー(株)社製、「HLC8120GPC」]で測定した重量平均分子量をポリスチレンの重量平均分子量を基準にして換算した値である。カラムは、「TSK-gel G4000H×L」、「TSK-gel G3000H×L」、「TSK-gel G2500H×L」、「TSKgel G2000H×L」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1ml/分、検出器;RIの条件で行ったものである。
 また上記不飽和基含有アクリル樹脂は、塗膜の耐候性向上の観点から、紫外線吸収性官能基や紫外線安定性官能基を有することが好ましい。これら官能基を導入する手法としては、例えばベンゾフェノン基又はベンゾトリアゾール基を含有する紫外線吸収性官能基含有重合性不飽和モノマー、ピペリジン基を含有する紫外線安定性官能基含有重合性不飽和モノマーをアクリル樹脂の共重合成分として使用する方法が採用できる。かかる紫外線吸収性官能基や紫外線安定性官能基を有する不飽和基含有アクリル樹脂を用いる場合には、活性エネルギー線硬化型下塗り塗料組成物は後述する紫外線吸収剤や光安定剤を含有しなくとも良い。
 上記重合性不飽和化合物が不飽和基含有アクリル樹脂を含有する場合、前記重合性不飽和化合物中に、その不揮発分100質量部に対して60質量部以下、好ましくは10~50質量部の範囲で含有することが、得られる複層塗膜の耐候性(基材との付着性、ワレ)の点から好適である。
 光重合開始剤としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
 かかる光重合開始剤としては、例えばベンジル、ジアセチル等のα-ジケトン化合物;ベンゾイン等のアシロイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル化合物;チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、チオキサントン-4-スルホン酸等のチオキサントン化合物;ベンゾフェノン、4,4´-ビス(ジメチルアミノ)ベンゾフェノン、4,4´-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;ミヒラーケトン化合物;アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、α,α´-ジメトキシアセトキシベンゾフェノン、2,2´-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル〔4-(メチルチオ)フェニル〕-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、α-イソヒドロキシイソブチルフェノン、α,α´-ジクロル-4-フェノキシアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等のアセトフェノン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;アントラキノン、1,4-ナフトキノン等のキノン類;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)-s-トリアジン等のハロゲン化合物;ジ-t-ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。
 光重合開始剤の市販品としては、例えば、イルガキュア(IRGACURE)-184、イルガキュア-127、イルガキュア-261、イルガキュア-500、イルガキュア-651、イルガキュア-819、イルガキュア-907、イルガキュア-CGI-1700(BASF社製、商品名)、ダロキュア(Darocur)-1173、ダロキュア-1116、ダロキュア-2959、ダロキュア-1664、ダロキュア-4043(メルクジャパン社製、商品名)、カヤキュア(KAYACURE)-MBP、カヤキュア-DETX-S、カヤキュア-DMBI、カヤキュア-EPA、カヤキュア-OA(日本化薬社製、商品名)、ビキュア(VICURE)-10、ビキュア-55〔ストウファー社(STAUFFER Co., LTD.)製、商品名〕、トリゴナル(TRIGONAL)P1〔アクゾ社(AKZO Co., LTD.)製、商品名〕、サンドレイ(SANDORAY)1000〔サンドズ社(SANDOZ Co., LTD.)製、商品名〕、ディープ(DEAP)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、カンタキュア(QUANTACURE)-PDO、カンタキュア-ITX、カンタキュア-EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕、ESACURE-KIP150、ESACURE-ONE(LAMBERTI社製、商品名)、ルシリン-TPO等が挙げられる。
 前記光重合開始剤としては、光硬化性の点からチオキサントン化合物、アセトフェノン化合物及びアシルフォスフィンオキシド化合物の1種又は2種以上の混合物であることが好ましく、なかでもアセトフェノン化合物とアシルフォスフィンオキシド化合物との混合物であることが特に好適である。
 前記光重合開始剤の含有量は、特に限定されるものではない。通常、重合性不飽和化合物の不揮発分100質量部に対し0.1~10質量部、好ましくは2~8質量部の範囲内が適当である。
 紫外線吸収剤は、入射光を吸収し、光エネルギーを熱のような無害な形に変換することにより、被膜の劣化の開始に到達するのを抑制する作用がある。
 紫外線吸収剤としては、従来から公知のものが使用でき、例えば、ベンゾトリアゾール化合物、トリアジン化合物、サリチル酸誘導体、ベンゾフェノン化合物等を使用できる。
 紫外線吸収剤として使用できるベンゾトリアゾール化合物の具体例としては、2-(2´-ヒドロキシ-5´-メチルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-5´-t-ブチルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-3´-t-ブチル-5´-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-4´-オクトキシフェニル)ベンゾトリアゾール、2-{2´-ヒドロキシ-3´-(3´´,4´´,5´´,6´´-テトラヒドロフタルイミドメチル)-5´-メチルフェニル}ベンゾトリアゾール等が挙げられる。
 紫外線吸収剤として使用できるトリアジン化合物の具体例としては、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソオクチルオキシフェニル)-1,3,5-トリアジンン、2-[4((2-ヒドロキシ-3-ドデシルオキシプロピル)-オキシ)-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンン、2-[4-((2-ヒドロキシ-3-トリデシルオキシプロピル)-オキシ)-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等が挙げられる。
 紫外線吸収剤として使用できるサリチル酸誘導体の具体例としては、フェニルサリシレート、p-オクチルフェニルサリシレート、4-tert-ブチルフェニルサリシレート等が挙げられる。
 紫外線吸収剤として使用できるベンゾフェノン化合物の具体例としては、4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2´-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2´-カルボキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノントリヒドレート、2,2´-ジヒドロキシ-4,4´-ジメトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、ナトリウム2,2´-ジヒドロキシ-4,4´-ジメトキシ-5-スルホベンゾフェノン、2,2´,4,4´-テトラヒドロキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、5-クロロ-2-ヒドロキシベンゾフェノン、レゾルシノールモノベンゾエート、2,4-ジベンゾイルレゾルシノール、4,6-ジベンゾイルレゾルシノール、ヒドロキシドデシルベンゾフェノン等が挙げられる。紫外線吸収剤としては、また、公知の重合性紫外線吸収剤、例えば2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2,2´-ジヒドロキシ-4(3-メタクリルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノンなども使用することが可能である。
 上記紫外線吸収剤の市販品としては、例えば、TINUVIN900、TINUVIN928、TINUVIN348-2、TINUVIN479、TINUVIN405(BASF社製、商品名)、RUVA93(大塚化学社製、商品名)等が挙げられる。
 上記紫外線吸収剤の含有量は、特に限定されるものではないが、通常、重合性不飽和化合物の不揮発分100質量部に対し1~20質量部、好ましくは2~15質量部の範囲内が適当である。
 一方、光安定剤は、塗膜の劣化過程で生成する活性なラジカル種を捕捉するラジカル連鎖禁止剤として用いられるもので、例えば、ヒンダードアミン化合物等が挙げられる。
 光安定剤のなかで優れた光安定化作用を示す光安定剤としてヒンダードピペリジン化合物が挙げられる。ヒンダードピペリジン化合物としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、4-ベンゾイルオキシ-2,2´,6,6´-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル){[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル}ブチルマロネート等のモノマータイプのもの;ポリ{[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノール]}等のオリゴマータイプのもの;4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとコハク酸とのポリエステル化物等のポリエステル結合タイプのものなどが挙げられるが、これらに限ったものではない。光安定剤としては、また、公知の重合性光安定剤も使用することが可能である。
 上記光安定剤の市販品としては、例えば、TINUVIN123、TINUVIN152、TINUVIN292(BASF社製、商品名)、HOSTAVIN3058(クラリアント社製、商品名)、アデカスタブLA-82(株式会社ADEKA製、商品名)等が挙げられる。
 上記光安定剤の含有量は、特に限定されるものではないが、通常、重合性不飽和化合物の不揮発分100質量部に対し0.1~10質量部、好ましくは0.5~5質量部の範囲内が適当である。
 本発明で用いる活性エネルギー線硬化型下塗り塗料組成物(Ia)は、さらに必要に応じて各種添加剤、飽和樹脂等を含有してもよい。また、活性エネルギー線硬化型下塗り塗料組成物(Ia)は、所望により溶剤を含み、該溶剤で希釈されたものであっても良い。添加剤としては、例えば、増感剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、顔料、充填剤等が挙げられる。飽和樹脂としては、例えば、飽和アクリル樹脂、飽和ポリエステル樹脂、飽和ウレタン樹脂等が挙げられる。
 希釈に用いることができる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン化合物;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル化合物;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル化合物;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル化合物;芳香族炭化水素化合物、脂肪族炭化水素化合物等が挙げられる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組合せて使用することができる。
 活性エネルギー線硬化型下塗り塗料組成物(Ia)の不揮発分は特に限定されるものではない。例えば、好ましくは20~90質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。
 (Ib)光及び熱硬化性下塗り塗料組成物
 上記光及び熱硬化性下塗り塗料組成物(Ib)は、活性エネルギー線照射及び加熱により硬化し得るものであれば特に制限なく、従来公知の光及び熱硬化性塗料組成物を用いることができる。特に基材がプラスチックの場合に耐候性確保の観点から、重合性不飽和化合物、水酸基含有樹脂、光重合開始剤、紫外線吸収剤、及び光安定剤を含有する光及び熱硬化性下塗り塗料組成物が好適に使用できる。
 上記重合性不飽和化合物としては、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
 上記重合性不飽和化合物としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から1種又は2種以上を適宜選択して使用することができる。
 光及び熱硬化性下塗り塗料組成物(Ib)における上記重合性不飽和化合物の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して10~80質量部、好ましくは20~70質量部の範囲が適当である。
 上記光及び熱硬化性下塗り塗料組成物(Ib)における重合性不飽和化合物はまた、その成分の少なくとも一部として、イソシアネート基含有化合物を含むことができる。イソシアネート基含有化合物は、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートとポリイソシアネート化合物とを反応してなり、300~3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物(ib)[以下、単に「化合物(ib)」と略すことがある。]であることが好適である。かかる化合物(ib)は活性エネルギー線の照射による硬化性に優れ、かつ低温(具体的には、常温~100℃)での硬化性に優れる。このことにより、化合物(ib)を含む光及び熱硬化性下塗り塗料組成物(Ib)は、塗装工程における加熱温度の低温化及び加熱時間の短縮が可能になる。
 カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートは、具体的には、「プラクセルFA-1」、「プラクセルFA-2」、「プラクセルFA-2D」、「プラクセルFA-3」、「プラクセルFA-4」、「プラクセルFA-5」、「プラクセルFM-1」、「プラクセルFM-2」、「プラクセルFM-2D」、「プラクセルFM-3」、「プラクセルFM-4」、「プラクセルFM-5」(いずれもダイセル化学社製、商品名)等を挙げることができる。なかでも、活性エネルギー線硬化性の点から、カプロラクトン変性ヒドロキシエチルアクリレートが好ましい。
 ポリイソシアネート化合物は、1分子中に2個以上のイソシアネート基を有する化合物である。例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、リジンジイソシアネート等の脂肪族ポリイソシアネート化合物及びこれらのポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;イソホロンジイソシアネート、4,4´-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4-ジイソシアネート、メチルシクロヘキサン-2,6-ジイソシアネート、1,3-ジ(イソシアナトメチル)シクロヘキサン、1,4-ジ(イソシアナトメチル)シクロヘキサン、1,4-シクロヘキサンジイソシアネート、1,3-シクロペンタンジイソシアネート、1,2-シクロヘキサンジイソシアネート等の脂環族ジイソシアネート化合物及びこれらのポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;キシリレンジイソシアネート、メタキシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリレンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、1,4-ナフタレンジイソシアネート、4,4´-トルイジンジイソシアネート、4,4´-ジフェニルエーテルジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4´-ビフェニレンジイソシアネート、3,3´-ジメチル-4,4´-ビフェニレンジイソシアネート、ビス(4-イソシアナトフェニル)スルホン、イソプロピリデンビス(4-フェニルイソシアネート)等の芳香族ジイソシアネート化合物及びこれらのポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;トリフェニルメタン-4,4´,4´´-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトルエン、4,4´-ジメチルジフェニルメタン-2,2´,5,5´-テトライソシアネート等の1分子中に3個以上のイソシアネート基を有するポリイソシアネート化合物及びこれらのポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物;エチレングリコール、プロピレングリコール、1,4-ブチレングリコール、ジメチロールプロピオン酸、ポリアルキレングリコール、トリメチロールプロパン、ヘキサントリオール等のポリオールの水酸基にイソシアネート基が過剰量となる比率でポリイソシアネート化合物を反応させてなるウレタン化付加物及びこれらのポリイソシアネートのビューレットタイプ付加物、イソシアヌレート環付加物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。なかでも、塗膜の耐候性の点から、脂肪族ポリイソシアネート化合物のイソシアヌレート環付加物が好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物が特に好ましい。
 カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートとポリイソシアネート化合物との反応は、ヒドロキシ基含有化合物とポリイソシアネート化合物とを反応させる際の公知の方法によって行うことができる。
 上記反応は、通常有機溶剤中で行うことができる。有機溶剤としては、トルエン、キシレン等の芳香族炭化水素化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル等のエステル化合物が挙げられる。これらは1種又は2種以上の混合物として使用できる。
 反応温度は、常温~100℃であるのが好ましく、反応時間は1~10時間であるのが好ましい。
 上記反応においては、必要に応じてジブチルスズジラウレート、ジブチルスズジエチルヘキソエート、ジブチルスズサルファイト等の触媒を使用してもよい。触媒の添加量は、反応原料の総量100質量部に対して0.01~1質量部が好ましく、0.1~0.5質量部がより好ましい。また、ハイドロキノンモノメチルエーテル等の重合禁止剤を使用してもよい。重合禁止剤の添加量は、反応原料の総量100質量部に対して0.01~1質量部が好ましい。
 化合物(i)はイソシアネート基を有するため、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートとポリイソシアネート化合物との反応における両者の混合比は、通常、ポリイソシアネート化合物のイソシアネート基がカプロラクトン変性ヒドロキシアルキル(メタ)アクリレートのヒドロキシル基に対して当量比で過剰(イソシアネート基/ヒドロキシキル基>1.0)となる混合比である。そして、混合比を調節することで化合物(i)のイソシアネート当量を調節することができる。
 化合物(i)は300~3,800の範囲のイソシアネート当量を有する。化合物(i)がイソシアネート基を有することにより、本発明で用いる光及び熱硬化性下塗り塗料組成物(Ib)は低温での硬化性に優れる。また、化合物(i)がイソシアネート基を有することにより、化合物(i)は後述の水酸基含有樹脂と反応して強靭な下塗り塗膜を形成することができる。化合物(i)のイソシアネート当量は、複層塗膜の耐擦り傷性の点から500~2,500の範囲が好ましい。
 ここで本明細書においてイソシアネート当量は、ジブチルアミンを用いた逆滴定により求められるイソシアネート当量である。逆滴定は、試料に過剰のジブチルアミンを加えて反応させ、滴定指示薬としてブロモフェノールブルーを用い残余のジブチルアミンを塩酸水溶液で滴定することにより行う。
 化合物(i)は不飽和基当量が300~2,000であることが好ましい。より好ましくは500~1,000である。不飽和基当量がこれら範囲であると、より耐擦り傷性及び耐候性に優れる複層塗膜を得ることができる。
 ここで本明細書において不飽和基当量は、ラジカル重合性不飽和基にドデシルメルカプタンを付加し、残余のドデシルメルカプタンをヨウ素溶液で逆滴定することにより求められる。
 化合物(i)の分子量は特に限定されない。好ましくは重量平均分子量が500~2,000であり、より好ましくは800~1,500である。重量平均分子量がこれら範囲であることは、取扱い易い塗料粘度にできる点で意義がある。
 上記化合物(i)は、前記重合性不飽和化合物中に、その不揮発分100質量部に対して10~80質量部、好ましくは20~70質量部の範囲で含有することが適当である。
 水酸基含有樹脂は、1分子中に少なくとも1個の水酸基を有する樹脂である。水酸基含有樹脂としては、例えば、水酸基を有する、ポリエステル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂、アルキド樹脂等の樹脂が挙げられる。これらはそれぞれ単独でもしくは2種以上組合せて使用することができる。なかでも、水酸基含有樹脂は、得られる塗膜の耐候性の点から水酸基含有アクリル樹脂であることが好ましい。
 水酸基含有アクリル樹脂は、通常、水酸基含有重合性不飽和モノマー及び該水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーを、それ自体既知の方法、例えば、有機溶媒中での溶液重合法、水中でのエマルション重合法などの方法により共重合せしめることによって製造することができる。
 水酸基含有重合性不飽和モノマーは、1分子中に水酸基及び重合性不飽和結合をそれぞれ1個以上有する化合物であって、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどの(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物;該(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;N-ヒドロキシメチル(メタ)アクリルアミド;アリルアルコール、さらに、分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート等を挙げることができる。
 また、水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製)、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のイソボルニル基を有する重合性不飽和モノマー;アダマンチル(メタ)アクリレート等のアダマンチル基を有する重合性不飽和モノマー;スチレン、α-メチルスチレン、ビニルトルエンなどのビニル芳香族化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシランなどのアルコキシシリル基を有する重合性不飽和モノマー;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等のフッ素化アルキル基を有する重合性不飽和モノマー;マレイミド基等の光重合性官能基を有する重合性不飽和モノマー;N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等のビニル化合物;(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート等のカルボキシル基含有重合性不飽和モノマー;(メタ)アクリロニトリル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、グリシジル(メタ)アクリレートとアミン類との付加物等の含窒素重合性不飽和モノマー;アリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマー;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和モノマー;分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;2-アクリルアミド-2-メチルプロパンスルホン酸、アリルスルホン酸、スチレンスルホン酸ナトリウム塩、スルホエチルメタクリレート及びそのナトリウム塩やアンモニウム塩等のスルホン酸基を有する重合性不飽和モノマー;2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、2-アクリロイルオキシプロピルアシッドホスフェート、2-メタクリロイルオキシプロピルアシッドホスフェート等のリン酸基を有する重合性不飽和モノマー;2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2´-ジヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2´-ジヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール等の紫外線吸収性官能基を有する重合性不飽和モノマー;4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルアミノ-2,2,6,6-テトラメチルピペリジン、1-クロトノイル-4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン等の紫外線安定性重合性不飽和モノマー;アクロレイン、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート、ホルミルスチロール、4~7個の炭素原子を有するビニルアルキルケトン(例えば、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン)等のカルボニル基を有する重合性不飽和モノマー等が挙げられる。これらの水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーは、それぞれ単独でもしくは2種以上組合せて使用することができる。
 水酸基含有樹脂は、光及び熱硬化性下塗り塗料組成物(Ib)の低温での硬化性の点、及び得られる複層塗膜の耐水性の点から、一般に30~300mgKOH/g、特に40~250mgKOH/g、さらに特に50~200mgKOH/gの範囲内の水酸基価を有することが好ましい。
 水酸基含有樹脂は、光及び熱硬化性下塗り塗料組成物(Ib)が上記化合物(i)を含有する場合には、該化合物(i)との反応性を高める点から、酸基を有していることが好ましい。水酸基含有樹脂は、1~25mgKOH/g、特に1~20mgKOH/gの範囲内の酸価を有することが好ましい。
 水酸基含有樹脂は、一般に3,000~100,000、特に4,000~50,000、さらに特に5,000~30,000の範囲内の重量平均分子量を有することが好ましい。
 光及び熱硬化性下塗り塗料組成物(Ib)における上記水酸基含有樹脂の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して10~80質量部、好ましくは20~70質量部の範囲が適当である。
 上記光及び熱硬化性下塗り塗料組成物(Ib)には、さらに必要に応じて化合物(i)以外のイソシアネート化合物を含有することができる。該イソシアネート化合物は、分子中にイソシアネート基を有する化合物であって、上記化合物(i)の説明において例示したポリイソシアネート化合物が挙げられる。なかでも、塗膜の耐候性の点から、脂肪族ポリイソシアネート類のイソシアヌレート環付加物が好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物が特に好ましい。
 光及び熱硬化性下塗り塗料組成物(Ib)が上記化合物(ib)及びイソシアネート化合物を含む場合には、水酸基含有樹脂と化合物(ib)及びイソシアネート化合物の含有割合を、化合物(ib)及びイソシアネート化合物の有するイソシアネート基の合計量と水酸基含有樹脂の有する水酸基とが当量比でNCO/OH=0.30~2.00、好ましくは0.50~1.80となるように選択することが望ましい。
 光重合開始剤としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
 上記光重合開始剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から1種又は2種以上を適宜選択して使用することができる。
 光及び熱硬化性下塗り塗料組成物(Ib)における前記光重合開始剤の含有量は、特に限定されるものではない。通常、重合性不飽和化合物の不揮発分100質量部に対し1~20質量部、好ましくは2~10質量部の範囲内が適当である。
 紫外線吸収剤は、入射光を吸収し、光エネルギーを熱のような無害な形に変換することにより、被膜の劣化の開始に到達するのを抑制する作用がある。
 上記紫外線吸収剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から適宜選択して使用することができる。
 光及び熱硬化性下塗り塗料組成物(Ib)における上記紫外線吸収剤の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して0.5~20質量部、好ましくは1~15質量部の範囲が適当である。
 一方、光安定剤は、被膜の劣化過程で生成する活性なラジカル種を捕捉するラジカル連鎖禁止剤として用いられるもので、例えば、ヒンダードアミン化合物等が挙げられる。
 上記光安定剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成(Ia)の説明で列記された中から適宜選択して使用することができる。
 光及び熱硬化性下塗り塗料組成物(Ib)における上記光安定剤の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して0.1~10質量部、好ましくは0.5~5質量部の範囲が適当である。
 本発明で用いる光及び熱硬化性下塗り塗料組成物(Ib)は、さらに必要に応じて各種添加剤を含有してもよい。また、光及び熱硬化性下塗り塗料組成物(Ib)は、所望により溶剤を含み、該溶剤で希釈されたものであっても良い。添加剤としては、例えば、増感剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、顔料、充填剤等が挙げられる。
 上記溶剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から適宜選択して使用することができる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組合せて使用することができる。
 光及び熱硬化性下塗り塗料組成物(Ib)の不揮発分の含有量は特に限定されるものではない。例えば、該下塗り塗料組成物100質量%に対して、好ましくは20~100質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。
 (Ic)常温硬化又は熱硬化性下塗り塗料組成物
 本発明で用いられる常温硬化又は熱硬化性下塗り塗料組成物(Ic)は、常温で乾燥/硬化し得るもの、又は加熱により硬化し得るものであれば特に制限なく、従来公知の常温硬化又は熱硬化性塗料組成物を用いることができる。特に基材がプラスチックの場合に得られる複層塗膜の耐候性確保の観点から、アクリル樹脂、紫外線吸収剤、及び光安定剤を含有する常温硬化又は熱硬化性下塗り塗料組成物が好適に使用できる。
 上記アクリル樹脂としては、従来公知のものが制限なく使用できる。例えば、上記アクリル樹脂は水酸基、カルボキシル基、アルコキシシリル基、エポキシ基などの少なくとも1種の架橋性官能基を含有するものであっても良く、通常、重合性不飽和モノマー混合物を共重合して得られるものが好適に使用できる。
 重合性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製)、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のイソボルニル基を有する重合性不飽和モノマー;アダマンチル(メタ)アクリレート等のアダマンチル基を有する重合性不飽和モノマー;スチレン、α-メチルスチレン、ビニルトルエンなどのビニル芳香族化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシランなどのアルコキシシリル基を有する重合性不飽和モノマー;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等のフッ素化アルキル基を有する重合性不飽和モノマー;マレイミド基等の光重合性官能基を有する重合性不飽和モノマー;N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等のビニル化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどの(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物、(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体、N-ヒドロキシメチル(メタ)アクリルアミド、アリルアルコール、ポリオキシエチレン(メタ)アクリレート等の水酸基含有重合性不飽和モノマー;(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート等のカルボキシル基含有重合性不飽和モノマー;(メタ)アクリロニトリル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、グリシジル(メタ)アクリレートとアミン類との付加物等の含窒素重合性不飽和モノマー;アリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマー;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和モノマー;分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;2-アクリルアミド-2-メチルプロパンスルホン酸、アリルスルホン酸、スチレンスルホン酸ナトリウム塩、スルホエチルメタクリレート及びそのナトリウム塩やアンモニウム塩等のスルホン酸基を有する重合性不飽和モノマー;2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、2-アクリロイルオキシプロピルアシッドホスフェート、2-メタクリロイルオキシプロピルアシッドホスフェート等のリン酸基を有する重合性不飽和モノマー;2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2´-ジヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2,2´-ジヒドロキシ-4-(3-アクリロイルオキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール等の紫外線吸収性官能基を有する重合性不飽和モノマー;4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、1-(メタ)アクリロイル-4-シアノ-4-(メタ)アクリロイルアミノ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-クロトノイルアミノ-2,2,6,6-テトラメチルピペリジン、1-クロトノイル-4-クロトノイルオキシ-2,2,6,6-テトラメチルピペリジン等の紫外線安定性重合性不飽和モノマー;アクロレイン、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート、ホルミルスチロール、4~7個の炭素原子を有するビニルアルキルケトン(例えば、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン)等のカルボニル基を有する重合性不飽和モノマー等が挙げられ、これらはそれぞれ単独でもしくは2種以上組合せて使用することができる。
 上記重合性不飽和モノマーとして、水酸基含有モノマーを使用する場合には、後述するメラミン樹脂やポリイソシアネート化合物を架橋剤として用いることができる。
 また上記重合性不飽和モノマーが、その成分の少なくとも一部として紫外線吸収性重合性不飽和モノマー及び/又は紫外線安定性重合性不飽和モノマーを用いる場合には、アクリル樹脂に紫外線吸収性官能基や紫外線安定性官能基が導入されるので、後述する紫外線吸収剤や光安定剤を下塗り塗料組成物(Ic)に配合しなくとも良い。
 上記重合性不飽和モノマーの共重合は、それ自体既知の方法、例えば有機溶剤中での溶液重合法などの方法により行うことができる。溶液重合法による共重合法としては、例えば、前記モノマー成分とラジカル重合開始剤の混合物を、有機溶媒に溶解もしくは分散せしめ、通常、80℃~200℃程度の温度で、通常1~10時間程度撹拌しながら加熱して重合させる方法を挙げることができる。
 共重合時に使用し得る有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;芳香族炭化水素類、脂肪族炭化水素類等を挙げることができる。これらの有機溶剤は1種のみ又は2種以上を組合せて使用することができる。
 上記の通り得られるアクリル樹脂の重量平均分子量は、特に制限されるものではないが、耐候性の点から、通常、1,000~200,000、特に2,000~100,000の範囲内にあることが好ましい。
 常温硬化又は熱硬化性下塗り塗料組成物(Ic)における上記アクリル樹脂の含有量は、得られる複層塗膜の耐候性の点から、該塗料組成物の不揮発分100質量部に対して50~99.4質量部、好ましくは70~99.4質量部の範囲が適当である。上記アクリル樹脂が紫外線吸収性重合性不飽和モノマー及び/又は紫外線安定性重合性不飽和モノマーを含む重合性不飽和モノマー混合物を共重合して得られるアクリル樹脂である場合、アクリル樹脂の含有量は、該塗料組成物の不揮発分100質量部に対して50~100質量部、好ましくは70~100質量部の範囲としてもよい。
 紫外線吸収剤は、入射光を吸収し、光エネルギーを熱のような無害な形に変換することにより、被膜の劣化の開始に到達するのを抑制する作用がある。
 上記紫外線吸収剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から適宜選択して使用することができる。
 下塗り塗料組成物(Ic)における上記紫外線吸収剤の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して0.5~20質量部、好ましくは1~15質量部の範囲が適当である。
 一方、光安定剤は、被膜の劣化過程で生成する活性なラジカル種を捕捉するラジカル連鎖禁止剤として用いられるもので、例えば、ヒンダードアミン化合物等が挙げられる。
 上記光安定剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成(Ia)の説明で列記された中から適宜選択して使用することができる。
 常温硬化又は熱硬化性下塗り塗料組成物(Ic)における上記光安定剤の含有量は、耐候性等の点から、該塗料組成物の不揮発分100質量部に対して0.1~10質量部、好ましくは0.5~5質量部の範囲が適当である。
 上記塗料組成物(Ic)は、必要に応じて架橋剤を含有することができる。架橋剤としては、上記アクリル樹脂中の官能基と反応しうる官能基を有する、例えばメラミン樹脂、尿素樹脂、(ブロック)ポリイソシアネート化合物、エポキシ化合物、カルボキシル基含有化合物、酸無水物、アルコキシシラン基含有化合物などが挙げられる。
 本発明で用いる常温硬化又は熱硬化性下塗り塗料組成物(Ic)は、さらに必要に応じて他の樹脂や各種添加剤を含有してもよい。また、常温硬化又は熱硬化性下塗り塗料組成物(Ic)は、所望により溶剤を含み、該溶剤で希釈されたものであっても良い。他の樹脂としては、例えばポリエステル樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、シリコン樹脂、フッ素樹脂、繊維素誘導体などが挙げられ、添加剤としては、例えば、硬化触媒、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、顔料、充填剤等が挙げられる。
 上記溶剤としては、例えば、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)の説明で列記された中から適宜選択して使用することができる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組合せて使用することができる。
 常温硬化又は熱硬化性下塗り塗料組成物(Ic)の不揮発分は特に限定されるものではない。例えば、好ましくは20~90質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。
 (II)活性エネルギー線硬化型上塗り塗料組成物
 本発明の活性エネルギー線硬化型上塗り塗料組成物(II)は、シルセスキオキサン化合物(a)及び光重合開始剤(b)を含有する。
 (a)シルセスキオキサン化合物
 (a)成分であるシルセスキオキサン化合物は、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物である。
 ここで、本明細書において「シルセスキオキサン化合物」は、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物のみを意味するのではなく、Si-OH基が残存したラダー構造、不完全籠型構造、ランダム縮合体のシルセスキオキサン化合物をも含むことができる。
 前記シルセスキオキサン化合物(a)は、Si-OH基の全てが加水分解縮合した構造のシルセスキオキサン化合物の割合が、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは100質量%であることが液安定性及び耐候性の点から好ましい。
 前記シルセスキオキサン化合物(a)として、例えば、前記ウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(A)で表される有機基であるシスセスキオキサン化合物を挙げることができる:
Figure JPOXMLDOC01-appb-C000009
[式(A)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Yは
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、前記に同じ。nは0~9の整数を示す。)、
Figure JPOXMLDOC01-appb-C000011
(式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)、又は
Figure JPOXMLDOC01-appb-C000012
(式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)を示す。]。
 ここで、シルセスキオキサン化合物(a)としては、上記一般式(A)で表される有機基のうち、一種類を有していても、複数種類の有機基を有していてもよい。
 いいかえると、シルセスキオキサン化合物(a)としては、例えば、前記ウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(I)~(III)で表される有機基からなる群より選択される少なくとも一種であるシルセスキオキサン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
[一般式(I)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。nは0~9の整数を示す。]
Figure JPOXMLDOC01-appb-C000014
[式(II)中、R~Rは前記に同じ。Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。]
Figure JPOXMLDOC01-appb-C000015
[式(III)中、R~Rは前記に同じ。Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。]。
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基、ビフェニレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6の2価の炭化水素基、特にエチレン基、1,2-プロピレン基、1,4-ブチレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。
 前記Rとしては、炭素数1~10の2価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,4-ブチレン基、ヘキシレン基等のアルキレン基;シクロヘキシレン基等のシクロアルキレン基;フェニレン基、キシリレン基、ビフェニレン基等のアリーレン基等が挙げられる。なかでも、炭素数1~6の2価の炭化水素基、特にエチレン基、1,3-プロピレン基であることが、耐熱性、耐擦傷性及び極性の高い重合性不飽和化合物との相溶性がより優れる点から好ましい。
 前記nとしては、0~9の整数であれば特に限定されるものではない。nとしては、好ましくは0~5の整数、さらに好ましくは0~3の整数、特に好ましくは0又は1である。
 前記Rとしては、置換又は非置換の炭素数1~6の1価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等の直鎖状又は分岐状のアルキル基といった非環状脂肪族1価炭化水素基又は環状脂肪族1価炭化水素基;トリフルオロメチル基、3,3,3-トリフルオロ-n-プロピル基等の含フッ素アルキル基等が挙げられる。特に、極性の高い重合性不飽和化合物との相溶性がより優れる点からメチル基が好ましい。
 前記Rとしては、置換又は非置換の炭素数1~6の1価の炭化水素基であれば特に限定されるものではない。具体的には例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等の直鎖状又は分岐状のアルキル基といった非環状脂肪族1価炭化水素基又は環状脂肪族1価炭化水素基;トリフルオロメチル基、3,3,3-トリフルオロ-n-プロピル基等の含フッ素アルキル基等が挙げられる。特に、極性の高い重合性不飽和化合物との相溶性がより優れる点からメチル基が好ましい。
 前記一般式(I)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、Rが水素原子であり、Rがエチレン基又は1,4-ブチレン基であり、Rがエチレン基又は1,3-プロピレン基であり、かつnが0である有機基が好ましい。
 前記一般式(II)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、Rがメチル基であり、Rがエチレン基又は1,3-プロピレン基であり、Rが水素原子であり、かつRがエチレン基である有機基が好ましい。
 前記一般式(III)で表される有機基としては、耐熱性、耐擦傷性、極性の高い重合性不飽和化合物との相溶性及び活性エネルギー線硬化性がより優れる点から、Rがメチル基であり、Rがエチレン基又は1,3-プロピレン基であり、Rが水素原子であり、かつRがエチレン基である有機基が好ましい。
 前記シルセスキオキサン化合物(a)は、単一の組成の化合物であってもよく、又は組成の異なる化合物の混合物であってもよい。
 前記シルセスキオキサン化合物(a)の重量平均分子量は、特に限定されるものではない。好ましくは重量平均分子量が1,000~100,000、より好ましくは重量平均分子量が1,000~10,000である。これら範囲は、シルセスキオキサン化合物(a)から得られた塗膜の耐熱性や、活性エネルギー線硬化型上塗り塗料組成物(II)の粘度及び塗装性の点で意義がある。
 前記シルセスキオキサン化合物(a)は種々の方法により製造され得るが、その一例を示せば、例えば下記製造方法A又はBで示される方法により製造される。
 製造方法A
 製造方法Aとしては、ケイ素原子に直接に結合した有機基であり、かつウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基を有する加水分解性シランを含有する出発物質を用いた製造方法が挙げられる。
 具体的には例えば、出発物質に下記一般式(IV)で表される加水分解性シラン及び必要に応じて下記一般式(IV)で表される加水分解性シラン以外の加水分解性シランを用いて、触媒の存在下で加水分解縮合を行ってシルセスキオキサン化合物(a)を製造する方法が挙げられる。
 RSiX  (IV)
 前記一般式(IV)中のRは、ウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基である。Xは、同一又は異なって、塩素又は炭素数1~6のアルコキシ基を示す。
 炭素数1~6のアルコキシ基としては、炭素数1~6(好ましくは炭素数1~4)の直鎖状又は分岐鎖状のアルコキシ基を挙げることができる。より具体的には、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、sec-ブトキシ、n-ペンチルオキシ、1-エチルプロポキシ、イソペンチルオキシ、ネオペンチルオキシ、n-ヘキシルオキシ、1,2,2-トリメチルプロポキシ、3,3-ジメチルブトキシ、2-エチルブトキシ、イソヘキシルオキシ、3-メチルペンチルオキシ基等が含まれる。
 従って、Xとしては、具体的には、例えば、塩素、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
 前記一般式(IV)以外の加水分解性シランとしては、前記一般式(IV)で表される加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。
 ここで、前記一般式(IV)で表される加水分解性シランは、例えば、イソシアネート基を有するトリアルコキシシランと水酸基を有する(メタ)アクリル酸エステルを反応させることにより得ることができる。
 また、前記一般式(IV)で表される加水分解性シランとしては、具体的には例えば、下記一般式(V)で表される加水分解性シランが挙げられる。
Figure JPOXMLDOC01-appb-C000016
[一般式(V)中、R、R、R、n及びXは、前記に同じ。]
 前記一般式(V)で表される加水分解性シランは、例えば、下記一般式(VI)で表される加水分解性シランと、下記一般式(VII)で表される化合物とを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000017
[一般式(VI)中、R及びXは、前記に同じ。]
Figure JPOXMLDOC01-appb-C000018
[一般式(VII)中、R、R及びnは、前記に同じ。]
 前記一般式(VI)で表される化合物としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
 前記一般式(VII)で表される化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート等が挙げられる。
 前記一般式(VI)で表される加水分解性シランと前記一般式(VII)で表される化合物との反応は、イソシアネート基と水酸基とを反応させる常法に従って行うことができる。
 上記反応式における一般式(VI)で表される加水分解性シランと前記一般式(VII)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
 また、前記一般式(IV)で表される加水分解性シランの他の具体的な例としては、下記一般式(VIII)で表される加水分解性シラン及び下記一般式(IX)で表される加水分解性シランが挙げられる。
Figure JPOXMLDOC01-appb-C000019
[一般式(VIII)中、R、R、R、R及びXは前記に同じ。]
Figure JPOXMLDOC01-appb-C000020
[一般式(IX)中、R、R、R、R及びXは前記に同じ。]
 前記一般式(VIII)で表される加水分解性シランは、例えば、下記一般式(X)で表される加水分解性シランと下記一般式(XI)で表される化合物とを反応させ生成物を得た後、さらに該生成物に下記一般式(XII)で表される化合物を反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000021
[一般式(X)中、R及びXは前記に同じ。]
Figure JPOXMLDOC01-appb-C000022
[一般式(XI)中、Rは前記に同じ。]
Figure JPOXMLDOC01-appb-C000023
[一般式(XII)中、R及びRは前記に同じ。]
 前記一般式(X)で表される加水分解性シランとしては、具体的には例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。
 前記一般式(XI)で表される化合物としては、具体的には例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、トリフルオロ酢酸、3,3,3-トリフルオロプロピオン酸等が挙げられる。
 前記一般式(XII)で表される化合物としては、具体的には例えば、イソシアネートメチル(メタ)アクリレート、2-イソシアネートエチル(メタ)アクリレート、3-イソシアネートプロピル(メタ)アクリレート、イソシアネートオクチル(メタ)アクリレート等が挙げられる。
 前記一般式(IX)で表される加水分解性シランは、例えば、下記一般式(XIII)で表される加水分解性シランと下記一般式(XIV)で表される化合物とを反応させ生成物を得た後、さらに該生成物に下記一般式(XV)で表される化合物を反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000024
[一般式(XIII)中、R及びXは前記に同じ。]
Figure JPOXMLDOC01-appb-C000025
[一般式(XIV)中、Rは前記に同じ。]
Figure JPOXMLDOC01-appb-C000026
[一般式(XV)中、R及びRは前記に同じ。]
 前記一般式(XIII)で表される加水分解性シランとしては、具体的には例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。
 前記一般式(XIV)で表される化合物としては、具体的には例えば、前記一般式(XI)で表される化合物の説明において具体的に示した化合物と同じ化合物が挙げられる。
 前記一般式(XV)で表される化合物としては、具体的には例えば、前記一般式(XII)で表される化合物の説明において具体的に示した化合物と同じ化合物が挙げられる。
 前記一般式(X)で表される加水分解性シランと前記一般式(XI)で表される化合物との反応、及び、前記一般式(XIII)で表される加水分解性シランと前記一般式(XIV)で表される化合物との反応は、カルボキシル基とエポキシ基とを反応させる常法に従って行うことができる。
 上記反応における前記一般式(X)で表される加水分解性シランと前記一般式(XI)で表される化合物との使用割合は、通常前者1モルに対し後者を0.80~1.20モル程度、好ましくは0.90~1.10モル程度とすればよい。
 上記反応における前記一般式(XIII)で表される加水分解性シランと前記一般式(XIV)で表される化合物との使用割合は、通常前者1モルに対し後者を0.80~1.20モル程度、好ましくは0.90~1.10モル程度とすればよい。
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。当該反応は、通常、10~24時間程度で終了する。
 前記反応では適宜触媒を使用しても良い。触媒としては、具体的には例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ-ル類;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィンなどのリン化合物等が挙げられる。触媒の使用量は、特に限定されるものではないが、反応原料に対して、0.01~5質量%である。
 前記反応では適宜溶媒を使用しても良い。溶媒は特に限定されるものではない。具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
 前記一般式(X)で表される加水分解性シランと前記一般式(XI)で表される化合物とを反応させて得た反応生成物(以下、単に反応生成物(X-XI)と示すこともある)と前記一般式(XII)で表される化合物との反応、及び、前記一般式(XIII)で表される加水分解性シランと前記一般式(XIV)で表される化合物とを反応させて得た反応生成物(以下、単に反応生成物(XIII-XIV)と示すこともある)と前記一般式(XV)で表される化合物との反応は、水酸基とイソシアネート基とを反応させる常法に従って行うことができる。
 上記反応における前記反応生成物(X-XI)と前記一般式(XII)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。
 上記反応における前記反応生成物(XIII-XIV)と前記一般式(XV)で表される化合物との使用割合は、通常前者1モルに対し後者を0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、2~10時間程度で終了する。
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。
 前記反応では適宜溶媒を使用しても良い。溶媒としては、具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
 本製造方法において前記本発明のシルセスキオキサン化合物を得るためには、具体的には、
 [1]前記一般式(IV)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
 [2]前記一般式(IV)で表される加水分解性シラン及び前記一般式(IV)以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
 前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。
 前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001~1.0モル、より好ましくは0.0005~0.1モルの範囲である。
 加水分解縮合する場合(前記[1]又は[2]の場合)は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1~100モル、さらに好ましくは0.5~3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とする本発明のシルセスキオキサン化合物の収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。
 前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。
 極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン、テトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。
 加水分解縮合時の反応温度としては0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。また、この反応は圧力によらず実施できるが、0.02~0.2MPa、特に0.08~0.15MPaの圧力範囲が好ましい。当該反応は、通常、1~12時間程度で終了する。
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(IV)中のX]の大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性及び耐候性の点から好ましい。
 加水分解縮合後の混合液からは、溶媒や反応で生成したアルコール、触媒を公知の手法で除去してもよい。なお、得られた生成物は、その目的に応じて、触媒を洗浄、カラム分離、固体吸着剤等の各種の精製法によって除去し、更に精製してもよい。好ましくは、効率の点から水洗により触媒を除去することである。
 以上の製造方法によりシルセスキオキサン化合物(a)が製造される。
 ここで、前記加水分解縮合において100%縮合しない場合には、上記の製造方法により得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、上記製造方法により得られるシルセスキオキサン化合物(a)は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。
 製造方法B
 製造方法Bとしては、エポキシ基を有する加水分解性シランを用いて、エポキシ基を有するシルセスキオキサン化合物を製造する第B1工程、該第B1工程により得られたシルセスキオキサン化合物のエポキシ基に、カルボキシル基を有する化合物の該カルボキシル基を反応させ、2級水酸基を有するシルセスキオキサン化合物を製造する第B2工程、該第B2工程により得られたシルセスキオキサン化合物の2級水酸基に、(メタ)アクリロイルオキシ基及びイソシアネート基を有する化合物の該イソシアネート基を反応させる第B3工程を含む製造方法が挙げられる。
 第B1工程
 前記第B1工程に用いるエポキシ基を有する加水分解性シランとしては、具体的には例えば、下記一般式(XVI)で表される加水分解性シラン、及び下記一般式(XVII)で表される加水分解性シランが挙げられる。
Figure JPOXMLDOC01-appb-C000027
[一般式(XVI)及び一般式(XVII)中、R及びXは前記に同じ。]
 前記第B1工程においてエポキシ基を有するシルセスキオキサン化合物を得るためには、具体的には、
 [3]前記一般式(XVI)で表される加水分解性シラン及び/又は前記一般式(XVII)で表される加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、又は、
 [4]前記一般式(XVI)で表される加水分解性シラン及び/又は一般式(XVII)で表される加水分解性シラン、並びにエポキシ基を有する加水分解性シラン以外の加水分解性シランを出発物質に用いて触媒の存在下で加水分解縮合する、
ことが挙げられる。
 前記エポキシ基を有する加水分解性シラン以外の加水分解性シランとしては、前記エポキシ基を有する加水分解性シランとともに加水分解縮合することによりシルセスキオキサン化合物を製造できるものであれば特に限定されるものではない。具体的には例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルトリアルコキシシラン;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン等の3-(メタ)アクリロイルオキシプロピルトリアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリアルコキシシラン等が挙げられる。
 前記触媒としては、塩基性触媒が好適に用いられる。塩基性触媒としては、具体的には例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等の水酸化アンモニウム塩、テトラブチルアンモニウムフルオリド等のフッ化アンモニウム塩などが挙げられる。
 前記触媒の使用量は特に限定されるものではないが、多すぎるとコスト高、除去が困難等の問題があり、一方、少なすぎると反応が遅くなってしまう。そのため、触媒の使用量は、好ましくは加水分解性シラン1モルに対して0.0001~1.0モル、より好ましくは0.0005~0.1モルの範囲である。
 加水分解縮合する場合(前記[3]又は[4]の場合)は水を使用する。加水分解性シランと水との量比は、特に限定されるものでない。水の使用量は、加水分解性シラン1モルに対し、好ましくは水0.1~100モル、さらに好ましくは0.5~3モルの割合である。水の量が少なすぎると、反応が遅くなり、目的とするシルセスキオキサンの収率が低くなるおそれがあり、水の量が多すぎると高分子量化し、所望とする構造の生成物が減少するおそれがある。また、使用する水は塩基性触媒を水溶液として用いる場合はその水で代用してもよいし、別途水を加えてもよい。
 前記加水分解縮合において、有機溶媒は使用してもよく、又は使用しなくてもよい。有機溶媒を用いることは、ゲル化を防止する点及び製造時の粘度を調節できる点から好ましい。有機溶媒としては、極性有機溶媒、非極性有機溶媒を単独又は混合物として用いることができる。
 極性有機溶媒としてはメタノール、エタノール、2-プロパノール等の低級アルコール類、アセトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類が用いられるが、特にアセトン、テトラヒドロフランは沸点が低く系が均一になり反応性が向上することから好ましい。非極性有機溶媒としては、炭化水素系溶媒が好ましく、トルエン、キシレン等の水よりも沸点が高い有機溶媒が好ましく、特にトルエン等の水と共沸する有機溶媒は系内から水を効率よく除去できるため好ましい。特に、極性有機溶媒と非極性有機溶媒とを混合することで、前述したそれぞれの利点が得られるため混合溶媒として用いることが好ましい。
 加水分解縮合時の反応温度としては0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。当該反応は、通常、1~12時間程度で終了する。
 加水分解縮合反応では、加水分解と共に縮合反応が進行し、加水分解性シランの加水分解性基[具体的には例えば、前記一般式(XVI)又は前記一般式(XVII)中のX]のXの大部分、好ましくは100%がヒドロキシル基(OH基)に加水分解され、更にそのOH基の大部分、好ましくは80%以上、より好ましくは90%以上、特に好ましくは100%を縮合させることが液安定性の点から好ましい。
 第B2工程
 前記第B2工程では、具体的には例えば、前記第B1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(XVIII)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(XIX)で表される化合物を反応させ、ケイ素原子に直接に結合した有機基として下記一般式(XX)で表される有機基を有するシルセスキオキサン化合物を製造する。
Figure JPOXMLDOC01-appb-C000028
[一般式(XVIII)、一般式(XIX)及び一般式(XX)中、R及びRは前記に同じ。]
 また他の具体例としては例えば、前記第B1工程により得られるケイ素原子に直接に結合した有機基として下記一般式(XXI)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(XXII)で表される化合物を反応させ、ケイ素原子に直接に結合した有機基として下記一般式(XXIII)で表される有機基を有するシルセスキオキサン化合物を製造する。
Figure JPOXMLDOC01-appb-C000029
[一般式(XXI)、一般式(XXII)及び一般式(XXIII)中、R及びRは前記に同じ。]
 前記ケイ素原子に直接に結合した有機基として前記一般式(XX)で表される有機基を有するシルセスキオキサン化合物、及び前記ケイ素原子に直接に結合した有機基として前記一般式(XXIII)で表される有機基を有するシルセスキオキサン化合物を製造する際の反応は、エポキシ基とカルボキシル基とを反応させる常法に従って行うことができる。
 反応温度は、例えば、0~200℃、好ましくは20~200℃、更に好ましくは、20~120℃である。当該反応は、通常、10~24時間程度で終了する。
 上記反応における前記一般式(XVIII)で表される有機基を有するシルセスキオキサン化合物と前記一般式(XIX)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(XVIII)で表される有機基1モルに対し一般式(XIX)で表される化合物を、通常、0.80~1.20モル程度、好ましくは0.90~1.10モル程度とすればよい。
 上記反応における前記一般式(XXI)で表される有機基を有するシルセスキオキサン化合物と前記一般式(XXII)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(XXI)で表される有機基1モルに対し一般式(XXII)で表される化合物を、通常、0.80~1.20モル程度、好ましくは0.80~1.20モル程度とすればよい。
 前記反応では適宜触媒を使用しても良い。触媒としては、具体的には例えば、トリエチルアミン、ベンジルジメチルアミン等の3級アミン;テトラメチルアンモニウムクロライド、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等の4級アンモニウム塩;ジエチルアミン等の酢酸塩、ギ酸塩等の2級アミン塩;水酸化ナトリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物;酢酸ナトリウム、酢酸カルシウム等のアルカリ金属、アルカリ土類金属塩;イミダゾ-ル類;ジアザビシクロウンデセン等の環状含窒素化合物、トリフェニルフォスフィン、トリブチルフォスフィンなどのリン化合物等が挙げられる。触媒の使用量は、特に限定されるものではないが、反応原料に対して、0.01~5質量%である。
 前記反応では適宜溶媒を使用しても良い。溶媒は特に限定されるものではない。具体的には例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン類;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル類;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル類;トルエン、キシレン等の芳香族炭化水素類、脂肪族炭化水素類等が挙げられる。
 第B3工程
 前記第B3工程では、具体的には例えば、前記第B2工程により得られるケイ素原子に直接に結合した有機基として前記一般式(XX)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(XXIV)で表される化合物を反応させる。
Figure JPOXMLDOC01-appb-C000030
[一般式(XXIV)中、R及びRは前記に同じ。]
 この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(II)で表される有機基を有するシルセスキオキサン化合物を得ることができる。
 また他の具体例としては例えば、前記第B2工程により得られるケイ素原子に直接に結合した有機基として前記一般式(XXIII)で表される有機基を有するシルセスキオキサン化合物に、下記一般式(XXV)で表される化合物を反応させる。
Figure JPOXMLDOC01-appb-C000031
[一般式(XXV)中、R及びRは前記に同じ。]
 この反応を行うことにより、ケイ素原子に直接に結合した有機基として前記一般式(III)で表される有機基を有するシルセスキオキサン化合物を得ることができる。
 前記反応の反応温度としては、水酸基とイソシアネート基を反応させる常法に従って行うことができ、例えば、0~200℃、好ましくは10~200℃、更に好ましくは、10~120℃である。当該反応は、通常、2~10時間程度で終了する。
 上記反応における前記一般式(XX)で表される有機基を有するシルセスキオキサン化合物と前記一般式(XXIV)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(XX)で表される有機基1モルに対し一般式(XXIV)で表される化合物を、通常、0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。
 上記反応における前記一般式(XXIII)で表される有機基を有するシルセスキオキサン化合物と前記一般式(XXV)で表される化合物との使用割合は、シルセスキオキサン化合物が有する一般式(XXIII)で表される有機基1モルに対し一般式(XXV)で表される化合物を、通常、0.90~1.10モル程度、好ましくは0.95~1.05モル程度とすればよい。
 前記反応では適宜触媒を使用しても良い。触媒としては、トリエチルアミン等の第三級アミン、ジブチル錫ジラウレート等の有機金属化合物等が挙げられる。
 以上の製造方法によりシルセスキオキサン化合物(a)が製造される。
 上記各反応により得られる目的とする化合物は、通常の分離手段により反応系内より分離され、さらに精製することができる。この分離及び精製手段としては、例えば、蒸留法、溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー、等を用いることができる。
 ここで、前記第B1工程の加水分解縮合において100%縮合しない場合には、製造方法Bにより得られる生成物には、Si-OH基(ヒドロキシシリル基)の全てが加水分解縮合した構造のシルセスキオキサン化合物以外に、Si-OH基が残存したラダー構造、不完全籠型構造及び/又はランダム縮合体のシルセスキオキサン化合物が含まれる場合があるが、上記製造方法Bにより得られるシルセスキオキサン化合物(a)は、それらラダー構造、不完全籠型構造及び/又はランダム縮合体を含んでいてもよい。
 (b)光重合開始剤
 光重合開始剤(b)としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
 光重合開始剤(b)としては、例えばベンジル、ジアセチル等のα-ジケトン化合物;ベンゾイン等のアシロイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル化合物;チオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、チオキサントン-4-スルホン酸等のチオキサントン化合物;ベンゾフェノン、4,4´-ビス(ジメチルアミノ)ベンゾフェノン、4,4´-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;ミヒラーケトン化合物;アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、α,α´-ジメトキシアセトキシベンゾフェノン、2,2´-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル〔4-(メチルチオ)フェニル〕-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、α-イソヒドロキシイソブチルフェノン、α,α´-ジクロル-4-フェノキシアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等のアセトフェノン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;アントラキノン、1,4-ナフトキノン等のキノン化合物;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)-s-トリアジン等のハロゲン化合物;ジ-t-ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。
 光重合開始剤(b)の市販品としては、例えば、イルガキュア(IRGACURE)-184、イルガキュア-127、イルガキュア-261、イルガキュア-500、イルガキュア-651、イルガキュア-819、イルガキュア-907、イルガキュア-CGI-1700(BASF社製、商品名)、ダロキュア(Darocur)-1173、ダロキュア-1116、ダロキュア-2959、ダロキュア-1664、ダロキュア-4043(メルクジャパン社製、商品名)、カヤキュア(KAYACURE)-MBP、カヤキュア-DETX-S、カヤキュア-DMBI、カヤキュア-EPA、カヤキュア-OA(日本化薬社製、商品名)、ビキュア(VICURE)-10、ビキュア-55〔ストウファー社(STAUFFER Co., LTD.)製、商品名〕、トリゴナル(TRIGONAL)P1〔アクゾ社(AKZO Co., LTD.)製、商品名〕、サンドレイ(SANDORAY)1000〔サンドズ社(SANDOZ Co., LTD.)製、商品名〕、ディープ(DEAP)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、カンタキュア(QUANTACURE)-PDO、カンタキュア-ITX、カンタキュア-EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕、ESACURE-KIP150、ESACURE-ONE(LAMBERTI社製、商品名)、ルシリン-TPO等が挙げられる。
 前記光重合開始剤(b)としては、光硬化性の点からチオキサントン化合物、アセトフェノン化合物及びアシルフォスフィンオキシド化合物の1種又は2種以上の混合物であることが好ましく、なかでもアセトフェノン化合物とアシルフォスフィンオキシド化合物との混合物であることが特に好適である。
 前記シルセスキオキサン化合物(a)と光重合開始剤(b)との含有割合は、特に限定されるものではない。通常、前者の不揮発分100質量部に対し後者を1~20質量部、好ましくは2~10質量部とすればよい。
 本発明で用いる活性エネルギー線硬化型上塗り塗料組成物(II)は、前記(a)、(b)成分を必須とするものであり、さらに必要に応じて、前記(a)成分以外の重合性不飽和化合物(c)を含有することができる。
 重合性不飽和化合物(c)としては、本発明のシルセスキオキサン化合物以外の化合物であって、その化学構造中に重合性不飽和二重結合を少なくとも1つ有する化合物であれば特に限定されない。
 前記重合性不飽和化合物(c)としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリス(2-アクリロイルオキシプロピル)イソシアヌレート、ε-カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、1,6-ヘキサメチレンジイソシアネートのイソシアヌレート環付加物とヒドロキシアルキル(メタ)アクリレートとの等モル反応物、イミノオキサジアジンジオン基を有するヘキサメチレンジイソシアネートのイソシアヌレート環付加物とヒドロキシアルキル(メタ)アクリレートとの等モル反応物、等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート等が挙げられる。ウレタン(メタ)アクリレートは、例えばポリイソシアネート化合物、ヒドロキシルアルキル(メタ)アクリレート及びポリオール化合物を原料として用い、イソシアネート基に対してヒドロキシル基が等モル量もしくは過剰になるような量で反応させることで得ることができる。これら重合性不飽和化合物は単独で又は2種以上組合せて使用することができる。
 前記重合性不飽和化合物(c)を含有する場合の使用量は特に限定されるものではないが、得られる複層塗膜の物性の点から、前記シルセスキオキサン化合物(a)の不揮発分100質量部に対して、0.1~1000質量部が好ましく、1~200質量部がさらに好ましい。
 また本発明で用いる活性エネルギー線硬化型上塗り塗料組成物(II)は、耐擦傷性、耐磨耗性向上の観点から、必要に応じてコロイダルシリカを含有してもよい。コロイダルシリカは、通常、一次粒子径が1~200mμの無水ケイ酸の超微粒子を水又は有機溶媒に分散させたものである。かかるコロイダルシリカは加水分解性シラン化合物や重合性シラン化合物等による処理がなされているものであってもよい。
 上記コロイダルシリカの含有量は特に限定されるものではないが、得られる塗膜の耐擦傷性や耐磨耗性向上、ワレ防止の点から、前記シルセスキオキサン化合物(a)の不揮発分100質量部に対して、1~60質量部が好ましく、5~30質量部がさらに好ましい。
 本発明で用いる活性エネルギー線硬化型上塗り塗料組成物(II)は、さらに必要に応じて各種添加剤、飽和樹脂等を含有してもよい。また、活性エネルギー線硬化型上塗り塗料組成物(II)は、所望により溶剤を含み、該溶剤で希釈されたものであっても良い。添加剤としては、例えば、増感剤、紫外線吸収剤、光安定剤、重合禁止剤、酸化防止剤、消泡剤、表面調整剤、可塑剤、着色剤等が挙げられる。飽和樹脂としては、例えば、飽和アクリル樹脂、飽和ポリエステル樹脂、飽和ウレタン樹脂等が挙げられる。紫外線吸収剤や光安定剤としては、前述の下塗り塗料組成物(I)の説明で列記された中から適宜選択して使用することができる。
 希釈に用いることができる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン化合物;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル化合物;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル化合物;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のグリコールエーテル化合物;芳香族炭化水素化合物、脂肪族炭化水素化合物等が挙げられる。これらは、粘度の調整、塗布性の調整等の目的に応じて適宜組合せて使用することができる。
 活性エネルギー線硬化型上塗り塗料組成物(II)の不揮発分は特に限定されるものではない。例えば、好ましくは20~90質量%であり、さらに好ましくは25~70質量%である。これら範囲は、塗膜の平滑性及び乾燥時間の短縮化の点で意義がある。
 複層塗膜形成方法
 本発明の複層塗膜形成方法は、
(1)基材上に、前述の活性エネルギー線硬化型下塗り塗料組成物(Ia)、光及び熱硬化性下塗り塗料組成物(Ib)、並びに常温硬化又は熱硬化性下塗り塗料組成物(Ic)からなる群から選択される少なくとも1種の下塗り塗料組成物(I)を用いて下塗り塗膜を形成する工程、及び
(2)下塗り塗膜を形成した後、該下塗り塗膜の上に、上述の活性エネルギー線硬化型上塗り塗料組成物(II)を用いて上塗り塗膜を形成する工程からなる(comprising)ものである。
 基材
 本発明方法が適用される基材は特に限定されない。例えば、鉄、アルミニウム、真鍮、銅、ステンレス鋼、ブリキ、亜鉛メッキ鋼、合金化亜鉛(Zn-Al、Zn-Ni、Zn-Fe等)メッキ鋼等の金属材料;ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂等の樹脂や各種のFRP等のプラスチック材料;ガラス、セメント、コンクリート等の無機材料;木材;繊維材料(紙、布等)等が挙げられ、なかでも、プラスチック材料が好適であり、特にポリカーボネート樹脂が好適である。
 また、本発明方法によって得られる塗装物品の用途としては、特に制限されず、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;自動車部品;携帯電話、オーディオ機器等の家庭電気製品の外板部等が挙げられ、なかでも、自動車車体の外板部及び自動車部品が好ましい。
 (1)下塗り塗膜を形成する工程
 上記の基材に下塗り塗料組成物(I)を用いて下塗り塗膜を形成する、すなわち、下塗り塗料組成物(I)を塗布する方法は特に限定されるものではなく、例えば、ローラー塗装、ロールコーター塗装、スピンコーター塗装、カーテンロールコーター塗装、スリットコーター塗装、スプレー塗装、静電塗装、浸漬塗装、シルク印刷、スピン塗装等が挙げられる。
 下塗り塗膜の膜厚は目的に応じて適宜設定される。例えば下塗り塗料組成物(I)として活性エネルギー線硬化型下塗り塗料組成物(Ia)を用いる場合、膜厚は3~30μmが好ましく、5~15μmがさらに好ましい。下塗り塗料組成物(I)として光及び熱硬化性下塗り塗料組成物(Ib)を用いる場合、膜厚は3~50μmが好ましく、5~40μmがさらに好ましい。下塗り塗料組成物(I)として常温硬化又は熱硬化性下塗り塗料組成物(Ic)を用いる場合、膜厚は3~50μmが好ましく、5~40μmがさらに好ましい。下塗り塗膜の硬化性及び塗装作業性(タレ防止)の点から、膜厚がこれら範囲の下限値以上であることが好ましい。また、耐候性試験後の下塗り塗膜と基材との付着性の点から、膜厚がこれら範囲の上限値以下であることが好ましい。
 下塗り塗料組成物(I)として活性エネルギー線硬化型下塗り塗料組成物(Ia)を用いる場合、前記活性エネルギー線硬化型下塗り塗料組成物(Ia)から下塗り塗膜を形成する際、必要に応じて乾燥を行うことができる。乾燥は、活性エネルギー線硬化型下塗り塗料組成物(Ia)が含有する溶剤を除去できる条件であれば特に限定されるものではない。例えば、20~100℃の乾燥温度において3~20分間の乾燥時間で行うことができる。
 上記の通り必要に応じて下塗り塗膜を乾燥させた後に、活性エネルギー線照射を行い硬化塗膜を形成しても良く、また未硬化のままで次工程の上塗り塗料組成物を塗布しても良い。活性エネルギー線照射の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。照射量は、例えば好ましくは100~5000mJ/cm、さらに好ましくは300~3000mJ/cmの範囲が挙げられる。下塗り塗膜と上塗り塗膜との付着性の点から、かかる照射量が5000mJ/cmを超えないことが好ましい。
 活性エネルギー線照射は、大気雰囲気下で行ってもよく、また不活性ガス雰囲気下で行っても良い。不活性ガスとしては、例えば、窒素、二酸化炭素等が挙げられる。大気雰囲気下での活性エネルギー線照射が上塗り塗膜との付着性の点から好ましい。
 下塗り塗料組成物(I)として光及び熱硬化性下塗り塗料組成物(Ib)を用いる場合、上記光及び熱硬化性下塗り塗料組成物(Ib)から下塗り塗膜を形成する際、塗装直後の塗膜の揮発分を減少させる又は揮発分を除去するために、予備加熱(プレヒート)、エアブロー等を行うことができる。プレヒートは、通常、塗装された被塗物を乾燥炉内で、50~140℃、好ましくは60~100℃の温度で1~30分間直接的又は間接的に加熱することにより行うことができる。また、エアブローは、通常、被塗物の塗装面に常温又は25℃~80℃の温度に加熱された空気を吹き付けることにより行うことができる。
 上記の通り必要に応じて乾燥させた後に、加熱及び活性エネルギー線照射を行い硬化塗膜を形成しても良く、また加熱のみで不飽和基が未反応のまま次工程の上塗り塗料組成物を塗布しても良い。
 上記光及び熱硬化性下塗り塗料組成物(Ib)による塗膜を硬化させる際には、通常、加熱及び活性エネルギー線照射を行う。加熱及び活性エネルギー線照射の順序は特に限定されず、加熱の後に活性エネルギー線照射を行ってもよく、活性エネルギー線照射の後に加熱を行ってもよく、加熱と活性エネルギー線照射とを同時に行ってもよい。加熱と活性エネルギー線照射とを同時に行う際には、活性エネルギー線の照射源からの熱(例えばランプが発する熱)を熱源としてもよい。さらに、加熱の後に活性エネルギー線照射を行う際には、被塗物が熱を帯びた状態(余熱を持った状態)で活性エネルギー線照射を行ってもよい。
 加熱条件は特に限定されるものではない。例えば、50~140℃の温度で1~30分間加熱することができる。上記塗料組成物(Ib)は、低温での硬化性を有しており、高い温度(例えば100℃以上)で加熱せずとも耐候性などの所望の性能が得られることから、60~100℃の温度で加熱することが好ましい。また塗料組成物(Ib)は、活性エネルギー線でも硬化するため、長い時間で加熱せずとも耐候性などの所望の性能が得られることから、1~30分間加熱することが好ましく、1~20分間加熱することがより好ましい。
 活性エネルギー線照射の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。その照射量は、通常、100~5000mJ/cm、さらに好ましくは300~3000mJ/cmの範囲が挙げられる。かかる照射量が5000mJ/cmを超えると上塗り塗膜との付着性が低下する恐れがあるので好ましくない。
 活性エネルギー線照射は、大気雰囲気下で行ってもよく、また不活性ガス雰囲気下で行っても良い。不活性ガスとしては、窒素、二酸化炭素等が挙げられる。大気雰囲気下での活性エネルギー線照射が、上塗り塗膜との付着性の点から好ましい。
 下塗り塗料組成物(I)として常温硬化又は熱硬化性下塗り塗料組成物(Ic)を用いる場合、上記常温硬化又は熱硬化性下塗り塗料組成物(Ic)から下塗り塗膜を形成する際、塗装直後の塗膜の揮発分を減少させる又は揮発分を除去するために、予備加熱(プレヒート)、エアブロー等を行うことができる。プレヒートは、通常、常温硬化又は熱硬化性下塗り塗料組成物(Ic)が塗装された被塗物を乾燥炉内で、50~110℃、好ましくは60~90℃の温度で1~30分間直接的又は間接的に加熱することにより行うことができる。また、エアブローは、通常、被塗物の塗装面に常温又は25℃~80℃の温度に加熱された空気を吹き付けることにより行うことができる。
 上記の通り必要に応じて乾燥させた後に、加熱を行い硬化塗膜を形成しても良く、また乾燥/未硬化のまま次工程の上塗り塗料組成物を塗布しても良い。
 上記常温硬化又は熱硬化性下塗り塗料組成物(Ic)による塗膜を硬化させる際の加熱条件は特に限定されるものではない。例えば、50~140℃の温度で1~60分間加熱することができる。
 (2)上塗り塗膜を形成する工程
 上記の通り形成された下塗り塗膜の上に、活性エネルギー線硬化型上塗り塗料組成物(II)を用いて上塗り塗膜を形成する、すなわち、活性エネルギー線硬化型上塗り塗料組成物(II)を塗布する方法は特に限定されるものではなく、例えば、ローラー塗装、ロールコーター塗装、スピンコーター塗装、カーテンロールコーター塗装、スリットコーター塗装、スプレー塗装、静電塗装、浸漬塗装、シルク印刷、スピン塗装等が挙げられる。
 前記活性エネルギー線硬化型上塗り塗料組成物(II)から塗膜を形成する際、必要に応じて乾燥を行うことができる。乾燥は、添加している溶剤を除去できる条件であれば特に限定されるものではない。例えば、20~100℃の乾燥温度において3~20分間の乾燥時間で行うことができる。
 上塗り塗膜の膜厚は目的に応じて適宜設定される。例えば膜厚は1~15μmが好ましく、2~10μmがさらに好ましい。得られる複層塗膜の耐候性(特にワレ)の点から、膜厚がこれら範囲の下限値以上であることが好ましい。また、塗膜の硬化性の点から、膜厚がこれら範囲の上限値以下であることが好ましい。
 上記の通り必要に応じて上塗り塗膜を乾燥させた後に、活性エネルギー線照射を行い、硬化塗膜を形成する。活性エネルギー線の照射源及び照射量は特に限定されるものではない。例えば活性エネルギー線の照射源としては、超高圧、高圧、中圧、低圧の水銀灯、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等が挙げられる。照射量は、例えば好ましくは100~10000mJ/cm、さらに好ましくは500~5000mJ/cmの範囲が挙げられる。
 活性エネルギー線照射は、大気雰囲気下で行ってもよく、また不活性ガス雰囲気下で行っても良い。不活性ガスとしては、例えば、窒素、二酸化炭素等が挙げられる。不活性ガス雰囲気下での活性エネルギー線照射が、硬化性の点から好ましい。
 また、活性エネルギー線照射後、必要に応じて塗膜を加熱してもよい。加熱をすることによって、活性エネルギー線照射による塗膜の硬化により発生した塗膜の歪みを緩和することができる。さらにこの加熱によって塗膜の硬度、又は付着性を向上させることができる場合がある。加熱は、通常、80~150℃の雰囲気温度で1~30分間の条件で行うことができる。
 以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。なお、製造例における構造解析及び測定は、本明細書に記載の前記分析装置に加え、以下の分析装置及び測定方法により行った。
 (29Si-NMR、H-NMR分析)
 装置:JEOL社製 FT-NMR EX-400
 溶媒:CDCl
 内部標準物質:テトラメチルシラン
 (FT-IR分析)
 装置:日本分光社製 FT/IR-610。
 (SP値の測定方法)
 本実施例におけるSP値とは溶解性パラメーターのことであり、簡便な実測法である濁点滴定により測定することができ、下記のK.W.SUH、J.M.CORBETTの式(Journalof Applied  Polymer  Science,12,2359,1968の記載参照)に従い算出される値である。
式  SP=(√Vml・δH+√Vmh・δD)/(√Vml+√Vmh)
濁点滴定では、試料0.5gをアセトン10mlに溶解した中に、n-ヘキサンを加えていき、濁点での滴定量H(ml)を読み、同様にアセトン溶液中に脱イオン水を加えたときの濁点における滴定量D(ml)を読み、これらを下記式に適用し、Vml、Vmh、δH、δDを算出する。なお、各溶剤の分子容(mol/ml)は、アセトン:74.4、n-ヘキサン:130.3、脱イオン水:18であり、各溶剤のSPは、アセトン:9.75、n-ヘキサン:7.24、脱イオン水:23.43である。
Vml=74.4×130.3/((1-VH)×130.3+VH×74.4) 
Vmh=74.4×18/((1-VD)×18+VD×74.4) 
VH=H/(10+H)
VD=D/(10+D)
δH=9.75×10/(10+H)+7.24×H/(10+H)
δD=9.75×10/(10+D)+23.43×D/(10+D)。
 シルセスキオキサン化合物(a)の製造
 (製造例1)
 還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、3-イソシアネートプロピルトリエトキシシラン685部、2-ヒドロキシエチルアクリレート315部、p-メトキシフェノール1部を仕込み、乾燥空気を吹き込みながら100℃で12時間反応させ、生成物(P1)を得た。次に、還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、生成物(P1)728部、テトラヒドロフラン2800部を入れて常温で攪拌した。テトララブチルアンモニウムフルオリド三水和物4部を脱イオン水54部に溶解してフラスコに投入し、20℃にて24時間反応させた。1-メトキシ-2-プロパノール500部を入れて、減圧蒸留にて揮発分を除去した後、更に1-メトキシ-2-プロパノール500部を入れて減圧蒸留し、溶媒を交換した。生成物を1000部に調整し、生成物(P2)の不揮発分50%溶液1000部を得た。
 生成物(P2)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、T0,T1、T2構造に由来するピークは観測されなかった。
 また、生成物(P2)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.01であった。
 また、生成物(P2)についてFT-IR分析を行った結果、ウレタン結合に帰属する1540cm-1付近のピークが確認された。
 また、生成物(P2)についてゲルパーミエーションクロマトグラフ(GPC)分析を行った結果、重量平均分子量は2,500であった。
 生成物(P2)についての前記29Si-NMR、H-NMR、FT-IR、GPCの結果から、生成物(P2)が、ケイ素原子に直接に結合した有機基の全てが下記式(XXVI)で表される有機基
Figure JPOXMLDOC01-appb-C000032
を有するシルセスキオキサン化合物であって、該シルセスキオキサン化合物がSi-OH基のほとんど全てが加水分解縮合した構造である重量平均分子量2,500のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は10.7であった。
 (製造例2)
 還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、3-イソシアネートプロピルトリエトキシシラン646部、4-ヒドロキシブチルアクリレート363部、p-メトキシフェノール1部を仕込み、乾燥空気を吹き込みながら100℃で12時間反応させ、生成物(P3)を得た。次に、還流冷却器、温度計、攪拌機を取り付けたセパラブルフラスコに、生成物(P3)706部、テトラヒドロフラン2800部を入れて常温で攪拌した。テトララブチルアンモニウムフルオリド三水和物4部を脱イオン水48部に溶解してフラスコに投入し、20℃にて24時間反応させた。1-メトキシ-2-プロパノール500部を入れて、減圧蒸留にて揮発分を除去した後、更に1-メトキシ-2-プロパノール500部を入れて減圧蒸留し、溶媒を交換した。生成物を1000部に調整し、生成物(P4)の不揮発分50%溶液1000部を得た。
 生成物(P4)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、T0,T1、T2構造に由来するピークは観測されなかった。
 また、生成物(P4)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.02であった。
 また、生成物(P4)についてFT-IR分析を行った結果、ウレタン結合に帰属する1540cm-1付近のピークが確認された。
 また、生成物(P4)についてGPC分析を行った結果、重量平均分子量は3,000であった。
 生成物(P4)についての前記29Si-NMR、H-NMR、FT-IR、GPCの結果から、生成物(P4)が、ケイ素原子に直接に結合した有機基の全てが下記式(XXVII)で表される有機基
Figure JPOXMLDOC01-appb-C000033
を有するシルセスキオキサン化合物であって、該シルセスキオキサン化合物がSi-OH基のほとんど全てが加水分解縮合した構造である重量平均分子量3,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は10.5であった。
 (製造例3)
還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、生成物(P1)246部、アクリロキシプロピルトリメトキシシラン470部、テトラヒドロフラン2800部を入れて常温で攪拌した。テトララブチルアンモニウムフルオリド三水和物4部を脱イオン水70部に溶解してフラスコに投入し、乾燥空気を吹き込みながら20℃にて24時間反応させた。1-メトキシ-2-プロパノール500部を入れて、減圧蒸留にて揮発分を除去した後、更に1-メトキシ-2-プロパノール500部を入れて減圧蒸留し、溶媒を交換した。生成物を1000部に調整し、生成物(P5)の不揮発分50%溶液1000部を得た。
 生成物(P5)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、T0,T1、T2構造に由来するピークは観測されなかった。
 また、生成物(P5)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.01であった。
 また、生成物(P5)についてFT-IR分析を行った結果、ウレタン結合に帰属する1540cm-1付近のピークが確認された。
 また、生成物(P5)についてゲルパーミエーションクロマトグラフ(GPC)分析を行った結果、重量平均分子量は2,000であった。
 生成物(P5)についての前記29Si-NMR、H-NMR、FT-IR、GPCの結果から、生成物(P5)が、ケイ素原子に直接に結合した有機基の25モル%が上記式(XXVI)で表される有機基で、残りの75モル%が下記式(XXIX)
Figure JPOXMLDOC01-appb-C000034
を有するシルセスキオキサン化合物であって、該シルセスキオキサン化合物がSi-OH基のほとんど全てが加水分解縮合した構造である重量平均分子量2,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は10.4であった。
 (製造例4)
 還流冷却器、温度計、空気導入管、攪拌機を取り付けたセパラブルフラスコに、Glycidyl POSS cage mixture(商品名、Hybrid Plastics社製)100部及び酢酸ブチル140部を仕込み、60℃で攪拌しながら溶解させた。ここに酢酸40部、p-メトキシフェノール0.5部、及びテトラブチルアンモニウムブロミド10部を仕込み、乾燥空気を吹き込みながら120℃で12時間反応させた。80℃まで冷却し、2-イソシアネートエチルアクリレート85部を加えて80℃で10時間反応させた後、減圧蒸留にて揮発分を除去し、1-メトキシ-2-プロパノールを500gを加えてさらに減圧蒸留し、生成物(P6)の不揮発分50%溶液を得た。
 原材料として用いたGlycidyl POSS cage mixtureは、3-グリシドキシプロピル基含有籠型ポリシルセスキオキサンであり、重量平均分子量は1,800、エポキシ当量は168g/eqであった。
 生成物(P6)について29Si-NMR分析を行った結果、Siに結合した3つの酸素原子が全て他のSiと結合したT3構造に由来する-70ppm付近のピークのみが確認され、ヒドロキシシリル基の存在を示すT1やT2構造に由来するピークは確認されなかった。
 また、生成物(P6)についてH-NMR分析を行った結果、Siに結合したメチレン基に由来する0.6ppmのピークが確認された。また、アクリロイルオキシ基の炭素-炭素不飽和結合に由来する5.9ppm、6.1ppm、6.4ppmのピークが確認された。これらのピーク強度比より計算したSiに結合したメチレン基に対するアクリロイルオキシ基の炭素-炭素不飽和結合のモル比率は、1.00であった。また、エポキシ基に帰属するピークは確認されなかった。滴定によって求めたエポキシ当量は10,000g/eq以上であった。
 また、生成物(P6)についてFT-IR分析を行った結果、原材料であるGlycidyl POSS cage mixtureにおいて確認されなかったウレタン結合に帰属する1540cm-1付近の幅広いピークが確認された。
 また、生成物(P6)についてGPC分析を行った結果、重量平均分子量は4,000であった。
 生成物(P6)についての前記29Si-NMR、H-NMR、FT-IR、GPCの結果から、生成物(P6)が、ケイ素原子に直接に結合した有機基の全てが下記式(XXVIII)で表される有機基
Figure JPOXMLDOC01-appb-C000035
を有するシルセスキオキサン化合物であって、該シルセスキオキサン化合物の55%以上がSi-OH基の全てが加水分解縮合した構造である重量平均分子量4,000のシルセスキオキサン化合物であることが確認された。得られたシルセスキオキサン化合物のSP値は11.2であった。
 活性エネルギー線硬化型下塗り塗料組成物(Ia)用の不飽和アクリル樹脂の製造
 (製造例5)
 加熱装置、撹拌機、温度計、空気導入管、還流冷却管の備わったガラス製反応容器に、1-メトキシ-2-プロパノール50部を仕込み、加熱撹拌して100℃に保持した。この中に、メチルメタクリレート35部、イソボルニルアクリレート30部、n-ブチルメタクリレート20部、グリシジルメタクリレート10部、アゾビスイソブチロニトリル2部及び1-メトキシ-2-プロパノール50部からなる混合物を3時間かけて滴下した。滴下終了後、100℃で30分間熟成し、次に1-メトキシ-2-プロパノール10部及びアゾビスイソブチロニトリル0.2部からなる追加触媒混合液を1時間かけて滴下した。100℃で5時間熟成して重合を完結させた後、p-メトキシフェノール0.05部、アクリル酸5部を加え乾燥空気を吹き込みながら6時間反応させ、最後に1-メトキシ-2-プロパノール40部を加えて冷却し、不揮発分40%の不飽和基含有アクリル樹脂Aの溶液を得た。不飽和基含有アクリル樹脂Aの重量平均分子量は約25,000であった。
 (製造例6)
 加熱装置、撹拌機、温度計、空気導入管、還流冷却管の備わったガラス製反応容器に、1-メトキシ-2-プロパノール50部を仕込み、加熱撹拌して100℃に保持した。この中に、メチルメタクリレート35部、イソボルニルアクリレート20部、n-ブチルメタクリレート20部、グリシジルメタクリレート10部、2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール10部、アゾビスイソブチロニトリル2部及び1-メトキシ-2-プロパノール50部からなる混合物を3時間かけて滴下した。滴下終了後、100℃で30分間熟成し、次に1-メトキシ-2-プロパノール10部及びアゾビスイソブチロニトリル0.2部からなる追加触媒混合液を1時間かけて滴下した。100℃で5時間熟成して重合を完結させた後、p-メトキシフェノール0.05部、アクリル酸5部を加え乾燥空気を吹き込みながら6時間反応させ、最後に1-メトキシ-2-プロパノール40部を加えて冷却し、不揮発分40%の不飽和基含有アクリル樹脂Bの溶液を得た。不飽和基含有アクリル樹脂Bの重量平均分子量は約24,000であった。
 (製造例7)
 加熱装置、撹拌機、温度計、空気導入管、還流冷却管の備わったガラス製反応容器に、1-メトキシ-2-プロパノール50部を仕込み、加熱撹拌して100℃に保持した。この中に、メチルメタクリレート35部、イソボルニルアクリレート18部、n-ブチルメタクリレート20部、グリシジルメタクリレート10部、2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール10部、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン2部、アゾビスイソブチロニトリル2部及び1-メトキシ-2-プロパノール50部からなる混合物を3時間かけて滴下した。滴下終了後、100℃で30分間熟成し、次に1-メトキシ-2-プロパノール10部及びアゾビスイソブチロニトリル0.2部からなる追加触媒混合液を1時間かけて滴下した。100℃で5時間熟成して重合を完結させた後、p-メトキシフェノール0.05部、アクリル酸5部を加え乾燥空気を吹き込みながら6時間反応させ、最後に1-メトキシ-2-プロパノール40部を加えて冷却し、不揮発分40%の不飽和基含有アクリル樹脂Cの溶液を得た。不飽和基含有アクリル樹脂Cの重量平均分子量は約24,000であった。
 光及び熱硬化性下塗り塗料組成物(Ib)用の生成物(ib)の製造
 (製造例8)
 攪拌機、温度計、還流冷却器、空気導入管及び滴下装置を備えた反応容器に、酢酸ブチル32.1部、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物(NCO含量21%)50.0部、ジブチルスズジラウレート0.02部、及びp-メトキシフェノール0.2部の混合物を仕込んだ。該混合物を攪拌しながら、50℃まで加熱した。続いて乾燥空気を吹き込みながら、混合物の温度が60℃を超えないように、プラクセルFA-2D(商品名、ダイセル化学社製、カプロラクトン変性ヒドロキシエチルアクリレート)78.4部を8時間かけて滴下し、混合物を60℃で更に1時間撹拌し、不揮発分80%の生成物(ib-1)溶液を得た。得られた生成物(ib-1)のイソシアネート当量は1,852、不飽和基当量は564、重量平均分子量は1,297であった。
 (製造例9~13)
 製造例8において、配合を表1に記載の配合にした以外は、製造例8と同様にして、生成物(ib-2)~(ib-6)溶液を得た。得られた生成物のイソシアネート当量、不飽和基当量、及び重量平均分子量を表1に示した。
(注1)プラクセルFA-1:商品名、ダイセル化学社製、カプロラクトン変性ヒドロキシエチルアクリレート
(注2)プラクセルFM-3:商品名、ダイセル化学社製、カプロラクトン変性ヒドロキシエチルメタクリレート
Figure JPOXMLDOC01-appb-T000036
 光及び熱硬化性下塗り塗料組成物(Ib)用の水酸基含有樹脂の製造
 (製造例14)
 攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、1-メトキシ-2-プロパノール80部を仕込み、攪拌しながら100℃に昇温した。この中にスチレン10部、メチルメタクリレート40部、i-ブチルメタクリレート8部、n-ブチルアクリレート20部、2-ヒドロキシエチルアクリレート20部、アクリル酸2部及び2,2’-アゾビスイソブチロニトリル4部の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらに1-メトキシ-2-プロパノール10部及び2,2´-アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、不揮発分55%の水酸基含有アクリル樹脂溶液を得た。得られた水酸基含有アクリル樹脂の酸価は15.6mgKOH/g、水酸基価は96.6mgKOH/g、重量平均分子量は20,000であった。
 常温硬化又は熱硬化性下塗り塗料(Ic)用のアクリル樹脂の製造
 (製造例15)
 加熱装置、撹拌機、温度計、還流冷却管の備わったガラス製反応容器に、1-メトキシ-2-プロパノール50部を仕込み、加熱撹拌して100℃に保持した。この中に、メチルメタクリレート36部、イソボルニルアクリレート30部、n-ブチルメタクリレート10部、KBM-503(商品名、信越化学工業社製、γ-メタクリロイルオキシプロピルトリメトキシシラン)15部、2-(2´-ヒドロキシ-5´-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール 8部、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン 1部、アゾビスイソブチロニトリル2部及び1-メトキシ-2-プロパノール50部からなる混合物を3時間かけて滴下した。滴下終了後、100℃で30分間熟成し、次に1-メトキシ-2-プロパノール10部及びアゾビスイソブチロニトリル0.2部からなる追加触媒混合液を1時間かけて滴下した。ついで100℃で1時間熟成したのち1-メトキシ-2-プロパノール40部を加えて冷却し、不揮発分40%のアクリル樹脂(ic-1)溶液を得た。
 (製造例16~20)
 上記製造例15において、表2に示すモノマー配合とする以外は製造例5と同様の操作を行い、アクリル樹脂溶液(ic-2)~(ic-6)を得た。これらのアクリル樹脂溶液(ic-1)~(ic-6)の不揮発分、及び重量平均分子量等を表2に示す。
Figure JPOXMLDOC01-appb-T000037
 活性エネルギー線硬化型下塗り塗料組成物(Ia)の作製
  作製例a1
 CN9001(商品名、サートマー社製、ウレタンアクリレート)50部、Ebecryl1290k(商品名、ダイセル・サイテック社製、ウレタンアクリレート)50部、イルガキュア-184(商品名、BASF社製、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)1.5部、イルガキュア-819(商品名、BASF社製、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)1.5部、RUVA93(商品名、大塚化学社製、紫外線吸収剤)7部、TINUVIN123(商品名、BASF社製、光安定剤)1部、及び表面調整剤としてBYK-315(商品名、ビックケミー社製)0.05部を混合し、1-メトキシ-2-プロパノールで不揮発分を調整して、不揮発分30%の活性エネルギー線硬化型下塗り塗料組成物(Ia-1)を得た。
  作製例a2~a13
 作製例a1において、各成分の種類及び配合量を表3に記載の各成分の種類及び配合量にする以外は作製例a1と同様にして、活性エネルギー線硬化型下塗り塗料組成物(Ia-2)~(Ia-13)を得た。
 尚、下記表3中の配合量は不揮発分量である。また表中の(注3)~(注6)は下記の通りである。
 (注3)UN952:商品名、根上工業社製、多官能ウレタンアクリレート
 (注4)アロニックスM-315:商品名、東亞合成社製、ビス(2-アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレートとトリス(2-アクリロイルオキシエチル)イソシアヌレートとの混合物
 (注5)TINUVIN928:商品名、BASF社製、紫外線吸収剤
 (注6)アデカスタブLA82:商品名、株式会社ADEKA製、光安定剤。
Figure JPOXMLDOC01-appb-T000038
 光及び熱硬化性下塗り塗料組成物(Ib)の作製
  作製例b1
 製造例8で得られた生成物(ib-1)80%溶液65.5部(不揮発分52.4部)、製造例14で得られた水酸基含有アクリル樹脂の55%溶液86.6部(不揮発分47.6部)、ダロキュア1173(商品名、メルクジャパン社製、光重合開始剤)3.0部、TINUVIN384(商品名、チバ スペシャルティ ケミカルズ社製、紫外線吸収剤)6.0部、TINUVIN123(商品名、BASF社製、光安定剤)1部、及び表面調整剤としてBYK-315(商品名、ビックケミー社製)0.05部を混合し、1-メトキシ-2-プロパノールで不揮発分を調整して、不揮発分30%の光及び熱硬化性下塗り塗料組成物(Ib-1)を得た。
  作製例b2~b14
 作製例b1において、各成分の種類及び配合量を表4に記載の各成分の種類及び配合量にする以外は作製例b1と同様にして、光及び熱硬化性下塗り塗料組成物(Ib-2)~(Ib-14)を得た。尚、表4の配合量は、不揮発分の配合量を示す。
Figure JPOXMLDOC01-appb-T000039
 常温硬化又は熱硬化性下塗り塗料組成物(Ic)の作製
  作製例c1
 製造例c1で得られたアクリル樹脂の40%溶液 250部(不揮発分100部)及び表面調整剤としてBYK-315(商品名、ビックケミー社製)0.05部を均一に混合し、1-メトキシ-2-プロパノールで不揮発分を調整して、不揮発分30%の常温硬化又は熱硬化性下塗り塗料組成物(Ic-1)を得た。
  作製例c2~c10
 作製例1において、各成分の種類及び配合量を表5に記載の各成分の種類及び配合量にする以外は作製例1と同様にして、常温硬化又は熱硬化性下塗り塗料組成物(Ic-2)~(Ic-10)を得た。なお表5の配合量は、不揮発分の配合量を示す。また(注7)~(注9)は下記の通りである。
 (注7)スミジュールN-3300:商品名、住化バイエルウレタン社製、イソシアヌレート変性ヘキサメチレンジイソシアネート、不揮発分100%
 (注8)サイメル235:商品名、三井サイテック社製、メチル化・ブチル化メラミン樹脂
 (注9)TINUVIN479:商品名、BASF社製、紫外線吸収剤。
Figure JPOXMLDOC01-appb-T000040
 活性エネルギー線硬化型上塗り塗料組成物(II)の作製
  作製例1
 製造例1で得られた生成物(P2)溶液200部(不揮発分100部)、イルガキュア-184 3部、イルガキュア-819(商品名、BASF社製、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド) 1部、RUVA93(商品名、大塚化学社製、紫外線吸収剤) 2部、TINUVIN123(商品名、BASF社製、光安定剤) 1部、及び表面調整剤としてBYK-3500(商品名、ビックケミー社製)0.5部を混合し、1-メトキシ-2-プロパノールで不揮発分を調整して、不揮発分30%の活性エネルギー線硬化型上塗り塗料組成物(II-1)を得た。
  作製例2~16
 作製例1において、各成分の種類及び配合量を表6に記載の各成分の種類及び配合量にする以外は作製例1と同様にして、活性エネルギー線硬化型上塗り塗料組成物(II-2)~(II-16)を得た。
Figure JPOXMLDOC01-appb-T000041
 尚、上記表6中の配合量は不揮発分量である。また表中の(注11)~(注14)は下記の通りである。
 (注11)アロニックス-M408:商品名、東亞合成社製、ジトリメチロールプロパンテトラアクリレート
 (注12)IRR214K:商品名、ダイセル・サイテック社製、トリシクロデカンジメタノールジメタクリレート
 (注13)MEK-ST:商品名、日産化学社製、コルイダルシリカ。
 (注14)重合性シラン変性コロイダルシリカ:次の通り製造した。還流冷却器、温度計、空気導入管及び攪拌機を取り付けたセパラブルフラスコに、コロイダルシリカ微粒子(分散媒;イソプロパノール、シリカ濃度;30質量%、平均一次粒子径;12nm、商品名;IPA-ST、日産化学工業社製)333部(シリカ微粒子は100部)、3-メタクリロイルオキシプロピルトリメトキシシラン10部、p-メトキシフェノール0.2部及びイソプロパノール233部を配合した後、乾燥空気を吹き込みながら攪拌し昇温した。揮発成分の還流が始まったところで、プロピレングリコールモノメチルエーテルを加えて共沸留出させ、反応系内の溶剤を置換した。続いて、95℃で2時間攪拌しながら脱水縮合反応を行った後、60℃に温度を下げてテトラブチルアンモニウムフルオリドを0.03部加えて更に1時間攪拌しながら反応させた。反応終了後、減圧状態で揮発成分を留出させ、さらにプロピレングリコールモノメチルエーテルを加えて共沸留出させた。プロピレングリコールモノメチルエーテルを加えて共沸留出する操作を数回行うことで溶剤を置換し、重合性シラン変性コロイダルシリカ粒子の不揮発分40%分散液を得た。
 実施例a1~a36及び比較例a1~a18
 ポリカーボネート樹脂板に、表7に示す活性エネルギー線硬化型下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装した。続いて、80℃で10分間プレヒートした後、メタルハライドランプを用い2,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させた。次いで被塗物が50℃以下になった後、その上に、表3に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表7に併せて示す。
Figure JPOXMLDOC01-appb-T000042
 実施例a37~a58及び比較例a19~a28
 ポリカーボネート樹脂板に、表8に示す活性エネルギー線硬化型下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装した。続いて、80℃で10分間プレヒートした。次いで被塗物が50℃以下になった後、その上に、表4に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表8に併せて示す。
Figure JPOXMLDOC01-appb-T000043
 実施例b1~b39及び比較例b1~b14
 ポリカーボネート樹脂板に、表9に示す光及び熱硬化性下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、メタルハライドランプを用いて1,500mJ/cmの照射量で活性エネルギー線を照射し、続いて90℃で10分間乾燥させた。次いで被塗物が50℃以下になった後、その上に、表4に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表9に併せて示す。
Figure JPOXMLDOC01-appb-T000044
 実施例b40~b78及び比較例b15~b28
 ポリカーボネート樹脂板に、表10に示す光及び熱硬化性下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装し、90℃で10分間加熱した。次いで被塗物が50℃以下になった後、その上に、表5に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表10に併せて示す。
Figure JPOXMLDOC01-appb-T000045
 実施例b79~b96及び比較例b29~b33
 ポリカーボネート樹脂板に、表11に示す光及び熱硬化性下塗り塗料組成物を乾燥膜厚が30μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、メタルハライドランプを用いて1,000mJ/cmの照射量で活性エネルギー線を照射し、続いて90℃で10分間乾燥させた。次いで被塗物が50℃以下になった後、その上に、表6に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表11に併せて示す。
Figure JPOXMLDOC01-appb-T000046
 実施例b97~b114及び比較例b34~b38
 ポリカーボネート樹脂板に、表12に示す光及び熱硬化性下塗り塗料組成物を乾燥膜厚が30μmとなるようエアスプレー塗装し90℃で10分間加熱した。次いで被塗物が50℃以下になった後、その上に、表7に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表12に併せて示す。
Figure JPOXMLDOC01-appb-T000047
 実施例c1~c32及び比較例c1~c15
 ポリカーボネート樹脂板に、表13に示す下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装した。続いて5分間セッティングした後、80℃で30分間加熱した。次いで被塗物が50℃以下になった後、その上に、表4に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表13に併せて示す。
Figure JPOXMLDOC01-appb-T000048
 実施例c33~c38及び比較例c16~c17
 ポリカーボネート樹脂板に、表14に示す下塗り塗料組成物を乾燥膜厚が8μmとなるようエアスプレー塗装した。続いて5分間セッティングした後、120℃で30分間加熱した。次いで被塗物が50℃以下になった後、その上に、表5に示す活性エネルギー線硬化型上塗り塗料組成物を乾燥膜厚が5μmとなるようエアスプレー塗装した。続いて、60℃で5分間プレヒートした後、超高圧水銀灯を用い4,000mJ/cmの照射量で活性エネルギー線を照射して塗膜を硬化させ、各試験塗板を得た。得られた各試験塗板について、下記評価試験に供した。評価結果を表14に併せて示す。
Figure JPOXMLDOC01-appb-T000049
 (耐擦り傷性)
 各試験板について、ASTM D1044に準じて、テーバー磨耗試験(磨耗輪CF-10F、荷重500g、500回転)を行った。試験前後の被膜についてヘイズ値を測定してその変化(ΔH)を求め、下記基準により評価した。
  S:ΔHが15未満
  A:ΔHが15以上20未満
  B:ΔHが20以上30未満
  C:ΔHが30以上。
 (初期付着性)
 JIS K 5600-5-6(1990)に準じて素地に達するまで塗膜に2mm×2mmのゴバン目100個を作り、その面に粘着テープを貼着し、急激に剥がした後に、塗面に残ったゴバン目被膜の数を評価した。
  A:残存個数/全体個数=100個/100個
  B:残存個数/全体個数=99個~90個/100個
  C:残存個数/全体個数=89個以下/100個。
 (耐候性)
 各試験板について、スーパーUVテスター(大日本プラスチック社製、W-13型、促進耐候性試験機)を用いて、ブラックパネル温度60℃、24時間紫外線照射-24時間水噴霧のサイクル条件を1サイクルとして40サイクルまで試験を行った。外観及び付着性を下記基準にて評価した。外観は目視で評価し、付着性は上記初期付着性と同じ方法で評価した。
  A:塗膜にワレが生じていない、付着性は残存個数/全体個数=100個/100個
  B:塗膜にワレが生じていないが、付着性は残存個数/個数=99個以下/100個
  C:塗膜にワレが生じている。
 (総合評価)
 複層塗膜においては、耐擦り傷性、初期付着性、及び耐候性が全て高いことが重要である。従って、以下の基準にて総合評価を行った。
  S:耐擦り傷性の評価がSであり、初期付着性及び耐候性の評価がAである
  A:耐擦り傷性の評価がAであり、ならびに、初期付着性及び耐候性の評価がAである
  B:耐擦り傷性、初期付着性、及び耐候性の評価がすべてS、A又はBであり、かつ少なくとも1つがBである
  C:耐擦り傷性、初期付着性、及び耐候性の評価のうち少なくとも1つがCである。

Claims (17)

  1. (1)基材上に、下塗り塗料組成物(I)用いて下塗り塗膜を形成する工程、及び
    (2)下塗り塗膜を形成した後、該下塗り塗膜の上に、ケイ素原子に直接に結合した有機基を有するシルセスキオキサン化合物であって、前記ケイ素原子に直接に結合した有機基の少なくとも1つがウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基であるシルセスキオキサン化合物(a)、及び光重合開始剤(b)を含有する活性エネルギー線硬化型上塗り塗料組成物(II)を用いて上塗り塗膜を形成する工程
    を含むことを特徴とする複層塗膜形成方法。
  2. (a)成分における前記ウレタン結合及び1つの(メタ)アクリロイルオキシ基を有する有機基が、下記一般式(A)で表される有機基である請求項1記載の複層塗膜形成方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(A)中、Rは水素原子又はメチル基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Rは炭素数1~10の2価の炭化水素基を示す。Yは
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、前記に同じ。nは0~9の整数を示す。)、
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)、又は
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは置換又は非置換の炭素数1~6の1価の炭化水素基を示す。)を示す。]
  3. 活性エネルギー線硬化型上塗り塗料組成物(II)が、シルセスキオキサン化合物(a)の不揮発分100質量部に対し、光重合開始剤(b)を1~20質量部含有する、請求項1記載の複層塗膜形成方法。
  4. 活性エネルギー線硬化型上塗り塗料組成物(II)が、さらに重合性不飽和化合物(c)を含有する請求項1記載の複層塗膜形成方法。
  5. 活性エネルギー線硬化型上塗り塗料組成物(II)が、シルセスキオキサン化合物(a)の不揮発分100質量部に対し、重合性不飽和化合物(c)を0.1~1000質量部含有する、請求項4記載の複層塗膜形成方法。
  6. 下塗り塗料組成物(I)が、分子中に2個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートを含む重合性不飽和化合物、光重合開始剤、紫外線吸収剤及び光安定剤を含有する活性エネルギー線硬化型下塗り塗料組成物(Ia)である請求項1記載の複層塗膜形成方法。
  7. 活性エネルギー線硬化型下塗り塗料組成物(Ia)が、重合性不飽和化合物を該塗料組成物の不揮発分100質量部に対して30~97質量部、光重合開始剤を重合性不飽和化合物の不揮発分100質量部に対し0.1~10質量部、及び紫外線吸収剤を重合性不飽和化合物の不揮発分100質量部に対し0.5~20質量部をそれぞれ含有する、請求項6に記載の複層塗膜形成方法。
  8. 重合性不飽和化合物が、ウレタン(メタ)アクリレートを重合性不飽和化合物の不揮発分100質量部に対して、30~100質量部含有する、請求項6又は7に記載の複層塗膜形成方法。
  9. 下塗り塗料組成物(I)が、重合性不飽和化合物、水酸基含有樹脂、光重合開始剤、紫外線吸収剤及び光安定剤を含有する光及び熱硬化性下塗り塗料組成物(Ib)である請求項1記載の複層塗膜形成方法。
  10. 光及び熱硬化性下塗り塗料組成物(Ib)が、重合性不飽和化合物を該塗料組成物の不揮発分100質量部に対し10~80質量部、水酸基含有樹脂を該塗料組成物の不揮発分100質量部に対し10~80質量部、光重合開始剤を重合性不飽和化合物の不揮発分100質量部に対し1~20質量部、紫外線吸収剤を該塗料組成物の不揮発分100質量部に対して0.5~20質量部、及び光安定剤を該塗料組成物の不揮発分100質量部に対して0.1~10質量部それぞれ含有する、請求項9記載の複層塗膜形成方法。
  11. 重合性不飽和化合物が、さらにイソシアネート基含有化合物を含有するものである請求項9記載の複層塗膜形成方法。
  12. イソシアネート基含有化合物が、300~3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和化合物である請求項11記載の複層塗膜形成方法。
  13. 下塗り塗料組成物(I)が、アクリル樹脂、紫外線吸収剤及び光安定剤を含有する常温硬化又は熱硬化性下塗り塗料組成物(Ic)である請求項1記載の複層塗膜形成方法。
  14. 常温硬化又は熱硬化性下塗り塗料組成物(Ic)が、アクリル樹脂を該塗料組成物の不揮発分100質量部に対して50~99.4質量部、紫外線吸収剤を該塗料組成物の不揮発分100質量部に対して0.5~20質量部、及び光安定剤を該塗料組成物の不揮発分100質量部に対して0.1~10質量部それぞれ含有する請求項13に記載の複層塗膜形成方法。
  15. 下塗り塗料組成物(I)が、紫外線吸収性重合性不飽和モノマー及び/又は紫外線安定性重合性不飽和モノマーを含む重合性不飽和モノマー混合物を共重合して得られるアクリル樹脂を含有する常温硬化又は熱硬化性下塗り塗料組成物(Ic)’である請求項1記載の複層塗膜形成方法。
  16. 常温硬化又は熱硬化性下塗り塗料組成物(Ic)’が、アクリル樹脂を該塗料組成物の不揮発分100質量部に対して50~100質量部含有する請求項15に記載の複層塗膜形成方法。
  17. 請求項1記載の方法により形成される複層塗膜を有する塗装物品。
PCT/JP2011/059307 2010-04-14 2011-04-14 複層塗膜形成方法及び塗装物品 WO2011129413A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/640,794 US9138778B2 (en) 2010-04-14 2011-04-14 Method for formation of multi-layered coating film, and coated article
CN201180024447.7A CN102892518B (zh) 2010-04-14 2011-04-14 用于形成多层涂膜的方法和涂覆物品

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-093094 2010-04-14
JP2010093096A JP5643535B2 (ja) 2010-04-14 2010-04-14 複層塗膜形成方法及び塗装物品
JP2010-093095 2010-04-14
JP2010-093096 2010-04-14
JP2010093094A JP5643533B2 (ja) 2010-04-14 2010-04-14 複層塗膜形成方法及び塗装物品
JP2010093095A JP5643534B2 (ja) 2010-04-14 2010-04-14 複層塗膜形成方法及び塗装物品

Publications (1)

Publication Number Publication Date
WO2011129413A1 true WO2011129413A1 (ja) 2011-10-20

Family

ID=44798782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059307 WO2011129413A1 (ja) 2010-04-14 2011-04-14 複層塗膜形成方法及び塗装物品

Country Status (3)

Country Link
US (1) US9138778B2 (ja)
CN (1) CN102892518B (ja)
WO (1) WO2011129413A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146801A1 (ja) * 2012-03-27 2013-10-03 日本ペイント株式会社 接着層形成用硬化性樹脂組成物、および基材と被接着基材との一体化方法
JP2013249395A (ja) * 2012-06-01 2013-12-12 Shin-Etsu Chemical Co Ltd 硬化性組成物及びその硬化成形品、その硬化皮膜が形成されてなる物品並びに該硬化性組成物の硬化方法
US20150203708A1 (en) * 2012-08-08 2015-07-23 3M Innovative Properties Company Articles including a (co)polymer reaction product of a urethane (multi)-(meth)acrylate (multi)-silane
US10804419B2 (en) 2012-08-08 2020-10-13 3M Innovative Properties Company Photovoltaic devices with encapsulating barrier film
JP7220856B1 (ja) 2022-06-20 2023-02-13 東洋インキScホールディングス株式会社 コーティング組成物、および積層体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279242A (zh) * 2016-07-16 2017-01-04 北京化工大学 一种含硅氧烷结构的三官能度丙烯酸酯单体及其制备方法
CN106977688A (zh) * 2017-03-24 2017-07-25 武汉铌欧能源材料有限公司 一种有机‑无机杂化高分子复合材料及其制备方法
JP6958313B2 (ja) * 2017-12-13 2021-11-02 信越化学工業株式会社 オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物
US10813857B2 (en) 2018-02-01 2020-10-27 The Procter & Gamble Company Heterogenous cosmetic ink composition for inkjet printing applications
US10849843B2 (en) 2018-02-01 2020-12-01 The Procter & Gamble Company Stable cosmetic ink composition
US11234027B2 (en) * 2019-01-10 2022-01-25 Disney Enterprises, Inc. Automated content compilation
US11407904B2 (en) * 2019-02-11 2022-08-09 King Fahd University Of Petroleum And Minerals Waterborne polyurethane containing polyhedral oligomeric silsesquioxane
CN114989652B (zh) * 2022-07-04 2023-04-07 佛山市建春友金属科技有限公司 一种不锈钢结构表面防护用抗菌涂料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198609A (ja) * 1987-10-12 1989-04-17 Nippon Paint Co Ltd アクリルグラフトシリコーン粒子ならびにその製法
JP2009206197A (ja) * 2008-02-26 2009-09-10 Fujifilm Corp ナノインプリント用硬化性組成物、硬化物およびその製造方法
WO2010044321A1 (ja) * 2008-10-15 2010-04-22 関西ペイント株式会社 重合性官能基を有するシルセスキオキサン化合物
WO2010067684A1 (ja) * 2008-12-10 2010-06-17 関西ペイント株式会社 重合性官能基を有するシルセスキオキサン化合物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011044A1 (de) * 1990-04-05 1991-10-10 Fraunhofer Ges Forschung Silane, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polymerisaten und polykondensaten
JP3096861B2 (ja) 1991-11-21 2000-10-10 三菱レイヨン株式会社 被覆材組成物
JP3265513B2 (ja) * 1992-06-12 2002-03-11 株式会社ニコン 硬化膜を備えたプラスチック製めがねレンズ
JP3223459B2 (ja) 1992-10-16 2001-10-29 三菱レイヨン株式会社 被覆材組成物
JP3722850B2 (ja) 1993-11-04 2005-11-30 株式会社豊田中央研究所 有機−無機重合体およびその製造方法
JP3952482B2 (ja) 1992-12-28 2007-08-01 株式会社豊田中央研究所 層状有機ケイ素系ポリマー、その成形体及びこれらの製造方法
JP3377303B2 (ja) 1994-06-30 2003-02-17 株式会社豊田中央研究所 被覆材組成物及びそれを用いた耐摩耗性物品の製造方法
JP2003268323A (ja) 2002-03-14 2003-09-25 Kansai Paint Co Ltd 建築外壁用粘着シート
JP4429199B2 (ja) 2005-03-24 2010-03-10 日本ビー・ケミカル株式会社 複層塗膜形成方法およびこれに用いる塗料
JP5030926B2 (ja) 2007-12-13 2012-09-19 関西ペイント株式会社 複層塗膜形成方法及び複層塗膜並びに塗装物品
CN101896287B (zh) 2007-12-13 2013-06-19 关西涂料株式会社 多层涂膜形成方法及多层涂膜以及涂装物品
JP5289013B2 (ja) 2007-12-17 2013-09-11 関西ペイント株式会社 複層塗膜形成方法及び複層塗膜並びに塗装物品
JP5506317B2 (ja) * 2008-11-26 2014-05-28 関西ペイント株式会社 塗膜形成方法及び塗装物品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198609A (ja) * 1987-10-12 1989-04-17 Nippon Paint Co Ltd アクリルグラフトシリコーン粒子ならびにその製法
JP2009206197A (ja) * 2008-02-26 2009-09-10 Fujifilm Corp ナノインプリント用硬化性組成物、硬化物およびその製造方法
WO2010044321A1 (ja) * 2008-10-15 2010-04-22 関西ペイント株式会社 重合性官能基を有するシルセスキオキサン化合物
WO2010067684A1 (ja) * 2008-12-10 2010-06-17 関西ペイント株式会社 重合性官能基を有するシルセスキオキサン化合物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146801A1 (ja) * 2012-03-27 2013-10-03 日本ペイント株式会社 接着層形成用硬化性樹脂組成物、および基材と被接着基材との一体化方法
JP2013249395A (ja) * 2012-06-01 2013-12-12 Shin-Etsu Chemical Co Ltd 硬化性組成物及びその硬化成形品、その硬化皮膜が形成されてなる物品並びに該硬化性組成物の硬化方法
US20150203708A1 (en) * 2012-08-08 2015-07-23 3M Innovative Properties Company Articles including a (co)polymer reaction product of a urethane (multi)-(meth)acrylate (multi)-silane
US9790396B2 (en) * 2012-08-08 2017-10-17 3M Innovation Properties Company Articles including a (co)polymer reaction product of a urethane (multi)-(meth)acrylate (multi)-silane
US9982160B2 (en) 2012-08-08 2018-05-29 3M Innovative Properties Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same
US10011735B2 (en) 2012-08-08 2018-07-03 3M Innovative Properties Companies Diurethane (meth)acrylate-silane compositions and articles including the same
US10533111B2 (en) 2012-08-08 2020-01-14 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US10774236B2 (en) 2012-08-08 2020-09-15 3M Innovative Properties, Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same
US10804419B2 (en) 2012-08-08 2020-10-13 3M Innovative Properties Company Photovoltaic devices with encapsulating barrier film
US11174361B2 (en) 2012-08-08 2021-11-16 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US11192989B2 (en) 2012-08-08 2021-12-07 3M Innovative Properties Company Urea (multi)-urethane (meth)acrylate-silane compositions and articles including the same
US11492453B2 (en) 2012-08-08 2022-11-08 3M Innovative Properties Company Urea (multi)-(meth)acrylate (multi)-silane compositions and articles including the same
JP7220856B1 (ja) 2022-06-20 2023-02-13 東洋インキScホールディングス株式会社 コーティング組成物、および積層体
JP2024000296A (ja) * 2022-06-20 2024-01-05 東洋インキScホールディングス株式会社 コーティング組成物、および積層体

Also Published As

Publication number Publication date
US20130029159A1 (en) 2013-01-31
CN102892518A (zh) 2013-01-23
CN102892518B (zh) 2014-10-01
US9138778B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
WO2011129413A1 (ja) 複層塗膜形成方法及び塗装物品
US10865319B2 (en) Method for producing acrylic resin-coated silica particle dispersion
JP6127363B2 (ja) 活性エネルギー線硬化性樹脂組成物およびそれを用いた積層体
US8889759B2 (en) Active energy ray-curable composition, and coated article
JP5875184B2 (ja) 塗料組成物および塗膜形成方法
JP5643533B2 (ja) 複層塗膜形成方法及び塗装物品
JP5677462B2 (ja) 塗膜形成方法
JP2014037453A (ja) 活性エネルギー線硬化性樹脂組成物およびそれを用いた積層体
JP5907588B2 (ja) シルセスキオキサン化合物及びこれを含むコーティング組成物
JP2012130863A (ja) 複層塗膜形成方法及び塗装物品
JP5622277B2 (ja) 複層塗膜形成方法及び塗装物品
JP5762212B2 (ja) 活性エネルギー線硬化性組成物、上記組成物の製造方法
JP5643534B2 (ja) 複層塗膜形成方法及び塗装物品
JP5336925B2 (ja) 活性エネルギー線硬化性被覆材組成物及び積層体
JP2012183519A (ja) 複層塗膜形成方法及び塗装物品
JP5656877B2 (ja) 活性エネルギー線硬化性組成物、及び塗装物品
JP2012183520A (ja) 複層塗膜形成方法及び塗装物品
JP5473874B2 (ja) 活性エネルギー線硬化性組成物、上記組成物の製造方法
JP5643535B2 (ja) 複層塗膜形成方法及び塗装物品
TWI694105B (zh) 硬化性組成物、積層體及汽車前照燈鏡
JP7071606B1 (ja) アクリル樹脂変性シリカ粒子、塗料組成物及び複層塗膜形成方法
JP2024008082A (ja) ウレタン(メタ)アクリレート樹脂、活性エネルギー線硬化性組成物、硬化物及び積層フィルム
JP2009073944A (ja) 硬化性組成物、その硬化物と積層体
JP2017132975A (ja) 硬化性組成物及び積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024447.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13640794

Country of ref document: US

Ref document number: 8880/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768934

Country of ref document: EP

Kind code of ref document: A1