WO2011129262A1 - オゾン殺菌用の殺菌助剤及びオゾン殺菌方法 - Google Patents

オゾン殺菌用の殺菌助剤及びオゾン殺菌方法 Download PDF

Info

Publication number
WO2011129262A1
WO2011129262A1 PCT/JP2011/058821 JP2011058821W WO2011129262A1 WO 2011129262 A1 WO2011129262 A1 WO 2011129262A1 JP 2011058821 W JP2011058821 W JP 2011058821W WO 2011129262 A1 WO2011129262 A1 WO 2011129262A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
sterilization
component
acid
aid
Prior art date
Application number
PCT/JP2011/058821
Other languages
English (en)
French (fr)
Inventor
祥訓 竹内
西村 園子
渡部 慎一
亜衣子 林
貴通 長谷川
隆康 久保園
Original Assignee
ライオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン株式会社 filed Critical ライオン株式会社
Priority to JP2012510636A priority Critical patent/JP5699134B2/ja
Priority to EP11768783.0A priority patent/EP2559339A4/en
Priority to US13/640,667 priority patent/US20130028787A1/en
Priority to CN201180018571.2A priority patent/CN102834012B/zh
Publication of WO2011129262A1 publication Critical patent/WO2011129262A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a sterilization aid for ozone sterilization and an ozone sterilization method.
  • This application claims priority based on Japanese Patent Application No. 2010-091627 filed in Japan on April 12, 2010, the contents of which are incorporated herein by reference.
  • ozone has been attracting attention because it has a strong oxidizing power, can be made from oxygen, and returns to oxygen without remaining as it is after sterilization.
  • ozone sterilization method generally, a method in which ozone gas is aerated in water to be treated in which the object to be treated is immersed (ozone aeration method), a method in which the object to be treated is immersed in ozone water in which ozone is dissolved in water (ozone water). Dipping method).
  • the bactericidal effect by ozone is proportional to its concentration, the amount of ozone used is inevitably increased to obtain a sufficient bactericidal effect.
  • the ozone concentration in the atmosphere of the working environment is required to be 0.00001% by volume or less. Therefore, in order to achieve both a sterilizing effect and safety, excessive facilities such as installing an ozone removal device are often required so that the ozone concentration in the atmosphere of the working environment does not become too high.
  • a larger ozone generator is required, which increases the cost.
  • the rubber, metal, plastic, etc. of each part in contact with ozone in the sterilizer are easily corroded, and the load on the device increases.
  • Patent Document 1 a method of cleaning an object by aeration of ozone gas into a treatment liquid containing a chemical having a specific dynamic surface tension such as monoacetin, diacetin, and triacetin
  • Patent Document 2 A method (Patent Document 2) is shown in which ozone gas is aerated in a treatment solution containing a water-soluble acid in addition to the chemical agent to clean the object to be treated.
  • bubbles formed by aeration of ozone gas can be miniaturized, so that the rising speed of the bubbles decreases and the residence time in the treatment liquid becomes long, The contact efficiency becomes higher and the bactericidal effect is improved.
  • a method (Patent Document 3) of cleaning an object to be processed with a treatment liquid containing glycerin fatty acid ester such as monocaprylin and monocaprin and ozone is disclosed. According to the method (iii), the glycerin fatty acid ester and ozone react to produce an organic peroxide that has excellent sterilizing power and can be stably present in the treatment liquid, thereby improving the sterilizing effect.
  • the present invention relates to a sterilization aid for ozone sterilization that can obtain a high sterilization effect with a smaller amount of ozone and does not impose a load on a sterilizer and an object to be processed, and low-cost ozone using the sterilization aid.
  • the purpose is to provide a sterilization method.
  • Component (A) selected from an aluminum compound that generates aluminum ions in an aqueous solution
  • component (B) phosphoric acid, acetic acid, citric acid, malic acid, succinic acid, gluconic acid, lactic acid, and L-tartaric acid
  • a sterilization aid for ozone sterilization which is an aqueous solution containing at least one kind of acid, and the pH of the aqueous solution is 1.0 or more and less than 5.0.
  • the component (A) is potassium aluminum sulfate (AlK (SO 4 ) 2 ⁇ 12H 2 O), calcined potassium alum (AlK (SO 4 ) 2 ), aluminum ammonium sulfate (AlNH 4 (SO 4 ) 2 ⁇
  • component (C) a glycerin fatty acid ester obtained by ester-linking a fatty acid having 1 to 10 carbon atoms and glycerin. [5] An ozone sterilization method in which an object to be treated is subjected to ozone treatment using the sterilization aid for ozone sterilization according to any one of [1] to [4].
  • the sterilization aid for ozone sterilization according to one aspect of the present invention is used, a high sterilization effect can be obtained with a smaller amount of ozone. Further, according to the ozone sterilization method according to another aspect of the present invention, by using the sterilization aid for ozone sterilization according to the present invention, a high sterilization effect can be obtained with a smaller amount of ozone. Cost can be reduced, and the load on the sterilizer and the load on the object to be processed can be reduced.
  • FIG. 5 is a schematic diagram showing ozone aeration means used in Examples 1 to 12 and Comparative Examples 1 to 11.
  • FIG. 6 is a schematic view showing a sterilizer used in Examples 13 to 32 and Comparative Examples 12 to 21.
  • FIG. 6 is a schematic view showing a sterilizer used in Examples 33 to 56 and Comparative Examples 22 to 31.
  • the sterilization aid for ozone sterilization comprises: component (A) an aluminum compound that generates aluminum ions in an aqueous solution; component (B) phosphoric acid, acetic acid, citric acid, malic acid, succinic acid, gluconic acid, lactic acid , And one or more acids selected from L-tartaric acid, and an auxiliary agent having a pH of 1.0 or more and less than 5.0.
  • the sterilization aid of the present invention is preferably used for sterilization of an object to be processed by an ozone aeration method using ozone aeration. However, you may use the disinfection adjuvant of this invention for the disinfection of the to-be-processed object by the ozone water immersion method using the ozone water which melt
  • Component (A) Aluminum compound that produces aluminum ions in aqueous solution
  • Component (A) is an aluminum compound that generates aluminum ions in an aqueous solution.
  • component (A) examples include the following components (A 1 ) to (A 4 ).
  • Component (A 1 ) a composite salt containing aluminum.
  • Component (A 2 ) Aluminum salt other than the composite salt.
  • Component (A 3) polymer of aluminum salts.
  • Component (A 4 ) Aluminum-containing metal.
  • the component (A 1 ) for example, potassium aluminum sulfate (potash alum, AlK (SO 4 ) 2 ⁇ 12H 2 O), burned potash alum (AlK (SO 4 ) 2 ), aluminum ammonium sulfate (ammonium alum, AlNH 4 (SO 4 ) 2 ⁇ 12H 2 O), calcined ammonium alum (AlNH 4 (SO 4 ) 2 ), and the like.
  • Examples of the component (A 2 ) include aluminum chloride, chlorohydroxyaluminum, aluminum sulfate (sulfuric acid band), aluminum hydroxide, aluminum phosphate, aluminum silicate, and aluminum salts of organic acids (for example, acetic acid, lactic acid, citric acid) , Adipic acid, malic acid, succinic acid, maleic acid, fumaric acid, gluconic acid, tartaric acid, glutaric acid, or aluminum salt of succinic acid, etc.), water-soluble chelating agent having acidic group (acid-dissociable functional group) And aluminum salts (for example, aluminum nitrosotriacetate, aluminum aluminum diaminetetraacetate, aluminum aluminum glycine diacetate, etc.).
  • organic acids for example, acetic acid, lactic acid, citric acid
  • Adipic acid malic acid, succinic acid, maleic acid, fumaric acid, gluconic acid, tartaric acid, glutaric acid, or aluminum salt of succin
  • Examples of the component (A 3 ) include polyaluminum chloride and aluminum polyphosphate.
  • Examples of the component (A 4 ) include aluminum oxide (alumina), pure aluminum, aluminum alloy (such as duralumin), and the like.
  • a component (A) may be used individually by 1 type, and may use 2 or more types together.
  • the component (A) is preferably added with the aluminum salts of the components (A 1 ) and (A 2 ), more preferably the component (A 1 ), from the viewpoint that a high bactericidal effect is easily obtained.
  • the object to be treated is a food
  • the content of the component (A) in the sterilization aid of the present invention is preferably 1 to 1000 mg / L, more preferably 10 to 500 mg / L.
  • the content of the component (A) is less than 1 mg / L, it is difficult to obtain a high bactericidal effect.
  • the ozone present in the sterilization aid is wasted by reacting aluminum present in the sterilization aid with ozone to form aluminum oxide.
  • the bactericidal power commensurate with the ozone supply amount is difficult to obtain.
  • white turbidity and precipitation may occur in the sterilization aid.
  • Component (B) is one or more acids selected from phosphoric acid, acetic acid, citric acid, malic acid, succinic acid, gluconic acid, lactic acid, and L-tartaric acid, and component (B) is a single type. Or two or more of them may be used in combination.
  • component (B) If it is a component (B), it can suppress that the pH of a disinfection adjuvant becomes low too much and a damage arises to a to-be-processed object. Furthermore, since it is easy to maintain the solubility of aluminum ions, the effect of improving the sterilizing power by the component (A) can be sufficiently obtained.
  • Phosphoric acid and acetic acid have the advantage of low reactivity with ozone and less waste of ozone supplied in the sterilization aid.
  • citric acid is advantageous in that it chelate coordinates with aluminum ions, thereby suppressing excessive decomposition of ozone by aluminum ions and suppressing aluminum ions from becoming aluminum hydroxide. Therefore, the component (B) is at least one selected from the group consisting of phosphoric acid, citric acid and acetic acid from the viewpoint of excellent balance of molecular weight, coordination with aluminum ions, and reactivity with ozone. Is more preferable, and acetic acid is particularly preferable because a high bactericidal effect can be easily obtained.
  • the content of component (B) in the sterilization aid of the present invention is preferably 10 to 10000 mg / L, more preferably 100 to 2000 mg / L, and even more preferably 100 to 1000 mg / L. If content of a component (B) is 10 mg / L or more, a high bactericidal effect will be easy to be acquired. If content of a component (B) is 10000 mg / L or less, it will be hard to inhibit the effect of aluminum ion and it will be easy to suppress excessive ozone consumption by reacting with ozone.
  • the pH of the sterilization aid of the present invention is 1.0 or more and less than 5.0.
  • ozone sterilization with a reduced load on the sterilization apparatus and the object to be processed can be achieved simultaneously with a high sterilization effect against bacteria. That is, by setting the pH to less than 5.0, it is possible to prevent the aluminum ions present in the sterilization aid from changing to hydroxides and insolubilizing, and the component (A) can sufficiently act on the bacteria and is high. Bactericidal effect can be obtained.
  • the pH is set to 1.0 or more, deterioration of the material due to hydrolysis, corrosion, or dissolution of metal, rubber, plastic, or the like is suppressed.
  • the load during ozone sterilization is reduced. More preferably, a load at the time of ozone sterilization of a sterilization apparatus or a sterilization target container made of a material such as metal, rubber, or plastic having a pH of 3.0 or more is further reduced.
  • the sterilization aid of the present invention preferably has a pH of 3.0 or higher when food is to be sterilized.
  • the said pH means the pH value measured using a hydrogen electrode etc. at 25 degreeC.
  • the use temperature of the sterilization aid of the present invention is not limited to this temperature, and even when the sterilization aid of the present invention is used at any temperature, the pH is within the above range when converted to the value shown at 25 ° C. If so, it is included in the scope of the present invention.
  • the sterilization aid of the present invention does not require further pH adjustment when the desired pH is obtained only by using the component (B). However, when the desired pH is not reached only by the component (B), hydrochloric acid, caustic soda, etc. An appropriate amount of the pH adjusting component (E) may be added to adjust to a desired pH.
  • the sterilization aid of the present invention in particular when used in the ozone aeration method, is an ester-bonded fatty acid having 1 to 10 carbon atoms and glycerin as component (C) in addition to component (A) and component (B). It is preferable that glycerin fatty acid ester is contained. If the component (C) is contained, the ozone-containing bubbles by ozone aeration can be made finer, so that the rising speed of the ozone-containing bubbles is slowed and the contact efficiency with the object to be processed is increased. Furthermore, since it becomes easy to sterilize even a fine part enough, a sterilization effect improves.
  • component (C) since the bubbles can be easily made finer by using an ejector or a diffuser tube without using various microbubble generators, the cost of the apparatus is reduced. Furthermore, since the wettability of the object to be processed is improved due to the decrease in surface tension, an improvement in cleaning properties can be expected.
  • component (C) when component (C) is used in the sterilization aid of the present invention, a slight amount of organic peroxide is predicted to be generated by the reaction, although it is under acidic conditions in which component (C) and ozone are difficult to react. Is done. Therefore, it is thought that the bactericidal effect is further enhanced by adding the bactericidal effect by the organic peroxide.
  • component (C) when fresh food is subjected to ozone treatment, it is preferable to use a food additive that is not restricted in use in consideration of a residual residue. Further, in the sterilization by the ozone aeration method, it is preferable to easily suppress the bubble from being accumulated on the liquid surface and overflow, and to easily suppress the decrease in the sterilization effect due to the decrease in mechanical force. For these reasons, as component (C), triacetin, diacetin, monoacetin, and monocaprylin are more preferable. In the sterilization by the ozone aeration method, triacetin and monocaprylin are more preferable from the viewpoint that bubbles do not easily accumulate even when the aeration amount is increased.
  • triacetin is used as component (C) because it is easy to obtain a high bactericidal power even under conditions where the amount of component (A) and ozone used is smaller and processing time is short. It is particularly preferred that monocaprylin is used in combination. Triacetin has a small degree of lowering the surface tension, but has a high rate of lowering the dynamic surface tension and tends to break up bubbles finely. Monocaprylin, on the other hand, is slower in reducing the dynamic surface tension than triacetin, but the speed is sufficient for refining ozone-containing bubbles and the degree to which the surface tension is reduced (until equilibrium is reached).
  • triacetin The absolute amount of decrease in surface tension is greater than that of triacetin. For this reason, ozone-containing bubbles can be made finer even at a low concentration. Therefore, due to the synergistic effect of monocaprylin and triacetin, sufficient ozone-containing bubbles can be miniaturized with a smaller amount of drug. Since triacetin is superior in water solubility and inexpensive compared to monocaprylin, it can be further reduced in cost while maintaining the same bactericidal effect as compared with the case of using monocaprylin alone. Moreover, since triacetin has a weak bitter taste compared to monocaprylin, when the object to be treated is a food, it is easy to suppress a deterioration in quality.
  • the content of the component (C) in the sterilization aid is preferably 10 to 5000 mg / L, and more preferably 10 to 100 mg / L. If content of a component (C) is 10 mg / L or more, the effect by a component (C) will be easy to be acquired. If the content of the component (C) is 5000 mg / L or less, bubbles accumulate on the liquid surface of the sterilization aid during the ozone treatment of the treatment object, or the component (C) remains in the treatment object after the treatment. There is little concern to do.
  • the sterilization aid of the present invention has other surfactants, perfumes, perfumes, enzymes, fluorescence, as other components, in a range that does not inhibit the ozone oxidation reaction, for the usability and stabilization of the sterilization aid.
  • surfactant there is no restriction
  • Component (D1) an anionic surfactant.
  • Component (D2) Nonionic surfactant.
  • Component (D3) Amphoteric surfactant.
  • component (D1) examples include alkylbenzene sulfonic acid, alkyl sulfuric acid, alkyl phenyl ether sulfuric acid, polyoxyethylene alkyl ether sulfuric acid, acylamide alkyl sulfuric acid, alkyl phosphoric acid, polyoxyethylene alkyl ether carboxylic acid, paraffin sulfonic acid, ⁇ - Examples thereof include water-soluble salts such as olefin sulfonic acid, ⁇ -sulfocarboxylic acid and esters thereof, and soap.
  • component (D2) examples include ethoxylated nonions such as polyoxyalkyl ether and polyoxyalkylphenyl ether, polyglycerin fatty acid ester, glycerin fatty acid ester (excluding those corresponding to component (C)), propylene glycol fatty acid ester , Sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glucoside ester, sugar ester, methyl glucoside ester, ethyl glucoside ester, alkyl polyglucooxide, and other sugar-based active agents, alkyl amine oxide, alkyl diethanolamide, fatty acid N-alkyl gluca
  • amide-based activators such as amide and alkylamine oxide.
  • Examples of the component (D3) include aminocarboxylates such as alkylcarboxybetaines, alkylsulfoxybetaines, alkylamidopropylbetaines, and alkylalaninates, imidazoline derivatives, and alkylamine oxides.
  • Examples of the component (D4) include alkyltrimethylammonium salts and dialkyldimethylammonium salts. Surfactant may be used individually by 1 type and may use 2 or more types together.
  • the content of the surfactant in the sterilization aid is preferably 0 to 10 mg / L, and more preferably 0 to 5 mg / L. If the content of the surfactant is 10 mg / L or less, it is easy to suppress the occurrence of undesired phenomena in the process such as the ozone-containing bubbles accumulating on the water surface and bubbling and overflowing.
  • the sterilization aid of the present invention is produced by adding the component (A), the component (B), and other components as necessary to water, and adjusting the pH with hydrochloric acid or caustic soda as necessary.
  • the water used for the sterilization aid is not particularly limited. Ozone reacts with dissolved metals, chlorine, organic matter, etc. due to its strong oxidizing power, so water preferably has a low content of these impurities and a high purity. However, water can be appropriately selected according to the type of the object to be treated and the required degree of sterilization, and tap water may be used.
  • the ozone sterilization method of the present invention is a method of ozone-treating an object to be processed using the sterilization aid for ozone sterilization of the present invention described above.
  • Ozone is known to have high sterilizing power because of its strong oxidizing power.
  • the ozone sterilization method of the present invention can employ a known ozone sterilization method except that the sterilization aid of the present invention is used.
  • the ozone sterilization method of the present invention may be any of the following method ( ⁇ ) and method ( ⁇ ).
  • the ozone-containing gas that could not be completely dissolved is discarded, so that waste is likely to increase compared to the method ( ⁇ ).
  • dissolved ozone reacts with contaminants because of its high reaction rate and lack of selectivity in reaction, and when the object to be treated is food, it has high permeability to food, so the amount of ozone water to be used is small. It tends to increase.
  • the method ( ⁇ ) is preferable to the method ( ⁇ ).
  • the method ( ⁇ ) is a method having a step of immersing the object to be treated in the sterilization aid of the present invention described above and aeration of ozone-containing gas in the sterilization aid in which the object to be treated is immersed.
  • FIG. 1 is a schematic view showing an example of a sterilizer used in the method ( ⁇ ).
  • the sterilizer 1 includes a water tank 11, an ozone-containing gas supply unit 12, an aeration unit 13, and a stirring unit 17.
  • the aeration means 13 includes a supply pipe 14 and an air diffuser 15 provided at the tip of the supply pipe 14.
  • the air diffuser 15 is immersed in the sterilization aid stored in the water tank 11, and the supply pipe 14 is connected to the ozone-containing gas supply means 12.
  • the stirring means 17 is provided in the water tank 11.
  • the material of the water tank 11 is not particularly limited, but is preferably excellent in resistance to the strong oxidizing power of ozone, such as glass, Teflon (registered trademark) (polytetrafluoroethylene), titanium, ozone treatment, that is, high concentration ozone. It is preferable to use aluminum or stainless steel having a strong oxide film formed by the above. Although a water tank made of a material such as nitrile rubber or urethane having low resistance to ozone may be used, it is necessary to pay sufficient attention to deterioration of the water tank 11 in that case.
  • the size of the water tank 11 may be determined in consideration of the amount of the object to be treated with ozone and the performance of the stirring means 17.
  • the ozone-containing gas supply means 12 only needs to be able to supply ozone-containing gas containing ozone, and examples thereof include an ozone generator and a cylinder filled with ozone-containing gas. Moreover, you may use the apparatus which produces
  • the ozone generator is not particularly limited, and examples thereof include a method that irradiates oxygen with high energy light such as an electron beam, radiation, and ultraviolet rays, a chemical method, an electrolytic method, a discharge method, and the like.
  • ozone generators examples include YGR-50 (trade name, manufactured by Iwaki Co., Ltd.), which is a low-concentration ozone generator, and ED-OG-R4 (trade name, Eco), which is a high-concentration ozone generator. Design Co., Ltd.).
  • the aeration means 13 only needs to be able to aerate ozone-containing gas and supply ozone-containing bubbles into the sterilization aid, and for example, known devices such as a diffuser plate, a diffused cylinder, a diffuser, and an ejector can be adopted. By using such a device and generating as fine ozone-containing bubbles as possible, the sterilizing effect of the object to be processed can be further enhanced.
  • the stirring means 17 may be any means as long as it can stir the sterilization aid in the water tank 11, and may use a stirring blade, or may generate a water flow with a pump or the like.
  • Pre-washing step A step of washing an object to be treated with water before ozone treatment.
  • Ozone aeration treatment step a step of immersing an object to be treated in a sterilization aid stored in the water tank 11 of the sterilization apparatus 1 and aeration of the ozone-containing gas in the sterilization aid to treat the treatment object with ozone.
  • Rinsing process A process in which the sterilized material is rinsed with water and the sterilization aid is washed away.
  • Dehydration step A step of dehydrating the object to be processed.
  • the method ( ⁇ ) is not limited to the above method as long as it has the ozone aeration process.
  • Pre-washing process Pre-wash the object to be sterilized with tap water to remove dirt. Pre-washing should not be performed excessively so that the quality of the processed material will not deteriorate due to elution of water-soluble components such as vitamin C, in particular, in order to prevent the appearance from being deteriorated due to physical damage. To.
  • Ozone aeration process First, an arbitrary amount of sterilization aid is stored in the water tank 11 of the sterilization apparatus 1, and the object 18 to be sterilized is immersed in the sterilization aid. Next, ozone-containing gas 16 is circulated in the supply pipe 14 from the ozone-containing gas supply means 12 and the ozone-containing gas 16 is aerated from the air diffuser 15 to generate ozone-containing bubbles 16 in the sterilization aid.
  • the fine bubbles mean bubbles having an average bubble diameter of 500 ⁇ m or less.
  • the average bubble diameter of the ozone-containing bubbles 16 is preferably 1 to 100 ⁇ m.
  • the average bubble diameter of the ozone-containing bubbles 16 is measured by image analysis using a digital scope or a digital camera.
  • the sterilization of the workpiece 18 is performed for an arbitrary time while the sterilization aid in the water tank 11 is stirred by the stirring means 17 and the ozone-containing bubbles 16 are generated.
  • the sterilization aid it is considered that the object to be treated 18 is sterilized by the action of the aluminum ions generated by dissolving the component (A) and the ozone-containing bubbles 16 on the cells.
  • the bactericidal aid containing a component (C) in ozone in a bactericidal aid, a part of ozone supplied from the aeration part 15 melt
  • the object to be treated 18 may be anything that is generally subjected to ozone treatment; fresh vegetables such as cut vegetables; kitchen utensils such as knives, cutting boards, tableware and sponges; toilet articles such as toilet seats; Bath products such as bathtubs; cloth products such as clothing, sheets, and futons; medical instruments such as endoscopes and scalpels; fresh foods such as fruits, meat, fish, shellfish and eggs, and processed foods thereof; oral cavity and fingers, etc.
  • the body of the plant equipment such as factory production lines, packaging containers, walls, floors, and piping; sludge and the like.
  • ozone generated by an ozone generator may be used as it is, or a gas diluted with a dilution gas may be used.
  • a gas inert to ozone or poor in reactivity is preferable.
  • the dilution gas include helium, argon, carbon dioxide, oxygen, air, and nitrogen. Since ozone is self-degrading, it is preferably used immediately after being prepared with an ozone generator.
  • the ozone concentration in the ozone-containing bubbles (ozone-containing gas) is preferably 0.0005 to 1.0% by volume, more preferably 0.005 to 1.0% by volume.
  • the ozone concentration is 0.0005% by volume or more, high sterilizing power is easily obtained.
  • the ozone concentration is 1.0% by volume or less, the ozone concentration in the working environment is unlikely to exceed the reference value, and it is easy to suppress the quality deterioration of the object to be processed after the ozone treatment.
  • the supply amount of the ozone-containing gas to the sterilization aid can be determined according to the purpose of sterilization and the type and amount of the object to be processed.
  • the time for aeration of the ozone-containing gas to the sterilization aid should be determined in consideration of the degree of sterilization required, the type and amount of the object 18 in the sterilization aid, the temperature of the sterilization aid, and the like. 1 to 10 minutes is preferable. If it is in the said range, the bad influence which acts on the to-be-processed object 18 will become very few.
  • the temperature (aeration temperature) of the sterilization aid during the aeration of the ozone-containing gas can be determined in consideration of the required degree of sterilization, the type and amount of the workpiece 18 in the sterilization aid, the aeration time, and the like.
  • the temperature of the sterilization aid is preferably 0 to 50 ° C. from the viewpoint that ozone in the sterilization aid becomes relatively stable.
  • the temperature of the sterilization aid is more preferably 0 to 30 ° C. when the object to be treated is food.
  • Rinsing process The sterilization aid adhering to the workpiece 18 is removed by rinsing with tap water or the like.
  • the rinsing method is not particularly limited, and examples thereof include a method of immersing an object to be treated in tap water being stirred.
  • the number of rinses and rinse time take into consideration cost, deterioration of appearance due to physical damage caused by stirring during rinsing, and degradation of quality due to elution of water-soluble components such as vitamin C when the object to be treated is food. And avoid becoming excessive.
  • Dehydration process The object to be treated 18 after rinsing is dehydrated.
  • the dehydrating method is not particularly limited, and examples thereof include a method of using a dehydrator using centrifugal force such as a dehydrating tank of a washing machine.
  • the method ( ⁇ ) is a sterilization method using ozone water, in which ozone is dissolved in a sterilization aid to form a sterilizer composition, and the object to be treated is immersed in the sterilizer composition and subjected to ozone treatment. It is a method having a process.
  • the method ( ⁇ ) is not particularly limited as long as it has a step of performing ozone treatment using the bactericidal composition, and examples thereof include a method having the following steps.
  • Pre-washing step A step of washing an object to be treated with water before ozone treatment.
  • Ozone water immersion process A bactericide composition in which ozone is dissolved in a sterilization aid is stored in a water tank of a sterilizer, and the object to be processed is subjected to ozone treatment by immersing the object in the bactericide composition.
  • Rinsing process A process in which the sterilized material is rinsed with water and the sterilization aid is washed away.
  • Dehydration step A step of dehydrating the object to be processed.
  • the method ( ⁇ ) is not limited to the method as long as it has the ozone water immersion step.
  • the pre-washing step, rinsing step and dehydration step in the method ( ⁇ ) are the same as the pre-washing step, rinsing step and dehydration step described in the method ( ⁇ ).
  • the method for preparing the bactericidal composition is not particularly limited, and includes, for example, an aqueous solution containing component (A), component (B), and other components as necessary, and having a pH of 1.0 or more and less than 5.0. And a method of mixing ozone water prepared in advance.
  • the method for preparing the ozone water is not particularly limited, and examples thereof include a method for generating ozone in water and a method for dissolving ozone gas once generated outside water in water. The most common method for generating ozone in water is water electrolysis.
  • ozone gas is generated by the above-described ozone generator and the like, a method of aeration of the ozone gas into water, a method using a diffuser, a Teflon (registered trademark) film or the like is used to dissolve ozone gas.
  • the method etc. are mentioned.
  • the content of ozone in the disinfectant composition in which ozone is dissolved is preferably 0.01 to 5 mg / L, and more preferably 0.1 to 5 mg / L. If the content of ozone in the bactericidal composition is 0.01 mg / L or more, a high bactericidal effect is easily obtained. If the content of ozone in the bactericidal composition is 5 mg / L or less, it is easy to suppress the quality deterioration of the object to be treated after the ozone treatment.
  • the method ( ⁇ ) may be performed by a sterilization apparatus having at least a water tank for storing the sterilizing agent composition, and a known apparatus can be used.
  • a sterilization apparatus having at least a water tank for storing the sterilizing agent composition
  • a known apparatus can be used.
  • the material of the water tank used in the method ( ⁇ ) the same materials as those mentioned as the material of the water tank 11 in the sterilization apparatus 1 can be mentioned, and the preferred embodiments are also the same.
  • the sterilization power is improved by including the component (A) in the sterilization aid, a high sterilization effect is achieved with a smaller amount of ozone. can get. For this reason, it is not necessary to use excessive facilities for generating high-concentration ozone or reducing the ozone concentration in the atmosphere of the work environment, and the cost can be reduced. In addition, since the amount of ozone used can be reduced, the load on the sterilizer can be reduced.
  • the component (A) acts on the membrane protein of the microbial cell to reduce its activity, and the microbial cell is killed by ozone oxidative degradation of the microbial cell. Estimated to be easier.
  • metal ions catalyze the decomposition of ozone and generate hydroxy radicals with stronger oxidizing power, which is also presumed to be due to the improvement of bactericidal power by component (A). .
  • Component (A ′) Comparative component of component (A)
  • Component A'1 Iron sulfate heptahydrate (manufactured by Kanto Chemical Co., Inc., standard food additive)
  • Component A'2 Copper sulfate pentahydrate (manufactured by Kanto Chemical Co., Inc., standard food additive)
  • Component B1 Phosphoric acid (manufactured by Junsei Chemical Co., Ltd., food additive standard product)
  • Component B2 Citric acid (made by Junsei Co., Ltd., food additive standard product)
  • Component B3 Acetic acid (glacial acetic acid) (made by Junsei Co., Ltd., food additive standard product)
  • Component B4 Malic acid (manufactured by Junsei Co., Ltd., a food additive standard product)
  • Ingredient B5 Succinic acid (manufactured by Junsei Co., Ltd., standard food additive)
  • Component B6 Gluconic acid (manufactured by Kanto Chemical Co., Inc.)
  • Component B7 Lactic acid (made by Junsei Co., Ltd., food additive standard product)
  • Component B8 L-tartaric acid (manufactured by Kanto Chemical Co., Inc.)
  • Component (B ′) Comparative component of component (B)
  • Component B'1 Ascorbic acid (manufactured by Junsei Co., Ltd., standard food additive)
  • Component C1 Monocaprylin (Taiyo Chemical Co., Ltd., Sunsoft No. 700P-2)
  • Component C2 Triacetin (manufactured by Kanto Chemical Co., Inc.)
  • Component E1 0.1N hydrochloric acid aqueous solution (manufactured by Kanto Chemical Co., Inc.)
  • Component E2 0.1N sodium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Inc.)
  • ⁇ Potential sterilization test> For the sterilization aid of the present invention, a potential sterilization test was performed on microorganisms dispersed in an aqueous solution in order to confirm the presence or absence of a basic sterilization effect on microorganisms.
  • Escherichia coli (NBRC 3972 strain) is cultured at 37 ° C. for 24 hours in an SCD agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.) (hereinafter sometimes referred to as “pre-culture”). The culture was repeated once in the same manner as the culture (hereinafter sometimes referred to as “preculture”), and the precultured Escherichia coli was used for the bactericidal test.
  • a pre-cultured Escherichia coli buffer solution containing peptone (3.56 g potassium dihydrogen phosphate, 18.2 g disodium hydrogen phosphate dodecahydrate, 4.3 g sodium chloride, and 1.0 g peptone dissolved in 1 liter of purified water)
  • the solution was neutralized to pH 7.0, and a bacterial solution with a bacterial count of about 1.0 ⁇ 10 8 cfu / mL was prepared using the light transmittance at a wavelength of 660 nm as an index.
  • the ozone aeration means 2 illustrated in FIG. 2 was used.
  • the ozone aeration means 2 includes an air diffuser 21 (Kinoshita type glass filter 501G (No. 4), manufactured by Kinoshita Rika Kogyo Co., Ltd.), an ozone concentration meter 22 (pump built-in, PG-620MA, manufactured by Sugawara Jitsugyo Co., Ltd.), mass flow A controller 23 (MODEL 8500, manufactured by Coflock Co., Ltd.), an ozone generator 24 (Aqua Zone 200, manufactured by Red Sea Fish Pharm Ltd.), and a dehumidifying unit 25 (silica gel, 500 mL) are connected in this order.
  • an air diffuser 21 Korean type glass filter 501G (No. 4), manufactured by Kinoshita Rika Kogyo Co., Ltd.
  • an ozone concentration meter 22 pump built-in, PG-620MA, manufactured by Sugawara Jitsugyo Co., Ltd
  • ozone aeration means 2 air is dehumidified by the dehumidifying unit 25, supplied as dry air to the ozone generator 24, ozone-containing gas is generated by the ozone generator 24, and the diffuser unit while adjusting the flow rate by the mass flow controller 23.
  • ozone aeration can be performed.
  • the ozone concentration in the ozone-containing gas can be measured by the ozone concentration meter 22.
  • Ozone aeration means 2 aerated ozone-containing gas (dilution gas: air) having an ozone concentration of 0.01 vol% at a flow rate of 20 mL / min to the sample solution in the test tube for 2 minutes.
  • the treatment temperature was 25 ° C.
  • the number of remaining bacteria was investigated by counting the number of colonies on a culture medium.
  • the number of remaining bacteria is a value obtained by averaging the number of bacteria counted for two petri dishes.
  • the number of bacteria measured in the same manner as in the above method for the sample solution before ozone aeration treatment was used as the initial number of bacteria, and the bactericidal activity was evaluated by -log (residual number of bacteria / initial number of bacteria).
  • Example 3 As shown in Table 1, in Examples 1 to 12 using the sterilization aid containing the component (A) and the component (B), a high sterilization effect was obtained despite a short time treatment with a small amount of ozone. It was. Comparing Examples 3, 7 and 8 using the sterilization aid containing the same component and different types of components (B), higher acetic acid was obtained when acetic acid was used as the component (B) (Example 3). The effect was obtained. In Examples 9 to 11 using the sterilization aid containing the component (C) in addition to the component (A) and the component (B), a higher sterilization effect can be obtained by making the ozone-containing bubbles finer. It was. In particular, in Example 11 in which monocaprylin and triacetin were used in combination as the component (C), a higher bactericidal effect was obtained than monocaprylin or triacetin alone.
  • Comparative Examples 3 and 4 using a sterilization aid having a pH of 5.0 or more the sterilizing power was small as compared with the Examples.
  • Comparative Examples 5 to 7 using a bactericidal aid that does not satisfy any two of the three conditions of component (A), component (B), and pH of 1.0 to less than 5.0 The sterilizing power became extremely small.
  • Comparative Examples 8 and 9 using other metal salts of iron and copper instead of the aluminum salt of component (A) have a smaller sterilizing power than the examples, and an effect of improving the sterilizing effect is obtained. There wasn't. Further, Comparative Example 10 using L-ascorbic acid instead of the acid of component (B) had a smaller sterilizing power than the Examples, and an effect of improving the sterilizing effect was not obtained. Moreover, in the comparative example 11 which refine
  • Escherichia coli (NBRC 3972 strain) was cultured at 37 ° C. for 24 hours (pre-culture) on an SCD agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.), and the cultured E. coli was cultured again in the same manner as the pre-culture (pre-culture).
  • the pre-cultured Escherichia coli was used for the bactericidal test.
  • the pre-cultured Escherichia coli was diluted with sterilized water, and a bacterial dilution near 2.0 ⁇ 10 7 cfu / mL was prepared using the light transmittance at a wavelength of 660 nm as an index.
  • the bacterial dilution was dispersed in a nutrient broth (manufactured by Kanto Chemical Co., Inc.) at a ratio of 5: 5 to prepare a bacterial solution in the vicinity of 1.0 ⁇ 10 7 cfu / mL.
  • a nutrient broth manufactured by Kanto Chemical Co., Inc.
  • silicon rubber manufactured by Tigers Polymer Co., Ltd.
  • surface polished glass polishing with water resistant abrasive paper No. 1200 of Sankyo Rika Kagaku Co., Ltd.
  • each component is added to pure water so that the content in the sterilization aid becomes the value shown in Table 2, and further BIG (bovine serum albumin) made by SIGMA is 0.01% by mass as impurities.
  • BIG bovine serum albumin
  • the self-made sterilization apparatus 3 illustrated in FIG. 3 was used for the sterilization test of the test piece.
  • the sterilizer 3 includes a water tank 31 (3 L polypropylene beaker), an ozone-containing gas supply unit 32, and a bubble generation unit 33.
  • the ozone-containing gas supply means 32 includes an ozone concentration meter 34 (pump built-in, PG-620MA, manufactured by Sugawara Jitsugyo Co., Ltd.), a mass flow controller 35 (MODEL 8500, manufactured by Coffrock Co., Ltd.), an ozone generator 36 (aqua zone 200, Red Sea). Fish Pharm Ltd.) and dehumidifying part 37 (silica gel, 500 mL) are connected in this order.
  • the bubble generating means 33 includes a centrifugal pump 38 (SL-5SN, manufactured by Elepon Chemical Industries Co., Ltd.) and an ejector 39 (Aspirator manufactured by As One Co., Ltd., polytetrafluoroethylene (PTFE)).
  • the inside and the vortex pump 38, the vortex pump 38 and the ejector 39, and the ejector 39 and the water tank 31 are connected by piping (made of vinyl chloride, joint: SUS304).
  • An ozone concentration meter 34 of the ozone-containing gas supply means 32 and an ejector 39 of the bubble generating means 33 are connected.
  • the ejector 39 has a 6 mm inner diameter pipe connected to the sterilization aid inlet (spiral pump 38 side) and an ozone containing gas suction port (ozone concentration meter 34 side) 4 mm inner diameter pipe. Inner diameter 6mm at the outlet of the agent (water tank 31 side) Piping is connected.
  • the air is dehumidified by the dehumidifying unit 37 and supplied as dry air to the ozone generator 36, ozone-containing gas is generated by the ozone generator 36, the flow rate is adjusted by the mass flow controller 35, and the ejector 39 is supplied.
  • An ozone-containing gas is supplied.
  • the ozone concentration in the ozone-containing gas can be measured by the ozone concentration meter 34.
  • the centrifugal pump 38 supplies the sterilization aid in the water tank 31 to the ejector 39 by the rotation of an impeller (not shown) having a radial groove on the outer periphery, and the ozone-containing gas and the sterilization aid are ejected in the ejector 39.
  • the sterilization aid (1400 mL) is stored in the water tank 31 of the sterilizer 3, and three test pieces are placed on the bottom surface of the water tank 31 at a position where the water flow from the ejector 39 is not directly applied, with the bacteria adhesion surface up. did.
  • the sterilization aid is circulated at 3 L / min by the vortex pump 38, and ozone-containing gas (that is, a mixed gas of dilution gas and air) having an ozone concentration of 0.01 vol% is supplied from the ozone generator 36 to the ejector 39.
  • Ozone containing bubbles were generated by supplying at a flow rate of 20 mL / min, and ozone aeration was performed by supplying ozone containing bubbles to the sterilization aid in the water tank 31 for 5 minutes.
  • the treatment temperature was 25 ° C.
  • Each test piece was subjected to ozone aeration treatment in the same manner as in Examples 13 to 32 except that the addition amount and pH of each component of the used bactericidal aid were changed as shown in Table 3.
  • the pH of the sterilization aid was adjusted by adding an appropriate amount of 0.1N hydrochloric acid aqueous solution (component E1) or 0.1N sodium hydroxide aqueous solution (component E2) as necessary.
  • the pH was measured using a pH meter (SevenEasy, manufactured by METTLER TOLEDO).
  • the number of bacteria measured in the same manner as in the above method for the sample solution before ozone aeration treatment was used as the initial number of bacteria, and the bactericidal activity was evaluated by -log (residual number of bacteria / initial number of bacteria).
  • the evaluation of the sterilizing power is “0” when the number of bacteria does not decrease in this test.
  • the sterilizing power is evaluated as “4”. This is because even when the bacteria on the surface of the test piece are completely annihilated, a certain number of bacteria is counted as the background in the evaluation method.
  • the number of bacteria will reduce with the water flow, and although it changes with the materials of a test piece, the number of bacteria will be 1/10 or less.
  • the number of bacteria when the number of bacteria is reduced to 1/100 or less of the initial number of bacteria, that is, when -log (residual number of bacteria / initial number of bacteria) is "2.0" or more, it is practical. Therefore, it was accepted.
  • Silicon rubber 4 points No change is seen compared to before treatment. 3 points: Little change compared to before treatment. 2 points: Slight discoloration is seen compared to before treatment. 1 point: Discoloration is observed as compared to before treatment, and the ratio of cracked portions is 20% or more.
  • Table 13 shows Examples 13 to 32 and Table 3 shows Comparative Examples 12 to 21 for the solid surface sterilization test and the solid surface deterioration test.
  • no major surface deterioration was observed on any solid surface, and the surface deterioration was acceptable.
  • Comparative Example 15 using a bactericidal aid having a pH of 5.0 or more the sterilizing power of each test piece was smaller than that of the example.
  • Comparative Example 14 containing the component (A) and the component (B) but using a sterilization aid having a pH of less than 1.0 showed an equivalent sterilizing power as compared with the Examples. Surface degradation was observed with rubber.
  • the component (A) and the component (B) are included, and the pH is 1.0 or more and less than 5.0, but the comparative example 16 does not include ozone, the component (A) is included, the component (B) is included, In Comparative Examples 17 to 19 using a bactericidal aid that does not satisfy any two of the three conditions that the pH is 1.0 or more and less than 5.0, for any of the test pieces, Comparative Examples 12 to 15 and In comparison, the sterilizing power was further reduced. Moreover, the comparative example 20 which used the metal salt of iron instead of the aluminum salt of a component (A) also had a small bactericidal power compared with the Example, and the effect which improves a bactericidal effect was not acquired. Further, Comparative Example 21 using L-ascorbic acid instead of the acid of component (B) has a smaller sterilizing power than the Examples, and an effect of improving the sterilizing effect was not obtained.
  • the sterilizer 4 includes a two-tub washing machine 41 (CW-C30A1 manufactured by Mitsubishi Electric Corporation), an ozone-containing gas supply means 42, and a fine bubble generating means 43.
  • the two-tub washing machine 41 has a washing tub 41a and a dewatering tub 41b.
  • the ozone-containing gas supply means 42 includes an air cylinder 45 to which a regulator 44 is attached, an ozone generator 46 (OZSD-3000A manufactured by Sugawara Jitsugyo Co., Ltd.), and a mass flow controller 47 (manufactured by Coflock Co., Ltd., MODEL 5100).
  • the fine bubble generating means 43 includes a vortex pump 48 (manufactured by Nikuni Corporation, 20NED04), and a disperser 49 is connected to the tip thereof.
  • the disperser 49 has caps connected to both ends of 3/4 inch cheese and a 3 mm hole in the center.
  • a pipe 50 (made of vinyl chloride, joint: SUS304) is arranged from the inside of the washing tub 41a of the two-tub type washing machine 41 to the vortex pump 48, and the end of the pipe 50 on the washing tub 41a side has a vegetable A strainer 51 (a Teflon (registered trademark) 1 mm diameter mesh) for preventing suction is installed.
  • ozone is generated by the ozone generator 46 using the air sent from the air cylinder 45, and the sterilization aid supplied from the washing tub 41 a to the vortex pump 48 through the pipe 50 is flowed by the mass flow controller 47.
  • the ozone-containing gas is supplied while adjusting.
  • the sterilization aid and the ozone-containing gas are gas-liquid mixed by the rotation of an impeller (not shown) having a radial groove on the outer periphery, and the ozone-containing bubbles are refined by the disperser 49 to wash the washing tub. It supplies to 41a.
  • Ozone-containing fine bubbles having an average bubble diameter of about 50 ⁇ m can be generated by the shearing force of the vortex pump 48 and the disperser 49.
  • the aeration condition by the fine bubble generating means 43 was 0.8 L / min.
  • the inside of the washing tub 41a was replaced with 40 L of tap water, and the lettuce was rinsed with stirring for 5 minutes.
  • the test for the number of bacteria was carried out by using 25 g of lettuce before and after ozone sterilization with a buffer containing peptone (3.56 g potassium dihydrogen phosphate, 18.2 g disodium hydrogen phosphate dodecahydrate, 4.3 g sodium chloride, peptone 1 (0.0 g prepared in 1 liter of purified water and neutralized to pH 7.0) was added to 225 mL, and pulverized with a stomacher equipped with a filter stomacher bag to obtain a suspension. The suspension was diluted stepwise and mixed with SCD agar medium (Nissui Pharmaceutical Co., Ltd.).
  • bactericidal power was performed using the multiple (bactericidal activity value) of the number of bacteria determined in each example with respect to the number of bacteria (bactericidal reference value) during treatment with 200 mg / L of sodium hypochlorite shown below.
  • the said process is a sterilization method used as standard in the field
  • Lettuce was sterilized in the same manner as in Examples 33 to 56 except that an aqueous sodium hypochlorite solution having a concentration of 200 mg / L was used instead of the sterilization aid and the mixture was stirred for 5 minutes without performing ozone aeration.
  • an aqueous sodium hypochlorite solution having a concentration of 200 mg / L was used instead of the sterilization aid and the mixture was stirred for 5 minutes without performing ozone aeration.
  • the lettuce after sterilization it carried out similarly to the said measuring method, measured the number of microbes per 1g of lettuce, and made it the sterilization reference value. In this test, pass / fail judgment was performed based on the bactericidal activity value defined below. The number of bacteria is usually compared on the logarithmic axis.
  • the difference in the number of bacteria not converted to logarithm is calculated as a multiple of the difference from the number of lettuce treated with 200 ppm sodium hypochlorite.
  • the value was defined as a bactericidal activity value.
  • the bactericidal activity value is “2.0”
  • the difference in the number of bacteria with 200 ppm of sodium hypochlorite is “2.0” times, and it can be determined that the treatment is reliably equivalent to the treatment with 200 ppm of sodium hypochlorite.
  • the number of bacteria may be more or less treated with Na hypochlorite 200 ppm than in the examples, and all were calculated with positive values.
  • a bactericidal activity value of less than “2.0” was acceptable, and was accepted.
  • Table 4 shows Examples 33-56 and Table 5 shows Comparative Examples 22-31 for the sterilizing power evaluation of vegetables and the evaluation results of appearance and taste.
  • Comparative Example 25 using a sterilization aid containing 5.0 and component (B) but having a pH of 5.0 or more the sterilizing power was smaller than that of the Example.
  • the comparative example 24 which contains a component (A) and a component (B), but pH is less than 1.0 although there was bactericidal power, deterioration was looked at by appearance and taste.
  • the comparative example 30 which used iron sulfate instead of the aluminum salt of a component (A) the bactericidal power was small compared with the Example, and the effect which improves a bactericidal effect was not acquired.
  • Comparative Example 31 using L-ascorbic acid instead of the component (B) acid had a smaller sterilizing power than the Examples, and an effect of improving the sterilizing effect was not obtained.
  • the sterilization aid and ozone sterilization method of the present invention can be suitably used for sterilization of fresh foods and medical instruments, or stationary sterilization cleaning of factory lines.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 本発明は、成分(A)水溶液中でアルミニウムイオンを生成するアルミニウム化合物と、成分(B)リン酸、酢酸、クエン酸、リンゴ酸、コハク酸、グルコン酸、乳酸、及びL-酒石酸から選ばれる1種類以上の酸と、を含む水溶液であり、前記水溶液のpHが1.0以上5.0未満であるオゾン殺菌用の殺菌助剤、及び前記殺菌助剤を用いて被処理物をオゾン処理するオゾン殺菌方法に関する。本発明によれば、より少ないオゾン量で、殺菌装置及び被処理物への負荷を与えずに高い殺菌効果が得られるオゾン殺菌用の殺菌助剤、及び該殺菌助剤を用いた低コストなオゾン殺菌方法を提供することができる。

Description

オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
 本発明は、オゾン殺菌用の殺菌助剤及びオゾン殺菌方法に関する。
 本願は、2010年4月12日に、日本に出願された特願2010-091627号に基づき優先権を主張し、その内容をここに援用する。
 近年、生鮮食品や医療器具の殺菌、あるいは工場ラインの定置殺菌洗浄(CIP殺菌洗浄)などにおいて、より安全で確実な殺菌処理が求められている。その中で、オゾンは、強い酸化力を有し、酸素から作ることができるうえ、殺菌後にそのまま残留せず酸素に戻ることから注目されている。オゾン殺菌方法としては、一般的に、被処理物を浸漬した被処理水中にオゾンガスを曝気する方法(オゾン曝気方法)、オゾンが水に溶解したオゾン水中に被処理物を浸漬する方法(オゾン水浸漬方法)が挙げられる。
 オゾンによる殺菌効果はその濃度に比例するため、充分な殺菌効果を得るにはオゾンの使用量が必然的に多くなる。一方、作業環境の雰囲気中のオゾン濃度は0.00001体積%以下にすることが求められる。そのため、殺菌効果と安全性を両立するためには、作業環境の雰囲気中のオゾン濃度が高くなりすぎないように、オゾン除去装置を設置するなど、過大な設備が必要な場合が多い。また、オゾンの使用量が多くなると、より大型のオゾン発生器が必要となるためコストが高くなる。さらに、殺菌装置内においてオゾンが接触する各部分のゴム、金属、プラスチックなどが腐食しやすく、装置にかかる負荷も増大する。
 そこで、オゾンによる殺菌効果を向上させ、少量のオゾンで高い殺菌力を得るために種々の試みがなされている。
 例えば、オゾン曝気方法においては、(i)モノアセチン、ジアセチン、トリアセチンなどの特定の動的表面張力を有する薬剤を含む処理液にオゾンガスを曝気して被処理物を洗浄する方法(特許文献1)、(ii)前記薬剤に加えてさらに水溶性の酸を含む処理液にオゾンガスを曝気して被処理物を洗浄する方法(特許文献2)が示されている。方法(i)及び(ii)によれば、オゾンガスの曝気により形成される気泡を微細化できるため、前記気泡の浮上速度が低下して処理液中での滞留時間が長くなり、被処理物との接触効率が高くなって殺菌効果が向上する。
 また、オゾン水浸漬方法においては、(iii)モノカプリリン、モノカプリンなどのグリセリン脂肪酸エステルとオゾンを含む処理液により被処理物を洗浄する方法(特許文献3)が示されている。方法(iii)によれば、グリセリン脂肪酸エステルとオゾンとが反応することで、殺菌力に優れ、処理液中に安定して存在できる有機過酸化物が生成することにより、殺菌効果が向上する。
国際公開第07/040260号パンフレット 特開2008-201992号公報 特開2008-255045号公報
 しかしながら、方法(i)~(iii)では、殺菌効果が未だ充分とは言えず、殺菌効果のさらなる向上が望まれている。
 本発明は、より少ないオゾン量で、殺菌装置及び被処理物への負荷を与えずに、高い殺菌効果が得られるオゾン殺菌用の殺菌助剤、及び前記殺菌助剤を用いた低コストなオゾン殺菌方法の提供を目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。
[1]成分(A)水溶液中でアルミニウムイオンを生成するアルミニウム化合物と、成分(B)リン酸、酢酸、クエン酸、リンゴ酸、コハク酸、グルコン酸、乳酸、及びL-酒石酸から選ばれる1種類以上の酸と、を含む水溶液であり、前記水溶液のpHが1.0以上5.0未満である、オゾン殺菌用の殺菌助剤。
[2]前記成分(B)が、リン酸、クエン酸及び酢酸からなる群から選ばれる1種以上の酸である前記[1]に記載のオゾン殺菌用の殺菌助剤。
[3]前記成分(A)が、硫酸アルミニウムカリウム(AlK(SO・12HO)、焼カリミョウバン(AlK(SO)、硫酸アルミニウムアンモニウム(AlNH(SO・12HO)及び焼アンモニウムミョウバン(AlNH(SO)からなる群から選ばれる1種以上のアルミニウム化合物である前記[1]又は[2]に記載のオゾン殺菌用の殺菌助剤。
[4]更に、成分(C)炭素数1~10の脂肪酸とグリセリンとをエステル結合させたグリセリン脂肪酸エステルを含む前記[1]~[3]のいずれかに記載のオゾン殺菌用の殺菌助剤。
[5]前記[1]~[4]のいずれかに記載のオゾン殺菌用の殺菌助剤を用いて被処理物をオゾン処理するオゾン殺菌方法。
 本発明の一つの側面におけるオゾン殺菌用の殺菌助剤を用いれば、より少ないオゾン量で高い殺菌効果が得られる。
 また、本発明の別の側面におけるオゾン殺菌方法によれば、本発明のオゾン殺菌用の殺菌助剤を用いることで、より少ないオゾン量で高い殺菌効果が得られるため、過大な設備を用いる必要がなくコストを低減でき、また殺菌装置への負荷ならびに被処理物への負荷も低減できる。
本発明のオゾン殺菌方法に用いる殺菌装置の一例を示した模式図である。 実施例1~12及び比較例1~11で用いたオゾン曝気手段を示した模式図である。 実施例13~32及び比較例12~21で用いた殺菌装置を示した模式図である。 実施例33~56及び比較例22~31で用いた殺菌装置を示した模式図である。
[殺菌助剤]
 本発明のオゾン殺菌用の殺菌助剤は、成分(A)水溶液中でアルミニウムイオンを生成するアルミニウム化合物と、成分(B)リン酸、酢酸、クエン酸、リンゴ酸、コハク酸、グルコン酸、乳酸、及びL-酒石酸から選ばれる1種以上の酸と、を含む水溶液であり、前記水溶液のpHが1.0以上5.0未満の助剤である。本発明の殺菌助剤は、オゾン曝気を利用したオゾン曝気方法による被処理物の殺菌に用いることが好ましい。ただし、本発明の殺菌助剤は、オゾンを溶解させたオゾン水を利用するオゾン水浸漬方法による被処理物の殺菌に用いてもよい。
(成分(A):水溶液中でアルミニウムイオンを生成するアルミニウム化合物)
 成分(A)は、水溶液中でアルミニウムイオンを生成するアルミニウム化合物である。
 成分(A)としては、例えば、下記成分(A)~(A)が挙げられる。
 成分(A):アルミニウムを含む複合塩。
 成分(A):前記複合塩以外のアルミニウム塩。
 成分(A):アルミニウム塩の重合物。
 成分(A):アルミニウム含有金属。
 成分(A)としては、例えば、硫酸アルミニウムカリウム(カリミョウバン、AlK(SO・12HO)、焼カリミョウバン(AlK(SO)、硫酸アルミニウムアンモニウム(アンモニウムミョウバン、AlNH(SO・12HO)、焼アンモニウムミョウバン(AlNH(SO)などが挙げられる。
 成分(A)としては、例えば、塩化アルミニウム、クロロヒドロキシアルミニウム、硫酸アルミニウム(硫酸バンド)、水酸化アルミニウム、リン酸アルミニウム、ケイ酸アルミニウム、有機酸のアルミニウム塩(例えば、酢酸、乳酸、クエン酸、アジピン酸、リンゴ酸、コハク酸、マレイン酸、フマル酸、グルコン酸、酒石酸、グルタル酸、又は蓚酸のアルミニウム塩など。)、酸性基(酸解離性の官能基)を有する水溶性のキレート剤のアルミニウム塩(例えば、ニトロソ三酢酸アルミニウム、エチレンジアミン四酢酸アルミニウム、メチルグリシン二酢酸アルミニウムなど。)などが挙げられる。
 成分(A)としては、例えば、ポリ塩化アルミニウム、ポリリン酸アルミニウムなどが挙げられる。
 成分(A)としては、例えば、酸化アルミニウム(アルミナ)、純アルミニウム、アルミニウム合金(ジュラルミンなど。)などが挙げられる。
 成分(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 成分(A)は、高い殺菌効果が得られやすい点から、成分(A)及び(A)のアルミニウム塩類を添加することが好ましく、成分(A)を添加することがより好ましく、特に被処理物が食品である場合は、食品添加物である硫酸アルミニウムカリウム、焼カリミョウバン、硫酸アルミニウムアンモニウム、焼アンモニウムミョウバンからなる群から選ばれる1種以上を添加することが好ましい。
 本発明の殺菌助剤中の成分(A)の含有量は、1~1000mg/Lが好ましく、10~500mg/Lがより好ましい。成分(A)の含有量が1mg/L未満であると、高い殺菌効果が得られ難い。成分(A)の含有量が1000mg/L超であると、殺菌助剤中に存在するアルミニウムとオゾンとが反応して酸化アルミニウムになることによって、殺菌助剤中に供給されたオゾンが浪費され、オゾン供給量に見合う殺菌力が得られ難い。また、オゾンの供給量にも依存するものの、殺菌助剤に白濁及び沈殿が生じるおそれがある。
(成分(B):酸)
 成分(B)は、リン酸、酢酸、クエン酸、リンゴ酸、コハク酸、グルコン酸、乳酸、及びL-酒石酸から選ばれる1種類以上の酸であり、成分(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 成分(B)であれば、殺菌助剤のpHが低くなりすぎて被処理物に損傷が生じることを抑制できる。さらに、アルミニウムイオンの溶解度を維持しやすいため、成分(A)による殺菌力の向上効果が充分に得られる。
 リン酸、酢酸は、オゾンとの反応性が低く、殺菌助剤中に供給されたオゾンをより浪費し難いという利点がある。また、クエン酸は、アルミニウムイオンに対してキレート配位することで、アルミニウムイオンによるオゾンの過剰分解を抑制したり、アルミニウムイオンが水酸化アルミニウムとなることを抑制したりするため有利である。
 従って、成分(B)としては、分子量、アルミニウムイオンとの配位、及びオゾンとの反応性のバランスに優れる点から、リン酸、クエン酸及び酢酸からなる群から選ばれる1種以上であることがより好ましく、高い殺菌効果が得られやすい点から、酢酸が特に好ましい。
 本発明の殺菌助剤中の成分(B)の含有量は、10~10000mg/Lが好ましく、100~2000mg/Lがより好ましく、100~1000mg/Lがさらに好ましい。成分(B)の含有量が10mg/L以上であれば、高い殺菌効果が得られやすい。成分(B)の含有量が10000mg/L以下であれば、アルミニウムイオンの効果を阻害し難く、オゾンと反応することによる過度のオゾン消費を抑制しやすい。
 本発明の殺菌助剤のpHは1.0以上5.0未満である。
pHを1.0以上5.0未満とすることで、菌に対する高い殺菌効果と同時に、殺菌装置や被処理物への負荷が低減されたオゾン殺菌が可能となる。
 即ち、pHを5.0未満とすることで、殺菌助剤中に存在するアルミニウムイオンが水酸化物に変化して不溶化することを抑制でき、成分(A)が菌に充分に作用できて高い殺菌効果が得られるようになる。また、pHが低いほど殺菌助剤中のオゾン含有気泡がより安定化されると共にオゾン含有気泡が菌に吸着しやすくなるため、殺菌効果が向上する。
 一方、pHを1.0以上とすることで、金属、ゴムあるいはプラスチックなどが加水分解、腐食あるいは溶解することに基づく材質劣化が抑制されるので、これらの材質からなる殺菌装置や殺菌対象容器の、オゾン殺菌時における負荷が低減される。より好ましくはpH3.0以上で金属、ゴムあるいはプラスチックなどの材質からなる殺菌装置や殺菌対象容器の、オゾン殺菌時における負荷が、より低減される。
 また、食品を殺菌する場合も、食品材質へのダメージが低減される。尚、本発明の殺菌助剤は、食品を殺菌対象とする場合には、pHが3.0以上であることがより好ましい。
 なお、前記pHは、25℃において水素電極などを用いて測定されるpH値を意味する。ただし、本発明の殺菌助剤の利用温度はこの温度には限定されず、本発明の殺菌助剤をいかなる温度で使用する場合でも、pHが25℃において示す値に換算したときに前記範囲内であれば、本発明の範囲に含まれる。
 本発明の殺菌助剤は、成分(B)を用いるのみで所望のpHになる場合はさらなるpH調整は必要ないが、成分(B)のみでは所望のpHにならない場合は、塩酸、苛性ソーダなどのpH調整成分(E)を適量添加して所望のpHに調整すればよい。
(成分(C):グリセリン脂肪酸エステル)
 本発明の殺菌助剤は、特にオゾン曝気方法に用いる場合、前記成分(A)及び成分(B)に加えて、成分(C)として炭素数1~10の脂肪酸とグリセリンとをエステル結合させたグリセリン脂肪酸エステルが含まれていることが好ましい。成分(C)が含まれていれば、オゾン曝気によるオゾン含有気泡を微細化できるため、オゾン含有気泡の浮上速度が遅くなって被処理物との接触効率が高くなる。さらに、微細な部分まで充分に殺菌しやすくなるため、殺菌効果が向上する。また、成分(C)を用いれば、各種マイクロバブル発生器を使用しなくても、エジェクターや散気管などを利用して容易に気泡の微細化が行えるため、装置コストが低くなる。さらに、表面張力の低下によって被処理物の濡れ性が向上するため洗浄性の向上も期待できる。
 また、本発明の殺菌助剤に成分(C)を用いた場合、成分(C)とオゾンが反応しにくい酸性条件下であるものの、その反応により微量の有機過酸化物が生成することが予測される。そのため、有機過酸化物による殺菌効果が加わることで殺菌効果がさらに高まると考えられる。
 成分(C)は、生鮮食品をオゾン処理する場合には、万が一の残留を考慮して、食品添加物の中でも使用制限のないものを用いることが好ましい。また、オゾン曝気方法による殺菌においては、液面に気泡が堆積してオーバーフローすることを抑制しやすく、また機械力の低下による殺菌効果の低下を抑制しやすいものが好ましい。これらの理由から、成分(C)としては、トリアセチン、ジアセチン、モノアセチン、モノカプリリンがより好ましい。また、オゾン曝気方法による殺菌において、曝気量を増やした場合にも気泡が堆積し難い点から、トリアセチン、モノカプリリンが更に好ましい。
 特にオゾン曝気方法に用いる殺菌助剤としては、成分(A)やオゾンの使用量がより少ない条件、処理時間が短い条件などにおいても高い殺菌力が得られやすい点から、成分(C)としてトリアセチンとモノカプリリンが併用されていることが特に好ましい。トリアセチンは、表面張力を低下させる度合いは小さいものの、動的表面張力を低下させる速度が速く、気泡が細かく砕かれやすくなる。一方、モノカプリリンは、トリアセチンに比べて動的表面張力を低下させる速度は遅いものの、その速度はオゾン含有気泡の微細化には充分であり、かつ、表面張力を低下させる度合い(平衡に達するまでの表面張力の低下の絶対量)がトリアセチンよりも大きい。このため、低濃度でもオゾン含有気泡を微細化できる。そのため、モノカプリリンとトリアセチンの相乗効果により、より少ない薬剤量で充分なオゾン含有気泡の微細化が可能となる。トリアセチンは、モノカプリリンに比べて水溶性に優れ、安価であるため、モノカプリリンのみを用いる場合に比べて、同等の殺菌効果を維持しつつさらなるコスト低減が可能となる。また、トリアセチンはモノカプリリンに比べて苦味も弱いため、被処理物が食品である場合には品質低下の抑制も容易になる。
 本発明の殺菌助剤に成分(C)を用いる場合、殺菌助剤中の成分(C)の含有量は、10~5000mg/Lが好ましく、10~100mg/Lがより好ましい。成分(C)の含有量が10mg/L以上であれば、成分(C)による効果が得られやすい。成分(C)の含有量が5000mg/L以下であれば、被処理物のオゾン処理中に殺菌助剤の液面に泡が堆積したり、処理後の被処理物に成分(C)が残留したりする懸念が少ない。
 また、本発明の殺菌助剤は、その他の成分として、オゾン酸化反応を阻害しない範囲で、殺菌助剤の使用性や安定化、機能付与のために、各種界面活性剤、香料、酵素、蛍光剤、増粘剤、分散剤、無機塩、アルコール類、糖類などを含有してもよい。
 界面活性剤としては、特に制限はなく、従来公知の界面活性剤のなかから目的に応じて適宜選択できる。例えば、下記成分(D1)~(D4)などが挙げられる。
 成分(D1):アニオン界面活性剤。
 成分(D2):ノニオン界面活性剤。
 成分(D3):両性界面活性剤。
 成分(D4):カチオン界面活性剤。
 成分(D1)としては、例えば、アルキルベンゼンスルホン酸、アルキル硫酸、アルキルフェニルエーテル硫酸、ポリオキシエチレンアルキルエーテル硫酸、アシルアミドアルキル硫酸、アルキル燐酸、ポリオキシエチレンアルキルエーテルカルボン酸、パラフィンスルホン酸、α-オレフィンスルホン酸、α-スルホカルボン酸及びそれらのエステルなどの水溶性塩、石鹸などが挙げられる。
 成分(D2)としては、例えば、ポリオキシアルキルエーテル、ポリオキシアルキルフェニルエーテルなどのエトキシ化ノニオン、ポリグリセリン脂肪酸エステル、グリセリン脂肪酸エステル(成分(C)に該当するものを除く)、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、グルコシドエステル、シュガーエステル、メチルグルコシドエステル、エチルグルコシドエステル、アルキルポリグルコキシドなどの糖系活性剤、アルキルアミンオキサイド、アルキルジエタノールアミド、脂肪酸N-アルキルグルカミドなどのアミド系活性剤、アルキルアミンオキサイドなどが挙げられる。
 成分(D3)としては、例えば、アルキルカルボキシベタイン、アルキルスルホキシベタイン、アルキルアミドプロピルベタイン、アルキルアラニネートなどのアミノカルボン酸塩、イミダゾリン誘導体、アルキルアミンオキシドなどが挙げられる。
 成分(D4)としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩などが挙げられる。
 界面活性剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 殺菌助剤中の界面活性剤の含有量は、0~10mg/Lが好ましく、0~5mg/Lがより好ましい。界面活性剤の含有量が10mg/L以下であれば、オゾン含有気泡が水面に堆積して泡立ち、オーバーフローなどプロセス上好ましくない現象が生じることを抑制しやすい。
(製造方法)
 本発明の殺菌助剤は、成分(A)、成分(B)、及び必要に応じて他の成分を、水に添加し、必要に応じて塩酸或いは苛性ソーダにてpH調整して製造する。
 殺菌助剤に用いる水は特に限定されない。オゾンは、その強い酸化力から、溶存金属、塩素あるいは有機物などと反応するため、水はこれらの不純物の含有量が少なく、純度が高いことが好ましい。ただし、水は被処理物の種類や求められる殺菌の程度などに応じて適宜選定でき、水道水を用いてもよい。
[オゾン殺菌方法]
 本発明のオゾン殺菌方法は、前述した本発明のオゾン殺菌用の殺菌助剤を用いて被処理物をオゾン処理する方法である。オゾンは酸化力が強いことから殺菌力も高いことが知られている。本発明のオゾン殺菌方法は、本発明の殺菌助剤を用いる以外は、公知のオゾン殺菌方法を採用できる。本発明のオゾン殺菌方法は、下記方法(α)及び方法(β)のいずれであってもよい。
 (α)被処理物を本発明の殺菌助剤中に浸漬し、前記殺菌助剤中にオゾン含有ガスを曝気して被処理物をオゾン処理するオゾン曝気方法。
 (β)殺菌助剤にオゾンを溶解させた殺菌助剤組成物中に被処理物を浸漬し、オゾン水を利用して被処理物をオゾン処理するオゾン水浸漬方法。
 方法(β)は、溶解しきれなかったオゾン含有ガスが廃棄されるため、方法(α)に比べると無駄が多くなりやすい。また、溶解したオゾンは、反応速度が速く反応に選択性がないため共雑物とも反応し、また被処理物が食品である場合には食材への浸透性も高いことから、用いるオゾン水量が多くなりやすい。さらに、被処理物が食品の場合には、溶解したオゾンが殺菌中に食品に浸透してオゾン処理後の食材の品質が劣化するおそれもある。これらの点から、本発明のオゾン殺菌方法としては、方法(β)よりも方法(α)の方が好ましい。
(方法(α))
 方法(α)は、前述した本発明の殺菌助剤中に被処理物を浸漬し、前記被処理物が浸漬された殺菌助剤中にオゾン含有ガスを曝気する工程を有する方法である。以下、方法(α)の実施形態の一例について、図1を用いて説明する。図1は、方法(α)に用いる殺菌装置の一例を示した模式図である。
 殺菌装置1は、図1に示すように、水槽11と、オゾン含有ガス供給手段12と、曝気手段13と、攪拌手段17とを有する。曝気手段13は、供給管14と、前記供給管14の先端に設けられた散気部15とで構成されている。散気部15は水槽11に貯えられた殺菌助剤の中に浸漬され、供給管14はオゾン含有ガス供給手段12と接続されている。攪拌手段17は、水槽11内に設けられている。
 水槽11の材質は、特に限定されないが、オゾンの強い酸化力への耐性に優れたものが好ましく、ガラス、テフロン(登録商標)(ポリテトラフルオロエチレン)、チタン、オゾン処理、すなわち、高濃度オゾンによる強固な酸化皮膜形成をしたアルミニウムやステンレスを用いることが好ましい。オゾンに対する耐性が低いニトリルゴムあるいはウレタンなどの材質の水槽を使用してもよいが、その場合には水槽11の劣化に充分に注意する必要がある。
 水槽11の大きさは、オゾン処理する被処理物の量や、攪拌手段17の性能を勘案して決定すればよい。
 オゾン含有ガス供給手段12は、オゾンを含有するオゾン含有ガスを供給できるものであればよく、例えば、オゾン発生器、オゾン含有ガスを充填したボンベが挙げられる。また、オゾン発生器でオゾンを発生し、発生したオゾンを、レギュレーターを介してマスフローコントローラーに送り、マスフローコントローラーで流量調節しながら、殺菌助剤中にオゾンを供給する装置を用いてもよい。
 オゾン発生器は、特に限定されず、例えば、電子線、放射線、紫外線などの高エネルギーの光を酸素に照射する方法や、化学的方法、電解法、放電法などを利用したものが挙げられる。工業的には、オゾン含有ガスの発生コストや発生量の点から無声放電法を利用するものが多く用いられている。このような市販のオゾン発生器としては、例えば、低濃度オゾン発生器であるYGR-50(商品名、株式会社イワキ製)、高濃度オゾン発生器であるED-OG-R4(商品名、エコデザイン株式会社製)などが挙げられる。
 曝気手段13は、オゾン含有ガスを曝気して殺菌助剤中にオゾン含有気泡を供給できるものであればよく、例えば、散気板、散気筒、ディフューザー、エジェクターなど、公知の機器を採用できる。このような機器を用い、できるだけ微細なオゾン含有気泡を発生させることで、被処理物の殺菌効果をより高くすることができる。
 攪拌手段17は、水槽11内の殺菌助剤を攪拌できるものであればよく、攪拌羽根を用いたものであってもよいし、ポンプなどで水流を生じさせるものであってもよい。
 以下、殺菌装置1を用いた方法(α)の一例について説明する。方法(α)としては、例えば、下記の各工程を有する方法が挙げられる。
 前洗い工程:被処理物をオゾン処理する前に予め水で洗う工程。
 オゾン曝気処理工程:殺菌装置1の水槽11内に貯えられた殺菌助剤中に被処理物を浸漬し、前記殺菌助剤中にオゾン含有ガスを曝気して被処理物をオゾン処理する工程。
 すすぎ工程:殺菌後の被処理物を水ですすぎ、殺菌助剤を洗い流す工程。
 脱水工程:被処理物を脱水する工程。
 ただし、方法(α)は、前記オゾン曝気処理工程を有するものであれば、前記方法には限定されない。
 前洗い工程:
 水道水などにより、殺菌洗浄する被処理物を前洗いして汚れなどを落とす。前洗いは、被処理物が食品の場合、特に物理的な損傷により外観を劣化させないように考慮し、またビタミンCなどの水溶性成分が溶出して品質が低下しないように過度に行わないようにする。
 オゾン曝気処理工程:
 まず、殺菌装置1の水槽11に任意の量の殺菌助剤を貯え、前記殺菌助剤中に殺菌対象である被処理物18を浸漬する。次いで、オゾン含有ガス供給手段12からオゾン含有ガスを供給管14に流通させ、散気部15からオゾン含有ガスを曝気することによりオゾン含有気泡16を殺菌助剤中に発生させる。方法(α)においては、殺菌効果が向上する点から、前記成分(C)を含む殺菌助剤を用いて、オゾン含有気泡16を微細気泡として供給することが好ましい。前記微細気泡とは、平均気泡径が500μm以下の気泡を意味する。オゾン含有気泡16の平均気泡径は、1~100μmが好ましい。オゾン含有気泡16の平均気泡径は、デジタルスコープ又はデジタルカメラを用いた画像解析により測定される。
 被処理物18の殺菌は、攪拌手段17により、水槽11内の殺菌助剤を攪拌し、オゾン含有気泡16を発生させながら任意の時間行う。殺菌助剤中では、成分(A)が溶解して生成したアルミニウムイオンと、オゾン含有気泡16が菌体に作用することで、被処理物18が殺菌されると考えられる。また、成分(C)を含む殺菌助剤を用いる場合は、殺菌助剤中において、散気部15から供給されたオゾンの一部が水に溶解し、成分(C)と反応することで微量の有機過酸化物が生成し、前記有機過酸化物も被処理物の殺菌に寄与すると考えられる。
 被処理物18としては、一般的にオゾン処理が行われているものであればよく、カット野菜などの生鮮野菜;包丁、まな板、食器、スポンジなどの台所用品;便座などのトイレ用品;桶、浴槽などの風呂用品;衣類、シーツ、布団などの布製品;内視鏡、メスなどの医療器具;果物、肉、魚、貝類、卵などの生鮮食品、及びそれらの加工食品;口腔や手指などの身体;工場の生産ラインや包装容器、壁、床、配管などの機器;汚泥などが挙げられる。
 オゾン含有ガスには、オゾン発生器で発生したオゾンをそのまま用いてもよく、希釈ガスで希釈したものを用いてもよい。希釈ガスとしては、オゾンに対して不活性あるいは反応性に乏しいガスが好ましい。希釈ガスとしては、例えば、ヘリウム、アルゴン、二酸化炭素、酸素、空気、窒素などが挙げられる。オゾンは自己分解性を有するため、オゾン発生器で調製した後、直ちに使用することが好ましい。
 オゾン含有気泡(オゾン含有ガス)中のオゾン濃度は、0.0005~1.0体積%が好ましく、0.005~1.0体積%がより好ましい。前記オゾン濃度が0.0005体積%以上であれば、高い殺菌力が得られやすい。前記オゾン濃度が1.0体積%以下であれば、作業環境のオゾン濃度が基準値を超え難く、またオゾン処理後の被処理物の品質劣化を抑制しやすい。
 殺菌助剤へのオゾン含有ガスの供給量は、殺菌目的、被処理物の種類や量に応じて決定できる。
 殺菌助剤にオゾン含有ガスを曝気する時間(曝気時間)は、求められる殺菌の程度、殺菌助剤中の被処理物18の種類及び量、殺菌助剤の温度などを勘案して決定することができ、1~10分間が好ましい。前記範囲内であれば、被処理物18に与える悪影響が極めて少なくなる。
 オゾン含有ガスの曝気中の殺菌助剤の温度(曝気温度)は、求められる殺菌の程度、殺菌助剤中の被処理物18の種類及び量、曝気時間などを勘案して決定できる。殺菌助剤の温度は、殺菌助剤中のオゾンが比較的安定になる点から、0~50℃が好ましい。殺菌助剤の温度は、被処理物が食材の場合、0~30℃がより好ましい。
 すすぎ工程:
 被処理物18に付着した殺菌助剤を水道水などですすいで除去する。すすぎの方法は特に限定されず、例えば、攪拌している水道水に被処理物を浸漬する方法などが挙げられる。すすぎ回数及びすすぎ時間は、コスト面、すすぎ時の攪拌などで生じる物理的損傷による外観の劣化、被処理物が食品である場合はビタミンCなどの水溶性成分の溶出による品質の低下などを考慮し、過度にならないようにする。
 脱水工程:
 すすぎ後の被処理物18を脱水する。脱水方法は、特に限定されず、例えば、洗濯機の脱水槽など遠心力を利用した脱水機を用いて実施する方法などが挙げられる。
(方法(β))
 方法(β)は、オゾン水を利用する殺菌方法であって、殺菌助剤中にオゾンを溶解させて殺菌剤組成物とし、前記殺菌剤組成物中に被処理物を浸漬してオゾン処理する工程を有する方法である。方法(β)としては、前記殺菌剤組成物を用いてオゾン処理する工程を有する方法であれば特に限定されず、例えば、下記の各工程を有する方法などが挙げられる。
 前洗い工程:被処理物をオゾン処理する前に予め水で洗う工程。
 オゾン水浸漬工程:殺菌装置の水槽内に、殺菌助剤中にオゾンを溶解させた殺菌剤組成物を貯え、前記殺菌剤組成物中に被処理物を浸漬して被処理物をオゾン処理する工程。
 すすぎ工程:殺菌後の被処理物を水ですすぎ、殺菌助剤を洗い流す工程。
 脱水工程:被処理物を脱水する工程。
 ただし、方法(β)は、前記オゾン水浸漬工程を有するものであれば、前記方法には限定されない。
 前記方法(β)における前洗い工程、すすぎ工程及び脱水工程は、前記方法(α)で説明した前洗い工程、すすぎ工程及び脱水工程と同じである。
 オゾン水浸漬工程:
 前記殺菌剤組成物の調製方法は、特に限定されず、例えば、成分(A)、成分(B)、及び必要に応じて他の成分を含み、pHが1.0以上5.0未満の水溶液と、予め調製したオゾン水とを混合する方法が挙げられる。前記オゾン水の調製方法は、特に限定されず、水中でオゾンを生成させる方法、水の外で一旦生成させたオゾンガスを水に溶解させる方法などが挙げられる。
 水中でオゾンを生成させる方法としては、水の電気分解法が最も一般的である。
 オゾンガスを水に溶解させる方法としては、前述したオゾン発生器などによりオゾンガスを発生させ、前記オゾンガスを水中に曝気する方法、ディフューザーを用いる方法、テフロン(登録商標)製の膜などを通じてオゾンガスを溶解させる方法などが挙げられる。
 オゾンを溶解させた前記殺菌剤組成物中のオゾンの含有量は、0.01~5mg/Lが好ましく、0.1~5mg/Lがより好ましい。前記殺菌剤組成物中のオゾンの含有量が0.01mg/L以上であれば、高い殺菌効果が得られやすい。前記殺菌剤組成物中のオゾンの含有量が5mg/L以下であれば、オゾン処理後の被処理物の品質劣化を抑制しやすい。
 方法(β)は、少なくとも前記殺菌剤組成物を貯える水槽を有する殺菌装置により行えばよく、公知の装置が使用できる。方法(β)に用いる水槽の材質としては、前記殺菌装置1における水槽11の材質として挙げたものと同じものが挙げられ、好ましい態様も同じである。
 以上説明した本発明の殺菌助剤を用いたオゾン殺菌方法によれば、殺菌助剤に成分(A)が含まれていることによって殺菌力が向上するため、より少ないオゾン量で高い殺菌効果が得られる。そのため、高濃度のオゾンを生成させたり、作業環境の雰囲気中のオゾン濃度を低減したりするための過大な設備を用いる必要がなく、コストを低減できる。加えて、オゾンの使用量を少なくできるため、殺菌装置への負荷も低減できる。
 この成分(A)による殺菌力の向上効果の要因については定かではないが、以下のように考えられる。
 アルミニウムイオンは3価の陽イオンであり、タンパク質と結合することで前記タンパク質を変性させることが知られている。アルミニウムは、この性質を利用して、例えば、ウニの身が崩れるのを防止することや、収斂剤として制汗剤に用いられている。本発明の殺菌助剤を用いた場合、成分(A)が菌体の膜タンパクに作用してその活性を低下させ、前記菌体に対してオゾンが酸化分解を行うことで菌体が死滅しやすくなっていると推定される。また、金属イオンがオゾンの分解を触媒し、より酸化力の強いヒドロキシラジカルを生成させることも知られており、このことも成分(A)による殺菌力の向上に起因していると推定される。
 以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<使用原料>
 以下、本実施例において使用した原料を示す。
(成分(A))
 成分A11:硫酸アルミニウムカリウム(大明化学工業株式会社製、食品添加物用乾燥物、AlK(SO・12HO)
 成分A12:硫酸アルミニウムアンモニウム(大明化学工業株式会社製、食品添加物用乾燥物、AlNH(SO・12HO)
成分A13:焼カリミョウバン(AlK(SO
成分A14:焼アンモニウムミョウバン(AlNH(SO
成分A2:塩化アルミニウム(関東化学社製)
(成分(A’):成分(A)の比較成分)
 成分A’1:硫酸鉄7水和物(関東化学株式会社製、食品添加物規格品)
 成分A’2:硫酸銅5水和物(関東化学株式会社製、食品添加物規格品)
(成分(B))
 成分B1:リン酸(純正化学株式会社製、食品添加物規格品)
 成分B2:クエン酸(純正化学株式会社製、食品添加物規格品)
 成分B3:酢酸(氷酢酸)(純正化学株式会社製、食品添加物規格品)
 成分B4:リンゴ酸(純正化学株式会社製、食品添加物規格品)
 成分B5:コハク酸(純正化学株式会社製、食品添加物規格品)
 成分B6:グルコン酸(関東化学株式会社製)
 成分B7:乳酸(純正化学株式会社製、食品添加物規格品)
 成分B8:L-酒石酸(関東化学株式会社製)
(成分(B’):成分(B)の比較成分)
 成分B’1:アスコルビン酸(純正化学株式会社製、食品添加物規格品)
(成分(C))
 成分C1:モノカプリリン(太陽化学株式会社製、サンソフトNo.700P-2)
 成分C2:トリアセチン(関東化学株式会社製)
(成分(E):pH調整剤)
 成分E1:0.1N塩酸水溶液(関東化学株式会社製)
 成分E2:0.1N水酸化ナトリウム水溶液(関東化学株式会社製)
<ポテンシャル殺菌試験> 
本発明の殺菌助剤について、微生物に対する基本的な殺菌効果の有無を確認するために、水溶液中に分散した微生物に対するポテンシャル殺菌試験を実施した。
[実施例1~12]
 SCD寒天培地(日水製薬株式会社製)にて、大腸菌(NBRC3972株)を37℃で24時間培養(以下、「前々培養」と表す場合がある)し、さらに培養した大腸菌を前記前々培養と同様にしてもう一度培養(以下、「前培養」と表す場合がある)し、前記前培養した大腸菌を殺菌試験に使用した。
 前培養した大腸菌をペプトン入り緩衝液(リン酸二水素カリウム3.56g、リン酸水素二ナトリウム十二水和物18.2g、塩化ナトリウム4.3g及びペプトン1.0gを精製水1Lに溶解し、pH7.0に中和した液)に分散させ、波長660nmの光の透過率を指標にして菌数1.0×10cfu/mL近傍の菌液を調製した。
 ガラス製試験管に純水を投入し、殺菌助剤中の含有量が、表1に示す値となるように各成分を添加し、pHを調整し、さらに夾雑物としてSIGMA製BSA(牛血清アルブミン)を0.01質量%となるように添加して、全量で10mLの殺菌助剤を調製した。オゾン含有ガスを曝気する直前に、前記菌液100μLを前記殺菌助剤に添加し、初期菌数を1.0×10cfu/mLに設定した試料液を調製した。
 前記試料液の殺菌試験には図2に例示したオゾン曝気手段2を用いた。オゾン曝気手段2は、散気部21(木下式ガラスフィルタ501G(No.4)、木下理化工業株式会社製)、オゾン濃度計22(ポンプ内臓、PG-620MA、荏原実業株式会社製)、マスフローコントローラー23(MODEL8500、コフロック株式会社製)、オゾン発生器24(アクアゾーン200、Red Sea Fish Pharm Ltd.製)、及び除湿部25(シリカゲル、500mL)がこの順に連結されている。オゾン曝気手段2では、空気を除湿部25で除湿して乾燥空気としてオゾン発生器24に供給し、オゾン発生器24でオゾン含有ガスを発生させ、マスフローコントローラー23で流量を調整しつつ散気部21からオゾン含有ガスを供給することで、オゾン曝気が行えるようになっている。オゾン含有ガス中のオゾン濃度は、オゾン濃度計22により計測できる。 オゾン曝気手段2により、オゾン濃度0.01体積%のオゾン含有ガス(希釈ガス:空気)を、流量20mL/分で前記試験管中の試料液に2分間曝気した。処理温度は25℃とした。
[比較例1~11]
 殺菌助剤中の含有量が、表1に示す値となるように各成分を添加し、pHを調整し、実施例1~12と同様にしてオゾン曝気処理を行った。
 なお、殺菌助剤のpHは、必要に応じて0.1N塩酸水溶液(成分E1)又は0.1N水酸化ナトリウム水溶液(成分E2)を適量添加することにより調整した。pHの測定は、pHメーター(SevenEasy、METTLER TOLEDO製)を用いた。
[評価方法]
 各例において、オゾン曝気処理後、予め滅菌した別の試験管内に直ちに試料液5mLを採取し、ペプトン入り緩衝液により10倍ずつ段階的に希釈した。各段階の希釈液について、それぞれマイクロピペットにて1mL採取してシャーレ中に滴下した後、約50℃に保温したSCD寒天培地(日水製薬株式会社製)10mLと混合した。次いで、寒天が固化したのを確認し、インキュベータにて36℃、24時間の条件で、各希釈段階のものについて2枚ずつ培養した。その後、1シャーレ当り300cfu以下のコロニー数となった希釈段階のものの培養について、培地上のコロニー数を計数することで残存菌数(菌数)を調べた。残存菌数は、2枚のシャーレについて計数した菌数を平均化した値である。また、オゾン曝気処理前の試料液について前記方法と同様にして測定した菌数を初期菌数とし、殺菌力を-log(残存菌数/初期菌数)で評価した。
 本試験では初期菌数を1.0×10cfu/mLに設定しているため、前記殺菌力の評価は、本試験において菌数が減少しないときには「0」(-log(1.0×10/1.0×10)=0)となる。一方、前記オゾン曝気処理により菌が全滅したときには前記殺菌力の評価は「5」(-log(1.0×10/1.0×10)=5)となる。本試験においては、菌数が初期の菌数から1/1000に低減されたことを示す「3.0」以上であれば、実用可能であることから合格点とした。
 実施例1~12及び比較例1~11における殺菌力の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、成分(A)及び成分(B)を含む殺菌助剤を用いた実施例1~12では、少量のオゾン量による短時間の処理にも関わらず、高い殺菌効果が得られた。
 同じ含有量で種類の異なる成分(B)を含む殺菌助剤を用いた実施例3、7及び8を比較すると、成分(B)として酢酸を用いた場合(実施例3)に、より高い殺菌効果が得られた。また、成分(A)及び成分(B)に加えて成分(C)を含む殺菌助剤を用いた実施例9~11では、オゾン含有気泡が微細化されたことでより高い殺菌効果が得られた。特に、成分(C)としてモノカプリリンとトリアセチンを併用した実施例11では、モノカプリリン或いはトリアセチン単独よりも高い殺菌効果が得られた。
 一方、成分(B)を含んでいない殺菌助剤を用いた比較例1、成分(A)を含んでいない殺菌助剤を用いた比較例2、並びに成分(A)及び成分(B)を含んでいるがpHが5.0以上の殺菌助剤を用いた比較例3及び4では、実施例に比べて殺菌力が小さかった。
 また、成分(A)、成分(B)、かつpHが1.0以上5.0未満という3つの条件のうち、いずれか2つを満たさない殺菌助剤を用いた比較例5~7では、殺菌力が極めて小さくなった。
 また、成分(A)のアルミニウム塩の代わりに、鉄、銅の他の金属塩を用いた比較例8及び9は、実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
 また、成分(B)の酸の代わりにL-アスコルビン酸を用いた比較例10は実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
 また、成分(C)のトリアセチン及びモノカプリリンの添加でオゾン含有気泡を微細化させただけの比較例11では、殺菌力が小さかった。
<固体表面殺菌試験> 
[実施例13~32]
 SCD寒天培地(日水製薬株式会社製)にて、大腸菌(NBRC3972株)を37℃で24時間培養(前々培養)し、さらに培養した大腸菌を前記前々培養と同様にしてもう一度培養(前培養)し、前記前培養した大腸菌を殺菌試験に使用した。前培養した大腸菌を滅菌水により希釈し、波長660nmの光の透過率を指標に菌数2.0×10cfu/mL近傍の菌希釈液を調製した。その後、前記菌希釈液をニュートリエントブイヨン(関東化学株式会社製)に5:5で分散させ、1.0×10cfu/mL近傍の菌液を調製した。
 次に、縦2cm×横2cmのSUS304(ヘアライン仕上げ品)、シリコンゴム(タイガースポリマー株式会社製)及び表面研磨ガラス(三共理化学株式会社製耐水研磨紙の1200番にて研磨)に対し、前記菌液を10μLずつ塗布し、30分自然乾燥し、固体表面殺菌試験の試験片とした。
 また、殺菌助剤中の含有量が、表2に示す値となるように、純水に各成分を添加し、さらに夾雑物としてSIGMA製BSA(牛血清アルブミン)を0.01質量%となるように添加して殺菌助剤を調製した。
 前記試験片の殺菌試験には、図3に例示した自作の殺菌装置3を用いた。
 殺菌装置3は、図3に示すように、水槽31(3Lポリプロピレンビーカー)と、オゾン含有ガス供給手段32と、気泡発生手段33とを備えている。オゾン含有ガス供給手段32は、オゾン濃度計34(ポンプ内臓、PG-620MA、荏原実業株式会社製)、マスフローコントローラー35(MODEL8500、コフロック株式会社製)、オゾン発生器36(アクアゾーン200、Red Sea Fish Pharm Ltd.製)、及び除湿部37(シリカゲル、500mL)がこの順に連結されている。気泡発生手段33は、渦巻きポンプ38(エレポン化工機株式会社製、SL-5SN)と、エジェクタ39(アズワン株式会社製、ポリテトラフルオロエチレン(PTFE)製アスピレータ)とを有しており、水槽31内と渦巻きポンプ38、渦巻きポンプ38とエジェクタ39、及びエジェクタ39と水槽31内が、配管(塩化ビニル製、継手:SUS304)によって接続されている。またオゾン含有ガス供給手段32のオゾン濃度計34と、気泡発生手段33のエジェクタ39とが連結されている。エジェクタ39には、殺菌助剤の流入口(渦巻きポンプ38側)に内径6mmの配管が接続され、オゾン含有ガスの吸込口(オゾン濃度計34側)に内径4mmの配管が接続され、殺菌助剤の流出口(水槽31側)に内径6mm
の配管が接続されている。
 殺菌装置3では、空気を除湿部37で除湿して乾燥空気としてオゾン発生器36に供給し、オゾン発生器36でオゾン含有ガスを発生させ、マスフローコントローラ35で流量を調整して、エジェクタ39にオゾン含有ガスを供給するようになっている。オゾン含有ガス中のオゾン濃度は、オゾン濃度計34により計測できる。また、渦巻きポンプ38が、外周に放射状の溝をもつ羽根車(図示せず)の回転により、水槽31内の殺菌助剤をエジェクタ39へと供給し、エジェクタ39においてオゾン含有ガスと殺菌助剤を気液混合して、オゾン含有気泡を発生させ、水槽31内に供給するようになっている。
 殺菌装置3の水槽31内に殺菌助剤(1400mL)を貯え、水槽31の底面に、3枚の試験片を、菌付着面を上にして、エジェクタ39からの水流が直接当たらない位置に設置した。そして、渦巻きポンプ38によって殺菌助剤を3L/分で循環させ、オゾン発生器36からエジェクタ39に、オゾン濃度0.01体積%のオゾン含有ガス(すなわち、希釈ガスと空気との混合気体)を流量20mL/分で供給してオゾン含有気泡を発生させ、水槽31中の殺菌助剤にオゾン含有気泡を5分間供給してオゾン曝気処理した。処理温度は25℃とした。
[比較例12~21]
 用いた殺菌助剤の各成分の添加量及びpHを表3に示す通りに変更した以外は、実施例13~32と同様にして、各試験片に対してオゾン曝気処理を行った。
 なお、殺菌助剤のpHは、必要に応じて0.1N塩酸水溶液(成分E1)又は0.1N水酸化ナトリウム水溶液(成分E2)を適量添加することにより調整した。pHの測定は、pHメーター(SevenEasy、METTLER TOLEDO製)を用いた。
[固体表面殺菌効果の評価方法]
 各例において、オゾン曝気処理後、試験片を滅菌済みピンセットにて取り出し、ふきふきチェックII(栄研化学株式会社製)を用いて、ふき取り法(滅菌水で濡れためん棒にて表面から菌を採取する方法)によって試験片の表面から菌を10mL滅菌水に採取した。この液を予め滅菌した試験管に採取し、ペプトン入り緩衝液により10倍ずつ段階的に希釈した。各段階の希釈液について、それぞれマイクロピペットにて1mL採取してシャーレ中に滴下した後、約50℃に保温したSCD寒天培地(日水製薬株式会社製)で混釈した。次いで、寒天が固化したのを確認し、インキュベータにて36℃、24時間の条件で、各希釈段階とも2枚ずつ培養した。その後、1シャーレ当り300cfu以下のコロニー数となった希釈段階のものの培養について、培地上のコロニー数を計数することで残存菌数(菌数)を調べた。残存菌数は、2枚のシャーレについて計数した菌数を平均化した。また、オゾン曝気処理前の試料液について前記方法と同様にして測定した菌数を初期菌数とし、殺菌力を-log(残存菌数/初期菌数)で評価した。
 前記殺菌力の評価は、本試験において菌数が減少しないときには「0」となる。一方、前記オゾン曝気処理により菌が全滅したときには前記殺菌力の評価は「4」となる。これは、試験片表面の菌が全滅しても、前記評価方法においては一定数の菌数がバックグラウンドとして計測されることによる。また、前記試験においては、空気を曝気するだけでもその水流によっては菌数が減少し、試験片の材質によっても異なるが菌数が1/10以下になる。本試験においては、菌数が初期の菌数に対して1/100以下に低減したとき、即ち、-log(残存菌数/初期菌数)が「2.0」以上となるとき、実用可能であるため合格とした。
[固体表面劣化の評価方法]
 ふき取り法で菌を採取した後、試験片を再び水槽31の底面に設置し、渦巻きポンプ38によって殺菌助剤を3L/分で循環させ、オゾン発生器36からエジェクタ39に、オゾン濃度0.01体積%のオゾン含有ガス(希釈ガス:空気)を流量20mL/分で供給してオゾン含有気泡を発生させ、水槽31中の殺菌助剤にオゾン含有気泡を6時間供給してオゾン曝気処理した。
 オゾン処理後、試験片を取り出し、外観を目視で評価した。評価基準を以下に示す。尚、外観評価は3点以上を実用可能であるから○(合格)とした。 
表面研磨ガラス
4点:処理前と比較して変化が見られない。
3点:処理前と比較してほとんど変化が見られない。
2点:処理前と比較してくすみが生じており、試験片を透かしたとき反対側がやや見づらい。
1点:処理前と比較してくすみが生じており、試験片を透かしたとき反対側がかなり見づらい。
SUS304
4点:処理前と比較して変化が見られない。
3点:処理前と比較してほとんど変化が見られない。
2点:処理前と比較してわずかに腐食が見られる。
1点:処理前と比較して腐食した部分の割合が20%以上である。
シリコンゴム
4点:処理前と比較して変化が見られない。
3点:処理前と比較してほとんど変化が見られない。
2点:処理前と比較してわずかに変色が見られる。
1点:処理前と比較して変色が見られ、亀裂した部分の割合が20%以上である。
[総合評価]
 本試験において、固体表面殺菌試験で得られた結果が全て2.0以上であり、且つ、固体表面劣化試験で得られた結果が全て3点以上のものについて、総合的に○(合格)とした。
 また、固体表面殺菌試験、及び表面劣化試験のいずれか一つにおいて、上記の基準に達していないものがある場合、×(不合格)とした。
 固体表面殺菌試験ならびに固体表面劣化試験について、表2に実施例13~32、表3に比較例12~21を示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、成分(A)及び成分(B)を含む殺菌助剤を用いた実施例13~32では、SUS304、シリコンゴム及び表面研磨ガラスのいずれの試験片についても、少量のオゾン量による短時間の処理にも関わらず、高い殺菌効果が得られた。また、成分(A)及び成分(B)に加えて成分(C)を含む殺菌助剤を用いた実施例28~30では、オゾン含有気泡が微細化されたことでより高い殺菌効果が得られた。
 また、実施例13~32では、いずれの固体表面においても大きな表面劣化は見られず、表面劣化についても合格であった。
 一方、表3に示すように、成分(B)を含んでいない殺菌助剤を用いた比較例12、成分(A)を含んでいない殺菌助剤を用いた比較例13、並びに成分(A)及び成分(B)を含んでいるがpHが5.0以上の殺菌助剤を用いた比較例15では、いずれの試験片についても実施例に比べて殺菌力が小さかった。
 また、成分(A)及び成分(B)を含んでいるがpHが1.0未満の殺菌助剤を用いた比較例14は実施例と比べて同等の殺菌力を示したが、SUS304及びシリコンゴムで表面劣化が観察された。
 また、成分(A)及び成分(B)を含み、pHが1.0以上5.0未満であるが、オゾンを含まない比較例16、成分(A)を含み、成分(B)を含み、かつpHが1.0以上5.0未満という3つの条件のうちいずれか2つを満たさない殺菌助剤を用いた比較例17~19では、いずれの試験片についても、比較例12~15と比較して殺菌力がさらに小さくなった。
 また、成分(A)のアルミニウム塩の代わりに、鉄の金属塩を用いた比較例20も、実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
 また、成分(B)の酸の代わりにL-アスコルビン酸を用いた比較例21も実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
<野菜の殺菌試験> 
 野菜の殺菌洗浄は、図4に例示した自作の殺菌装置4により行った。
 殺菌装置4は、図4に示すように、二槽式洗濯機41(三菱電機株式会社製、CW-C30A1)と、オゾン含有ガス供給手段42と、微細気泡発生手段43とを備えている。二槽式洗濯機41は、洗濯槽41a及び脱水槽41bを有している。オゾン含有ガス供給手段42は、レギュレーター44が取り付けられた空気ボンベ45、オゾン発生器46(荏原実業株式会社製、OZSD-3000A)及びマスフローコントローラー47(コフロック株式会社製、MODEL5100)がこの順に連結されている。微細気泡発生手段43は、渦流ポンプ48(ニクニ株式会社製、20NED04)を備え、その先端に分散器49が連結されている。分散器49は、3/4インチのチーズの両端にキャップを接続し、中央に3mmの孔が開けてある。また、二槽式洗濯機41の洗濯槽41a内から渦流ポンプ48までは、配管50(塩化ビニル製、継手:SUS304)が配されており、配管50の洗濯槽41a側の末端に、野菜の吸い込み防止用のストレーナ51(テフロン(登録商標)製の直径1mmのメッシュ)が設置されている。
 殺菌装置4では、空気ボンベ45から送られる空気を用いてオゾン発生器46でオゾンを発生させ、配管50を通じて洗濯槽41aから渦流ポンプ48に供給されてきた殺菌助剤に、マスフローコントローラー47により流量を調整しつつオゾン含有ガスを供給するようになっている。渦流ポンプ48では、外周に放射状の溝をもつ羽根車(図示せず)の回転により、殺菌助剤とオゾン含有ガスとを気液混合し、分散器49によりオゾン含有気泡を微細化して洗濯槽41aに供給するようになっている。渦流ポンプ48と分散器49のせん断力により、平均気泡径が約50μmのオゾン含有微細気泡を発生させることができる。
[実施例33~56]
 オゾン殺菌する被処理物としてレタス500gを用い、一般的な生鮮食品工場の処理を参考にして下記に示すとおりに前洗い、殺菌洗浄、すすぎ、及び脱水の各操作を実施した。前記各操作におけるレタスの移動は、エタノール殺菌したステンレス製のザルを用いて行った。
(前洗い工程)
 7Lの水道水を溜めた電機バケツ(松下電器産業株式会社製、N-Bk2)を用いて、レタスを2分間前洗いした。
(殺菌工程)
 前述した殺菌装置4における二槽式洗濯機41の洗濯槽41aに、各成分を表4に示す組成で水道水に添加した殺菌助剤を40L溜め、撹拌しつつ微細化したオゾン含有気泡を発生させ、レタスのオゾン殺菌を10分間実施した。殺菌助剤のpH調整は、pHメーター(METTLER TOLEDO製、Seven Easy)を用いて行った。供給するオゾン含有ガス中のオゾン濃度は、荏原実業株式会社製EG-600により監視し、0.5体積%に調整した。オゾン含有ガス供給手段42から供給するオゾン含有ガスの流量は、マスフローコントローラー47により0.48L/分に調整した。また、微細気泡発生手段43による曝気条件は0.8L/分とした。
(すすぎ工程)
 洗濯槽41a内を40Lの水道水に替え、5分間撹拌しながらレタスをすすいだ。
(脱水工程)
 すすぎ終わったレタスを脱水槽41bに移し、1分間脱水した。
[比較例22~31]
 用いた殺菌助剤の各成分の添加量及びpHを表5に示す通りに変更した以外は、実施例33~56と同様にしてレタスのオゾン殺菌を行った。
[殺菌力の評価方法]
 菌数の検査は、オゾン殺菌前後のレタス25gを、ペプトン入り緩衝液(リン酸二水素カリウム3.56g、リン酸水素二ナトリウム十二水和物18.2g、塩化ナトリウム4.3g、ペプトン1.0gを精製水1リットルに調製し、pH7.0に中和したもの)225mLに加え、フィルター付きストマッカー袋を備えたストマッカーにより粉砕して懸濁液とした。前記懸濁液を段階的に希釈し、SCD寒天培地(日水製薬株式会社)で混釈した。これを1検体あたり3回繰り返し、36℃、24時間培養した後にコロニー数を計数し、生菌数をレタス1g当たりの菌数として求めた。
 殺菌力の評価は、以下に示す次亜塩素酸ナトリウム200mg/Lによる処理時の菌数(殺菌基準値)に対する、各例で求めた菌数の倍数(殺菌活性値)を用いて行った。なお、前記処理は、生鮮野菜のカット品加工の分野において標準とされている殺菌方法である。 殺菌助剤の代わりに、濃度200mg/Lの次亜塩素酸ナトリウム水溶液を用い、オゾン曝気を行わずに5分間攪拌した以外は、実施例33~56と同様にしてレタスを殺菌した。殺菌後のレタスについて、前記測定方法と同様にして、レタス1g当たりの菌数を測定し、殺菌基準値とした。
 本試験においては、以下に定義する殺菌活性値に基づいて、合否判定を行った。菌数は通常対数軸で比較されるが、本試験においては対数に変換していない菌数の差について、次亜塩素酸Na200ppmで処理したレタスの菌数との差を倍数として計算し、この値を殺菌活性値とした。殺菌活性値が「2.0」の場合、次亜塩素酸Na200ppmとの菌数の差は「2.0」倍となり、次亜塩素酸Na200ppm処理と確実に同等という判断が可能となる。なお、本試験の殺菌活性値を計算するにあたり、菌数は次亜塩素酸Na200ppm処理の方が実施例よりも多くても少なくても良いとし、全て正の値で計算した。本試験においては殺菌活性値が「2.0」未満を実用可能であるため合格とした。
[野菜の外観・食味の評価方法]
 脱水後にレタス50gを半径5cmの白い紙皿に広げて乗せ、外観の評価は目視で行った。一方、食味の評価は処理後のレタスを食し、未処理品と比較した。評価基準を以下に示す。以下の評価点で3点以上を実用可能であるため合格とした。
 5点:外観、食味に変化が見られない状態であった。
 4点:わずかにやわらかくなっているが、食味には変化が見られなかった。
 3点:わずかにやわらかくなっており、食味にわずかな変化が見られた。
 2点:わずかにやわらかくなっており、食味にかなりの変化が見られた。
 1点:かなりにやわらかくなっており、食味にかなりの変化が見られた。
 表4に、野菜の殺菌力評価ならびに、外観・食味の評価結果について、実施例33~56、表5に比較例22~31を示した
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、成分(A)及び成分(B)を含む殺菌助剤を用いた実施例33~53では、少量のオゾン量による短時間の処理にも関わらず、高い殺菌効果が得られた。また、実施例33~53では、オゾン殺菌後のレタスの外観・食味については3点以上であり、実用可能であった。また、同じ含有量で種類の異なる成分(B)を含む殺菌助剤を用いた実施例35、43~49を比較すると、成分(B)として酢酸、リン酸、クエン酸を用いた場合(実施例35、43及び44)に、より高い殺菌効果が得られ、酢酸を用いた場合に一番高い殺菌効果が得られた。また、成分(C)としてモノカプリリンとトリアセチンを併用した殺菌助剤を用いた実施例55において、特に高い殺菌効果が得られた。
 一方、表5に示すように、成分(B)を含んでいない殺菌助剤を用いた比較例22、成分(A)を含んでいない殺菌助剤を用いた比較例23、並びに成分(A)及び成分(B)を含んでいるがpHが5.0以上の殺菌助剤を用いた比較例25では、実施例に比べて殺菌力が小さかった。
 また、成分(A)及び成分(B)を含んでいるがpHが1.0未満の比較例24は、殺菌力はあるものの外観・食味に劣化が見られた。
また、成分(A)及び成分(B)を含み、pHが1.0以上5.0未満であるが、オゾンを含まない比較例26は殺菌力が極めて小さかった。
 また、成分(A)を含み、成分(B)を含み、かつpHが1.0以上5.0未満という3つの条件のうちいずれか2つを満たさない殺菌助剤を用いた比較例27~29では、殺菌力が極めて小さくなった。
 また、成分(A)のアルミニウム塩の代わりに、硫酸鉄を用いた比較例30では、実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
 また、成分(B)の酸の代わりに、L-アスコルビン酸を用いた比較例31も実施例に比べて殺菌力が小さく、殺菌効果を向上させる効果は得られなかった。
 本発明の殺菌助剤を用いたオゾン殺菌方法によれば、より少ないオゾン量で高い殺菌効果が得られるため、過大な設備を用いる必要がなくコストを低減でき、また殺菌装置への負荷も低減できる。そのため、本発明の殺菌助剤及びオゾン殺菌方法は、生鮮食品や医療器具の殺菌、あるいは工場ラインの定置殺菌洗浄などに好適に利用できる。
 1 殺菌装置 11 水槽 12 オゾン含有ガス供給手段 13 曝気手段 14 供給管 15 散気部 16 オゾン含有気泡 17 攪拌手段 18 被処理物

Claims (5)

  1.  成分(A)水溶液中でアルミニウムイオンを生成するアルミニウム化合物と、成分(B)リン酸、酢酸、クエン酸、リンゴ酸、コハク酸、グルコン酸、乳酸、及びL-酒石酸から選ばれる1種類以上の酸と、を含む水溶液であり、前記水溶液のpHが1.0以上5.0未満であるオゾン殺菌用の殺菌助剤。
  2.  前記成分(B)が、リン酸、クエン酸及び酢酸からなる群から選ばれる1種以上の酸である請求項1に記載のオゾン殺菌用の殺菌助剤。
  3.  前記成分(A)が、硫酸アルミニウムカリウム(AlK(SO・12HO)、焼カリミョウバン(AlK(SO)、硫酸アルミニウムアンモニウム(AlNH(SO・12HO)及び焼アンモニウムミョウバン(AlNH(SO)からなる群から選ばれる1種以上のアルミニウム化合物である、請求項1又は2に記載のオゾン殺菌用の殺菌助剤。
  4.  更に、成分(C)炭素数1~10の脂肪酸とグリセリンとをエステル結合させたグリセリン脂肪酸エステルを含む請求項1~3のいずれか一項に記載のオゾン殺菌用の殺菌助剤。
  5.  請求項1~4のいずれか一項に記載のオゾン殺菌用の殺菌助剤を用いて被処理物をオゾン処理するオゾン殺菌方法。
PCT/JP2011/058821 2010-04-12 2011-04-07 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法 WO2011129262A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012510636A JP5699134B2 (ja) 2010-04-12 2011-04-07 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
EP11768783.0A EP2559339A4 (en) 2010-04-12 2011-04-07 TOOLS FOR OZONDESINFECTION AND METHOD FOR OZONDESINFECTION
US13/640,667 US20130028787A1 (en) 2010-04-12 2011-04-07 Sterilization auxiliary for ozone sterilization and ozone sterilization method
CN201180018571.2A CN102834012B (zh) 2010-04-12 2011-04-07 臭氧杀菌用杀菌助剂及臭氧杀菌方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-091627 2010-04-12
JP2010091627 2010-04-12

Publications (1)

Publication Number Publication Date
WO2011129262A1 true WO2011129262A1 (ja) 2011-10-20

Family

ID=44798638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058821 WO2011129262A1 (ja) 2010-04-12 2011-04-07 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法

Country Status (5)

Country Link
US (1) US20130028787A1 (ja)
EP (1) EP2559339A4 (ja)
JP (1) JP5699134B2 (ja)
CN (1) CN102834012B (ja)
WO (1) WO2011129262A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188032A (ja) * 2013-03-26 2014-10-06 Ihi Corp 材料劣化抑制殺菌溶液
JP2017212901A (ja) * 2016-05-31 2017-12-07 ライオンハイジーン株式会社 野菜殺菌方法およびカット野菜製造方法
JP2020500013A (ja) * 2016-11-03 2020-01-09 レイボルド ゲーエムベーハー 食品加工及び/又は包装装置、並びにこのような装置を清浄化するための方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262856B (zh) * 2013-05-22 2015-06-24 山东惠生现代农业有限公司 植物除虫杀菌液及其制备喷洒专用喷雾机
CN103482749B (zh) * 2013-08-21 2016-02-10 杭州晓凯科技有限公司 猪粪废水处理剂及其应用
EP3176131A4 (en) * 2014-08-01 2018-03-21 National Institute of Advanced Industrial Science and Technology Ozone water and method for producing same
US9446742B1 (en) * 2015-11-10 2016-09-20 NuVinAir, LLC Apparatus and system for air-borne cleaning of surfaces
US11535205B2 (en) * 2015-11-10 2022-12-27 NuVinAir, LLC Apparatus and systems with timer for air-borne cleaning of surfaces
USD1032817S1 (en) 2016-03-08 2024-06-25 NuVinAir, LLC Apparatus for releasing a gaseous cleaning agent
CA3038647A1 (en) * 2016-09-30 2018-04-05 Eastern Technologies, Inc. Oxidative reductive potential water solution, processes for producing same and methods of using the same
US11278636B2 (en) 2020-07-21 2022-03-22 Blue Penny LLC Ozone disinfecting system and devices configured to convert water into ozone for disinfecting, cleaning, or sanitizing
CN114533798B (zh) * 2022-01-20 2023-01-03 云慧科技横琴有限公司 一种消毒组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299251A (ja) * 2000-04-14 2001-10-30 Fuso Chemical Co Ltd 葛切りの製造方法
JP2002020211A (ja) * 2000-06-30 2002-01-23 Shinko Plant Kensetsu Kk 植物の病害防除方法及び装置
WO2007040260A1 (ja) 2005-10-05 2007-04-12 Lion Corporation オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP2008201992A (ja) 2007-02-22 2008-09-04 Lion Corp オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP2008255045A (ja) 2007-04-04 2008-10-23 Lion Corp 殺菌剤組成物および殺菌方法
JP2010053226A (ja) * 2008-08-27 2010-03-11 Lion Corp オゾン酸化促進剤および洗浄方法
JP2010091627A (ja) 2008-10-03 2010-04-22 Miyakoshi Printing Machinery Co Ltd トナー定着装置、電子写真印刷機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481470B2 (ja) * 1999-11-01 2010-06-16 株式会社メニコン コンタクトレンズの消毒方法及びそのための消毒液
CN1202283C (zh) * 2002-09-06 2005-05-18 黄奇伟 水乳型除锈防锈液及其制造方法
CN100523100C (zh) * 2003-09-29 2009-08-05 富士胶片株式会社 用于喷墨印刷的墨水、用于喷墨印刷的墨水组、喷墨记录材料及喷墨记录材料的制造方法和喷墨记录方法
ES2747926T3 (es) * 2004-09-27 2020-03-12 Special Water Patents B V Métodos y composiciones para el tratamiento de agua
US7144841B2 (en) * 2004-10-01 2006-12-05 Rohm And Haas Company Flower food delivery mechanism with effervescing agent
WO2007001008A1 (ja) * 2005-06-27 2007-01-04 Fujifilm Corporation プリント基板の製造方法及びプリント基板
US20080095754A1 (en) * 2006-10-18 2008-04-24 Burke Susan E Ophthalmic compositions comprising diglycine
US20100254928A1 (en) * 2007-11-27 2010-10-07 Kazutoshi Yamazaki Novel composition containing ozonized surfactant
CN101263812B (zh) * 2008-04-28 2010-10-20 武汉岑晟超氧医药科技有限公司 一种杀菌消毒剂及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299251A (ja) * 2000-04-14 2001-10-30 Fuso Chemical Co Ltd 葛切りの製造方法
JP2002020211A (ja) * 2000-06-30 2002-01-23 Shinko Plant Kensetsu Kk 植物の病害防除方法及び装置
WO2007040260A1 (ja) 2005-10-05 2007-04-12 Lion Corporation オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP2008201992A (ja) 2007-02-22 2008-09-04 Lion Corp オゾン酸化促進剤、オゾン酸化促進剤組成物およびオゾン処理方法
JP2008255045A (ja) 2007-04-04 2008-10-23 Lion Corp 殺菌剤組成物および殺菌方法
JP2010053226A (ja) * 2008-08-27 2010-03-11 Lion Corp オゾン酸化促進剤および洗浄方法
JP2010091627A (ja) 2008-10-03 2010-04-22 Miyakoshi Printing Machinery Co Ltd トナー定着装置、電子写真印刷機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559339A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188032A (ja) * 2013-03-26 2014-10-06 Ihi Corp 材料劣化抑制殺菌溶液
JP2017212901A (ja) * 2016-05-31 2017-12-07 ライオンハイジーン株式会社 野菜殺菌方法およびカット野菜製造方法
JP2020500013A (ja) * 2016-11-03 2020-01-09 レイボルド ゲーエムベーハー 食品加工及び/又は包装装置、並びにこのような装置を清浄化するための方法

Also Published As

Publication number Publication date
JPWO2011129262A1 (ja) 2013-07-18
JP5699134B2 (ja) 2015-04-08
CN102834012B (zh) 2015-03-25
EP2559339A1 (en) 2013-02-20
US20130028787A1 (en) 2013-01-31
CN102834012A (zh) 2012-12-19
EP2559339A4 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5699134B2 (ja) オゾン殺菌用の殺菌助剤及びオゾン殺菌方法
US6468953B1 (en) Methods of preparing antimicrobial compositions comprising ozone
CN1196405C (zh) 过乙酸的电解合成
US20030070691A1 (en) Biocide formation via ozonation
WO2001066682A1 (fr) Solution de nettoyage, et procede et appareil de nettoyage utilisant cette solution
KR101725694B1 (ko) 과아세트산계 살균 조성액 및 용기의 살균 방법
JP5345969B2 (ja) 殺菌洗浄処理装置およびその方法
JP5016962B2 (ja) 殺菌剤組成物および殺菌方法
JP5456453B2 (ja) 殺菌助剤及びオゾン殺菌洗浄方法
JP2000109887A (ja) 食品の殺菌洗浄剤組成物
JP4963055B2 (ja) 殺菌剤組成物
JP5030089B2 (ja) 除菌または除粒子による洗浄方法、およびそれに用いる装置
JP5386128B2 (ja) オゾン酸化促進剤および洗浄方法
JP2001254096A (ja) 洗浄液及びそれを用いた洗浄装置
JP5193907B2 (ja) カットされた野菜又は果物の洗浄方法
JPWO2013031869A1 (ja) カット野菜の製造方法
JP6885543B2 (ja) 洗浄殺菌液の製造装置
JP2013213017A (ja) 過酢酸含有殺菌組成物
JP2012219053A (ja) 過酢酸組成物
TWI675619B (zh) 牧場設備的cip清洗消毒方法
KR20100132813A (ko) 강 알칼리 전해수 세정제
WO2018145220A1 (es) Limpiador, desincrustante y desinfectante alcalino granulado para aplicar en un solo paso, composiciones y método de aplicación a superficies duras y sistemas cip (acrónimo de cleaning in place)
JP4824479B2 (ja) 洗浄装置および洗浄方法
JP5364401B2 (ja) 殺菌方法
JP4846298B2 (ja) 海水の殺菌処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018571.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13640667

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011768783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011768783

Country of ref document: EP