WO2011126081A1 - インダクタンス式回転角度検出装置およびその実装方法 - Google Patents

インダクタンス式回転角度検出装置およびその実装方法 Download PDF

Info

Publication number
WO2011126081A1
WO2011126081A1 PCT/JP2011/058833 JP2011058833W WO2011126081A1 WO 2011126081 A1 WO2011126081 A1 WO 2011126081A1 JP 2011058833 W JP2011058833 W JP 2011058833W WO 2011126081 A1 WO2011126081 A1 WO 2011126081A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductor
rotation angle
motor
substrate
Prior art date
Application number
PCT/JP2011/058833
Other languages
English (en)
French (fr)
Inventor
大輔 平沼
康盛 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP11765981.3A priority Critical patent/EP2557399A4/en
Priority to CN2011800178136A priority patent/CN102844644A/zh
Priority to US13/639,179 priority patent/US20130068978A1/en
Publication of WO2011126081A1 publication Critical patent/WO2011126081A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • H05K5/0069Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units having connector relating features for connecting the connector pins with the PCB or for mounting the connector body with the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1034Edge terminals, i.e. separate pieces of metal attached to the edge of the printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1327Moulding over PCB locally or completely
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern

Definitions

  • the present invention utilizes the fact that the inductance between the conductor attached to the rotating shaft of the rotating body and the coil conductor attached to the stator facing the rotor changes according to the positional relationship between the two in the rotational direction,
  • the present invention relates to a rotation angle detection device that detects a rotation position or a rotation angle of a rotating body by detecting a rotation position of a rotating conductor in a non-contact manner.
  • a motor-driven throttle valve device that electrically controls an opening area of an air passage of an internal combustion engine with a throttle valve driven by a motor, the rotation angle detection described above for detecting the rotation angle of the throttle valve It relates to the one equipped with the device.
  • a rectangular circuit board provided with a fixed-side conductor (excitation conductor and receiving coil conductor), an input / output drive unit and a control electronic circuit unit is covered with a resin cover. It was fixed to the surface of a resin-made gear cover (in a motor-driven throttle valve control device) by bonding. However, many work steps are required to complete the cover assembly, such as bonding the circuit board after molding the resin cover, and joining for electrical connection with the electric conductor wound around in the cover. There was a problem that the manufacturing cost was high.
  • An object of the present invention is to solve the above problems and improve the assembly workability without reducing accuracy.
  • a resin cover is formed on a circuit board on which a fixed-side conductor and an electronic circuit are mounted, a connector for electrical connection with an external device, and the connector.
  • the connector terminal and the electric conductor for connecting the circuit board are provided, and at least a part of the circuit board and the electric conductor are formed as one molded body made of the same resin.
  • the fixed-side conductor fixed to the circuit board and the electric conductor are configured as a single molded body covered and molded with the same resin, and the molded body is further overmolded with a molding resin for the resin cover. .
  • the electrical connection portion between the circuit board and the electrical conductor is coated and molded with the same resin as the molded body or the resin cover.
  • the resin layer covering the fixed conductor is formed thinner than the resin layer covering the electric conductor.
  • the electrical connection portion between the circuit board and the electrical conductor is connected by press contact.
  • the relay terminal for supplying power to the motor is the same as the resin resin of the resin cover
  • the electric conductor for supplying power to the motor is formed as a single molded body together with the circuit board and other electric conductors.
  • the resin cover functions as a container that houses a gear mechanism that transmits the rotation of the motor to the throttle valve.
  • the rotation side conductor is attached to the throttle valve shaft or the throttle gear fixed to the throttle valve shaft.
  • the number of assembly steps can be reduced without degrading accuracy.
  • FIG. 1 is an overall cross-sectional view of a motor-driven throttle valve device.
  • the perspective front view of an inductance type rotation angle detection apparatus. The whole perspective view of a TPS terminal.
  • the whole perspective view of a TPS substrate The expansion perspective view of a TPS substrate through hole part.
  • FIG. 4 is a perspective view of the entire TPS substrate and terminal according to the second embodiment.
  • FIG. FIG. 6 is an overall perspective view of an inductance type rotation angle detection device according to a second embodiment.
  • FIG. 10 is an overall perspective view of the TPS substrate and terminal of Example 3.
  • FIG. 6 is an overall perspective view of an inductance type rotation angle detection device according to a third embodiment.
  • FIG. 6 is an overall perspective view of an inductance type rotation angle detection device according to a third embodiment. (After additional machining) The expansion perspective view of a TPS substrate.
  • FIG. 4 is a perspective view of the entire TPS substrate and terminal according to the second embodiment.
  • FIG. FIG. 6 is an overall perspective view of an inductance type rotation angle detection device according to a second embodiment.
  • FIG. 10 is an overall perspective view of the TPS substrate and terminal of Example 3.
  • FIG. 6 is an overall perspective view of
  • FIG. 10 is an overall perspective view of the TPS substrate and the terminal of Example 4; (Back side) The whole perspective view of the insert-molded product of Example 4. (Front side) Sectional drawing of the insert molded product of Example 4.
  • FIG. 9 is an overall perspective view of an inductance type rotation angle detection device according to a fourth embodiment.
  • FIG. 1 is an overall sectional view of a motor-driven throttle valve device (hereinafter abbreviated as ETB), and FIG. 2 is an exploded front view.
  • ETB motor-driven throttle valve device
  • a throttle valve assembly (hereinafter referred to as a throttle body) 3 made of aluminum die casting is formed with an intake air passage 1 (hereinafter referred to as a bore) and a motor housing 2A for housing the motor 2 together.
  • a metal rotating shaft (hereinafter referred to as a throttle shaft) 4 is disposed on the throttle body 3 along one diameter line of the bore 1. Both ends of the throttle shaft 4 are rotatably supported by needle bearings 5, 6 or ball bearings.
  • the needle bearings 5 and 6 are press-fitted and fixed to the throttle body 3. Further, after inserting a C-type washer (hereinafter referred to as a thrust retainer) 7 into a slit provided on the throttle shaft 4, a needle bearing 5 is press-fitted, thereby restricting the axial movable amount of the throttle shaft 4. .
  • a throttle valve 8 for changing the amount of air to the engine is incorporated in the throttle shaft 4.
  • the throttle valve 8 rotates, and as a result, the opening area of the intake passage changes and the intake air amount of the internal combustion engine can be adjusted.
  • a throttle gear 10 is fixed to the end of the throttle shaft 4 with a nut 11.
  • the throttle gear 10 includes a metal plate 10A and a gear portion 10B formed by resin molding on the metal plate 10A.
  • the motor housing 2A is formed in parallel with the throttle shaft 4, and the brush type DC motor 2 is inserted into the motor housing 2A and fixed with screws 12.
  • a metal gear (hereinafter referred to as a motor gear) 13 having the smallest number of teeth is fixed to the end of the rotating shaft of the motor 2.
  • the intermediate gear 15 includes a large-diameter gear 15A that meshes with the motor gear 13 and a small-diameter gear 15B that meshes with the throttle gear 10. Both gears are integrally molded by resin molding.
  • gears 13, 15A, 15B and 10 constitute a two-stage reduction gear mechanism, and thus the rotation of the motor 2 is transmitted to the throttle shaft 4 via the reduction mechanism.
  • a return spring 16 formed of a string spring is sandwiched between the back surface of the throttle gear 10 and the side surface of the throttle body 3. One end of the return spring 16 is locked to a notch formed in the throttle body 3, and the other end is locked to a notch formed in the throttle gear 10.
  • the return spring 16 is preloaded in the rotational direction so that the throttle valve 8 maintains the fully open position when the motor 2 is not energized.
  • FIG. 3 is a partial cross-sectional view of the rotating conductor of the inductance type rotation angle detector
  • FIG. 4 is an exploded perspective view of the same.
  • the inductance type rotation angle detection device is composed of the conductor attached to the rotating shaft of the rotating body and the conductor attached to the stator facing it.
  • the former corresponds to a disc (hereinafter referred to as a rotor) 17 shown in FIGS. 3 and 4, and the latter corresponds to a circuit board (hereinafter referred to as a TPS board) 18.
  • An excitation conductor 17A is printed on the rotor 17, and the rotor 17 is bonded and fixed to a holder (hereinafter referred to as a rotor holder) 19 on a cup formed of a resin molded body.
  • a metal rotor holder inserter 19 ⁇ / b> A is integrally formed at the center of the rotor holder 19.
  • a positioning through hole 17B is formed at the center of the rotor 17, and a positioning projection 19B corresponding to the through hole 17B is formed in the rotor holder inserter 19A. Thereby, the central axes of the rotor 17 and the rotor holder 19 are made to coincide.
  • An annular window hole 19C is provided on the central axis of the rotor holder inserter 19A, and this is press-fitted and fixed to the throttle shaft 4.
  • the rotor 17 rotates in the same manner as the throttle shaft 4.
  • FIG. 5 is a perspective front view of the inductance type rotation angle detection device (hereinafter, “TPS” means “rotation angle detection device”).
  • the TPS substrate 18 is printed with an annular excitation conductor 18A1 and a plurality of detection conductors 18A2 arranged in the radial direction, and this conductor is a drive power supply unit and a rotation position (angle) of the rotation position (angle) detection unit. It becomes a detection part.
  • An electronic circuit element 18B including a microcomputer is provided on the TPS substrate 18, and drive control and output signal processing of the rotation angle detection unit are performed by this circuit.
  • the TPS substrate 18 is mounted in a cover (hereinafter referred to as a gear cover) 20 of a resin molded product.
  • the wiring conductors can be roughly divided into four TPS wiring conductors 21 and two motor wiring conductors 22.
  • the connector 20B is formed into a connector 20B.
  • an electric wire extending from the engine control unit is joined to the connector 20B by an insertion plug, whereby an electrical signal is transferred, electric power is supplied, and connection to the ground is performed.
  • This metal wiring conductor is subjected to insert molding (referred to as pre-molding) in order to improve the position of each wiring conductor before performing exterior molding (referred to as overmolding).
  • pre-molding insert molding
  • the TPS substrate 18 mounted in the gear cover 20 is also insert-molded together with the wiring conductor.
  • the insert molding will be described later with reference to another drawing.
  • FIG. 6 is an overall perspective view of the TPS wiring conductor 21, and FIG. 7 is an enlarged view of the tip portion thereof.
  • FIG. 8 is an overall perspective view of the TPS substrate 18, and
  • FIG. 9 is an enlarged view of the connecting portion.
  • the four TPS wiring conductors 21 are electrically connected in advance.
  • a metal member is interposed on the inner wall of the wiring through hole 18D provided on the TPS substrate 18.
  • the connecting terminal 21A on the side opposite to the connector of the TPS wiring conductor 21 having an elastic structure is pushed into the wiring through hole 18D provided on the TPS substrate 18 while being pressed.
  • connection terminal 21A portion (the elliptical hole is provided in the center) is pressed, At this time, the TPS substrate 18 and the TPS wiring conductor 21 are pressed into contact with each other (hereinafter referred to as press-fit connection) by the force of the spring to achieve electrical conduction.
  • the connection terminal 21A on the side opposite to the connector of the TPS wiring conductor 21 is provided with a stopper 21B that prevents the TPS wiring conductor 21 from being disconnected from the wiring through hole 18D on the TPS substrate.
  • the connecting terminal 21A By providing the connecting terminal 21A with an elastic shape, it is possible to protect against vibration resistance and shear stress due to resin flow during insert molding. Furthermore, by performing press-fit connection, it is not necessary to prepare a new metal conductor for connecting the TPS substrate 18 and the TPS wiring conductor 21, which leads to cost reduction. Furthermore, since the connection can be made at normal temperature without heating as in the case of soldering, it is not necessary to design in consideration of the thermal effect such as soldering, and an energy saving connection without using electric power can be realized.
  • connection terminal 22A on the side opposite to the connector of the motor wiring conductor 22 protrudes from the gear cover. As shown in FIG. 10, the resin molding portion 22A1 is interposed via the wiring conductor 22B protruding from the motor 2 side and the relay coupling 23. , 22B1 are electrically connected. Next, insert molding will be described.
  • FIG. 11 is an overall perspective view showing the assembled state of the TPS substrate 18, the TPS wiring conductor 21, and the motor wiring conductor 22. Insert molding is performed by setting each part in a mold in the state shown in FIG.
  • the TPS substrate 18 when the TPS substrate 18 is mounted in the resin, if the resin thickness covering the TPS substrate 18 is thick, the distance between the excitation conductor 17A of the rotor 17 and the excitation conductor 18A1 and the detection conductor 18A2 on the TPS substrate is increased accordingly. As a result, the function and accuracy of the inductance type rotation angle detection device cannot be achieved. Although it is possible to increase the inductance-type rotation angle detection device and increase the reception sensitivity, since the TPS substrate to be mounted becomes large, it is not possible to consolidate components in a compact manner. Therefore, it is necessary to reduce the resin thickness on the top surfaces of the excitation conductor 18A1 and the detection conductor 18A2 on the TPS substrate.
  • a molding resin made of a PBT resin material capable of low pressure molding and having high fluidity was obtained.
  • the selection of this resin is not limited to PBT resin.
  • Various thermosetting or thermoplastic resins can be selected depending on the properties of the overmold resin forming the gear cover.
  • a PBT material containing a low melting point polymer material if used, it can be molded at a temperature lower than the resin molding temperature required at the time of normal resin molding, so it can be used for circuit components and solder joints resulting from the resin temperature.
  • the entire circumference of the circuit board (excitation conductor 18A1, detection conductor 18A2, electronic circuit element 18B and wiring conductors 21, 22) can be insert-molded.
  • FIG. 12 is a diagram showing a gate position when insert molding is performed.
  • the gate position of the resin is set to the side gate position 24A so that the resin flows parallel to the longitudinal direction of the TPS substrate 18.
  • FIG. 12 shows one side of the TPS substrate 18 as a side gate position 24A as an example, but the same effect can be obtained by setting the other three sides. Since the side gate position 24A shown in FIG.
  • the electronic circuit element 18B flows from both sides of the thin disk-shaped layer (resin film layer) 25 to the electrical junction 18C between the TPS substrate and the wiring conductor and the wiring conductors 21 and 22, and the motor relay terminal 24B Molding and finally reaching the connector terminal.
  • Reference numeral 242 denotes a molding part of the electronic circuit element 18B
  • 244 denotes a molding part of the electrical joint 18C between the circuit board and the electrical conductor
  • 246 denotes a molding part of the wiring conductors 21 and 22 of the connector part
  • 248 denotes connection terminals 22A and 22B of the motor. The molded part of each part is shown.
  • the connection terminal 22A portion is previously covered with resin by resin molding, and as a result, the electronic circuit board including the excitation conductor 18A1 and the detection conductor 18A2 and the wiring conductor (21, 22) are configured as one molded body. It is.
  • a motor-driven throttle valve device resin gear cover or inductance type rotation angle detector is assembled on an automatic assembly line, there is no need to weld or solder the defeat conductor in the line. Will improve.
  • the process of bonding the electronic circuit board to the resin gear cover becomes unnecessary, and the assembly time can be shortened by the amount of time required for drying the adhesive.
  • the dimensions of the mounting surface of the resin gear cover to the throttle body 3, the excitation conductor 18A1, and the detection conductor 18A2 can be accurately determined by resin molding.
  • the dimension between the mounting surface of the electronic circuit board and the resin gear cover may vary from product to product depending on the amount of the adhesive. The variation varies depending on the dry state and is difficult to manage.
  • the resin material gear cover 20 is managed by managing the dimensions between the mounting surface of the resin material gear cover 20 on the throttle body 3 and the excitation conductor 18A1 and the detection conductor 18A2 by a jig during resin molding. Since the dimensions of the mounting surface of the throttle body 3 to the excitation conductor 18A1 and the detection conductor 18A2 can be the same for all products, the magnetic gap (detection gap) when combined with the rotor 17 can be the same for all products. . As a result, the magnetic performance as the inductance type rotation angle detection device does not vary depending on the product.
  • the insert molded product 24 When performing insert molding (over mode) of the gear cover using the insert molded product 24 as an insert component, the insert molded product 24 needs to be positioned with respect to the TPS substrate 18. In order to satisfy the sensing function, it is necessary that the rotor 17 and the through hole 18C opened in the central portion of the TPS substrate 18 be installed coaxially. Therefore, at the time of insert molding, a mold having the same diameter is put into the through hole 18C on the TPS substrate, and the flow of resin is blocked at that portion. As a result, a positioning hole 24B having the same diameter as the through hole 18C on the TPS substrate can be formed in the 24 insert molding products, and this hole can be used as a positioning hole at the time of exterior molding, thereby enabling easy and accurate positioning. Become. Thereby, an exterior molded article as shown in FIG. 13 is completed.
  • the exciting conductor 18A1, the detection conductor 18A2, the electronic circuit element 18B, the electrical connection portion of the TPS substrate and the wiring conductor, the TPS wiring conductor 21 and the motor wiring conductor 22 of the connector portion, and the motor connection terminal 22A portion are formed as a forming jig. And molded with a molding resin of a resin gear cover.
  • the TPS substrate including the excitation conductor 18A1 and the detection conductor 18A2 and the wiring conductors (21, 22) are configured as one molded body. In the case of such a configuration, the assembling property is further improved because the molding process only needs to be performed once.
  • FIG. 14 Another embodiment will be described with reference to FIG. 14, FIG. 15, and FIG.
  • FIG. 14 is an overall perspective view of the TPS substrate and wiring conductor assembly.
  • FIG. 15 shows the shape after the insert molding
  • FIG. 16 is a perspective view after the exterior molding.
  • Example 1 is an example in which the entire substrate is covered with a resin having good fluidity, and the resin thickness on the top surface of the excitation conductor 18A1 and the detection conductor 18A2 on the TPS substrate is molded thin, but insert molding is performed as shown in FIG.
  • the same object can also be achieved by affixing a resin film 25A similar to the resin material used at the time of insert molding to the top surface of the exciting conductor 18 on the TPS substrate and performing the insert molding 24.
  • the resin film 25A is made of the same material as that used in insert molding 24, so that deformation or cracking due to a difference in linear expansion coefficient or the like after molding can be prevented. Further, by attaching the resin film 25A that has escaped the portion of the positioning hole 24B used at the time of exterior molding, the center of the TPS substrate can be accurately positioned at the time of exterior molding.
  • FIG. 17 is an overall perspective view of the insert-molded product 24 in which the entire TPS substrate is covered with a resin
  • FIG. 18 shows a shape after exterior molding (overmolding)
  • FIG. 19 is an upper surface of the excitation conductor 18A on the TPS substrate. It is the whole perspective view which made the resin thickness of the part thin by additional processing.
  • the entire TPS substrate 18 is covered with a uniform resin thickness at the time of insert molding 24 of the excitation conductor 18A1 and the detection conductor 18A2 on the TPS substrate.
  • the resin portion covering the excitation conductor 18A1 and the detection conductor 18A2 is cut by cutting to a position (depth) where the TPS substrate 18 and the rotor 17 do not contact to bring them close together, Satisfy the sensing detection function.
  • the additional machining range is machined with a diameter larger than that of the rotor 17.
  • the periphery of the TPS substrate is made of a resin material at the time of insert molding so that the resin is not covered with the electronic components mounted on the TPS substrate 18 and the excitation conductor 18A1 and the detection conductor 18A2 on the TPS substrate.
  • a layer 24C on the picture frame covered by is provided.
  • the excitation conductor 18A1 and the detection conductor 18A2 are exposed. Therefore, when combined with the rotor 17, the detection gap between the excitation conductor 17A can be further reduced and the TPS can be reduced. Detection accuracy is improved.
  • the molding resin may overflow from the back side of the TPS substrate 18 to the front side through the through hole 18F during insert molding.
  • FIG. 20 is an enlarged perspective view of the TPS substrate
  • FIG. 21 is an overall perspective view showing the back side of the TPS substrate and the wiring conductor. The above technique will be described in more detail.
  • the TPS substrate 18 has a through hole 18F as shown in FIG.
  • the resin flows into this gap and is cured after molding, it may cause cracks due to the difference in the linear expansion coefficient between the TPS substrate 18 and the resin that has entered the through hole 18F.
  • a resin film 25A similar to the material used at the time of insert molding is pasted on the TPS substrate back surface 18E side so that the through hole 18F is hidden, and insert molding is performed. The resin is blocked from entering the through hole 18F at 24:00.
  • FIG. 22 shows an overall perspective view of the outer periphery of the TPS substrate formed by insert molding
  • FIG. 23 is a sectional view of the TPS substrate portion of FIG. 22, and
  • FIG. 24 shows an enlarged view thereof.
  • the outer periphery of the TPS substrate 18 is covered with resin, and the resin thickness 24E on the lower surface of the TPS substrate is set to a resin thickness 24E on the upper surface of the TPS substrate. Set as. By doing so, it becomes possible to cancel the resin shrinkage between the upper surface and the lower surface of the substrate after molding, and this is a measure for preventing deformation and warping.
  • the range of the frame insert molding 24C surrounding the outer periphery of the TPS substrate 18 is a position where an electronic component mounted on the upper surface of the substrate is avoided and a sensing portion on the upper surface of the TPS substrate. Avoiding the position, molding is performed by setting a range 24F where the TPS substrate 18 and the frame insert molding 24C overlap.
  • a case member that covers the rotation detection body and has a substrate attached thereto, An exciting conductor portion that is annularly disposed on the substrate and generates a magnetic field by applying a current, An excitation conductor portion that is fixed to the rotation detection body and is arranged in a non-contact state with a space from the excitation coil portion, and generates an electric current according to a rotation position of the rotation detection body by electromagnetic action, A receiving conductor portion that is disposed on the substrate and generates a current corresponding to a current flowing through the excitation conductor; A gear provided between the motor and throttle valve to decelerate the motor power, A shaft that functions as a rotation axis of the gear; A rotation angle detection device comprising: The substrate and the terminal disposed in the case are electrically coupled in advance before molding the case member, A throttle valve device, wherein the substrate and the terminal are covered with a member forming a case.
  • Embodiment 2 In what is described in Embodiment 1, A throttle valve device characterized in that the central portion of the rotation detecting portion on the substrate is not covered with resin.
  • Embodiment 3 In what is described in Embodiment 1, A throttle valve device, wherein the substrate and a terminal having an elastic shape at the other end disposed in the case are electrically connected in advance by press-fit connection before molding of the case member. .
  • Embodiments 1 and 4 A throttle valve device characterized in that the entire circumference of the substrate is covered with a case member.
  • Embodiment 6 In what is described in Embodiment 5, A throttle valve device characterized in that the resin thickness in the rotation detecting portion range on the substrate is thinner than the resin thickness of other case materials.
  • Embodiment 7 In what is described in Embodiment 4, A throttle valve device characterized in that the rotation detection unit range on the substrate and a range excluding a part where electronic parts are mounted are covered with resin.
  • Embodiment 8 In what is described in Embodiment 7, A diaphragm characterized in that a resin film similar to that of the case member is attached to the back surface of the substrate covered with the case member opposite to the electronic components and excitation conductors mounted on the upper surface of the substrate before molding. Valve device.
  • the inductance type non-contact type rotation angle detection device and the throttle valve device driven by the motor of the internal combustion engine provided with the inductance type non-contact rotation angle detection device have been described. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 モータ駆動式絞り弁装置などに用いるインダクタンス式非接触回転角度検出装置において、固定側導体および電子回路が取付けられた回路基板を接着剤を用いないで、樹脂カバーに固定する。回路基板としてのTPS基板と電気導体を圧接(プレスフィット)によって電気的に接続し、回路基板と電気導体を同一の成形樹脂で1つの成型体として構成できるようにした。これにより、新たな金属製導体(ボンディングワイヤー)を用意する必要もなく、溶接や半田付けも不要になった。さらには、TPS基板をカバー樹脂と同材料にて覆う事で、基板をカバーに接着する工程の省略化ができ、製造コスト削減が可能となる。

Description

インダクタンス式回転角度検出装置およびその実装方法
 本発明は、回転体の回転軸に取付けられた導体とこれに対面する固定子に取付けたコイル導体との間のインダクタンスが両者の回転方向の位置関係に応じて変化することを利用して、回転する導体の回転位置を非接触式で検出することで、回転体の回転位置あるいは回転角度を検出する回転角度検出装置に関する。
 また、モータによって駆動される絞り弁で内燃機関の空気通路の開口面積を電気的に制御するモータ駆動式の絞り弁装置であって、絞り弁の回転角度を検出するために上記した回転角度検出装置を備えたものに関する。
 この種の非接触式回転角検出装置は、特開2003-254782号公報に記載したものが知られている。
 また、モータ駆動式の絞り弁制御装置の回転角度検出装置としてこの種の回転角度検出装置を用いることは、特開2008-96231号公報で提案されている。
特開2003-254782号公報 特開2008-96231号公報
 従来のインダクティブ型非接触式の回転角度検出装置では、固定側導体(励磁導体と受信コイル導体)と入出力駆動部及び制御用の電子回路部とが設けられた長方形型の回路基板を樹脂カバー(モータ駆動式の絞り弁制御装置では樹脂材製ギアカバー)の表面に接着によって固定していた。しかし、樹脂カバー成形後に回路基板を接着し、カバー内に這い回された電気導体との電気的接続のための接合等、カバーアッセンブリーを完成させるために、多くの作業工程が必要とされるため、製造コストが高くなる問題が有った。
 本発明の目的は、上記課題を解消して、精度を落とさずに組立作業性を向上することに有る。
 上記目的を達成するために本発明の回転角度検出装置では、樹脂カバーが、固定側導体と電子回路が装着された回路基板,外部装置と電気的に接続するためのコネクタ,当該コネクタに形成されるコネクタ端子と回路基板とを接続する電気導体とを備えており、回路基板の少なくとも一部と電気導体とが同一の樹脂によって成形された一つの成形体として構成されている。
 好適には、回路基板に固定された固定側導体と電気導体とが同一の樹脂によって被覆成形された一つの成形体として構成され、当該成形体が樹脂カバーの成形樹脂によってさらにオーバーモールドされている。
 好適には、回路基板と電気導体との電気的接続部が成形体若しくは樹脂カバーと同一の樹脂によって被覆成形されている。
 好適には、固定導体を覆う樹脂層の厚さが、電気導体を覆う樹脂層の厚さより薄く形成されている。
 好適には、回路基板と電気導体との電気的接続部が圧接(プレスフィット)で接続されている。
 具体的には、上記特徴を有するインダクタンス型非接触式回転角度検出装置を備えたモータ駆動式の絞り弁制御装置であって、モータへの電源供給用の中継端子が樹脂カバーの成型樹脂と同一の成形樹脂で成形され、モータへの電源供給用の電気導体が回路基板と他の電気導体と一緒に一つの成形体として構成されている。
 好適には、樹脂カバーはモータの回転を絞り弁に伝達するギア機構を収容する収容体として機能している。
 好適には、絞り弁軸若しくは絞り弁軸に固定されたスロットルギアに、回転側導体が取り付けられている。
 本発明では、回路基板を樹脂カバーに接着する必要がないので、精度を落とすことなく組立工数の削減ができた。
 本発明になる回転角度検出装置を用いることで、モータ駆動式絞り弁の制御精度が向上し、組立て性が改善された。
モータ駆動式絞り弁装置の全体断面図。 モータ駆動式絞り弁装置の分解正面図。 インダクタンス式回転角度検出装置の回転導体の一部断面図。 インダクタンス式回転角度検出装置の回転導体の分解斜視図。 インダクタンス式回転角度検出装置の透視正面図。 TPSターミナルの全体斜視図。 TPSターミナル先端の拡大斜視図。 TPS基板の全体斜視図。 TPS基板スルーホール部の拡大斜視図。 モータ駆動式絞り弁装置のモータ電気的接合部の一部断面図。 TPS基板とターミナルのブクミ全体斜視図。 インサート成形品の全体斜視図。 インダクタンス式回転角度検出装置の全体斜視図。 実施例2のTPS基板とターミナルのブクミ全体斜視図。 実施例2のインサート成形品の全体斜視図。 実施例2のインダクタンス式回転角度検出装置の全体斜視図。 実施例3のTPS基板とターミナルのブクミ全体斜視図。 実施例3のインダクタンス式回転角度検出装置の全体斜視図。 実施例3のインダクタンス式回転角度検出装置の全体斜視図。(追加工後) TPS基板の拡大斜視図。 実施例4のTPS基板とターミナルのブクミ全体斜視図。(ウラ面) 実施例4のインサート成形品の全体斜視図。(オモテ面) 実施例4のインサート成形品の断面図。 実施例4のインサート成形品の拡大断面図。 実施例4のインダクタンス式回転角度検出装置の全体斜視図。
 以下、図面に基づいて本発明の実施例を説明する。
 まず、本実施例に係わる内燃機関のモータ駆動式絞り弁装置の構成について、図1,図2を用いて説明する。
 図1はモータ駆動式絞り弁装置(以下、ETBと略称する)の全体断面図、図2は分解正面図である。
 アルミダイカスト製の絞り弁組体(以下スロットルボディと呼ぶ)3には吸入空気通路1(以下ボアと呼ぶ)とモータ2収納用のモータハウジング2Aが一緒に成形されている。
 スロットルボディ3にはボア1の一つの直径線に沿って金属製の回転軸(以下スロットルシャフトと呼ぶ)4が配置されている。スロットルシャフト4の両端はニードルベアリング5,6もしくはボールベアリング等の軸受で回転支持されている。ニードルベアリング5,6はスロットルボディ3に圧入固定されている。また、スロットルシャフト4上に設けたスリット部にC型ワッシャ(以下スラストリテーナと呼ぶ)7を挿入後、ニードルベアリング5を圧入することで、スロットルシャフト4の軸方向の可動量を規制している。
 また、スロットルシャフト4にはエンジンへの空気量を変化させるための絞り弁(以下スロットル弁と呼ぶ)8が組みつけられている。
 かくして、スロットルシャフト4が回転するとスロットル弁8が回転し、結果的に吸気通路の開口面積が変化して内燃機関の吸入空気量が調節可能となる。
 スロットルシャフト4の端部にはスロットルギア10がナット11で固定されている。スロットルギア10は金属プレート10Aと、この金属プレート10Aに樹脂成形されたギア部10Bから構成されている。
 モータハウジング2Aはスロットルシャフト4と並行に形成されており、ブラシ式直流型のモータ2がモータハウジング2A内に差込まれ、ネジ12で固定されている。モータ2の回転軸端部には歯数の最も少ない金属製のギア(以下モータギアと呼ぶ)13が固定されている。
 モータギア13とスロットルギア10の間にはスロットルボディ3に圧入固定された金属製の軸14(以下中間ギアシャフトと呼ぶ)に回転可能に指示されたギア(以下中間ギアと呼ぶ)15が噛合っている。中間ギア15はモータギア13と噛合う大径ギア15Aとスロットルギア10と噛合う小径ギア15Bとから構成されている。両ギアは樹脂成形により一体に成形により一体に成形される。
 これらギア13,15A,15B,10は2段の減速歯車機構を構成しており、かくしてモータ2の回転が減速機構を介して、スロットルシャフト4に伝達される。
 スロットルギア10の背面とスロットルボディ3の側面との間に弦巻ばねで形成されたリターンスプリング16が挟持されている。リターンスプリング16の片側端部はスロットルボディ3に形成された切欠きに係止され、他端はスロットルギア10に形成された切欠きに係止されている。リターンスプリング16はモータ2が通電されていない時スロットル弁8が全開位置を維持するように回転方向に予荷重が与えられている。
 次に、インダクタンス式回転角度検出装置の搭載方法について図3,図4を用いて説明する。
 図3はインダクタンス式回転角度検出装置の回転導体の一部断面図であり、図4は同分解斜視図である。
 インダクタンス式回転角度検出装置は、前述の通り、回転体の回転軸に取付けられた導体とこれに対面する固定子に取付けた導体とで構成される。前者は、図3,図4に示す円板(以下ロータと呼ぶ)17に相当し、後者は回路基板(以下TPS基板と呼ぶ)18に相当する。
 ロータ17上には、励起導体17Aが印刷されており、ロータ17は樹脂成形体で構成されるカップ上のホルダ(以下ロータホルダと呼ぶ)19に接着固定される。また、ロータホルダ19の中心部には金属製のロータホルダインサータ19Aが一体成形されている。ロータ17の中心には位置決め用の貫通穴17Bが形成されており、ロータホルダインサータ19Aにはこれと対応する位置決め用の突起部19Bが形成されている。これにより、ロータ17とロータホルダ19の中心軸を一致させる。また、ロータホルダインサータ19Aの中心軸上には環状の窓孔19Cが設けられており、これがスロットルシャフト4に圧入固定される。かくして、ロータ17はスロットルシャフト4と同様に回転することになる。
 以下本実施例の部品構成について図5にて具体的に説明する。図5はインダクタンス式回転角度検出装置の透視正面図である(以降、「TPS」は「回転角度検出装置」を意味する。)。
 TPS基板18には、環状の励磁導体18A1と放射方向に配置された複数の検出導体18A2とが印刷されており、本導体が回転位置(角度)検出部の駆動電源部及び回転位置(角度)の検出部となる。また、TPS基板18上には、マイクロコンピュータを含む電子回路素子18Bを有しており、本回路により、回転角度検出部の駆動制御および出力信号処理を行う。また、TPS基板18は、樹脂成形品のカバー(以下ギアカバーと呼ぶ)20内に、実装される。
 ギアカバー20内部には、金属製の配線導体6本が設置され、配線導体は、TPS配線導体21の4本と、モータ配線導体22の2本に大別でき、それぞれの端部はギアカバー20に成形されたコネクタ20Bに集約される。車両搭載時には、エンジンコントロールユニットから伸びた電線を差込みプラグにより、前述のコネクタ20Bと接合することで、電気的信号の授受および電力の供給,アースへの接続を実施する。この金属製配線導体は、外装モールド(オーバーモールドと称す)を行う前に、各々の配線導体位置を精度良くするためにインサート成形(プレモールドと称す)を実施する。この時、ギアカバー20内に取付けられるTPS基板18も配線導体と一緒にインサート成形を行う。インサート成形に関しては、後に別図にて説明をする。
 次に、TPS基板18とTPS配線導体21の接続方法に関して、図6~図9を用いて説明する。図6は、TPS配線導体21の全体斜視図であり、図7はその先端部を拡大した図である。図8は、TPS基板18の全体斜視図であり、図9は、接続部を拡大した図である。
 TPS配線導体21とTPS基板18を同時にインサート成形する前に、4本のTPS配線導体21を事前に電気的に接続する。電気的接続をするために、TPS基板18上に設けた配線用スルーホール18D内壁には金属部材が介在している。そしてTPS基板18上に設けた配線用スルーホール18Dに、弾性構造を持ったTPS配線導体21の反コネクタ側の接続端子21Aを加圧しながら押し込む。その際、配線用スルーホール18Dの内寸よりも大きいサイズの配線導体を加圧することで、接続端子21A部に設けた膨張部(中心に楕円形の孔が設けられている)が圧迫され、この時のばねの力によりTPS基板18とTPS配線導体21が圧接(以下プレスフィット接続と呼ぶ)され、電気的導通を果たす。またTPS配線導体21の反コネクタ側の接続端子21Aに、抜け防止ストッパー21Bを備える事で、一度接続したTPS配線導体21がTPS基板上の配線用スルーホール18Dから抜けないようにする。接続端子21Aに弾性形状を持たす事で、耐振動性やインサート成形時の、樹脂流れによるせん断応力から保護する事が可能である。さらには、プレスフィット接続を行う事で、TPS基板18とTPS配線導体21とを接続する新たな金属製導体を用意する必要がなく、コスト低減にも繋がる。さらに、接続時もはんだ付けのように加熱することなく、常温で接続できるので、はんだ付けのような熱影響を考慮した設計をする必要がなく、また電力を用いない省エネ接続が実現できる。
 プレスフィット構造にてTPS配線導体21をTPS基板18に接続する際、ばね力による機械的接続になるため、常にTPS基板18にばね力が作用する。そこで、互いに隣り合うTPS基板18の配線用スルーホール18D間に加わる力方向を分散させるため、プレスフィット構造の締結方向を、1つずつ互い違いに設定する。これによりTPS基板18への機械的負荷を低減でき、高価な高強度材の基板を使用しなくて済み、原価低減に繋がる。なお、モータ配線導体22の反コネクタ側の接続端子22Aは、ギアカバーより突出しており、図10に示す通り、モータ2側から突出する配線導体22Bと中継カップリング23を介して樹脂成形部22A1,22B1において、電気的接続を果たす。次に、インサート成形について説明する。
 図11は、TPS基板18とTPS配線導体21とモータ配線導体22の部組み状態を示す全体斜視図である。インサート成形は、図11の状態にして各々の部品を型にセットし行われる。
 ETBは、エンジンルーム内に取付けられるため、高温,低温の環境下に置かれる。そのため、ギアカバー20の外装成形に使用される樹脂は耐熱性が良く且つ、汎用性があるポリブチレンテレフテレート(PBT)等が使用される。(本実施例には、ギアカバーの材料を以下PBTとして記載する。)構成部品を安価に設定するには、インサート成形においても、市場流通性が良く、汎用性の良いPBT樹脂を使用することが望ましい。これにより、特殊樹脂材を使う事による製造タクトの悪化や高価で複雑な金型設計を強いられないで済み、総合的に安価に製造する事が可能である。しかし熱可塑性のPBT材にて、電子基板を含むインサート成形を行う際には、高温・高圧の射出成形を行うため、基板上面に搭載されている電子部品が、熱や流動時に発生するせん断応力等で破損する恐れがある。
 一方で、TPS基板18を樹脂内に実装する場合、TPS基板18を覆う樹脂厚が厚いと、その分ロータ17の励起導体17AとTPS基板上の励磁導体18A1及び検出導体18A2との距離が離れてしまい、インダクタンス式回転角度検出装置としての機能,精度を果たせなくなる。インダクタンス式回転角度検出装置を大きくし、受信感度を上げる事も可能であるが、搭載するTPS基板が大きくなるために、部品をコンパクトに集約できない。そのために、TPS基板上の励磁導体18A1及び検出導体18A2上面の樹脂厚みに関しては、薄くする必要がある。
 しかし、励磁導体18A1及び検出導体18A2上面の樹脂厚みを薄くしようとすると、樹脂の流れが悪くなるので樹脂成形圧力を上げる必要が有る。ところが、樹脂成形圧力を上げると成形時の樹脂圧力に起因して電子部品がダメージを受けてしまう可能性が有る。
 そこで本実施例では、PBT樹脂の分子量を調整して流動性を上げたり、あるいは添加剤を加えたりする事で、低圧成形が可能で高流動性を有するPBT樹脂材製の成形樹脂を得た。この樹脂の選択は、PBT樹脂に限ることはない。種々の熱硬化性あるいは熱可塑性樹脂の中からギアカバーを形成するオーバーモールド樹脂の性質によって選択することができる。
 また、低融点ポリマー材が入ったPBT材を使用すれば、通常の樹脂成形時に必要とされる樹脂成形温度よりも低い温度で成形できるので、樹脂の温度に起因する回路部品や半田接合部へのダメージを緩和できる事となり、回路基板全周(励磁導体18A1,検出導体18A2,電子回路素子18Bや配線導体21,22)をインサート成形する事が可能である。
 図12は、インサート成形を行うときのゲート位置を示す図である。
 インサート成形を行う際、樹脂圧力によるTPS基板18の歪を防ぐために、樹脂のゲート位置を、TPS基板18の長手方向と平行に樹脂が流れるようサイドゲート位置24Aを設定する。図12は、例としてTPS基板18横面の一辺をサイドゲート位置24Aとして示したが、他の三辺に設定しても、同様の効果は得られる。図12に示すサイドゲート位置24AはTPS基板上の励磁導体18A1及び検出導体18A2に近いことから、低圧成形が可能で高流動性を有するPBT樹脂材製の成形樹脂を流し込むと、TPS基板上の励磁導体18A1及び検出導体18A2の部分に薄い円盤状の層(樹脂フィルム層)25を形成し易い。そしてこの薄い円盤状の層(樹脂フィルム層)25の両サイドから電子回路素子18B,TPS基板と配線導体の電気的接合部18C、および配線導体21,22側に流れ、モータ中継端子部24Bを成形し、最後にコネクタの端子部に至る。242は電子回路素子18Bの成形部、244は回路基板と電気導体の電気的接合部18Cの成形部、246はコネクタ部の配線導体21,22の成形部、248はモータの接続端子22A,22B部の成形部をそれぞれ示す。
 この実施例ではこのように、励磁導体18A1及び検出導体18A2の部分,電子回路素子18B,電子回路基板と配線導体の電気的接合部,コネクタ部の配線導体21,22の一部,モータとの接続端子22A部が予め樹脂成形によって樹脂で覆われ、結果的に励磁導体18A1及び検出導体18A2を含む電子回路基板と配線導体(21,22)が一つの成形体として構成されていることが特徴である。これによってモータ駆動式の絞り弁装置の樹脂材製ギアカバー、あるいはインダクタンス式回転角度検出装置を自動組立てラインで組み立てるとき、ラインの中に敗戦導体の溶接や半田付けの作業がなくなるので、組立て性が向上する。
 また、電子回路基板を樹脂材製ギアカバーに接着する工程も不要になり、接着剤の乾燥時間がなくなる分だけ組立て時間が短くできる。
 さらに、接着剤を用いないので、樹脂材製ギアカバーのスロットルボディ3への取付け面と励磁導体18A1及び検出導体18A2との寸法が樹脂成形によって精度良く決定できる。
 つまり、接着剤だと、その量によって電子回路基板と樹脂材製ギアカバーの取付け面の間の寸法が製品毎にばらつく可能性が有る。そのばらつきは、乾燥状態によってもばらつくので、管理しにくい。
 本実施例では、樹脂成形時に治具によって樹脂材製ギアカバー20のスロットルボディ3への取付け面と励磁導体18A1及び検出導体18A2との間の寸法を管理することによって、樹脂材製ギアカバー20のスロットルボディ3への取付け面と励磁導体18A1及び検出導体18A2との寸法がすべての製品で同じにできるので、ロータ17と組み合わせたときの磁気ギャップ(検出ギャップ)がすべての製品で同じにできる。その結果インダクタンス式回転角度検出装置としての磁気的性能が、製品によってばらつくことがない。
 次に、外装成形(オーバーモールド)時における、インサート成形品24の位置決めについて図12を用いて説明する。
 インサート成形品24をインサート部品として、ギアカバーの外装成形(オーバーモード)を行う際、インサート成形品24のTPS基板18との位置決めが必要である。センシング機能を満足するためには、ロータ17とTPS基板18中心部に開けられた貫通穴18Cとが同軸上に設置される必要が有る。従って、インサート成形時に、TPS基板上の貫通穴18Cに同径の金型入れ、その部位に樹脂の流れ込みを遮断する。これによりインサート成形24品に、TPS基板上の貫通穴18Cと同径の位置決め穴24Bができ、この穴を外装成形時の位置決め穴として使用し成形することで、精度良く安易に位置決めが可能となる。これにより、図13に示すような、外装成形品が完成する。
 本実施例では、インサート成形(1次成形;プレモールドとも称す)と外装成形(2次成形;オーバーモールドとも称す)を行う工程にて説明をしてきたが、TPS基板18とTPS配線導体21とモータ配線導体22を部組み状態にした後に、1回の成形でギアカバーを製造する事も可能である。
 この場合、励磁導体18A1及び検出導体18A2,電子回路素子18B,TPS基板と配線導体の電気的接合部,コネクタ部のTPS配線導体21とモータ配線導体22,モータの接続端子22A部が成形治具にセットされ、樹脂材製ギアカバーの成形樹脂によってモールド成形される。これにより結果的に励磁導体18A1及び検出導体18A2を含むTPS基板と配線導体(21,22)が一つの成形体として構成される。このように構成した場合は、成形工程が1回で済むので、より組立て性が向上する。
 他の実施例を図14,図15,図16を用いて説明する。
 図14は、TPS基板と配線導体の部組み全体斜視図で、その後インサート成形をした形状を図15に示し、完成された図16に外装成形後の全体斜視図を示す。
 実施例1は、基板全体を流動性の良い樹脂で覆い、TPS基板上の励磁導体18A1及び検出導体18A2上面の樹脂厚みを薄肉にて成形する例であるが、図14に示すようにインサート成形前に、TPS基板上の励磁導体18部上面に、インサート成形時に使用する樹脂材と同様の樹脂フィルム25Aを貼り付け、インサート成形24を実施することでも、同様の目的は達成可能である。樹脂フィルム25Aは、インサート成形24時と同材料の樹脂を使用する事で、成形後に線膨張係数の違い等による変形や割れなどは発生しないようにする事が可能である。また、外装成形時に使用する位置決め穴24Bの部位を逃がした樹脂フィルム25Aを貼り付けることで、外装成形時にTPS基板中心の位置決めが精度良くできることになる。
 他実施例を図17,図18,図19を用いて説明する。
 図17は、TPS基板全体を樹脂で覆ったインサート成形品24の全体斜視図であり、図18は外装成形(オーバーモールド)後の形状を示し、図19は、TPS基板上の励磁導体18A上面部の樹脂厚みを追加加工にて薄くした全体斜視図である。
 本実施例では、TPS基板上の励磁導体18A1及び検出導体18A2のインサート成形24時、TPS基板18全体を、均一の樹脂厚にて覆ってしまう。これにより、樹脂の収縮による基板変形が相殺でき、成形後の変形,歪を極力最小限に抑える。そして、外装成形(オーバーモールド)を実施した後に、励磁導体18A1及び検出導体18A2を覆う樹脂部分をTPS基板18とロータ17が接触しない位置(深さ)まで切削加工によって削り取って両者を近接させ、センシング検出機能を満足させる。追加加工範囲は、ロータ17より大きな径で加工する。
 尚、切削加工に替えて、外装成形時にインサート成形品を加熱して軟化させ、その状態で励磁導体18A1及び検出導体18A2を覆う樹脂部分をプレス成形して薄くすることも可能である。この方法であれば切削粉の除去が不要であると言う効果が有る。
 他の実施例を、図20~図25を用いて説明する。
 本の実施例では、TPS基板18上に搭載されている電子部品且つTPS基板上の励磁
導体18A1及び検出導体18A2に樹脂が被らないように、インサート成形時に、TPS基板の周囲のみを樹脂材によって覆う額縁上の層24Cを設ける。このように構成した本実施例によれば、励磁導体18A1及び検出導体18A2とが、むき出しになるので、ロータ17と組合せた時、励磁導体17Aとの間の検出ギャップをより小さくでき、TPSの検出精度が向上する。ここで、この実施例では、インサート成形時に成形樹脂が、スルーホール18Fを通してTPS基板18の裏側から表側にあふれ出てしまう虞れがある。このあふれた成形樹脂は各スルーホール18Fでまちまちの量となり、その結果、ロータ側の導体との間の検出ギャップを小さくできない虞れがある。そこで改良案として図23に示す様にTPS基板18の裏側に樹脂フィルム25Aを貼ってから額縁状に樹脂成形する。こうするとTPS基板18の裏側からスルーホール18Fを通って表側に成形樹脂があふれ出ることがなく上記問題を解消できる。
 図20は、TPS基板の拡大斜視図を示し、図21は、TPS基板と配線導体のブクミの裏面を示した全体斜視図である。上記技術について更に詳しく説明する。
 TPS基板18には、図20に示すように、スルーホール18Fを有している。この隙間に樹脂が流れ、成形後硬化すると、TPS基板18とスルーホール18F内に入り込んだ樹脂の線膨張係数差により、クラック発生の原因となる事があることがある。それを防ぐために、図21に示すように、インサート成形前に、TPS基板裏面18E側に、インサート成形時に使用する材料と同様の樹脂フィルム25Aを、スルーホール18Fが隠れるように貼り付け、インサート成形24時にスルーホール18Fに樹脂が入り込む事を遮断する。
 図22は、TPS基板外周をインサート成形した全体斜視図を示し、図23は、図22のTPS基板部の断面図であり、図24はその拡大図を示す。
 TPS基板18の片面のみインサート成形を行うと、線膨張係数が違う材料同士を一体成形するため、成形収縮した後に、変形やそりが発生し残留応力を生じる事となり、樹脂の割れ原因となる。それを抑えるために、図25に示すよう、TPS基板18の外周を樹脂で覆い尚且つ、基板下面側にて設定したTPS基板下面の樹脂厚24Dと同等の厚みをTPS基板上面の樹脂厚24Eとして設定する。そうすることで、成形後の基板上面と下面の樹脂収縮を相殺することが可能になり、変形,そりの防止対策となる。また、インサート成形後にTPS基板18上面にバリの発生を防ぐため、TPS基板18外周を囲む額縁インサート成形24Cの範囲は、基板上面に搭載される電子部品を避ける位置且つ、TPS基板上面のセンシング部位置を避け、TPS基板18と額縁インサート成形24Cの樹脂が重なり合う範囲24Fを設定し成形を行う。
 以上の実施例の態様を整理すると以下の通りである。
<実施の態様1>
 アクチュエータとポジションセンサにより、フィードバック制御される電子制御スロットルボディにおいて、
 被回転検出体を覆うと共に、基板が取付けられたケース部材、
 前記基板上に環状に配設されると共に、電流の印加によって磁界を発生する励磁導体部、
 前記被回転検出体に固定されると共に、前記励磁コイル部と間隔を保って非接触状態に配置され、電磁作用によって前記被回転検出体の回転位置に応じた電流が発生する励起導体部、
 前記基板に配設されると共に、前記励起導体に流れる電流に応じた電流が発生する受信導体部、
 モータの動力を減速させるためにモータ、絞り弁間に設けられたギア、
 前記ギアの回転軸として機能するシャフト、
を備えた回転角度検出装置であって、
 前記基板と前記ケース内に配設された端子とを、ケース部材のモールド前に予め電気的に結合し、
 前記基板と端子がケースを形成する部材で覆われていることを特徴とする絞り弁装置。
<実施の態様2>
 実施の態様1に記載したものにおいて、
 前記基板上の回転検出部の中心部位が、樹脂に覆われていない事を特徴とする絞り弁装置。
<実施の態様3>
 実施の態様1に記載したものにおいて、
 前記基板と前記ケース内に配設された他端に弾性形状を有した端子とを、ケース部材のモールド前に予めプレスフィット接続にて電気的に結合していることを特徴とする絞り弁装置。
<実施の態様4>
 実施の態様2,3に記載したものにおいて、
 前記基板と前記端子が、一回以上のモールド成形で実装されている事を特徴とする絞り弁装置。
<実施の態様5>
 実施の態様1,4に記載したものにおいて、
 前記基板全周をケース部材で覆った事を特徴とする絞り弁装置。
<実施の態様6>
 実施の態様5に記載したものにおいて、
 前記基板上の回転検出部範囲の樹脂厚が他のケース材の樹脂厚よりも、薄い事を特徴とする絞り弁装置。
<実施の態様7>
 実施の態様4に記載したものにおいて、
 前記基板上の回転検出部範囲並びに電子部品が搭載されている部位を除く範囲を樹脂で覆っていることを特徴とする絞り弁装置。
<実施の態様8>
 実施の態様7に記載したものにおいて、
 基板上面に搭載されている電子部品,励磁導体部とは反対の、ケース部材に覆われる基板裏面に、モールド成形前にケース部材と同様の樹脂フィルムが貼り付けられていることを特徴とする絞り弁装置。
 本実施例はインダクタンス型の非接触式回転角度検出装置及びそれを備えた内燃機関のモータによって駆動される絞り弁装置について説明したが、電子部品を有する回路基板をカバー部材に搭載する装置全般に適用することができる。
 また、2つのデフォルト機構を有する内燃機関のモータ駆動式絞り装置にも適用できる。
1 ボア
2 モータ
2A モータハウジング
2B モータ上のターミナル
3 スロットルボディ
4 スロットルシャフト
5,6 ニードルベアリング
7 スラストリテーナ
8 スロットル弁
9,12 ネジ
10 スロットルギア
10A スロットルギア金属プレート
10B スロットルギアのギア部
11 ナット
13 モータギア
14 中間ギアシャフト
15 中間ギア
15A 大径ギア部
15B 小径ギア部
15C 中間ギアボス部
16 リターンスプリング
17 ロータ
17A 励起導体
17B 位置決め用貫通穴
18 TPS基板
18A1 励磁導体
18A2 検出導体
18C 貫通穴
18D 配線用スルーホール
18E TPS基板裏面
18F スルーホール
19 ロータホルダ
19A ロータホルダインサータ
19B 位置決め用突起物
19C 環状の窓孔
20 ギアカバー
20A 位置決め用突起物
20B コネクタ
20C 中間ギア用ボス
20D 中間ギア用ボス部
21 TPS配線導体
21A,22A 接続端子
21B 抜け防止ストッパー
22 モータ配線接続
23 中継カップリング
24 インサート成形品
24A サイドゲート位置
24B 位置決め穴
24C 額縁状の層
24D TPS基板下面の樹脂厚
24E TPS基板上面の樹脂厚
24F TPS基板と樹脂の重なり合う範囲
25 円板上の層(樹脂フィルム層)
25A 樹脂フィルム
26 センシング部追加工部位

Claims (8)

  1.  回転体の回転軸に取付けられた回転側導体と、
     これに対面する樹脂カバー部材に取付けた固定側導体と、
     両導体の間のインダクタンスが両者の回転方向の位置関係に応じて変化することを利用して、前記回転体の回転位置を検出する電子回路と、を備えた回転角度検出装置であって、
     前記樹脂カバーは、
     前記固定側導体と前記信号処理回路が装着された回路基板,外部装置と電気的に接続するためのコネクタ,当該コネクタに形成されるコネクタ端子と前記回路基板とを接続する電気導体を有し、
     前記回路基板の少なくとも一部と前記電気導体とが同一の樹脂によって成形された一つの成形体として構成されている
    インダクタンス型非接触式回転角度検出装置。
  2.  請求項1に記載されたものにおいて、
     前記回路基板に固定された固定側導体と電気導体とが同一の樹脂によって被覆成形された一つの成形体として構成され、
     当該成形体が前記コネクタを有する前記樹脂カバーの成形樹脂によってさらにオーバーモールドされている
    インダクタンス型非接触式回転角度検出装置。
  3.  請求項1若しくは2のいずれかに記載されたものにおいて、
     前記回路基板と前記電気導体との電気的接続部が前記成形体若しくは前記樹脂カバーと同一の樹脂によって被覆成形されている
    インダクタンス型非接触式回転角度検出装置。
  4.  請求項3に記載されたものにおいて、
     前記固定導体を覆う樹脂層の厚さが、前記電気導体を覆う樹脂層の厚さより薄く形成されている
    インダクタンス型非接触式回転角度検出装置。
  5.  請求項1乃至4のいずれかに記載されたものにおいて、
     前記回路基板と前記電気導体との電気的接続部が圧接(プレスフィット)で接続されている
    インダクタンス型非接触式回転角度検出装置。
  6.  請求項1乃至5のいずれかに記載されたインダクタンス型非接触式回転角度検出装置を備えたモータ駆動式の絞り弁制御装置において、
     前記モータへの電源供給用の中継端子が前記樹脂カバーの成型樹脂と同一の成形樹脂で成形され、モータへの電源供給用の電気導体が上記回路基板と他の電気導体と一緒に一つの成形体として構成されている
    モータ駆動式の絞り弁制御装置。
  7.  請求項6に記載のものにおいて、
     前記樹脂カバーは前記モータの回転を前記絞り弁に伝達するギア機構を収容する収容体として機能している
    モータ駆動式の絞り弁制御装置。
  8.  請求項6に記載のものにおいて、
     前記絞り弁軸若しくは絞り弁軸に固定されたスロットルギアに、前記回転導体が取り付けられている
    モータ駆動式の絞り弁制御装置。
PCT/JP2011/058833 2010-04-08 2011-04-07 インダクタンス式回転角度検出装置およびその実装方法 WO2011126081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11765981.3A EP2557399A4 (en) 2010-04-08 2011-04-07 INDUCTIVE TURNING ANGLE DETECTION DEVICE AND ASSEMBLY METHOD THEREFOR
CN2011800178136A CN102844644A (zh) 2010-04-08 2011-04-07 电感式旋转角度检测装置及其安装方法
US13/639,179 US20130068978A1 (en) 2010-04-08 2011-04-07 Inductive rotation angle sensor and method of mounting the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010089124A JP5298061B2 (ja) 2010-04-08 2010-04-08 インダクタンス式回転角度検出装置およびその実装方法
JP2010-089124 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011126081A1 true WO2011126081A1 (ja) 2011-10-13

Family

ID=44763016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058833 WO2011126081A1 (ja) 2010-04-08 2011-04-07 インダクタンス式回転角度検出装置およびその実装方法

Country Status (5)

Country Link
US (1) US20130068978A1 (ja)
EP (1) EP2557399A4 (ja)
JP (1) JP5298061B2 (ja)
CN (1) CN102844644A (ja)
WO (1) WO2011126081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077335A1 (ja) * 2011-11-21 2013-05-30 パナソニック株式会社 接続具
CN104781537A (zh) * 2012-10-12 2015-07-15 法雷奥电机控制系统公司 用于将电部件接地的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203132570U (zh) * 2013-02-27 2013-08-14 大陆汽车电子(芜湖)有限公司 电子节气门的传感器部件及具有其的电子节气门
KR101327038B1 (ko) * 2013-06-03 2013-11-07 주식회사 현대케피코 전자식 스로틀밸브 어셈블리
DE102014220454A1 (de) * 2014-10-09 2016-04-14 Robert Bosch Gmbh Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil
CN108060982A (zh) * 2016-11-09 2018-05-22 大陆汽车电子(芜湖)有限公司 节气门盖体及节气门的制造方法
JP6917816B2 (ja) * 2017-07-19 2021-08-11 アルプスアルパイン株式会社 樹脂製成形部材および樹脂製成形部材を備えた位置検出装置
US10138821B1 (en) * 2017-08-31 2018-11-27 GM Global Technology Operations LLC Method of making a throttle body
JP7041267B2 (ja) 2018-07-13 2022-03-23 株式会社ミクニ 検出装置
JP7096340B2 (ja) * 2018-08-23 2022-07-05 株式会社ミクニ エンジンの電子制御スロットル装置
JP7298391B2 (ja) * 2019-08-27 2023-06-27 株式会社デンソーダイシン 絞り弁装置及び絞り弁装置の製造方法
JP7562455B2 (ja) * 2021-03-17 2024-10-07 株式会社ミクニ 変速機構及び流体制御弁

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199006U (ja) * 1987-12-24 1989-07-03
JP2001289610A (ja) * 1999-11-01 2001-10-19 Denso Corp 回転角度検出装置
JP2003254782A (ja) 2002-03-05 2003-09-10 Yoshikazu Ichiyama 角度位置検出器
JP2004199974A (ja) * 2002-12-18 2004-07-15 Auto Network Gijutsu Kenkyusho:Kk プレスフィットコネクタとその製造方法
JP2008096231A (ja) 2006-10-11 2008-04-24 Hitachi Ltd インダクタンス式回転角度検出装置及びそれを備えたモータ駆動式の絞り弁制御装置
JP2008309598A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd 角度検出センサおよびその角度検出センサを備えた吸入空気量制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811968A (en) * 1996-01-06 1998-09-22 Unisia Jecs Corporation Rotation angle sensor
JP4367473B2 (ja) * 1999-11-01 2009-11-18 株式会社デンソー 回転角度検出装置
US6879149B2 (en) * 2001-03-13 2005-04-12 Ntn Corporation Wheel support bearing assembly
JP2002277924A (ja) * 2001-03-21 2002-09-25 Asahi Optical Co Ltd レンズシャッタ機構
JP4192716B2 (ja) * 2003-08-01 2008-12-10 株式会社デンソー 内燃機関用スロットル装置の製造方法
JP4353951B2 (ja) * 2006-03-06 2009-10-28 三菱電機株式会社 電動式パワーステアリング装置
EP2202491B1 (en) * 2008-12-24 2013-07-31 Keihin Corporation Inductance-type rotation angle sensor, method of manufacturing the same, and intake control system for engine including the sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199006U (ja) * 1987-12-24 1989-07-03
JP2001289610A (ja) * 1999-11-01 2001-10-19 Denso Corp 回転角度検出装置
JP2003254782A (ja) 2002-03-05 2003-09-10 Yoshikazu Ichiyama 角度位置検出器
JP2004199974A (ja) * 2002-12-18 2004-07-15 Auto Network Gijutsu Kenkyusho:Kk プレスフィットコネクタとその製造方法
JP2008096231A (ja) 2006-10-11 2008-04-24 Hitachi Ltd インダクタンス式回転角度検出装置及びそれを備えたモータ駆動式の絞り弁制御装置
JP2008309598A (ja) * 2007-06-14 2008-12-25 Hitachi Ltd 角度検出センサおよびその角度検出センサを備えた吸入空気量制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557399A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077335A1 (ja) * 2011-11-21 2013-05-30 パナソニック株式会社 接続具
CN104781537A (zh) * 2012-10-12 2015-07-15 法雷奥电机控制系统公司 用于将电部件接地的方法
CN104781537B (zh) * 2012-10-12 2018-04-24 法雷奥电机控制系统公司 用于将电部件接地的方法

Also Published As

Publication number Publication date
EP2557399A4 (en) 2016-06-22
CN102844644A (zh) 2012-12-26
EP2557399A1 (en) 2013-02-13
JP5298061B2 (ja) 2013-09-25
US20130068978A1 (en) 2013-03-21
JP2011220783A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5298061B2 (ja) インダクタンス式回転角度検出装置およびその実装方法
JP4695929B2 (ja) 非接触式の回転角度検出装置とその製造方法及びそれを用いたスロットル弁制御装置
JP2001289610A (ja) 回転角度検出装置
JP5066142B2 (ja) インダクティブ型スロットルセンサ付きモータ駆動型スロットルバルブ装置、およびモータ駆動型スロットルバルブ装置のスロットルシャフトの回転角度を検出するためのインダクティブ型スロットルセンサ
JP4367473B2 (ja) 回転角度検出装置
US7859252B2 (en) Rotational angle detecting devices
US5998892A (en) Rotary position sensor with insert molded coil winding
WO2014033833A1 (ja) 電動式駆動装置および電動式駆動装置の製造方法
JP4906927B2 (ja) 回転電動機の軸受装置
JP4635924B2 (ja) 吸気モジュール
JP2008298083A (ja) スロットルボデーのオープナー開度調整方法
JP2009254141A (ja) 制御装置一体型電動パワーステアリング装置用モータおよび電動パワーステアリング装置
KR20040007471A (ko) 전기 모터, 특히 전자식으로 정류되는 dc 모터용 릴레이지지 디바이스
JP2006015618A (ja) 複数部材からなる部品の構造及びその製造方法
US9086304B2 (en) Terminal-supporting apparatus
JP3843969B2 (ja) 回転角検出装置
JP4578049B2 (ja) ブラシレスdcモータ
JP4241396B2 (ja) 固定軸受けを備えたモータ装置
JP2016070713A (ja) インダクタンス型非接触式回転角度検出装置およびこれを備えたモータ駆動式の絞り弁制御装置
US20020014888A1 (en) Rotation detecting device
JP2008128646A (ja) 回転角センサ及びスロットル装置
JP4879711B2 (ja) 回転角センサ及びスロットル装置
JP2007057322A (ja) 回転角度検出装置
JP2004077472A (ja) ターミナル装置
JP2013061277A (ja) 回転角度検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017813.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765981

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011765981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765981

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005238

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 13639179

Country of ref document: US