WO2011125220A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011125220A1
WO2011125220A1 PCT/JP2010/056446 JP2010056446W WO2011125220A1 WO 2011125220 A1 WO2011125220 A1 WO 2011125220A1 JP 2010056446 W JP2010056446 W JP 2010056446W WO 2011125220 A1 WO2011125220 A1 WO 2011125220A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition timing
torque
air amount
combustion engine
internal combustion
Prior art date
Application number
PCT/JP2010/056446
Other languages
English (en)
French (fr)
Inventor
高木 登
瀬尾 洋充
栄一郎 城戸
貴光 水谷
宏和 安藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056446 priority Critical patent/WO2011125220A1/ja
Priority to CN201080065928.8A priority patent/CN102859182B/zh
Priority to US13/634,048 priority patent/US8606487B2/en
Priority to JP2012509260A priority patent/JP5273295B2/ja
Priority to EP10849461.8A priority patent/EP2557309B1/en
Publication of WO2011125220A1 publication Critical patent/WO2011125220A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine capable of controlling torque according to an air amount and ignition timing, and more particularly to a spark ignition type internal combustion engine control device having a variable valve timing mechanism for changing a valve timing of an intake valve and a throttle. .
  • torque demand control for controlling the operation of actuators such as a throttle and an ignition device has been known for realizing required torque.
  • actuators such as a throttle and an ignition device
  • Japanese Patent Laid-Open Nos. 2006-200466 and 2009-047101 describe inventions relating to such torque demand control.
  • FIG. 6 shows this state in a pressure-crank angle diagram.
  • the change in the in-cylinder pressure after the ignition timing indicated by an asterisk is compared between when the valve timing of the intake valve is the most retarded and when the crank angle is advanced 20 degrees from the most retarded angle.
  • the time when IN-VVT is at the most retarded position is set as a reference, and the valve timing (INVT) of the intake valve at this time is set to 0 degree.
  • the combustion gravity center is delayed by the advance timing of the valve timing of the intake valve, and as a result, the maximum value of the in-cylinder pressure decreases.
  • the delay in the combustion center of gravity is due to the decrease in the combustion speed due to the increase in the EGR rate. Since the torque is correlated with the maximum value of the in-cylinder pressure, the combustion center of gravity is delayed due to the advance timing of the valve timing of the intake valve, resulting in a decrease in torque.
  • the studied method is a method of reflecting the operation state of the IN-VVT, that is, the valve timing of the intake valve in the ignition timing control.
  • the valve timing of the intake valve is not considered in the process of calculating the target air amount from the required torque.
  • the ignition timing is advanced in accordance with the actual valve timing of the intake valve so as to compensate for the torque drop due to the advance of the valve timing of the intake valve. It has been expected that the required torque can be realized without being affected by the operating state of the IN-VVT by performing integrated control of the throttle and the ignition device in this way.
  • FIG. 7 shows a result of correcting the ignition timing by the above method in a pressure-crank angle diagram.
  • the maximum value of the in-cylinder pressure is sufficient to realize the required torque.
  • the internal pressure was exceeded.
  • the torque exceeds the required torque, resulting in excessive output. This is thought to be because the increase in internal EGR due to the advance of the valve timing of the intake valve has led to various factors that increase the torque, such as a reduction in pumping loss, an increase in compression end pressure, or a reduction in cooling loss. .
  • An object of the present invention is to provide a control device for an internal combustion engine that can achieve the required torque without being affected by the operating state of the IN-VVT.
  • the control device stores data in which the relationship between the air amount and torque in the MBT is associated with the operating state of the IN-VVT, and the required torque is calculated based on this data. A target air amount to be realized is calculated. Then, the throttle is controlled so as to achieve the target air amount. Note that IN-VVT is controlled according to the operating state of the internal combustion engine.
  • this control device stores data that defines the relationship between the amount of air and MBT when IN-VVT is at the most retarded position, and based on this data, it is actually realized by the operation of the throttle. The basic ignition timing is calculated from the actual air amount.
  • control device determines an ignition timing advance correction amount for compensating for the difference between the torque realized at the basic ignition timing and the required torque from the operating state of the IN-VVT, and determines the basic ignition timing and the advance timing.
  • the final ignition timing is determined from the angle correction amount.
  • data that defines the advance correction amount of the ignition timing in association with the advance amount from the most retarded position of the IN-VVT is stored in the control device in advance. It is preferable to determine using the data.
  • the operation state of the IN-VVT is taken into consideration in both the target air amount calculation process and the ignition timing calculation process. Therefore, precise torque control is possible, and the required torque can be realized without being affected by the operation state of the IN-VVT.
  • the internal combustion engine to be controlled in this embodiment is a spark ignition type internal combustion engine having an IN-VVT (intake side variable valve timing mechanism) in addition to a throttle and an ignition device as an actuator related to the operation of the internal combustion engine. is there.
  • the control device of the present embodiment controls the IN-VVT so that the optimum valve timing is obtained according to the operating state of the internal combustion engine (for example, engine speed and load). Further, the control device of the present embodiment performs torque control of the internal combustion engine by integrated control of the throttle and the ignition device. In the integrated control process, the operation state of the IN-VVT, that is, the valve timing of the intake valve is used as one parameter.
  • FIG. 1 is a block diagram showing a configuration of a control device for an internal combustion engine according to an embodiment of the present invention.
  • the control device 2 of the present embodiment has a target air amount calculation unit 4, a target throttle opening calculation unit 6, a throttle control unit 8, an actual air amount calculation unit 10, It can be divided into a basic ignition timing calculation unit 12, a VVT advance correction amount calculation unit 14, and a final ignition timing calculation unit 16.
  • These elements 4, 6, 8, 10, 12, 14, 16 are only special elements related to the operation of the throttle and ignition device for torque control among the various functional elements of the control device 2. It is expressed in the figure. Therefore, FIG. 1 does not mean that the control device is composed only of these elements 4, 6, 8, 10, 12, 14, 16.
  • Each element 4, 6, 8, 10, 12, 14, 16 may be configured by dedicated hardware, or the hardware may be shared and configured virtually by software. Good.
  • the control device 2 acquires the required torque and the required A / F (air-fuel ratio).
  • a powertrain manager (not shown) is arranged above the control device 2.
  • the required torque and the required A / F are supplied to the control device 2 from the power train manager.
  • the control device 2 inputs the acquired required torque and the required A / F together with the current engine speed to the target air amount calculation unit 4.
  • the target air amount calculation unit 4 includes an MBT air amount map.
  • the MBT air volume map is a map that defines the relationship between the air volume and torque in MBT in relation to the engine speed, A / F, and IN-VVT operating state, and is based on data obtained through experiments. Has been created.
  • the target air amount calculation unit 4 calculates the target air amount by searching the MBT air amount map using the input information as a key.
  • the target air amount calculated from the MBT air amount map is an air amount necessary for realizing the required torque under the premise that the valve timing is controlled at the optimum point determined from the operating state. Therefore, the target air amount calculated from the MBT air amount map is corrected to a smaller value as the optimum point of the valve timing of the intake valve determined by the event is on the advance side.
  • the control device 2 inputs the target air amount to the throttle opening calculation unit 6.
  • the target throttle opening calculation unit 6 is provided with an air inverse model.
  • a physical model that models the response of the air amount to the operation of the throttle is an air model, and the air inverse model is the inverse model.
  • the control device 2 inputs the target throttle opening to the throttle control unit 8.
  • the throttle control unit 8 controls the throttle according to the target throttle opening.
  • so-called throttle delay control may be performed in which the input target throttle opening is delayed by a predetermined delay time, and the throttle is controlled in accordance with the delayed target throttle opening.
  • the throttle opening changes from moment to moment. The change of the opening can be measured by a throttle opening sensor (not shown) attached to the throttle.
  • the control device 2 inputs the measured throttle opening to the actual air amount calculation unit 10.
  • the actual air amount calculation unit 10 includes a forward model of the aforementioned air model. By inputting the throttle opening into the air model, the actual air amount realized thereby is calculated.
  • the basic ignition timing calculation unit 12 includes an ignition timing map.
  • the ignition timing map is a map that defines the relationship between the air amount and the ignition timing when IN-VVT is at the most retarded position, and is created based on data obtained through experiments.
  • the basic ignition timing calculation unit 12 calculates the basic ignition timing by searching the ignition timing map using the input information as a key.
  • the control device 2 executes the calculation in the VVT advance correction amount calculation unit 14 in parallel with the calculation of the basic ignition timing in the basic ignition timing calculation unit 12.
  • the VVT advance correction amount calculator 14 determines an ignition timing advance correction amount (hereinafter referred to as a VVT advance correction amount) from the valve timing of the intake valve based on parallel characteristic data described later.
  • FIG. 2 is a diagram showing the experimental results of examining the influence of the valve timing of the intake valve (indicated as INVT in FIG. 2) on the relationship between the delay amount of the 50% combustion point (combustion center of gravity) and the torque. From this figure, it can be confirmed that there is a parallel characteristic between the torque curves in each INVT, although the torque curve indicating the relationship between the delay amount of the 50% combustion point and the torque changes depending on the INVT.
  • FIG. 3 is a diagram showing the results of calculating the torque down amount at each delay amount with respect to the torque when the 50% combustion delay amount is zero, that is, the torque sensitivity, using the experimental result shown in FIG. From this figure, it can be confirmed that a parallel characteristic is seen between the INVTs in the torque curve indicating the relationship between the 50% combustion delay amount and the torque sensitivity.
  • the torque expression at an arbitrary valve timing can be expressed by correcting the ignition timing advance with respect to the torque curve when the IN-VVT is at the most retarded position. It turns out that it is possible.
  • the parallel characteristic data for determining the VVT advance angle correction amount is created based on such knowledge.
  • the control device 2 inputs the VVT advance correction amount to the final ignition timing calculation unit 16 together with the basic ignition timing.
  • the final ignition timing calculation unit 16 determines the final ignition timing by adding the VVT advance correction amount to the basic ignition timing.
  • the control device 2 controls the ignition device according to the final ignition timing.
  • FIG. 4 is a diagram expressing the torque control method employed in the present embodiment by the relationship between the torque and the phase of IN-VVT.
  • FIG. 5 is a diagram representing the torque control method employed in the present embodiment in a pressure-crank angle diagram.
  • the target air amount (MBT air amount) at the IN-VVT optimum point that achieves the required torque is calculated.
  • the ignition timing at the IN-VVT most retarded angle that satisfies the target air amount is calculated as the basic ignition timing.
  • the torque that can be realized by this basic ignition timing is shown as simulated torque in FIGS.
  • the simulated torque is a torque that can be realized when IN-VVT is at the most retarded position.
  • a VVT advance correction amount for compensating for the difference between the simulated torque and the required torque is calculated based on the parallel characteristic data. By adding this VVT advance angle correction amount to the basic ignition timing, the final ignition timing for realizing the required torque is determined.
  • the operational state of the IN-VVT is taken into account in both the target air amount calculation process and the ignition timing calculation process. Therefore, precise torque control is possible, and the required torque can be realized without being affected by the operation state of the IN-VVT.
  • Control device 4 Target air amount calculation unit 6 Target throttle opening calculation unit 8 Throttle control unit 10 Actual air amount calculation unit 12 Basic ignition timing calculation unit 14 VVT advance angle correction amount calculation unit 16 Final ignition timing calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本発明は、吸気バルブのバルブタイミングを変更する可変バルブタイミング機構(IN-VVT)の動作状態の影響を受けること無く、要求通りのトルクを実現可能にすることを課題とする。このため、本発明が提供する内燃機関の制御装置は、MBTにおける空気量とトルクとの関係をIN-VVTの動作状態に関連付けて定めたデータに基づいて要求トルクを実現するための目標空気量を算出する。そして、目標空気量を実現するようにスロットルを操作した場合に、これによって実際に実現される実空気量を算出する。また、本発明が提供する内燃機関の制御装置は、IN-VVTが最遅角位置にある場合の空気量と点火時期との関係を定めたデータに基づいて実空気量から基本点火時期を算出する。さらに、IN-VVTの動作状態から点火時期の進角補正量を決定する。そして、基本点火時期と進角補正量とから最終的な点火時期を決定する。

Description

内燃機関の制御装置
 本発明は、空気量と点火時期とによってトルクを制御可能な内燃機関、より詳しくは、吸気バルブのバルブタイミングを変更する可変バルブタイミング機構とスロットルとを有する火花点火式の内燃機関の制御装置に関する。
 従来、自動車用の内燃機関の制御に関し、要求トルクの実現に向けてスロットルや点火装置等のアクチュエータの動作を制御するトルクデマンド制御が知られている。例えば、特開2006-200466号公報や特開2009-047101号公報には、そのようなトルクデマンド制御に関する発明が記載されている。
 内燃機関のトルクデマンド制御では、内燃機関の運転に関わる各アクチュエータの統合制御が行われる。スロットルを有する火花点火式の内燃機関の場合であれば、スロットルと点火装置との統合制御によってトルクを制御することができる。ただし、その統合制御の過程では、他のアクチュエータの動作状態も考慮に入れる必要がある。具体的には、吸気バルブのバルブタイミングを変更する可変バルブタイミング機構(以下、IN-VVTと表記する)を有する内燃機関の場合には、IN-VVTの動作状態を考慮に入れてスロットルや点火装置の各操作量を決定する必要がある。吸気バルブのバルブタイミングは内部EGRを左右し、内部EGRは内燃機関のトルクに影響するからである。
 IN-VVTの動作状態がトルクに与える影響について具体的に説明する。IN-VVTが最遅角位置にある場合、吸気バルブと排気バルブのバルブオーバーラップはなくなり、内部EGRは最小になる。このため、点火時期が一定であるならば、IN-VVTが最遅角位置にあるときにトルクは最大となる。そして、吸気バルブのバルブタイミングが進角するにつれて内部EGRの影響が大きくなり、トルクは最大トルクよりも低くなる。この様子を圧力-クランク角線図で示したのが図6である。図6には、星印で示す点火時期以降の筒内圧力の変化が、吸気バルブのバルブタイミングが最遅角の場合と、最遅角からクランク角度で20度進角された場合とで比較して示されている。ここでは、IN-VVTが最遅角位置にあるときを基準とし、このときの吸気バルブのバルブタイミング(INVT)を0度としている。図6に示すように、吸気バルブのバルブタイミングの進角によって燃焼重心に遅れが生じ、結果、筒内圧力の最大値は低下することになる。燃焼重心の遅れは、EGR率の増大によって燃焼速度が低下したことによる。トルクは筒内圧力の最大値に相関していることから、吸気バルブのバルブタイミングの進角により燃焼重心が遅れることでトルクの低下が生じることになる。
 しかしながら、現時点において公知となっている文献の範囲においては、IN-VVTの動作状態を考慮に入れた統合制御に関する記載は見当たらない。そこで、本発明の創案過程において検討された統合制御の一つの方法について紹介する。
 検討した方法は、IN-VVTの動作状態、すなわち、吸気バルブのバルブタイミングを点火時期制御に反映させる方法である。この方法では、要求トルクから目標空気量を算出する過程では吸気バルブのバルブタイミングは考慮しない。実際の吸気バルブのバルブタイミングに関係なく、吸気バルブのバルブタイミングが最遅角されているという前提で要求トルクの実現に必要な空気量を算出し、算出した空気量を目標空気量としてスロットルを制御する。そして、吸気バルブのバルブタイミングの進角によるトルクの低下を補償するように、実際の吸気バルブのバルブタイミングに応じて点火時期を進角補正する。このような方法でスロットルと点火装置とを統合制御することで、IN-VVTの動作状態の影響を受けることなく要求トルクを実現できるものと期待されていた。
 ところが、実際には、点火時期の補正のみでは要求通りのトルクを実現することは困難であった。前記の方法による点火時期の補正結果を圧力-クランク角線図で示したのが図7である。図7に示すように、吸気バルブのバルブタイミングを進角(図7ではVT=20)した状態で点火時期を進角補正した場合、筒内圧力の最大値は要求トルクの実現に十分な筒内圧力を超えてしまうことになった。つまり、トルクが要求トルクを超えて出過ぎてしまうことになった。これは、吸気バルブのバルブタイミングの進角による内部EGRの増大が、ポンピングロスの低減、圧縮端圧力の増加、或いは冷却損失の低減といったトルクを増大させる種々の要因につながったためであると考えられる。
 本発明は、上述のような課題に鑑みなされたものである。そして、その目的は、IN-VVTの動作状態の影響を受けること無く、要求通りのトルクを実現することのできる内燃機関の制御装置を提供することである。
 本発明の1つの態様によれば、制御装置は、MBTにおける空気量とトルクとの関係をIN-VVTの動作状態に関連付けて定めたデータを記憶していて、このデータに基づいて要求トルクを実現するための目標空気量を算出する。そして、目標空気量を実現するようにスロットルを制御する。なお、IN-VVTの制御は内燃機関の運転状態に応じて成り行きで行なわれる。また、この制御装置は、IN-VVTが最遅角位置にある場合の空気量とMBTとの関係を定めたデータを記憶していて、このデータに基づいて、スロットルの動作によって実際に実現される実空気量から基本点火時期を算出する。さらに、この制御装置は、基本点火時期にて実現されるトルクと要求トルクとの差を補償するための点火時期の進角補正量をIN-VVTの動作状態から決定し、基本点火時期と進角補正量とから最終的な点火時期を決定する。点火時期の進角補正量を決定する方法としては、点火時期の進角補正量をIN-VVTの最遅角位置からの進角量に関連付けて定めたデータを予め制御装置に記憶しておき、そのデータを用いて決定することが好ましい。
 上述の態様によれば、目標空気量の算出過程と点火時期の算出過程の双方においてIN-VVTの動作状態が考慮される。このため、緻密なトルク制御が可能であり、IN-VVTの動作状態の影響を受けること無く、要求通りのトルクを実現することができる。
本発明の実施の形態の内燃機関の制御装置の構成を示すブロック図である。 吸気バルブのバルブタイミングが50%燃焼遅れ量とトルクとの関係に与える影響について調べた実験結果を示す図である。 吸気バルブのバルブタイミングが50%燃焼遅れ量とトルク感度との関係に与える影響について調べた実験結果を示す図である。 本発明の実施の形態で採られているトルク制御の方法を説明するための図である。 本発明の実施の形態で採られているトルク制御の方法を説明するための図である。 吸気バルブのバルブタイミングがトルクに与える影響について説明するための図である。 本発明の創案過程で検討された統合制御の問題点について説明するための図である。
 以下、本発明の実施の形態について図1乃至図5の各図を参照して説明する。
 本実施の形態において制御対象とされる内燃機関は、内燃機関の運転に関わるアクチュエータとして、スロットルと点火装置に加えてIN-VVT(吸気側可変バルブタイミング機構)を有する火花点火式の内燃機関である。本実施の形態の制御装置は、内燃機関の運転状態(例えばエンジン転速度及び負荷)に応じた最適なバルブタイミングになるようにIN-VVTを制御する。また、本実施の形態の制御装置は、スロットルと点火装置との統合制御によって内燃機関のトルク制御を行う。そして、その統合制御の過程において、IN-VVTの動作状態、すなわち、吸気バルブのバルブタイミングを1つのパラメータとして使用する。
 図1は本発明の実施の形態の内燃機関の制御装置の構成を示すブロック図である。図1に示すように、本実施の形態の制御装置2は、それが有する機能別に、目標空気量算出部4、目標スロットル開度算出部6、スロットル制御部8、実空気量算出部10、基本点火時期算出部12、VVT進角補正量算出部14及び最終点火時期算出部16に分けることができる。これらの要素4,6,8,10,12,14,16は、制御装置2が有する種々の機能的な要素のうち、トルク制御のためのスロットル及び点火装置の操作に関係する要素のみを特別に図で表現したものである。したがって、図1は、制御装置がこれらの要素4,6,8,10,12,14,16のみで構成されていることを意味するものではない。なお、各要素4,6,8,10,12,14,16は、それぞれが専用のハードウェアで構成されていてもよいし、ハードウェアは共有してソフトウェアによって仮想的に構成されるものでもよい。
 制御装置2は、要求トルク及び要求A/F(空燃比)を取得する。車両の制御系統において、制御装置2の上位にはパワートレインマネージャ(図示省略)が配置されている。要求トルク及び要求A/Fはそのパワートレインマネージャから制御装置2に供給されるようになっている。
 制御装置2は、取得した要求トルク及び要求A/Fを現時点のエンジン回転数とともに目標空気量算出部4に入力する。目標空気量算出部4にはMBT空気量マップが具備されている。MBT空気量マップは、MBTにおける空気量とトルクとの関係をエンジン回転数、A/F、及びIN-VVTの動作状態に関連付けて定めたマップであって、実験で得られたデータを元に作成されている。目標空気量算出部4は、入力された情報をキーにしてMBT空気量マップを検索することによって目標空気量を算出する。MBT空気量マップから算出される目標空気量は、運転状態から決まる最適点にバルブタイミングが制御されている前提のもとで要求トルクを実現するのに必要な空気量である。したがって、成り行きで決まる吸気バルブのバルブタイミングの最適点が進角側であるほど、MBT空気量マップから算出される目標空気量はより小さい値に補正されることになる。
 次に制御装置2は、目標空気量をスロットル開度算出部6に入力する。目標スロットル開度算出部6にはエア逆モデルが具備されている。スロットルの動作に対する空気量の応答をモデル化した物理モデルがエアモデルであって、エア逆モデルはその逆モデルである。エア逆モデルに目標空気量を入力することで、それを実現するための目標スロットル開度が算出される。
 制御装置2は、目標スロットル開度をスロットル制御部8に入力する。スロットル制御部8は、目標スロットル開度に従ってスロットルを制御する。その際、入力された目標スロットル開度を所定の遅延時間だけ遅延させ、遅延後の目標スロットル開度に従ってスロットルを制御する、いわゆるスロットルディレイ制御が行われてもよい。スロットル制御部8による制御を受けてスロットルの開度は時々刻々変化する。その開度の変化はスロットルに付設されたスロットル開度センサ(図示略)によって測定することができる。
 制御装置2は、測定されたスロットル開度を実空気量算出部10に入力する。実空気量算出部10には前述のエアモデルの順モデルが具備されている。エアモデルにスロットル開度を入力することで、それにより実現される実空気量が算出される。
 次に制御装置2は、算出した実空気量を現時点のエンジン回転数とともに基本点火時期算出部12に入力する。基本点火時期算出部12には点火時期マップが具備されている。点火時期マップは、IN-VVTが最遅角位置にある場合の空気量と点火時期との関係を定めたマップであって、実験で得られたデータを元に作成されている。基本点火時期算出部12は、入力された情報をキーにして点火時期マップを検索することによって基本点火時期を算出する。
 また、制御装置2は、基本点火時期算出部12における基本点火時期の計算と並行して、VVT進角補正量算出部14における計算も実行する。VVT進角補正量算出部14は、後述する平行特性データに基づき、吸気バルブのバルブタイミングから点火時期の進角補正量(以下、VVT進角補正量という)を決定する。
 図2は、吸気バルブのバルブタイミング(図2ではINVTと表記)が50%燃焼点(燃焼重心)の遅れ量とトルクとの関係に与える影響について調べた実験結果を示す図である。この図からは、50%燃焼点の遅れ量とトルクとの関係を示すトルクカーブはINVTによって変化するものの、各INVTにおけるトルクカーブ間には平行特性があることが確認できる。また、図3は、図2に示す実験結果を用いて50%燃焼遅れ量がゼロのときのトルクに対する各遅れ量でのトルクダウン量、すなわち、トルク感度を計算した結果を示す図である。この図からは、50%燃焼遅れ量とトルク感度との関係を示すトルクカーブにも、INVT間で平行特性が見られることが確認できる。
 以上のようなトルクカーブの平行特性に鑑みれば、IN-VVTが最遅角位置にある場合のトルクカーブに対して点火時期の進角補正を行なうことで、任意のバルブタイミングにおけるトルクの表現が可能であることが分かる。前述のVVT進角補正量を決定するための平行特性データは、このような知見に基づいて作成されている。
 制御装置2は、VVT進角補正量を基本点火時期とともに最終点火時期算出部16に入力する。最終点火時期算出部16は、基本点火時期にVVT進角補正量を加算したものを最終的な点火時期として決定する。制御装置2は、この最終点火時期に従って点火装置を制御する。
 以上が本実施の形態の制御装置2を構成する各要素4,6,8,10,12,14,16の機能についての説明である。これらの要素4,6,8,10,12,14,16の機能によって、要求トルクを実現するためのトルク制御が実行されることになる。図4は、本実施の形態で採られているトルク制御の方法を、トルクとIN-VVTの位相との関係によって表現した図である。また、図5は、本実施の形態で採られているトルク制御の方法を、圧力-クランク角線図で表現した図である。
 図4に示すように、本実施の形態の方法によれば、最初のステップ(Step1)として、要求トルクを実現するIN-VVT最適点での目標空気量(MBT空気量)が算出される。次のステップ(Step2)では、目標空気量を満たすIN-VVT最遅角での点火時期が基本点火時期として算出される。この基本点火時期によって実現可能なトルクを図4,図5では模擬トルクと表示している。模擬トルクは、IN-VVTが最遅角位置にあるときに実現可能なトルクである。
 そして、最後のステップ(Step3)では、前述の平行特性データに基づいて模擬トルクと要求トルクとの差分を補償するためのVVT進角補正量が算出される。このVVT進角補正量が基本点火時期に加算されることによって、要求トルクを実現するための最終点火時期が決定される。
 以上述べたように、本実施の形態によれば、目標空気量の算出過程と点火時期の算出過程の双方においてIN-VVTの動作状態が考慮される。このため、緻密なトルク制御が可能であり、IN-VVTの動作状態の影響を受けること無く、要求通りのトルクを実現することができる。
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
2 制御装置
4 目標空気量算出部
6 目標スロットル開度算出部
8 スロットル制御部
10 実空気量算出部
12 基本点火時期算出部
14 VVT進角補正量算出部
16 最終点火時期算出部

Claims (2)

  1.  吸気バルブのバルブタイミングを変更する可変バルブタイミング機構と、スロットルとを有する火花点火式の内燃機関の制御装置において、
     要求トルクを取得する要求トルク取得手段と、
     前記内燃機関の運転状態に応じて前記可変バルブタイミング機構を制御する可変バルブタイミング機構制御手段と、
     MBTにおける空気量とトルクとの関係を前記可変バルブタイミング機構の動作状態に関連付けて定めたデータに基づいて、前記要求トルクを実現するための目標空気量を算出する目標空気量算出手段と、
     前記目標空気量を実現するように前記スロットルを制御するスロットル制御手段と、
     前記スロットルの動作によって実現される実空気量を算出する実空気量算出手段と、
     前記可変バルブタイミング機構が最遅角位置にある場合の空気量と点火時期との関係を定めたデータに基づいて、前記実空気量から基本点火時期を算出する基本点火時期算出手段と、
     前記基本点火時期にて実現されるトルクと前記要求トルクとの差を補償するための点火時期の進角補正量を前記可変バルブタイミング機構の動作状態から決定する進角補正量決定手段と、
     前記基本点火時期と前記進角補正量とから最終的な点火時期を決定する最終点火時期決定手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2.  前記進角補正量決定手段は、点火時期の進角補正量を前記可変バルブタイミング機構の最遅角位置からの進角量に関連付けて定めたデータに基づいて、前記進角補正量を決定することを特徴とする請求項1記載の内燃機関の制御装置。
PCT/JP2010/056446 2010-04-09 2010-04-09 内燃機関の制御装置 WO2011125220A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/056446 WO2011125220A1 (ja) 2010-04-09 2010-04-09 内燃機関の制御装置
CN201080065928.8A CN102859182B (zh) 2010-04-09 2010-04-09 内燃机的控制装置
US13/634,048 US8606487B2 (en) 2010-04-09 2010-04-09 Control device for internal combustion engine
JP2012509260A JP5273295B2 (ja) 2010-04-09 2010-04-09 内燃機関の制御装置
EP10849461.8A EP2557309B1 (en) 2010-04-09 2010-04-09 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056446 WO2011125220A1 (ja) 2010-04-09 2010-04-09 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011125220A1 true WO2011125220A1 (ja) 2011-10-13

Family

ID=44762205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056446 WO2011125220A1 (ja) 2010-04-09 2010-04-09 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8606487B2 (ja)
EP (1) EP2557309B1 (ja)
JP (1) JP5273295B2 (ja)
CN (1) CN102859182B (ja)
WO (1) WO2011125220A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047039A (zh) * 2011-10-17 2013-04-17 三菱自动车工业株式会社 发动机的控制装置
CN103306830A (zh) * 2012-03-14 2013-09-18 三菱自动车工业株式会社 发动机的控制装置
CN103850815A (zh) * 2012-12-03 2014-06-11 罗伯特·博世有限公司 确定带机械操作的节流阀的内燃机输出的额定转矩的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600080647A1 (it) * 2016-08-01 2018-02-01 Emak Spa Metodo di controllo del funzionamento di un motore a combustione interna a due tempi ed accensione comandata
CN112696276B (zh) * 2020-04-01 2022-03-29 长城汽车股份有限公司 一种发动机响应时间的计算方法及装置
CN115263532B (zh) * 2022-08-31 2024-01-12 重庆长安汽车股份有限公司 米勒循环发动机的控制方法、系统及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098998A (ja) * 1999-09-28 2001-04-10 Toyota Motor Corp 内燃機関の制御装置
JP2001280228A (ja) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd 可変動弁エンジンの点火時期制御装置
JP2003184587A (ja) * 2001-12-20 2003-07-03 Hitachi Unisia Automotive Ltd 内燃機関の制御装置
JP2005090331A (ja) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd 内燃機関の吸気制御装置
JP2006200466A (ja) 2005-01-21 2006-08-03 Denso Corp 内燃機関の出力制御装置
JP2009047101A (ja) 2007-08-21 2009-03-05 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636498B2 (ja) * 1990-11-29 1997-07-30 日産自動車株式会社 エンジンの制御装置
US6678605B2 (en) * 2001-05-25 2004-01-13 Mazda Motor Corporation Control system for internal combustion engine
US6851409B2 (en) * 2001-10-12 2005-02-08 Hitachi Unisia Automotive, Ltd. Apparatus and method for controlling intake air amount of internal combustion engine
JP4074080B2 (ja) * 2001-11-07 2008-04-09 株式会社日立製作所 可変動弁機構の制御装置
JP2003328792A (ja) * 2002-05-10 2003-11-19 Nissan Motor Co Ltd 内燃機関の可変動弁装置
JP2004251183A (ja) * 2003-02-19 2004-09-09 Toyota Motor Corp 内燃機関の制御装置
JP4823948B2 (ja) * 2007-03-23 2011-11-24 富士重工業株式会社 エンジンの制御装置
JP4968081B2 (ja) 2008-01-21 2012-07-04 トヨタ自動車株式会社 内燃機関の制御装置
JP2010190196A (ja) 2009-02-20 2010-09-02 Toyota Motor Corp 車両駆動ユニットの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098998A (ja) * 1999-09-28 2001-04-10 Toyota Motor Corp 内燃機関の制御装置
JP2001280228A (ja) * 2000-03-30 2001-10-10 Nissan Motor Co Ltd 可変動弁エンジンの点火時期制御装置
JP2003184587A (ja) * 2001-12-20 2003-07-03 Hitachi Unisia Automotive Ltd 内燃機関の制御装置
JP2005090331A (ja) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd 内燃機関の吸気制御装置
JP2006200466A (ja) 2005-01-21 2006-08-03 Denso Corp 内燃機関の出力制御装置
JP2009047101A (ja) 2007-08-21 2009-03-05 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557309A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047039A (zh) * 2011-10-17 2013-04-17 三菱自动车工业株式会社 发动机的控制装置
CN103047039B (zh) * 2011-10-17 2015-08-05 三菱自动车工业株式会社 发动机的控制装置
CN103306830A (zh) * 2012-03-14 2013-09-18 三菱自动车工业株式会社 发动机的控制装置
CN103850815A (zh) * 2012-12-03 2014-06-11 罗伯特·博世有限公司 确定带机械操作的节流阀的内燃机输出的额定转矩的方法

Also Published As

Publication number Publication date
US20130024096A1 (en) 2013-01-24
EP2557309B1 (en) 2016-10-26
EP2557309A4 (en) 2014-03-26
CN102859182B (zh) 2014-04-09
JP5273295B2 (ja) 2013-08-28
EP2557309A1 (en) 2013-02-13
CN102859182A (zh) 2013-01-02
US8606487B2 (en) 2013-12-10
JPWO2011125220A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5273295B2 (ja) 内燃機関の制御装置
JP2009068403A (ja) 内燃機関の制御装置
JP5790882B2 (ja) 過給エンジンの制御装置
JP2008138630A (ja) 内燃機関の制御装置
WO2013005303A1 (ja) 過給機付き内燃機関の制御装置
CN109026410B (zh) 最小二乘技术在多变量发动机控制中的预测转速的用途
JP4114574B2 (ja) 内燃機関の吸気量制御装置及び吸気量制御方法
JP2009133276A (ja) 内燃機関の制御装置
JP2018150861A (ja) 内燃機関の制御装置
JP5751344B2 (ja) 内燃機関の制御装置
JP5598374B2 (ja) エンジンの制御装置
JP2010001794A (ja) 内燃機関の制御装置
JP6686427B2 (ja) エンジン制御装置
JP5326998B2 (ja) 内燃機関の制御装置
JP5326997B2 (ja) 内燃機関の制御装置
JP4424257B2 (ja) 内燃機関の制御装置
JP2015010548A (ja) エンジンの制御装置
JP5893272B2 (ja) 内燃機関の吸入空気量算出装置
JP5152400B2 (ja) 内燃機関の制御装置
JP2008274796A (ja) 可変圧縮比エンジンのトルク推定装置
WO2020100519A1 (ja) エンジン制御装置及びエンジン制御方法
JP5573226B2 (ja) 内燃機関の制御装置
JP5327131B2 (ja) 内燃機関の制御装置
JP4844522B2 (ja) 内燃機関の制御装置
JP2019082112A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065928.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509260

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010849461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010849461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13634048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE