WO2011125151A1 - 積層電極体型電池とその製造方法及び車両及び機器 - Google Patents

積層電極体型電池とその製造方法及び車両及び機器 Download PDF

Info

Publication number
WO2011125151A1
WO2011125151A1 PCT/JP2010/056061 JP2010056061W WO2011125151A1 WO 2011125151 A1 WO2011125151 A1 WO 2011125151A1 JP 2010056061 W JP2010056061 W JP 2010056061W WO 2011125151 A1 WO2011125151 A1 WO 2011125151A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
core material
laminated
electrode
Prior art date
Application number
PCT/JP2010/056061
Other languages
English (en)
French (fr)
Inventor
草間 和幸
きよみ 神月
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/056061 priority Critical patent/WO2011125151A1/ja
Priority to US13/638,630 priority patent/US9034500B2/en
Priority to DE112010005442.8T priority patent/DE112010005442B4/de
Priority to CN201080065891.9A priority patent/CN102893428B/zh
Priority to JP2012509202A priority patent/JP5447656B2/ja
Publication of WO2011125151A1 publication Critical patent/WO2011125151A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a laminated electrode body type battery, a manufacturing method thereof, a vehicle and a device. More specifically, the present invention relates to a laminated electrode body type battery having high mechanical strength at a connection portion between a positive electrode current collector plate and a positive electrode core material and a connection portion between a negative electrode current collector plate and a negative electrode core material, a manufacturing method thereof, a vehicle, and an apparatus. It is.
  • Secondary batteries are used in a wide variety of fields, including electronic devices such as mobile phones and personal computers, vehicles such as hybrid vehicles and electric vehicles.
  • a secondary battery includes a positive electrode plate, a negative electrode plate, and an electrolyte. Further, in order to insulate the positive electrode plate and the negative electrode plate, it is common to provide a separator between them.
  • These battery shapes include cylindrical and square shapes.
  • an electrode body used for these batteries there are a wound electrode body in which a positive electrode plate and a negative electrode plate are wound in a spiral shape and a flat electrode body in which a positive electrode plate and a negative electrode plate are stacked in layers.
  • the positive electrode core material is protruded in one direction, and the protruding portion is joined to the positive electrode current collector plate.
  • the negative electrode core member is protruded in the other direction, and the protruding portion is joined to the negative electrode current collector plate.
  • ⁇ ⁇ Welding is used for this joining.
  • mechanical connection and electrical connection are performed. Bonded strength and mechanical strength are required for the bonded portion thus bonded. This is because if a part of the joint is peeled off or the joint or its periphery is damaged, the part cannot be fixed and the electrical connection itself is lost. If the electrical connection is lost, current cannot be collected from that location.
  • the junction is also required to have a low electrical resistance. This is because energy loss is large when electrical resistance is high.
  • Patent Document 1 discloses a secondary battery including a wound electrode body in which a tip of a protruding portion of a positive electrode core material or a negative electrode core material is a slightly bent burr. The presence of this burr can prevent the tip of the protruding portion from being bent by the pressing force applied during welding. Therefore, it is assumed that no welding failure occurs.
  • Patent Document 2 discloses a cylindrical storage battery in which a positive electrode current smoothing plate is welded to a tip portion of a positive electrode core material and a negative electrode current smoothing plate is welded to a tip portion of a negative electrode core material.
  • the present invention has been made in order to solve the problems of the conventional techniques described above. That is, the problem is that a laminated electrode body type battery having high bonding strength and mechanical strength around the connection portion between the positive electrode current collector plate and the positive electrode core material and around the connection portion between the negative electrode current collector plate and the negative electrode core material, and It is to provide a manufacturing method and a vehicle and equipment.
  • a laminated electrode body type battery includes a positive electrode plate in which a positive electrode mixture layer is formed on a part of at least one surface of a positive electrode core material, and at least a negative electrode core material.
  • the remainder of the positive electrode core material and the remainder of the negative electrode core material are different from each other in the negative electrode plate in which the negative electrode mixture layer is formed on a part of one surface and the separator disposed between the positive electrode plate and the negative electrode plate.
  • a stacked electrode type battery having a negative electrode current collector joined to a tip of a material, a positive electrode connecting material for connecting the tip of the positive electrode core and the positive electrode current collector, a tip of the negative electrode core and the negative electrode current collector
  • a negative electrode connecting material that connects to the electrical conductor, and the positive electrode connecting material has a positive melting point. Lower than the melting point of the core material, the melting point of the negative electrode connecting member is lower than the melting point of the negative electrode core member.
  • Such a laminated electrode body type battery has almost no possibility of peeling at the connection portion between the positive electrode core material and the positive electrode current collector. Further, the positive electrode core material in the vicinity of the connection portion has sufficient mechanical strength. The same applies to the negative electrode.
  • the melting point of the positive electrode connecting material is preferably lower than the melting point of the positive electrode current collector, and the melting point of the negative electrode connecting material is preferably lower than the melting point of the negative electrode current collector. This is because the positive electrode current collector near the positive electrode connection material has sufficient mechanical strength. The same applies to the negative electrode.
  • the material of the positive electrode core material is aluminum
  • the material of the negative electrode core material is copper
  • the material of the positive electrode connection material is Al—Si brazing material, Al—Si—.
  • the negative electrode connecting material is any of Ni brazing material, Ag brazing material, and Cu brazing material.
  • the brazing material is good. This is because the positive electrode current collector and the positive electrode core material are bonded with sufficient bonding strength by the brazing material wetted and spread by brazing.
  • the material of the positive electrode core material and the positive electrode current collector is aluminum
  • the material of the negative electrode core material and the negative electrode current collector is copper
  • the material of the positive electrode connection material is Al.
  • the negative electrode connecting material is Ni-based brazing material, Ag
  • a brazing material such as a brazing material or a Cu-based brazing material may be used. This is because the positive electrode current collector and the positive electrode core material are bonded with sufficient bonding strength by the brazing material wetted and spread by brazing.
  • a nonaqueous electrolyte may be provided between the positive electrode plate and the negative electrode plate.
  • the difference between the thickness of the tip of the positive electrode core material and the thickness of the positive electrode core material in the range where the positive electrode mixture layer is formed is in the range where the positive electrode mixture layer is formed. It is good to exist in the range of 12% of the thickness of a positive electrode core material. This is because the positive electrode core material is not easily broken at the tip of the positive electrode core material.
  • the difference between the thickness of the tip of the negative electrode core material and the thickness of the negative electrode core material in the range where the negative electrode mixture layer is formed is in the range where the negative electrode mixture layer is formed. It is good to exist in the range of 3% of the thickness of a negative electrode core material. This is because the negative electrode core material is unlikely to break at the tip of the negative electrode core material.
  • the laminated electrode type battery according to another aspect of the present invention includes a positive electrode plate in which a positive electrode mixture layer is formed on a part of at least one side of the positive electrode core material, and a part of at least one side of the negative electrode core material.
  • the laminated electrode body laminated, the positive electrode current collector joined to the tip of the positive electrode core member protruding from the positive electrode plate of the laminated electrode body, and the tip of the negative electrode core member protruding from the negative electrode plate of the laminated electrode body The difference between the thickness of the tip portion of the positive electrode core material and the thickness of the positive electrode core material in the range where the positive electrode mixture layer is formed is It exists in the range of 12% of the thickness of the positive electrode core material in the formed range. In such a laminated electrode body type battery, the positive electrode core material is not easily broken at the tip of the positive electrode core material.
  • a laminated electrode body type battery includes a positive electrode plate in which a positive electrode mixture layer is formed on a part of at least one surface of a positive electrode core material, and at least one surface of at least one surface of a negative electrode core material. And the separator disposed between the positive electrode plate and the negative electrode plate so that the remaining portion of the positive electrode core material and the remaining portion of the negative electrode core material protrude in different directions.
  • the difference between the thickness of the tip of the negative electrode core material and the thickness of the negative electrode core material in the range where the negative electrode mixture layer is formed is Is in the range of 3% of the thickness of the negative electrode core material in the range in which is formed.
  • the negative electrode core material is not easily broken at the tip of the negative electrode core material.
  • Still another embodiment of the present invention is a vehicle equipped with the above-described laminated electrode body type battery.
  • Still another aspect of the present invention is a device on which the multilayer electrode body type battery described above is mounted.
  • a method for manufacturing a laminated electrode body type battery comprising: a positive electrode plate having a positive electrode mixture layer formed on a part of at least one surface of a positive electrode core material; A negative electrode plate having a negative electrode mixture layer formed on a part of the surface, and a separator disposed between the positive electrode plate and the negative electrode plate, the remaining part of the positive electrode core material and the remaining part of the negative electrode core material are in different directions.
  • Laminated electrode bodies are laminated so as to project, and the tip of the positive electrode core material protruding from the positive electrode plate of the laminated electrode body is joined to the positive electrode current collector, and the tip of the negative electrode core material protruding from the negative electrode plate of the laminated electrode body
  • a positive electrode brazing material having a melting point lower than that of the positive electrode core material is used to join the tip of the positive electrode core material and the positive electrode current collector.
  • a negative melting point lower than that of the negative electrode core material is used to join the tip of the core material to the negative electrode current collector.
  • a brazing material having a melting point lower than the melting point of the positive electrode current collector is used as the brazing material for the positive electrode, and the melting point of the negative electrode current collector is lower as the brazing material for the negative electrode.
  • a brazing material having a melting point may be used. This is because the positive electrode current collector and the negative electrode current collector have high mechanical strength.
  • a laminated electrode body type battery having high bonding strength and mechanical strength around the connection portion between the positive electrode current collector plate and the positive electrode core material and around the connection portion between the negative electrode current collector plate and the negative electrode core material, and a method for producing the same And vehicles and equipment are provided.
  • the battery according to the present embodiment is a cylindrical lithium ion secondary battery.
  • the electrode body is a laminated electrode body type battery including a laminated electrode body in which positive and negative electrode plates are alternately stacked and wound.
  • FIG. 1 shows a cross-sectional view of the battery 100 of this embodiment.
  • the battery 100 includes an electrode winding body 200, a positive current collector 110, and a negative current collector 120, which are sealed with a battery container 101 and a lid 102. is there.
  • the positive electrode current collector plate 110 is joined to the electrode winding body 200 by a connecting material 111.
  • the negative electrode current collector plate 120 is joined to the electrode winding body 200 with a connecting material 121.
  • the connection material 111 and the connection material 121 will be described in detail later.
  • an electrolytic solution is injected into the battery container 101.
  • the electrode winding body 200 repeats charging / discharging in the electrolyte and directly contributes to power generation.
  • the positive electrode current collector 110 is a positive electrode current collector for taking out electric power from the electrode winding body 200 or discharging it to the electrode winding body 200.
  • the material is aluminum.
  • the negative electrode current collector 120 is a negative electrode current collector for taking out electric power from the electrode winding body 200 or discharging it to the electrode winding body 200. Its material is copper.
  • the electrolyte injected into the battery container 101 is obtained by dissolving an electrolyte in an organic solvent.
  • organic solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC), ⁇ -butylactone ( ⁇ -BL), diester
  • An organic solvent containing an ether solvent such as ethoxyethane (DEE) can be used.
  • the electrolyte salt lithium salts such as lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), and lithium hexafluorophosphate (LiPF 6 ) can be used.
  • FIG. 2 is a perspective view illustrating the electrode winding body 200, the positive current collector 110, and the negative current collector 120 extracted from the battery 100 of the present embodiment.
  • slash hatching is applied to a region 140 where the positive electrode current collector 110 and the electrode winding body 200 are joined.
  • the connecting material 111 shown in FIG. 1 exists on the inner surface of the positive electrode current collector plate 110, that is, the surface on the electrode winding body 200 side and corresponding to the region 140.
  • the negative electrode current collector plate 120 also has a connecting material 121 at a position substantially facing the connecting material 111 of the positive electrode current collector plate 110.
  • FIG. 3 is a perspective view of the electrode winding body 200.
  • the electrode winding body 200 has an electrode main body M at the center, a positive electrode non-coated part P2 and a negative electrode non-coated part N2 at both ends.
  • the electrode main body M is a portion where the positive electrode plate and the negative electrode plate are wound with the separator disposed therebetween.
  • the positive electrode non-coated part P2 and the negative electrode non-coated part N2 will be described later.
  • the positive electrode plate is obtained by applying a mixture containing a positive electrode active material capable of occluding and releasing lithium ions to an aluminum foil which is a belt-like positive electrode core material.
  • a positive electrode active material lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ) are used.
  • the negative electrode plate is obtained by applying a mixture containing a negative electrode active material capable of occluding and releasing lithium ions to a copper foil which is a strip-shaped negative electrode core material.
  • carbon-based materials such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite are used.
  • FIG. 4 is a development view showing the winding structure of the electrode winding body 200.
  • the electrode winding body 200 is wound in a state where the positive electrode plate P, the separator S, the negative electrode plate N, and the separator T are stacked in this order from the inside.
  • the separator S and the separator T are made of the same material. For the understanding of the above winding order, only the codes are distinguished as S and T.
  • the positive electrode plate P has a positive electrode coating part P1 and a positive electrode non-coating part P2.
  • the positive electrode coating part P1 is a part where a positive electrode active material or the like is applied to part of both surfaces of the positive electrode core material.
  • the positive electrode non-coated portion P2 is a remaining portion where the positive electrode active material or the like is not applied to the positive electrode core material. Therefore, the thickness of the positive electrode coating part P1 is thicker than the thickness of the positive electrode non-coating part P2.
  • the negative electrode plate N has a negative electrode coating portion N1 and a negative electrode non-coating portion N2.
  • the negative electrode coating part N1 is a part where a negative electrode active material or the like is applied to part of both surfaces of the negative electrode core material.
  • the negative electrode non-coated portion N2 is a remaining portion where the negative electrode active material or the like is not applied to the negative electrode core material. Therefore, the thickness of the negative electrode coating part N1 is thicker than the thickness of the negative electrode non-coating part N2.
  • the coating width in the width direction of the positive electrode coating portion P1 is slightly narrower than the coating width in the width direction of the negative electrode coating portion N1. This is because when the concentration of lithium ions in the electrolytic solution is high, the negative electrode active material occludes lithium ions to suppress an increase in the concentration. If the concentration of lithium ions in the electrolyte increases too much, lithium may precipitate in a dendritic form. If it does so, battery performance will fall.
  • FIG. 5 is a perspective sectional view of the positive electrode plate P (or the negative electrode plate N).
  • each symbol outside the parentheses indicates each part in the case of the positive electrode, and each symbol in the parenthesis indicates each part in the case of the negative electrode.
  • the direction indicated by the arrow A in FIG. 5 is the same as the direction indicated by the arrow A in FIG. That is, it is the width direction of the positive electrode plate P.
  • the direction indicated by arrow B in FIG. 5 is the same as the direction indicated by arrow B in FIG. That is, it is the longitudinal direction of the positive electrode plate P.
  • the positive electrode plate P is obtained by forming a positive electrode mixture layer PA on both surfaces of a strip-like positive electrode core material PB.
  • the positive electrode non-coated portion P2 of the positive electrode plate P protrudes in the width direction.
  • the positive electrode non-coated portion P2 is formed in a strip shape.
  • the positive electrode non-coated portion P2 is a region where the positive electrode active material is not applied. Therefore, in the positive electrode non-coating portion P2, the positive electrode core material PB is still exposed.
  • the positive electrode mixture layer PA is formed with a uniform thickness on both surfaces of the positive electrode core material PB.
  • the negative electrode plate N is one in which a negative electrode mixture layer NA is formed on both surfaces of a strip-shaped negative electrode core material NB, as shown in parentheses in FIG. Similarly to the positive electrode, there are a negative electrode coating portion N1 and a negative electrode non-coating portion N2. However, as shown in FIG. 4, at the time of winding, the positive electrode non-coated portion P2 and the negative electrode non-coated portion N2 are wound in a state of protruding to the opposite side.
  • FIG. 6 is a cross-sectional view depicting the periphery of the electrode winding body 200 taken out from the battery 100 shown in FIG.
  • the electrode winding body 200 is an electrode body wound in the order of a positive electrode plate P, a separator S, a negative electrode plate N, and a separator T.
  • the positive electrode current collector plate 110 and the negative electrode current collector plate 120 are disposed to face each other with the electrode winding body 200 interposed therebetween.
  • the positive electrode coating portion P1 and the negative electrode coating portion N1 are uniformly represented by slash hatching.
  • the positive electrode coating portion P1 is obtained by coating a composite material containing a positive electrode active material on an aluminum positive electrode core PB.
  • the negative electrode coating part N1 is obtained by coating a copper negative electrode core material NB with a mixture containing a negative electrode active material. The meaning of this hatching is the same as in FIGS.
  • the front end portion PX of the positive electrode core material PB of the positive electrode non-coating portion P2 is a front end portion of the positive electrode core material PB protruding from the positive electrode coating portion P1 toward the positive electrode current collector plate 110.
  • the tip end portion PX of the positive electrode core material PB is joined to the positive electrode current collector plate 110 via the connecting material 111.
  • the connecting material 111 is a positive electrode connecting material for connecting the front end portion PX of the positive electrode core material PB to the positive electrode current collector plate 110. This joining is performed by brazing. Therefore, the material of the connecting material 111 is mainly a brazing material. The type of brazing material will be described in detail later.
  • the melting point of the connecting material 111 is lower than the melting point of the positive electrode core material PB. Therefore, as will be described later, there is no possibility that the tip portion PX of the positive electrode non-coated portion P2 is melted by heating when joining the tip portion PX of the positive electrode non-coated portion P2 and the positive electrode current collector plate 110. Further, the melting point of the connecting material 111 is lower than the melting point of the positive electrode current collector plate 110. Accordingly, similarly, there is no possibility that a part of the positive electrode current collector plate 110 is melted by heating at the time of brazing.
  • the front end portion NX of the negative electrode core material NB of the negative electrode non-coating portion N2 is a front end portion of the negative electrode core material NB protruding from the negative electrode coating portion N1 toward the negative electrode current collector plate 120.
  • the direction toward the front end NX is opposite to the direction toward the front end PX of the positive electrode core material PB.
  • the front end portion NX of the negative electrode core member NB is joined to the negative electrode current collector plate 120 via the connecting member 121.
  • the connecting material 121 is a negative electrode connecting material for connecting the tip portion NX of the negative electrode core material NB to the negative electrode current collector plate 120. This joining is performed by brazing. Therefore, the material of the connecting material 121 is mainly a brazing material.
  • the type of brazing material used for the negative electrode is different from the type of brazing material used for the positive electrode. The type of brazing material will be described in detail later.
  • the melting point of the connecting material 121 is lower than the melting point of the negative electrode core material NB. Therefore, as will be described later, there is no possibility that the tip portion NX of the negative electrode non-coated portion N2 is melted by heating when joining the tip portion NX of the negative electrode non-coated portion N2 and the negative electrode current collector plate 120. Further, the melting point of the connecting material 121 is lower than the melting point of the negative electrode current collector plate 120. Accordingly, similarly, there is no possibility that a part of the negative electrode current collector plate 120 is melted by heating during brazing.
  • the melting point of the positive electrode side connecting material 111 may be higher or lower than the melting points of the negative electrode current collector 120 and the negative electrode non-coated portion N2. Further, the melting point of the connecting material 111 on the positive electrode side may be higher or lower than the melting point of the connecting material 121. In other words, there is no particular relevance. This is because the width of the electrode winding body 200 is sufficient, and there is almost no possibility that the negative electrode side member is heated when the positive electrode side member is heated. Similarly, the melting point of the negative electrode side connecting member 121 may be higher or lower than the melting points of the positive electrode current collector 110 and the positive electrode non-coated portion P2. Further, the melting point of the connecting material 121 on the negative electrode side may be higher or lower than the melting point of the connecting material 111. This is because there is almost no possibility that the positive electrode side member is heated during heating of the negative electrode side member.
  • the positive electrode core material PB and the negative electrode core material NB do not melt at the time of joining. Therefore, the thickness of the tip portion PX of the positive electrode core material PB is almost the same as the thickness of the positive electrode core material PB in the positive electrode coating portion P1. The same applies to the negative electrode.
  • the connecting material 111 is provided between the positive electrode core material PB of the wound electrode body 200 and the positive electrode current collector plate 110, and the negative electrode core material NB and the negative electrode current collector plate 120.
  • a connecting material 121 is provided between the two.
  • the melting point of the connecting material 111 is lower than the melting point of the positive electrode core material PB.
  • the melting point of the connecting material 121 is lower than the melting point of the negative electrode core material NB.
  • the thickness of the positive electrode core material PB in the vicinity of the connecting material 111 is almost the same as the thickness of the positive electrode core material PB in the positive electrode coating portion P1. Therefore, the mechanical strength of the connecting material 111 and the positive electrode core material PB in the vicinity thereof is high.
  • the thickness of the negative electrode core material NB in the vicinity of the connecting material 121 is almost the same as the thickness of the negative electrode core material NB in the negative electrode coating portion N1.
  • Battery Manufacturing Method a method for manufacturing the battery 100 will be described.
  • the joining of the connecting material 111 and the connecting material 121, which is a feature of the present invention, will be described in detail, and the other processes will be described in a simplified manner.
  • a mixture containing a positive electrode active material is applied to both sides of the positive electrode core material PB and dried.
  • the dried positive electrode plate is pressed and cut to form a positive electrode plate P.
  • the negative electrode plate N is prepared for the negative electrode.
  • the positive electrode plate P, the separator S, the negative electrode plate N, and the separator T are wound in this order from the inside. In this way, the electrode winding body 200 is manufactured.
  • the brazing material shown in Table 1 is used for brazing.
  • An example of nickel wax is BNi-6 (JIS).
  • An example of silver wax is BAg-8 (JIS).
  • An example of phosphor copper wax is BCuP-2 (JIS).
  • the melting point of the brazing material used here is lower than the melting point of 1357 ° C. of copper used for the negative electrode core material NB.
  • the solidus temperature of BNi-6 (JIS) is 875 ° C.
  • the solidus temperature of BAg-8 (JIS) is 780 ° C.
  • the solidus temperature of BCuP-2 (JIS) is 710 ° C. Therefore, the brazing hardly causes the tip portion NX of the negative electrode core NB and a part of the negative electrode current collector plate 120 shown in FIG. 6 to melt.
  • the positive electrode current collector plate 110 is joined to the electrode winding body 200.
  • brazing is performed using a brazing material of A4047 (JIS).
  • A4047 (JIS) is an Al-Si system.
  • brazing can be performed using the brazing material shown in Table 2.
  • the melting point of the brazing material used here is lower than the melting point 660 ° C. of aluminum used for the positive electrode core material PB.
  • the melting temperature is about 577 ° C. Therefore, the brazing hardly causes the tip portion PX of the positive electrode core material PB and a part of the positive electrode current collector plate 110 shown in FIG. 6 to melt.
  • the brazing material needs to be made of a material that is not corroded by the electrolytic solution in a state where an electric potential is applied. This is because if there is corrosion, peeling may occur at the connection material 111 and the connection material 121. Moreover, it is necessary to be a conductive material such as metal. This is because it is indispensable for the electrical connection between the electrode plates and the current collector plates by the connecting material 111 and the connecting material 121. Furthermore, a thing with low electrical resistance is preferable. This is because the loss of electrical energy is small. Moreover, the thing excellent in the wettability and joining property with the positive electrode current collecting plate 110 or the negative electrode current collecting plate 120 is preferable. This is because the connecting material 111 and the connecting material 121 after joining have high mechanical strength.
  • the electrode winding body 200 joined with the positive electrode current collector plate 110 and the negative electrode current collector plate 120 is inserted into the battery container 101.
  • an electrolytic solution is injected into the battery container 101.
  • the battery 100 is manufactured through conditioning and various inspection processes.
  • the tip portion PX of the positive electrode core material PB or the tip portion NX of the negative electrode core material NB does not melt. Further, a part of the positive electrode current collector plate 110 or the negative electrode current collector plate 120 is not melted. Therefore, the battery 100 manufactured according to the present embodiment has high strength at the front end portion PX of the positive electrode core material PB and the front end portion NX of the negative electrode core material NB.
  • FIG. 7 is a schematic view of the positive electrode current collector 110 and the positive electrode core material PB of the positive electrode non-coated portion P2 extracted and drawn in the present invention.
  • FIG. 8 is a schematic diagram illustrating a conventional positive electrode current collector plate 1110 and a positive electrode plate QB of the positive electrode non-coated portion Q2.
  • the connecting material 111 according to the present invention is larger than the conventional connecting portion 1111.
  • a brazing material is disposed in advance between the positive electrode current collector plate 110 and the tip portion PX of the positive electrode core material PB before joining.
  • the wettability of the brazing material to the positive electrode current collector plate 110 is good, it spreads well when melted.
  • the connection portion 1111 if the heating is too strong, the melting region of the positive electrode non-coated portion Q ⁇ b> 2 and the positive electrode current collector plate 1110 is too wide, so that it cannot be sufficiently bonded. Therefore, the mechanical strength of the connecting material 111 is higher than the mechanical strength of the connecting portion 1111.
  • the thickness of the tip portion PX of the present embodiment is thicker than the thickness of the conventional tip portion QX. Therefore, the mechanical strength of the positive end portion PX on the positive electrode side of the battery 100 of this embodiment is higher than the mechanical strength of the front end portion QX on the positive electrode side of the conventional battery. In the conventional battery, stress tends to concentrate at the tip QX. Therefore, it is easy to break at the tip QX.
  • the electrical resistance of the positive end PX on the positive electrode side of the battery 100 of the present embodiment is lower than the electrical resistance of the positive end QX on the positive side of the conventional battery. This is because the thickness of the tip portion PX, which is an electric conduction path, is thicker than the thickness of the tip portion QX. Furthermore, the battery 100 of this embodiment can withstand a larger current than the conventional battery. These situations are the same on the negative electrode side.
  • the positive electrode core material is aluminum foil.
  • the thickness of the aluminum foil before joining is 15 ⁇ m.
  • the foil thickness tolerance is ⁇ 0.9 ⁇ m.
  • the negative electrode core material is a copper foil.
  • the thickness of the copper foil before joining is 10.3 ⁇ m.
  • the foil thickness tolerance is ⁇ 0.2 ⁇ m.
  • connection material 111 related to the battery of this embodiment and the connection part 1111 related to the conventional battery was measured.
  • the measurement method is shown in FIG. First, the side surface of the electrode winding body 200 is fixed by applying a force in the directions of arrows E and F in FIG. Next, with the electrode winding body 200 fixed, the positive electrode current collector plate 110 is pulled in the direction toward the outside, that is, in the direction of arrow G in FIG. Then, the force when the electrode winding body 200 and the positive electrode current collector 110 are separated is measured. The same applies to the negative electrode.
  • Example 1 is a result of using BNi-6 (JIS) as a brazing material for a negative electrode.
  • the thickness of the tip portion NX of the negative electrode core material NB after bonding was 10 ⁇ m. Therefore, it is shown in Table 3 as 10 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 1N / 1, which was a sufficient strength.
  • Example 2 is a result of using BAg-8 (JIS) as a brazing material for a negative electrode.
  • the thickness of the tip portion NX of the negative electrode core material NB after bonding was 10 ⁇ m. Therefore, it is shown in Table 3 as 10 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 1N / 1, which was a sufficient strength.
  • Example 3 is a result of using BCuP-2 (JIS) as a brazing material for a negative electrode.
  • the thickness of the tip portion NX of the negative electrode core material NB after bonding was 10 ⁇ m. Therefore, it is shown in Table 3 as 10 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 1N / 1, which was a sufficient strength.
  • Example 4 is a result of using an Al—Si brazing (equivalent to JIS A4047) as the brazing material for the positive electrode. Its solidus temperature is 577 ° C and its liquidus temperature is 592 ° C. The thickness of the tip portion PX of the positive electrode core material PB after bonding was 15 ⁇ m. Therefore, it is shown in Table 3 as 15 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 0.75 N / 1, which was a sufficient strength.
  • Al—Si brazing equivalent to JIS A4047
  • Example 5 is a result of using an Al—Si—Mg-based brazing (corresponding to JIS A4004) as a brazing material for a positive electrode. Its solidus temperature is 559 ° C. and its liquidus temperature is 591 ° C. The thickness of the tip portion PX of the positive electrode core material PB after bonding was 15 ⁇ m. Therefore, it is shown in Table 3 as 15 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 0.75 N / 1, which was a sufficient strength.
  • Al—Si—Mg-based brazing corresponding to JIS A4004
  • Example 6 is a result of using an Al—Zn-based brazing (soft brazing) as a brazing material for a positive electrode. Its solidus temperature is 360 ° C and its liquidus temperature is 362 ° C. The thickness of the tip portion PX of the positive electrode core material PB after bonding was 15 ⁇ m. Therefore, it is shown in Table 3 as 15 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 0.75 N / 1, which was a sufficient strength.
  • soft brazing soft brazing
  • Example 7 is a result of using a Zn—Sn-based brazing (soft brazing) as a brazing material for a positive electrode. Its solidus temperature is 195 ° C. and its liquidus temperature is 235 ° C. The thickness of the tip portion PX of the positive electrode core material PB after bonding was 15 ⁇ m. Therefore, it is shown in Table 3 as 15 ⁇ m within the range of the foil thickness tolerance. Further, the tensile strength was 0.75 N / 1, which was a sufficient strength.
  • Zn—Sn-based brazing soft brazing
  • Comparative Example 1 is a result of not performing brazing using a brazing material for a negative electrode, but instead joining a negative electrode current collector plate and a negative electrode core material by welding.
  • the thickness of the tip (corresponding to NX) of the negative electrode core was 4 to 6 ⁇ m, which was about half the thickness before bonding.
  • the tensile strength was 0.35 N / 1 place, which was about half of the reference value (0.75 N / 1 place).
  • Comparative Example 2 The comparative example 2 is a result of joining the positive electrode current collector plate and the positive electrode core material by welding instead of performing brazing using the positive electrode brazing material.
  • the thickness of the tip (corresponding to PX) of the positive electrode core material was 8 to 10 ⁇ m, which was about half the thickness before bonding.
  • the tensile strength was 0.50 N / 1 place, which was less than the standard value (0.75 N / 1 place).
  • the batteries according to this embodiment are shown in Examples 1 to 7 in Table 3.
  • the conventional batteries are shown in Comparative Examples 1 and 2 in Table 3.
  • the tensile strength was defined as the tensile strength per joint between the electrode current collector plate and the electrode plate. As the tensile strength required for the joint location, 0.75 N / 1 location or more was set. This value is common to the positive electrode and the negative electrode.
  • the Al—Si brazing is Al—Si
  • the Al—Si—Mg brazing is Al—Si—Mg
  • the Al—Zn brazing is Al—Zn
  • the Zn—Sn brazing is used. Indicated as Zn-Sn.
  • the positive electrode core material (aluminum foil) and the negative electrode core material (copper foil) are bonded to the positive electrode or negative electrode current collector plate.
  • the thickness hardly changed.
  • the thickness of the positive electrode core material after joining was in the range of the foil thickness tolerance ( ⁇ 9 ⁇ m). That is, the difference between the thickness of the positive electrode core material PB after bonding and the thickness of the positive electrode core material PB in the positive electrode coating portion P1 was within a range of 12% of the thickness of the positive electrode core material PB in the positive electrode coating portion P1. .
  • the thickness of the negative electrode core material after joining was in the range of the foil thickness tolerance ( ⁇ 2 ⁇ m).
  • the difference between the thickness of the negative electrode core material NB after bonding and the thickness of the negative electrode core material NB in the negative electrode coating portion N1 was within a range of 3% of the thickness of the negative electrode core material NB in the negative electrode coating portion N1. .
  • FIG. 10 shows a modification of this embodiment.
  • the electrode winding body 200, the positive electrode current collector plate 110, and the negative electrode current collector plate 120 are the same as those in this embodiment.
  • the material of the brazing material used for joining is the same as that of this embodiment.
  • the shape of the brazing material used for joining is different.
  • the connecting material 311 between the positive electrode non-coated portion P2 and the positive electrode current collector plate 110 is connected by the adjacent connecting material 311 and the bridge portion 312.
  • the connecting material 321 between the negative electrode non-coated portion N2 and the negative electrode current collector plate 120 is also connected to the adjacent connecting material 321 by the bridge portion 322. Even if it is such a shape, there exists an effect of this invention.
  • the positive electrode core material PB and the positive electrode current collector plate 110 are made of aluminum.
  • materials other than aluminum can be used as the material of the positive electrode core material PB or the positive electrode current collector plate 110 or both of them.
  • the effect of the present invention can be achieved as long as the melting point of the connecting material 111 is lower than the melting point of the positive electrode core material PB. This is because there is no possibility that the positive electrode core material PB melts during brazing.
  • brazing is performed by mainly heating a brazing material as in soldering, bonding is performed even if the melting point of the connecting material 111 is lower than the melting point of the positive electrode core material PB and higher than the melting point of the positive electrode current collector plate. be able to.
  • the positive electrode core material PB is not melted during brazing.
  • the brazing material is melted at the time of brazing, and a part of the positive electrode current collector plate in contact with the molten brazing material is temporarily melted to some extent, but not all is melted. Even in such a case, the connection material 111 and the positive electrode current collector plate are sufficiently joined. There is no possibility that the positive electrode core material PB becomes thin. However, it is preferable that the difference between the melting point of the connecting material 111 and the melting point of the positive electrode current collector plate is small.
  • the melting point of the connecting portion 111 is lower than both the melting point of the positive electrode core material PB and the melting point of the positive electrode current collector plate 110. This is because the positive electrode core material PB is not thinned and the positive electrode current collector plate 110 is not thinned.
  • the above items are the same for the negative electrode.
  • the battery 100 according to the present embodiment can be used by being mounted on a vehicle 400, for example, as shown in FIG.
  • the vehicle 400 is a hybrid vehicle that is driven by using an engine 440 and a motor 420 in combination.
  • the vehicle 400 includes a vehicle body 490, an engine 440, a motor 420 attached thereto, a cable 450, an inverter 430, and an assembled battery 401 having a plurality of batteries 100 therein.
  • the vehicle may be a vehicle that uses battery-generated electric energy for all or a part of its power source.
  • an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric vehicle Wheelchairs, electric assist bicycles, electric scooters, etc. are listed.
  • the battery 100 can also be used for battery-equipped equipment as shown in FIG.
  • FIG. This figure shows a hammer drill 500 equipped with the battery 100 of this embodiment.
  • the hammer drill 500 is a battery-equipped device having a battery 100 and a main body 520.
  • the battery 100 is detachably accommodated in the bottom 521 of the main body 520 of the hammer drill 500.
  • the battery-equipped device may be any device equipped with a battery and using it as at least one energy source.
  • a personal computer a mobile phone, a battery-powered electric tool, an uninterruptible power supply, etc.
  • Various types of home appliances, office equipment, and industrial equipment driven by In addition to the battery 100, it includes devices that can be used as single cells that are not in the assembled battery state.
  • the battery 100 includes the connecting material 111, the negative electrode core NB, and the negative electrode between the positive electrode core material PB and the positive electrode current collector plate 110 of the wound electrode body 200.
  • a connecting member 121 is provided between the current collector plate 120 and the current collector plate 120.
  • the melting point of the connecting material 111 is lower than the melting point of the positive electrode core material PB.
  • the melting point of the connecting material 121 is lower than the melting point of the negative electrode core material NB.
  • the thickness of the positive electrode core material PB in the vicinity of the connecting material 111 is almost the same as the thickness of the positive electrode core material PB in the positive electrode coating portion P1. Therefore, the mechanical strength of the connecting material 111 and the positive electrode core material PB in the vicinity thereof is high.
  • the thickness of the negative electrode core material NB in the vicinity of the connecting material 121 is almost the same as the thickness of the negative electrode core material NB in the negative electrode coating portion N1. Therefore, the mechanical strength of the connecting material 121 and the negative electrode core material NB in the vicinity thereof is high.
  • the tip portion PX of the positive electrode core material PB or the tip portion NX of the negative electrode core material NB does not melt during the manufacturing process. Further, a part of the positive electrode current collector plate 110 or the negative electrode current collector plate 120 is not melted. Therefore, in the battery 100 manufactured according to the present embodiment, the strength of the positive electrode core material PB and the negative electrode core material NB is high.
  • this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
  • it is not limited to a lithium ion secondary battery.
  • Other nonaqueous electrolyte secondary batteries may be used.
  • other batteries may be used.
  • the shape of the battery is not limited to the cylindrical shape.
  • the same effect can be obtained even with a square shape or other shapes. That is, it may be a pressed flat electrode body.
  • the electrode body is not limited to a wound type. This is because even a layered electrode body has the same effect as long as it is a laminate of a positive electrode plate and a negative electrode plate.
  • the direction in which the positive electrode core material and the negative electrode core material protrude is not necessarily the opposite direction. This is because current can be collected if the positive electrode core material and the negative electrode core material protrude in different directions.
  • the type of brazing material is not limited to those exemplified in Tables 1 and 2. That is, any material having a melting point lower than that of the positive electrode core material can be applied.
  • the positive electrode mixture layer may be formed only on one side.
  • the positive electrode current collector is not limited to a plate shape. The same applies to the negative electrode.
  • the brazing performed in the present invention may be performed using a furnace or may be heated like soldering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明の目的は,正極集電板と正極芯材との接続部周辺および負極集電板と負極芯材との接続部周辺の接合強度および機械的強度の高い積層電極体型電池とその製造方法および車両および機器を提供することである。本発明では,正極芯材(PB)の先端部(PX)と,正極集電板(110)とが,接続材(111)により接合されている。接続材(111)の融点は,正極芯材(PB)の融点よりも低い。また,接続材(111)の融点は,正極集電板(110)の融点よりも低いことが望ましい。一方,負極芯材(NB)の先端部(NX)と,負極集電板(120)とが,接続材(121)により接合されている。接続材(121)の融点は,負極芯材(NB)の融点よりも低い。また,接続材(121)の融点は,負極集電板(120)の融点よりも低いことが望ましい。

Description

積層電極体型電池とその製造方法及び車両及び機器
 本発明は,積層電極体型電池とその製造方法及び車両及び機器に関する。さらに詳細には,正極集電板と正極芯材との接続部および負極集電板と負極芯材との接続部の機械的強度の高い積層電極体型電池とその製造方法及び車両及び機器に関するものである。
 二次電池は,携帯電話やパーソナルコンピュータ等の電子機器,ハイブリッド車両や電気自動車等の車両など,多岐にわたる分野で利用されている。このような二次電池は,正極板と負極板と電解質とを備えるものである。また,正極板と負極板とを絶縁するために,これらの間にセパレータを設けることが一般的である。
 これらの電池の形状として,円筒型や角型などがある。これらの電池に用いられる電極体として,正極板および負極板を渦巻状に捲回し積層した捲回型電極体や,正極板および負極板を平積みして積層した平積み型電極体がある。これらの積層型電極体から集電を行うために,以下のような方式がある。正極芯材を一方の方向に突出させるとともに,その突出部を正極集電板に接合する。また,負極芯材を他方の方向に突出させるとともに,その突出部を負極集電板に接合する。
 この接合には,溶接などが用いられる。これにより,機械的な接続が行われるとともに,電気的な接続が行われる。このように接合された接合部には,接合強度や機械的強度が求められる。接合部の一部が剥離したり接合部もしくはその周辺が破損したりすれば,その箇所を固定することができなくなるとともに,電気的接続そのものも失われるからである。電気的接続が失われると,その箇所から集電することはできなくなる。また接合部には,電気抵抗が低いことも求められる。電気抵抗が高いと,エネルギーのロスが大きいからである。
 このような状況のため,接合部の機械的強度を向上させる技術が開発されてきている。例えば特許文献1には,正極芯材または負極芯材の突出部の先端が,やや屈曲したバリとなっている捲回電極体を備える二次電池が開示されている。このバリがあることにより,溶接時に加えられる押圧力によって当該突出部の先端が折れ曲がったりすることを防止することができるとしている。よって,溶接不良は生じないとしている。
 また一方で,電気抵抗を低いものとする技術が開発されてきている。例えば特許文献2には,正極芯材の先端部分に正極電流平滑板を,負極芯材の先端部分に負極電流平滑板を溶接した円筒型蓄電池が開示されている。これらの平滑板を配置することにより二次電池の内部抵抗が低減し,大電流を流しても電圧の急低下が生じないとしている。
特開2001-266899号公報 特開2004-139898号公報
 しかし,正極芯材または負極芯材の先端部分を正極集電板または負極集電板に溶接すると,溶接後の先端部分は薄くなる。その先端部分は,溶接時の加熱により一時的に溶融するからである。このような電気伝導領域における厚みの薄い箇所の機械的強度は,当該箇所より厚みの厚いその他の箇所の機械的強度に比べて低い。さらに,電流経路における厚みの薄い箇所の電気抵抗は,その他の箇所の電気抵抗に比べて高い。したがって,失われる電気的エネルギーは大きい。このような問題は,特許文献1のように正極芯材または負極芯材の突出部を屈曲させてバリを設けても,特許文献2のように平滑板を配置しても解決できない。
 本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,正極集電板と正極芯材との接続部周辺および負極集電板と負極芯材との接続部周辺の接合強度および機械的強度の高い積層電極体型電池とその製造方法および車両および機器を提供することである。
 この課題の解決を目的としてなされた本発明の一態様における積層電極体型電池は,正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,正極板と負極板との間に配置されるセパレータとが,正極芯材の残部と負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,積層電極体の正極板から突出した正極芯材の先端部と接合された正極集電体と,積層電極体の負極板から突出した負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,正極芯材の先端部と正極集電体とを接続する正極接続材と,負極芯材の先端部と負極集電体とを接続する負極接続材とを有し,正極接続材の融点は,正極芯材の融点よりも低く,負極接続材の融点は,負極芯材の融点よりも低いものである。かかる積層電極体型電池は,正極芯材と正極集電体との接続箇所で剥離するおそれがほとんどない。また,当該接続箇所付近の正極芯材は十分な機械的強度を備えている。負極についても同様である。
 上記に記載の積層電極体型電池において,正極接続材の融点は,正極集電体の融点よりも低く,負極接続材の融点は,負極集電体の融点よりも低いとよい。正極接続材付近の正極集電体が十分な機械的強度を備えているからである。負極についても同様である。
 上記に記載の積層電極体型電池において,正極芯材の材質が,アルミニウムであり,負極芯材の材質が,銅であり,正極接続材の材質が,Al-Si系ロウ材,Al-Si-Mg系ロウ材,Al-Zn系ロウ材,Zn-Sn系ロウ材のいずれかのロウ材であり,負極接続材の材質が,Ni系ロウ材,Ag系ロウ材,Cu系ロウ材のいずれかのロウ材であるとよい。ロウ付けによって濡れ広がったロウ材により,正極集電体と正極芯材とが十分な接合強度をもって接合されるからである。
 上記に記載の積層電極体型電池において,正極芯材および正極集電体の材質が,アルミニウムであり,負極芯材および負極集電体の材質が,銅であり,正極接続材の材質が,Al-Si系ロウ材,Al-Si-Mg系ロウ材,Al-Zn系ロウ材,Zn-Sn系ロウ材のいずれかのロウ材であり,負極接続材の材質が,Ni系ロウ材,Ag系ロウ材,Cu系ロウ材のいずれかのロウ材であるとよい。ロウ付けによって濡れ広がったロウ材により,正極集電体と正極芯材とが十分な接合強度をもって接合されるからである。
 上記に記載の積層電極体型電池において,正極板と負極板との間に非水電解質を備えるとよい。
 上記に記載の積層電極体型電池において,正極芯材の先端部の厚みと,正極合材層が形成された範囲における正極芯材の厚みとの差が,正極合材層が形成された範囲における正極芯材の厚みの12%の範囲内にあるとよい。正極芯材の先端部で正極芯材が折れにくいからである。
 上記に記載の積層電極体型電池において,負極芯材の先端部の厚みと,負極合材層が形成された範囲における負極芯材の厚みとの差が,負極合材層が形成された範囲における負極芯材の厚みの3%の範囲内にあるとよい。負極芯材の先端部で負極芯材が折れにくいからである。
 また,本発明の他の態様における積層電極体型電池は,正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,正極板と負極板との間に配置されるセパレータとが,正極芯材の残部と負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,積層電極体の正極板から突出した正極芯材の先端部と接合された正極集電体と,積層電極体の負極板から突出した負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,正極芯材の先端部の厚みと,正極合材層が形成された範囲における正極芯材の厚みとの差が,正極合材層が形成された範囲における正極芯材の厚みの12%の範囲内にある。かかる積層電極体型電池は,正極芯材の先端部で正極芯材が折れにくい。
 また,本発明のさらに他の態様における積層電極体型電池は,正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,正極板と負極板との間に配置されるセパレータとが,正極芯材の残部と負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,積層電極体の正極板から突出した正極芯材の先端部と接合された正極集電体と,積層電極体の負極板から突出した負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,負極芯材の先端部の厚みと,負極合材層が形成された範囲における負極芯材の厚みとの差が,負極合材層が形成された範囲における負極芯材の厚みの3%の範囲内にある。かかる積層電極体型電池は,負極芯材の先端部で負極芯材が折れにくい。
 また,本発明のさらに他の態様は,上記に記載の積層電極体型電池を搭載する車両である。
 また,本発明のさらに他の態様は,上記に記載の積層電極体型電池を搭載する機器である。
 また,本発明のさらに他の態様における積層電極体型電池の製造方法は,正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,正極板と負極板との間に配置されるセパレータとを,正極芯材の残部と負極芯材の残部とがそれぞれ異なる方向に突出するように積層して積層電極体とし,積層電極体の正極板から突出した正極芯材の先端部を正極集電体に接合し,積層電極体の負極板から突出した負極芯材の先端部を負極集電体に接合する積層電極体型電池の製造方法において,正極芯材の先端部と正極集電体との接合に,正極芯材よりも融点の低い正極用ロウ材を用い,負極芯材の先端部と負極集電体との接合に,負極芯材よりも融点の低い負極用ロウ材を用いる方法である。かかる積層電極体型電池の製造方法では,正極芯材と正極集電体との接合時に正極芯材が溶融するおそれがほとんどない。また,接合時にロウ材が十分に濡れ広がる。そのため製造された積層電極体型電池の接合部は剥離しにくい。さらに,正極芯材の機械的強度は十分高い。負極についても同様である。
 上記に記載の積層電極体型電池の製造方法において,正極用ロウ材として,正極集電体の融点よりも低い融点のロウ材を用い,負極用ロウ材として,負極集電体の融点よりも低い融点のロウ材を用いるとよい。正極集電体および負極集電体の機械的強度が高いからである。
 本発明によれば,正極集電板と正極芯材との接続部周辺および負極集電板と負極芯材との接続部周辺の接合強度および機械的強度の高い積層電極体型電池とその製造方法および車両および機器が提供されている。
本実施形態におけるバッテリの内部構造を説明するための断面図である。 本実施形態におけるバッテリの電極捲回体と正極集電板と負極集電板とを抜き出して描いた斜視図である。 本実施形態におけるバッテリの電極捲回体を説明するための斜視図である。 本実施形態におけるバッテリの電極捲回体の捲回構造を説明するための展開図である。 本実施形態におけるバッテリの正極板または負極板の構造を説明するための斜視断面図である。 本実施形態におけるバッテリの正極集電板と正極芯材または負極集電板と負極芯材の接続材を説明するための断面図(その1)である。 本実施形態におけるバッテリの正極集電板と正極芯材との接続材を説明するための模式図である。 従来のバッテリの正極集電板と正極芯材との接続材を説明するための模式図である。 本実施形態におけるバッテリの接続材の引張強度の測定方法を説明するための断面図である。 本実施形態におけるバッテリの正極集電板と正極芯材または負極集電板と負極芯材の接続材を説明するための断面図(その2)である。 本実施形態における車両を説明するための斜視投影図である。 本実施形態におけるハンマードリルを説明するための斜視図である。
100…バッテリ
101…電池容器
102…蓋
110…正極集電板
120…負極集電板
200…電極捲回体
111,121,311,321…接続材
P…正極板
PA…正極合材層
PB…正極芯材
P1…正極塗工部
P2…正極非塗工部
N…負極板
NA…負極合材層
NB…負極芯材
N1…負極塗工部
N2…負極非塗工部
M…電極本体部
S,T…セパレータ
 以下,本発明を具体化した形態について,添付図面を参照しつつ詳細に説明する。本形態は,円筒型のリチウムイオン二次電池について,本発明を具体化したものである。
1.円筒型二次電池
 本実施の形態に係るバッテリは,円筒型のリチウムイオン二次電池である。その電極体は,正極板と負極板とが交互に積み重ねられて捲回された積層電極体を備える積層電極体型電池である。図1に,本形態のバッテリ100の断面図を示す。バッテリ100は,図1に示すように,電池容器101および蓋102により密閉された内部に,電極捲回体200と,正極集電板110と,負極集電板120とが内蔵されたものである。正極集電板110は,接続材111で電極捲回体200に接合されている。負極集電板120は,接続材121で電極捲回体200に接合されている。これらの接続材111および接続材121については,後で詳しく述べる。また,電池容器101の内部には電解液が注入されている。
 電極捲回体200は,電解液中で充放電を繰り返し,発電に直接寄与するものである。正極集電板110は,電極捲回体200から電力を取り出し,または電極捲回体200に放出するための正極集電体である。その材質は,アルミニウムである。負極集電板120は,電極捲回体200から電力を取り出し,または電極捲回体200に放出するための負極集電体である。その材質は,銅である。
 電池容器101の内部に注入された電解液は,有機溶媒に電解質を溶解させたものである。有機溶媒として例えば,プロピレンカーボネート(PC)やエチレンカーボネート(EC),ジメチルカーボネート(DMC),エチルメチルカーボネート(EMC)等のエステル系溶媒や,エステル系溶媒にγ-ブチラクトン(γ-BL),ジエトキシエタン(DEE)等のエーテル系溶媒等を配合した有機溶媒が挙げられる。また,電解質である塩として,過塩素酸リチウム(LiClO)やホウフッ化リチウム(LiBF),六フッ化リン酸リチウム(LiPF)などのリチウム塩を用いることができる。
2.電極捲回体
 図2は,本形態のバッテリ100から電極捲回体200と,正極集電板110と,負極集電板120とを抜き出して描いた斜視図である。図2中では,正極集電板110と,電極捲回体200とが接合された領域140にスラッシュのハッチングを施してある。正極集電板110の内側の面,すなわち電極捲回体200の側の面であって領域140に対応する位置に,図1で示した接続材111が存在している。また,負極集電板120にも,正極集電板110の接続材111とほぼ対面する位置に接続材121が存在している。
 図3は,電極捲回体200の斜視図である。図3に示すように,電極捲回体200には,その中央に電極本体部Mと,両端に正極非塗工部P2と,負極非塗工部N2とがある。電極本体部Mは,セパレータを間に配置した状態で正極板及び負極板を捲回した部分である。正極非塗工部P2および負極非塗工部N2については後述する。
 正極板は,帯状の正極芯材であるアルミ箔にリチウムイオンを吸蔵・放出可能な正極活物質を含む合材を塗布したものである。正極活物質として,ニッケル酸リチウム(LiNiO),マンガン酸リチウム(LiMnO),コバルト酸リチウム(LiCoO)等のリチウム複合酸化物などが用いられる。負極板は,帯状の負極芯材である銅箔にリチウムイオンを吸蔵・放出可能な負極活物質を含む合材を塗布したものである。負極活物質として,非晶質炭素,難黒鉛化炭素,易黒鉛化炭素,黒鉛等の炭素系物質が用いられる。
 図4は,電極捲回体200の捲回構造を示す展開図である。電極捲回体200は,図4に示すように,内側から正極板P,セパレータS,負極板N,セパレータTの順に積み重ねた状態で捲回されたものである。ここで,セパレータSとセパレータTとは同じ材質のものである。上記の捲回順の理解のために符号をS,Tとして区別しただけである。
 正極板Pには,正極塗工部P1と,正極非塗工部P2とがある。正極塗工部P1は,正極芯材の両面の一部に正極活物質等を塗工した箇所である。正極非塗工部P2は,正極芯材に正極活物質等を塗工していない残部である。したがって正極塗工部P1の厚みは,正極非塗工部P2の厚みよりも厚い。
 負極板Nには,負極塗工部N1と,負極非塗工部N2とがある。負極塗工部N1は,負極芯材の両面の一部に負極活物質等を塗工した箇所である。負極非塗工部N2は,負極芯材に負極活物質等を塗工していない残部である。したがって負極塗工部N1の厚みは,負極非塗工部N2の厚みよりも厚い。
 図4中の矢印Aは,正極板P,負極板N,セパレータS,Tの幅方向(図3でいえば縦方向)を示している。矢印Bは,正極板P,負極板N,セパレータS,Tの長手方向(図3でいえば横方向)を示している。正極塗工部P1の幅方向の塗工幅は,負極塗工部N1の幅方向の塗工幅よりもやや狭い。電解液中のリチウムイオンの濃度が高い場合に,負極活物質にリチウムイオンを吸蔵させることによりその濃度の上昇を抑制するためである。電解液中のリチウムイオンの濃度が上昇しすぎると,リチウムがデンドライト状に析出することがある。そうすると,電池性能が低下する。
 図5は,正極板P(もしくは負極板N)の斜視断面図である。図5中の括弧外の各符号は,正極の場合の各部を,括弧内の各符号は,負極の場合の各部を示している。図5中の矢印Aが示す方向は,図4中の矢印Aが示す方向と同じである。すなわち,正極板Pの幅方向である。図5中の矢印Bが示す方向は,図4中の矢印Bが示す方向と同じである。すなわち,正極板Pの長手方向である。
 図5に示すように,正極板Pは,帯状の正極芯材PBの両面に正極合材層PAが形成されたものである。図5中左側には,正極板Pの正極非塗工部P2が幅方向に突出している。正極非塗工部P2は,帯状に形成されている。正極非塗工部P2は,正極活物質が塗布されていない領域である。したがって正極非塗工部P2では,正極芯材PBがむき出したままの状態にある。一方,図5中右側には,正極非塗工部P2に対応するような突出部はない。正極塗工部P1では,正極芯材PBの両面に一様の厚みで正極合材層PAが形成されている。
 負極板Nは,図5の括弧内に示したように,帯状の負極芯材NBの両面に負極合材層NAが形成されたものである。また,正極と同様に,負極塗工部N1および負極非塗工部N2がある。ただし,図4に示したように,捲回時には,正極非塗工部P2と負極非塗工部N2とは,反対側に突出した状態で捲回されることとなる。
3.電極板と電極集電板との接続部分
 図6は,図1に示したバッテリ100から電極捲回体200の周辺を取り出して描いた断面図である。図6に示すように,電極捲回体200は,正極板P,セパレータS,負極板N,セパレータTの順で捲回された電極体である。正極集電板110と負極集電板120とは,電極捲回体200を間に挟んで対向して配置されている。
 図6では,正極塗工部P1および負極塗工部N1を一様にスラッシュのハッチングで表している。しかし実際には,図4で示したように,正極塗工部P1はアルミニウムの正極芯材PBに正極活物質を含む合材を塗工されたものである。同様に負極塗工部N1は銅の負極芯材NBに負極活物質を含む合材を塗工されたものである。このハッチングの意味するところは,図1,図9,図10においても同様である。
 正極非塗工部P2の正極芯材PBの先端部PXは,正極集電板110に向かって正極塗工部P1から突出した正極芯材PBの先端部分である。前述したように,正極芯材PBの先端部PXは,接続材111を介して正極集電板110に接合されている。接続材111は,正極芯材PBの先端部PXを正極集電板110に接続するための正極接続材である。この接合はロウ付けにより行われる。したがって,この接続材111の材質は主にロウ材である。そのロウ材の種類については後に詳しく述べる。
 この接続材111の融点は,正極芯材PBの融点よりも低い。そのため,後述するように,正極非塗工部P2の先端部PXと,正極集電板110とを接合する際の加熱によって,正極非塗工部P2の先端部PXが溶融するおそれはない。また,接続材111の融点は,正極集電板110の融点よりも低い。したがって同様に,ロウ付け時の加熱によって,正極集電板110の一部が溶融するおそれはない。
 負極非塗工部N2の負極芯材NBの先端部NXは,負極集電板120に向かって負極塗工部N1から突出した負極芯材NBの先端部分である。その先端部NXの向かう方向は,正極芯材PBの先端部PXの向かう方向とは逆方向である。前述したように,負極芯材NBの先端部NXは,接続材121を介して負極集電板120に接合されている。接続材121は,負極芯材NBの先端部NXを負極集電板120に接続するための負極接続材である。この接合はロウ付けにより行われる。したがって,この接続材121の材質は主にロウ材である。この負極に用いるロウ材の種類は,正極に用いるロウ材の種類とは異なっている。そのロウ材の種類については後に詳しく述べる。
 この接続材121の融点は,負極芯材NBの融点よりも低い。そのため,後述するように,負極非塗工部N2の先端部NXと,負極集電板120とを接合する際の加熱によって,負極非塗工部N2の先端部NXが溶融するおそれはない。また,接続材121の融点は,負極集電板120の融点よりも低い。したがって同様に,ロウ付け時の加熱によって,負極集電板120の一部が溶融するおそれはない。
 正極側の接続材111の融点は,負極側の負極集電板120および負極非塗工部N2の融点と比べて,高くてもよいし低くてもよい。また,正極側の接続材111の融点は,接続材121の融点よりも高くてもよいし低くてもよい。つまり,特に関連性はない。電極捲回体200の幅は十分であるため,正極側の部材の加熱時に負極側の部材が加熱されるおそれはほとんどないからである。同様に,負極側の接続材121の融点は,正極側の正極集電板110および正極非塗工部P2の融点と比べて,高くてもよいし低くてもよい。また,負極側の接続材121の融点は,接続材111の融点よりも高くてもよいし低くてもよい。負極側の部材の加熱時に正極側の部材が加熱されるおそれはほとんどないからである。
 このように接合時に正極芯材PBおよび負極芯材NBの溶融が生じない。よって,正極芯材PBの先端部PXの厚みは,正極塗工部P1における正極芯材PBの厚みとほとんど同じである。負極についても同様である。
 以上述べたように,本実施の形態のバッテリ100は,捲回電極体200の正極芯材PBと正極集電板110との間に接続材111を,負極芯材NBと負極集電板120との間に接続材121を設けたものである。そして接続材111の融点は,正極芯材PBの融点よりも低い。接続材121の融点は,負極芯材NBの融点よりも低い。
 接続材111の付近における正極芯材PBの厚みは,正極塗工部P1における正極芯材PBの厚みとほとんど同じである。そのため,接続材111およびその付近の正極芯材PBの機械的強度は高い。正極の場合と同様に,接続材121の付近における負極芯材NBの厚みは,負極塗工部N1における負極芯材NBの厚みとほとんど同じである。
4.バッテリの製造方法
 ここで,バッテリ100の製造方法について説明する。本発明の特徴点である接続材111および接続材121での接合について詳細に説明し,それ以外の工程については簡略化して説明する。
 まず,正極芯材PBの両面に正極活物質を含む合材を塗布して乾燥させる。次に,その乾燥した正極板をプレスして切断し,正極板Pとする。負極についても同様に負極板Nを作成する。続いて,図4に示したように,内側から正極板P,セパレータS,負極板N,セパレータTの順に捲回する。このようにして電極捲回体200が製造される。
 続いて,負極集電板120を電極捲回体200に接合する。その際に,表1に示すロウ材を用いてロウ付けする。ニッケルロウとして例えば,BNi-6(JIS)がある。銀ロウとして例えば,BAg-8(JIS)がある。燐銅ロウとして例えば,BCuP-2(JIS)がある。これらはあくまで例であり,ロウ材としてこれらに限るものではない。ここで用いるロウ材の融点は,いずれも負極芯材NBに用いられる銅の融点1357℃よりも低い。BNi-6(JIS)の固相線温度は,875℃である。BAg-8(JIS)の固相線温度は,780℃である。BCuP-2(JIS)の固相線温度は,710℃である。したがって,このロウ付けによって図6に示した負極芯材NBの先端部NXおよび負極集電板120の一部が溶融するおそれはほとんどない。
Figure JPOXMLDOC01-appb-T000001
    
 続いて,正極集電板110を電極捲回体200に接合する。その際に例えば,A4047(JIS)のロウ材を用いてロウ付けする。A4047(JIS)は,Al-Si系である。それ以外にも,表2に示すロウ材を用いてロウ付けすることができる。ここで用いられるロウ材の融点は,いずれも正極芯材PBに用いられるアルミニウムの融点660℃よりも低い。例えば,A4047(JIS)では溶融温度は577℃程度である。したがって,このロウ付けによって図6に示した正極芯材PBの先端部PXおよび正極集電板110の一部が溶融するおそれはほとんどない。
Figure JPOXMLDOC01-appb-T000002
         
 ここで,融点以外にロウ材に求められる性質について説明する。まず,ロウ材は,電位のかかった状態で電解液による腐食がない材質のものであることが必要である。腐食があると,接続材111および接続材121の箇所で剥離が生ずるおそれがあるからである。また,金属などの導電性のある材質であることが必要である。接続材111および接続材121により各電極板と各集電板とで電気的接続をするために必須だからである。さらに,電気的な抵抗が低いものが好ましい。電気的エネルギーのロスが小さいからである。また,正極集電板110や負極集電板120との濡れ性および接合性の優れたものが好ましい。接合後の接続材111および接続材121の機械的強度が高いものとなるからである。
 続いて,電極捲回体200に正極集電板110および負極集電板120を接合したものを,電池容器101に挿入する。次に,電池容器101の内部に電解液を注液する。その後,コンディショニングや種々の検査工程を経て,バッテリ100が製造される。
 以上述べたように,本実施の形態のバッテリ100の製造方法では,正極芯材PBの先端部PXまたは負極芯材NBの先端部NXが溶融しない。また,正極集電板110または負極集電板120の一部が溶融することもない。したがって,本実施の形態により製造されたバッテリ100は,正極芯材PBの先端部PXおよび負極芯材NBの先端部NXの強度が高い。
5.従来のバッテリとの比較
A)電極板の比較
 ここで,本実施の形態のバッテリ100と従来のバッテリとの比較について説明する。そのために,正極の接続材111周辺を例に挙げて説明する。図7は,本発明における正極集電板110と,正極非塗工部P2の正極芯材PBを抜き出して描いた模式図である。図8は,従来における正極集電板1110と,正極非塗工部Q2の正極板QBを抜き出して描いた模式図である。
 図7と図8とを比較すると,本発明に係る接続材111のほうが,従来の接続部1111よりも大きい。本発明では,正極集電板110と正極芯材PBの先端部PXとの間に,接合前に予めロウ材を配置しているからである。また,ロウ材の正極集電板110に対する濡れ性がよいため,溶融時によく濡れ広がるからである。一方,接続部1111では,加熱を強くしすぎると正極非塗工部Q2や正極集電板1110の溶融領域が広がりすぎるため,十分に接合することができない。したがって,接続材111の機械的強度は,接続部1111の機械的強度よりも高い。
 また,本形態の先端部PXの厚みは,従来の先端部QXの厚みよりも厚い。したがって,本形態のバッテリ100の正極側の先端部PXの機械的強度は,従来のバッテリの正極側の先端部QXの機械的強度よりも高い。従来のバッテリでは,先端部QXの箇所で応力が集中しやすい。そのため,先端部QXで折れやすい。
 また,本形態のバッテリ100の正極側の先端部PXの電気抵抗は,従来のバッテリの正極側の先端部QXの電気抵抗よりも低い。電気伝導経路である先端部PXの厚みが先端部QXの厚みよりも厚いからである。さらに,本形態のバッテリ100のほうが,従来のバッテリよりも大電流に耐えうる。これらの状況は,負極側も同様である。
B)実験
 本形態のバッテリに係る正極芯材または負極芯材の先端部の厚みと,従来のバッテリに係る正極芯材または負極芯材の先端部の厚みとを比較するために,これらの先端部の厚みを測定した。すなわち,図7に示した本形態の先端部PXの厚みと,図8に示した従来の先端部QXの厚みである。
 なお,正極芯材はアルミ箔である。接合前におけるアルミ箔の厚みは15μmである。その箔厚公差は±0.9μmである。一方,負極芯材は銅箔である。接合前における銅箔の厚みは10.3μmである。その箔厚公差は±0.2μmである。
 さらに,本形態のバッテリに係る接続材111と,従来のバッテリに係る接続部1111における引張強度を測定した。その測定方法を図9に示す。まず,電極捲回体200の側面を図9中の矢印E,Fの向きに力を加えることにより固定する。次に,電極捲回体200を固定した状態で,正極集電板110を外部に向かう向き,すなわち図9中の矢印Gの向きに引っ張る。そして,電極捲回体200と,正極集電板110とが分離したときの力を測定する。なお,負極についても同様である。
B-1.実施例1
 実施例1は,負極用ロウ材として,BNi-6(JIS)を用いた結果である。接合後の負極芯材NBの先端部NXの厚みは10μmであった。したがって,箔厚公差の範囲内の10μmとして表3に示す。また,引張強度は1N/1箇所であり,十分な強度であった。
B-2.実施例2
 実施例2は,負極用ロウ材として,BAg-8(JIS)を用いた結果である。接合後の負極芯材NBの先端部NXの厚みは10μmであった。したがって,箔厚公差の範囲内の10μmとして表3に示す。また,引張強度は1N/1箇所であり,十分な強度であった。
B-3.実施例3
 実施例3は,負極用ロウ材として,BCuP-2(JIS)を用いた結果である。接合後の負極芯材NBの先端部NXの厚みは10μmであった。したがって,箔厚公差の範囲内の10μmとして表3に示す。また,引張強度は1N/1箇所であり,十分な強度であった。
B-4.実施例4
 実施例4は,正極用ロウ材として,Al-Si系ロウ(JIS A4047相当)を用いた結果である。その固相線温度は577℃であり,液相線温度は592℃である。接合後の正極芯材PBの先端部PXの厚みは15μmであった。したがって,箔厚公差の範囲内の15μmとして表3に示す。また,引張強度は0.75N/1箇所であり,十分な強度であった。
B-5.実施例5
 実施例5は,正極用ロウ材として,Al-Si-Mg系ロウ(JIS A4004相当)を用いた結果である。その固相線温度は559℃であり,液相線温度は591℃である。接合後の正極芯材PBの先端部PXの厚みは15μmであった。したがって,箔厚公差の範囲内の15μmとして表3に示す。また,引張強度は0.75N/1箇所であり,十分な強度であった。
B-6.実施例6
 実施例6は,正極用ロウ材として,Al-Zn系ロウ(軟ロウ)を用いた結果である。その固相線温度は360℃であり,液相線温度は362℃である。接合後の正極芯材PBの先端部PXの厚みは15μmであった。したがって,箔厚公差の範囲内の15μmとして表3に示す。また,引張強度は0.75N/1箇所であり,十分な強度であった。
B-7.実施例7
 実施例7は,正極用ロウ材として,Zn-Sn系ロウ(軟ロウ)を用いた結果である。その固相線温度は195℃であり,液相線温度は235℃である。接合後の正極芯材PBの先端部PXの厚みは15μmであった。したがって,箔厚公差の範囲内の15μmとして表3に示す。また,引張強度は0.75N/1箇所であり,十分な強度であった。
B-8.比較例1
 比較例1は,負極用ロウ材を用いたロウ付けを行わず,その代わりに負極集電板と負極芯材とを溶接により接合した結果である。負極芯材の先端部(NXに相当)の厚みは4~6μmであり,接合前の厚みの半分程度であった。引張強度は0.35N/1箇所であり,基準値(0.75N/1箇所)の半分程度であった。
B-9.比較例2
 比較例2は,正極用ロウ材を用いたロウ付けを行わず,その代わりに正極集電板と正極芯材とを溶接により接合した結果である。正極芯材の先端部(PXに相当)の厚みは8~10μmであり,接合前の厚みの半分程度であった。引張強度は0.50N/1箇所であり,基準値(0.75N/1箇所)に満たなかった。
 本実施の形態に係るバッテリについて表3の実施例1~7に示す。従来のバッテリについて表3の比較例1,2に示す。引張強度は,電極集電板と電極板との接合箇所あたりの引張強度として定義した。その接合箇所に求められる引張強度として,0.75N/1箇所以上を設定した。この値は,正極および負極に共通の値である。なお,表3中では,Al-Si系ロウをAl-Siと,Al-Si-Mg系ロウをAl-Si-Mgと,Al-Zn系ロウをAl-Znと,Zn-Sn系ロウをZn-Snと表記している。
Figure JPOXMLDOC01-appb-T000003
      
       
 以上述べたように,芯材よりも融点の低いロウ材を用いた場合には,正極または負極の集電板との接合により,正極芯材(アルミ箔)および負極芯材(銅箔)の厚みはほとんど変化しなかった。接合後の正極芯材の厚みは,箔厚公差(±9μm)の範囲内にあった。すなわち,接合後の正極芯材PBの厚みと正極塗工部P1における正極芯材PBの厚みとの差は,正極塗工部P1における正極芯材PBの厚みの12%の範囲内にあった。接合後の負極芯材の厚みは,箔厚公差(±2μm)の範囲内にあった。すなわち,接合後の負極芯材NBの厚みと負極塗工部N1における負極芯材NBの厚みとの差は,負極塗工部N1における負極芯材NBの厚みの3%の範囲内にあった。
6.変形例
 ここで本形態の変形例について説明する。図10に本形態の変形例を示す。図10において,電極捲回体200,正極集電板110,負極集電板120は,本形態のものと同様である。接合に用いるロウ材の材質も本形態のものと同様である。ただし,接合に用いるロウ材の形状が異なっている。正極非塗工部P2と正極集電板110との接続材311が,隣接する接続材311と橋梁部312で繋がっている。また,負極非塗工部N2と負極集電板120との接続材321も,隣接する接続材321と橋梁部322で繋がっている。このような形状であっても本発明の効果を奏する。
 本実施の形態では,正極芯材PBおよび正極集電板110の材質をアルミニウムとした。しかし,正極芯材PBもしくは正極集電板110またはこれらの双方の材質として,アルミニウム以外の材質を用いることもできる。このように本形態とは異なる材質を用いた場合であっても,接続材111の融点が正極芯材PBの融点よりも低ければ,本発明の効果を奏する。ロウ付け時に,正極芯材PBが溶融するおそれがないからである。
 半田付けのように主にロウ材を加熱してロウ付けを行う場合には,接続材111の融点が,正極芯材PBの融点より低く,正極集電板の融点より高くても接合を行うことができる。この場合,ロウ付け時に正極芯材PBは溶融しない。ロウ付け時にロウ材は溶融しており,溶融したロウ材と接触している正極集電板の一部はある程度は一時的に溶融するが全部が溶融するには至らない。このような場合であっても,接続材111と正極集電板との接合は,十分に行われる。正極芯材PBが細くなるおそれはない。ただし,接続材111の融点と,正極集電板の融点との差は小さいほうが好ましい。
 したがって,接続部111の融点が,正極芯材PBの融点と正極集電板110の融点との双方よりも低いことが望ましい。正極芯材PBが細くなることもなく,正極集電板110が薄くなることもないからである。これらの上記の事項は,負極についても同様である。
7.車両及び機器
 本形態のバッテリ100は,例えば,図11に示すように,車両400に搭載して使用することができる。この車両400は,エンジン440,モータ420を併用して駆動するハイブリッド自動車である。この車両400は,車体490,エンジン440,これに取り付けられたモータ420,ケーブル450,インバータ430及び複数のバッテリ100を自身の内部に有する組電池401を有している。
 なお,車両としては,その動力源の全部あるいは一部に電池による電気エネルギーを使用している車両であれば良く,例えば,電気自動車,ハイブリッド自動車,プラグインハイブリッド自動車,ハイブリッド鉄道車両,フォークリフト,電気車椅子,電動アシスト自転車,電動スクータ等が挙げられる。
 バッテリ100は,あるいは,図12に示すように,電池搭載機器に使用することもできる。この図に示すのは,本形態のバッテリ100を搭載したハンマードリル500である。このハンマードリル500は,バッテリ100,本体520を有する電池搭載機器である。なお,バッテリ100は,ハンマードリル500の本体520のうち底部521に着脱可能に収容されている。
 なお,電池搭載機器としては,電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く,例えば,パーソナルコンピュータ,携帯電話,電池駆動の電動工具,無停電電源装置など,電池で駆動される各種の家電製品,オフィス機器,産業機器が挙げられる。また,バッテリ100以外にも,組電池状態としていない単電池で使用できる機器をも含む。
8.まとめ
 以上詳細に説明したように,本実施の形態に係るバッテリ100は,捲回電極体200の正極芯材PBと正極集電板110との間に接続材111を,負極芯材NBと負極集電板120との間に接続材121を設けたものである。そして接続材111の融点は,正極芯材PBの融点よりも低い。接続材121の融点は,負極芯材NBの融点よりも低い。
 接続材111の付近における正極芯材PBの厚みは,正極塗工部P1における正極芯材PBの厚みとほとんど同じである。そのため,接続材111およびその付近の正極芯材PBの機械的強度は高い。接続材121の付近における負極芯材NBの厚みは,負極塗工部N1における負極芯材NBの厚みとほとんど同じである。そのため,接続材121およびその付近の負極芯材NBの機械的強度は高い。
 また,本実施の形態のバッテリの製造方法では,製造工程の途中で正極芯材PBの先端部PXまたは負極芯材NBの先端部NXが溶融しない。また,正極集電板110または負極集電板120の一部が溶融することもない。したがって,本実施の形態により製造されたバッテリ100では,正極芯材PBおよび負極芯材NBの強度が高い。
 なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,リチウムイオン二次電池に限らない。その他の非水電解質二次電池であってもよい。さらには,その他の電池であってもよい。
 また,電池の形状は,円筒型に限らない。角型やその他の形状であっても同様の効果を奏する。つまり,プレスされた扁平型電極体であってもよい。また,電極体は,捲回型のものに限らない。層状の電極体であっても正極板と負極板とを積層したものであれば同様の効果を奏するからである。この場合には,正極芯材と負極芯材とが突出する方向は,必ずしも反対方向でなくてもよい。正極芯材と負極芯材とが異なる方向に突出していれば,集電できることに変わりないからである。
 また,ロウ材の種類は,表1及び表2に例示したものに限らない。つまり,正極芯材よりも融点の低いものであれば,適用することができる。また,正極板は,正極芯材の両面に正極合材層を形成したものを用いた。しかし,正極合材層の形成は片面のみであってもよい。また,正極集電体は板状のものに限らない。これらについては負極も同様である。また,本発明において行ったロウ付けは,炉を用いるものであっても,半田付けのように加熱するものであってもどちらでもよい。

Claims (13)

  1.  正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,前記正極板と前記負極板との間に配置されるセパレータとが,前記正極芯材の残部と前記負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,
     前記積層電極体の前記正極板から突出した前記正極芯材の先端部と接合された正極集電体と,
     前記積層電極体の前記負極板から突出した前記負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,
      前記正極芯材の先端部と前記正極集電体とを接続する正極接続材と,
      前記負極芯材の先端部と前記負極集電体とを接続する負極接続材とを有し,
      前記正極接続材の融点は,
       前記正極芯材の融点よりも低く,
      前記負極接続材の融点は,
       前記負極芯材の融点よりも低いことを特徴とする積層電極体型電池。
  2. 請求項1に記載の積層電極体型電池において,
     前記正極接続材の融点は,
      前記正極集電体の融点よりも低く,
     前記負極接続材の融点は,
      前記負極集電体の融点よりも低いことを特徴とする積層電極体型電池。
  3. 請求項1に記載の積層電極体型電池において,
     前記正極芯材の材質が,アルミニウムであり,
     前記負極芯材の材質が,銅であり,
     前記正極接続材の材質が,
      Al-Si系ロウ材,Al-Si-Mg系ロウ材,Al-Zn系ロウ材,Zn-Sn系ロウ材のいずれかのロウ材であり,
     前記負極接続材の材質が,
      Ni系ロウ材,Ag系ロウ材,Cu系ロウ材のいずれかのロウ材であることを特徴とする積層電極体型電池。
  4. 請求項2に記載の積層電極体型電池において,
     前記正極芯材および前記正極集電体の材質が,アルミニウムであり,
     前記負極芯材および前記負極集電体の材質が,銅であり,
     前記正極接続材の材質が,
      Al-Si系ロウ材,Al-Si-Mg系ロウ材,Al-Zn系ロウ材,Zn-Sn系ロウ材のいずれかのロウ材であり,
     前記負極接続材の材質が,
      Ni系ロウ材,Ag系ロウ材,Cu系ロウ材のいずれかのロウ材であることを特徴とする積層電極体型電池。
  5. 請求項1から請求項4までのいずれかに記載の積層電極体型電池において,
     前記正極板と前記負極板との間に非水電解質を備えることを特徴とする積層電極体型電池。
  6. 請求項1から請求項5までのいずれかに記載の積層電極体型電池において,
      前記正極芯材の先端部の厚みと,前記正極合材層が形成された範囲における前記正極芯材の厚みとの差が,
       前記正極合材層が形成された範囲における前記正極芯材の厚みの12%の範囲内にあることを特徴とする積層電極体型電池。
  7. 請求項1から請求項6までのいずれかに記載の積層電極体型電池において,
      前記負極芯材の先端部の厚みと,前記負極合材層が形成された範囲における前記負極芯材の厚みとの差が,
       前記負極合材層が形成された範囲における前記負極芯材の厚みの3%の範囲内にあることを特徴とする積層電極体型電池。
  8.  正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,前記正極板と前記負極板との間に配置されるセパレータとが,前記正極芯材の残部と前記負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,
     前記積層電極体の前記正極板から突出した前記正極芯材の先端部と接合された正極集電体と,
     前記積層電極体の前記負極板から突出した前記負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,
      前記正極芯材の先端部の厚みと,前記正極合材層が形成された範囲における前記正極芯材の厚みとの差が,
       前記正極合材層が形成された範囲における前記正極芯材の厚みの12%の範囲内にあることを特徴とする積層電極体型電池。
  9.  正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,前記正極板と前記負極板との間に配置されるセパレータとが,前記正極芯材の残部と前記負極芯材の残部とがそれぞれ異なる方向に突出するように積層された積層電極体と,
     前記積層電極体の前記正極板から突出した前記正極芯材の先端部と接合された正極集電体と,
     前記積層電極体の前記負極板から突出した前記負極芯材の先端部と接合された負極集電体とを有する積層電極体型電池において,
      前記負極芯材の先端部の厚みと,前記負極合材層が形成された範囲における前記負極芯材の厚みとの差が,
       前記負極合材層が形成された範囲における前記負極芯材の厚みの3%の範囲内にあることを特徴とする積層電極体型電池。
  10. 請求項1から請求項9までのいずれかに記載の積層電極体型電池を搭載することを特徴とする車両。
  11. 請求項1から請求項9までのいずれかに記載の積層電極体型電池を搭載することを特徴とする機器。
  12.  正極芯材の少なくとも片側の面の一部に正極合材層が形成された正極板と,負極芯材の少なくとも片側の面の一部に負極合材層が形成された負極板と,前記正極板と前記負極板との間に配置されるセパレータとを,前記正極芯材の残部と前記負極芯材の残部とがそれぞれ異なる方向に突出するように積層して積層電極体とし,
     前記積層電極体の前記正極板から突出した前記正極芯材の先端部を正極集電体に接合し,
     前記積層電極体の前記負極板から突出した前記負極芯材の先端部を負極集電体に接合する積層電極体型電池の製造方法において,
      前記正極芯材の先端部と前記正極集電体との接合に,前記正極芯材よりも融点の低い正極用ロウ材を用い,
      前記負極芯材の先端部と前記負極集電体との接合に,前記負極芯材よりも融点の低い負極用ロウ材を用いることを特徴とする積層電極体型電池の製造方法。
  13. 請求項12に記載の積層電極体型電池の製造方法において,
     前記正極用ロウ材として,
      前記正極集電体の融点よりも低い融点のロウ材を用い,
     前記負極用ロウ材として,
      前記負極集電体の融点よりも低い融点のロウ材を用いることを特徴とする積層電極体型電池の製造方法。
PCT/JP2010/056061 2010-04-02 2010-04-02 積層電極体型電池とその製造方法及び車両及び機器 WO2011125151A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/056061 WO2011125151A1 (ja) 2010-04-02 2010-04-02 積層電極体型電池とその製造方法及び車両及び機器
US13/638,630 US9034500B2 (en) 2010-04-02 2010-04-02 Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
DE112010005442.8T DE112010005442B4 (de) 2010-04-02 2010-04-02 Geschichtete Elektroden-Typ-Batterie, Herstellungsverfahren dafür, Fahrzeug und Vorrichtung
CN201080065891.9A CN102893428B (zh) 2010-04-02 2010-04-02 叠层电极体型电池及其制造方法以及车辆和设备
JP2012509202A JP5447656B2 (ja) 2010-04-02 2010-04-02 積層電極体型電池とその製造方法及び車両及び機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056061 WO2011125151A1 (ja) 2010-04-02 2010-04-02 積層電極体型電池とその製造方法及び車両及び機器

Publications (1)

Publication Number Publication Date
WO2011125151A1 true WO2011125151A1 (ja) 2011-10-13

Family

ID=44762138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056061 WO2011125151A1 (ja) 2010-04-02 2010-04-02 積層電極体型電池とその製造方法及び車両及び機器

Country Status (5)

Country Link
US (1) US9034500B2 (ja)
JP (1) JP5447656B2 (ja)
CN (1) CN102893428B (ja)
DE (1) DE112010005442B4 (ja)
WO (1) WO2011125151A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114867A (ja) * 2011-11-28 2013-06-10 Gs Yuasa Corp 蓄電素子極板及びそれを使用した蓄電素子
KR101833609B1 (ko) * 2015-03-03 2018-02-28 도요타지도샤가부시키가이샤 축전 장치의 제조 방법 및 축전 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546369B2 (ja) * 2010-06-25 2014-07-09 千住金属工業株式会社 蓄電デバイス用電極、その製造方法及びその接続方法
JP2018045948A (ja) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 積層型電池
JP6607225B2 (ja) * 2017-04-13 2019-11-20 トヨタ自動車株式会社 積層型電池
JP6518821B1 (ja) * 2018-06-06 2019-05-22 日本碍子株式会社 セルスタック装置
US20230110772A1 (en) 2020-03-17 2023-04-13 3M Innovative Properties Company Immobilized pH Indicator for Biological Indicator Growth Indication
WO2022158856A1 (ko) * 2021-01-19 2022-07-28 주식회사 엘지에너지솔루션 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200596A (ja) * 1998-12-28 2000-07-18 Japan Storage Battery Co Ltd 非水電解質電池
JP2000200589A (ja) * 1999-01-08 2000-07-18 Japan Storage Battery Co Ltd 非水電解質電池及びその製造方法
JP2003223875A (ja) * 2002-01-30 2003-08-08 Japan Storage Battery Co Ltd 電 池
JP2004006407A (ja) * 2003-07-29 2004-01-08 Matsushita Electric Ind Co Ltd 電池の製造方法
JP2004158394A (ja) * 2002-11-08 2004-06-03 Ngk Insulators Ltd リチウム二次電池
WO2009110250A1 (ja) * 2008-03-07 2009-09-11 パナソニック株式会社 リチウムイオン二次電池およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738177B2 (ja) 1999-09-21 2006-01-25 三洋電機株式会社 非水電解液二次電池及びその製造方法
JP4592845B2 (ja) * 1999-09-21 2010-12-08 パナソニック株式会社 電池
JP2001266899A (ja) 2000-03-24 2001-09-28 Sanyo Electric Co Ltd 長尺状電極板、円筒形電池及びそれらの製造方法
US6696199B2 (en) 2002-01-30 2004-02-24 Japan Storage Battery Co., Ltd. Battery
JP4401065B2 (ja) 2002-09-30 2010-01-20 三洋電機株式会社 二次電池及びその製造方法
JP2004139898A (ja) 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd 円筒型蓄電池
JP4834952B2 (ja) 2003-10-02 2011-12-14 株式会社Gsユアサ 電池
KR100803470B1 (ko) * 2004-04-19 2008-02-14 마쯔시다덴기산교 가부시키가이샤 리튬이온 2차전지 및 그 제조법
KR100599793B1 (ko) 2004-05-19 2006-07-13 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200596A (ja) * 1998-12-28 2000-07-18 Japan Storage Battery Co Ltd 非水電解質電池
JP2000200589A (ja) * 1999-01-08 2000-07-18 Japan Storage Battery Co Ltd 非水電解質電池及びその製造方法
JP2003223875A (ja) * 2002-01-30 2003-08-08 Japan Storage Battery Co Ltd 電 池
JP2004158394A (ja) * 2002-11-08 2004-06-03 Ngk Insulators Ltd リチウム二次電池
JP2004006407A (ja) * 2003-07-29 2004-01-08 Matsushita Electric Ind Co Ltd 電池の製造方法
WO2009110250A1 (ja) * 2008-03-07 2009-09-11 パナソニック株式会社 リチウムイオン二次電池およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114867A (ja) * 2011-11-28 2013-06-10 Gs Yuasa Corp 蓄電素子極板及びそれを使用した蓄電素子
KR101833609B1 (ko) * 2015-03-03 2018-02-28 도요타지도샤가부시키가이샤 축전 장치의 제조 방법 및 축전 장치
US10014512B2 (en) 2015-03-03 2018-07-03 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electric power storage device, and electric power storage device

Also Published As

Publication number Publication date
US20130022849A1 (en) 2013-01-24
US9034500B2 (en) 2015-05-19
JPWO2011125151A1 (ja) 2013-07-08
DE112010005442T5 (de) 2013-04-11
CN102893428A (zh) 2013-01-23
DE112010005442B4 (de) 2019-07-11
CN102893428B (zh) 2015-03-25
JP5447656B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5447656B2 (ja) 積層電極体型電池とその製造方法及び車両及び機器
JP4301340B2 (ja) 組電池
JP5112429B2 (ja) バッテリーセル用電極板及びその製造方法
JP5558265B2 (ja) 電池
JP5166511B2 (ja) リチウムイオン二次電池およびその製造方法
JP2012199162A (ja) ラミネート外装体二次電池
JP5550923B2 (ja) 角形二次電池の製造方法
WO2018180828A1 (ja) 円筒形電池
JP2009038004A (ja) 積層型電池
JP2010086780A (ja) 角形二次電池
JPWO2011040297A1 (ja) 蓄電デバイス組立構造体と蓄電デバイス単位構造体
JP5624507B2 (ja) 組電池
JP2012164476A (ja) ラミネート形電池およびそれを備えた積層型電池
JP2011048991A (ja) リチウムイオン二次電池
JP2009110812A (ja) 電池及びその製造方法
JP2011216205A (ja) ラミネート形電池およびその製造方法
JP5119615B2 (ja) 二次電池及び組電池
KR101722662B1 (ko) 파우치형 이차 전지
WO2014163184A1 (ja) 二次電池の集電構造及び二次電池の集電構造形成方法
CN102792488B (zh) 电池及其制造方法
JP5954339B2 (ja) 角形二次電池及びその製造方法
CN111682151B (zh) 密闭型电池及其制造方法
JP7479104B1 (ja) 電極シート及び2次電池
WO2024079945A1 (ja) リチウム2次電池
JP2019032985A (ja) 非水電解質二次電池及び電池パックの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065891.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849395

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012509202

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13638630

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100054428

Country of ref document: DE

Ref document number: 112010005442

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849395

Country of ref document: EP

Kind code of ref document: A1