WO2022158856A1 - 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차 - Google Patents

서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2022158856A1
WO2022158856A1 PCT/KR2022/001004 KR2022001004W WO2022158856A1 WO 2022158856 A1 WO2022158856 A1 WO 2022158856A1 KR 2022001004 W KR2022001004 W KR 2022001004W WO 2022158856 A1 WO2022158856 A1 WO 2022158856A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sub
current collecting
solder
collecting plate
Prior art date
Application number
PCT/KR2022/001004
Other languages
English (en)
French (fr)
Inventor
최수지
황보광수
김도균
민건우
조민기
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22742832.3A priority Critical patent/EP4254643A1/en
Priority to US18/270,971 priority patent/US20240063423A1/en
Priority to JP2023529993A priority patent/JP2023550097A/ja
Priority to CN202280008278.6A priority patent/CN116636058A/zh
Publication of WO2022158856A1 publication Critical patent/WO2022158856A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sub-cell and a method for manufacturing the same, and to a battery pack and a vehicle including the sub-cell. More specifically, the present invention provides a method to prevent welding spatter from occurring by allowing welding to be performed at a temperature lower than the melting point of a base material during welding for electrical connection between the uncoated region of the electrode assembly and the current collecting plate. It relates to a sub-cell having a structure that In addition, the present invention relates to a method of manufacturing such a sub-cell, a cylindrical secondary battery including the sub-cell, and a battery pack and a vehicle including the cylindrical secondary battery.
  • an uncoated region (electrode tab) provided in a jelly-roll type electrode assembly accommodated in a battery can is coupled to a current collecting plate by welding.
  • laser welding may be used as a welding technique used in manufacturing the sub-cell including the electrode assembly and the current collecting plate.
  • welding In order to couple the current collector plate and the uncoated region through laser welding, welding must be performed at a temperature equal to or higher than the melting point of the base material of the current collecting plate placed on the electrode assembly so that a portion of the current collecting plate is melted and combined with the uncoated region.
  • the current collecting plate for example, an aluminum plate may be used, and in addition, a copper plate may be used.
  • a welding method in which a conventional current collector plate made of such aluminum or copper material is directly melted and joined to the uncoated region, welding has no choice but to proceed by irradiating a laser with very high energy due to the high melting point of aluminum or copper. .
  • welding spatter is generated.
  • the welding spatter remains as a metal foreign material inside the electrode assembly, and may cause a micro-short due to unnecessary electrical connection between the electrodes.
  • Such a micro-short is a factor that may have a negative effect, such as deterioration of the performance and safety of the cylindrical secondary battery.
  • the present invention was devised in consideration of the above-described problems, and an object of the present invention is to prevent welding spatter from occurring during laser welding for bonding between an electrode assembly constituting a cylindrical secondary battery and a current collecting plate.
  • the present invention in another aspect, in the case of electrically connecting a plurality of cylindrical secondary batteries in one direction, the present invention enables the wide surface of the closed part of the battery can to be used as an electrode terminal, such as a bus bar for manufacturing a battery pack.
  • An object of the present invention is to secure a sufficient area for welding an electrical connection part and an electrode terminal of a cylindrical secondary battery.
  • a sub-cell according to an embodiment of the present invention for solving the above-described problems includes: a jelly-roll type electrode assembly having an electrode tab; a current collecting plate coupled to one side of the electrode assembly and electrically connected to the electrode tab; and solder interposed between the electrode tab and the current collecting plate to couple the electrode tab and the current collecting plate, and having a lower melting point compared to the electrode tab and the current collecting plate.
  • the solder may be interposed between the electrode tabs adjacent to each other due to penetration due to capillary action during melting by welding.
  • the penetration distance of the solder may be shorter than an extension length of the electrode tab.
  • the electrode tab may have a longitudinal end bent in a direction parallel to the current collecting plate, and the solder may be interposed between the current collecting plate and a plane formed by the bending of the electrode tab.
  • a distance through which the solder penetrates between the electrode tabs adjacent to each other may gradually become shorter from the outer circumferential surface of the electrode assembly toward the winding center.
  • the current collecting plate may include a plurality of sub-plates extending radially from the center and spaced apart from each other.
  • the sub-plate may have a shape in which the width of the sub-plate becomes narrower from the outer circumferential surface of the electrode assembly toward the winding center.
  • the solder may have a shape in which the width becomes narrower from the outer circumferential surface of the electrode assembly toward the winding center.
  • the electrode assembly may have a structure in which a first electrode and a second electrode and a separator interposed therebetween are wound in one direction, and the first electrode and the second electrode are each not coated with an active material at their long side ends.
  • a first uncoated region and a second uncoated region exposed to the outside of the separator may be provided.
  • At least one of the first uncoated region and the second uncoated region may function as the electrode tab.
  • the uncoated region of at least one of the first uncoated region and the second uncoated region may include a plurality of segment segments divided along a winding direction of the electrode assembly, wherein the plurality of segment segments extend in a radial direction of the electrode assembly. It can be banded along.
  • the plurality of bent fragments may be overlapped in multiple layers along the radial direction.
  • the electrode assembly may include a welding target region that is a region in which the number of overlapping segments of the segment provided in the uncoated region is kept constant along a radial direction of the electrode assembly.
  • the current collecting plate may be coupled to the uncoated region in the welding target area.
  • a method of manufacturing a sub-cell according to an embodiment of the present invention includes: (S1) preparing a jelly-roll type electrode assembly; (S2) providing a current collecting plate having a solder formed thereon; (S3) seating the current collecting plate on the electrode assembly; and (S4) performing welding such that the solder is melted so that the electrode tab of the electrode assembly and the current collecting plate are mutually coupled, and welding is performed at a temperature lower than the melting point of the electrode tab and the melting point of the current collecting plate; includes
  • the step (S4) may be a step of melting the solder so that the solder penetrates between the electrode tabs adjacent to each other by a capillary phenomenon.
  • the step (S2) may include adjusting the thickness of the solder formed on one surface of the current collecting plate so that the penetration distance of the solder is formed more salty than the extension length of the electrode tab.
  • the thickness of the solder formed on one surface of the current collecting plate is adjusted so that the distance through which the solder penetrates between the electrode tabs adjacent to each other becomes shorter and shorter from the outer circumferential surface of the electrode assembly toward the winding center.
  • a cylindrical secondary battery according to an embodiment of the present invention includes a sub-cell according to an embodiment of the present invention; and a battery can accommodating the sub-cell through an opening provided on one side and electrically connected to the electrode assembly; includes
  • the cylindrical secondary battery may further include a terminal electrically connected to the electrode assembly, having a polarity opposite to that of the battery can, and insulated from the battery can.
  • the terminal may be exposed to the outside through a closing portion provided opposite to the open portion of the battery can.
  • the cylindrical secondary battery may further include a cap plate sealing the opening.
  • the cap plate may not have a polarity.
  • a battery pack according to an embodiment of the present invention includes a plurality of cylindrical secondary batteries according to an embodiment of the present invention and a pack housing accommodating them.
  • each of the plurality of cylindrical secondary batteries may include a terminal electrically connected to the electrode assembly, having a polarity opposite to that of the battery can, and insulated from the battery can.
  • the outer surface of the closing part of the battery can of each of the plurality of cylindrical secondary batteries and the terminal of the battery can may be disposed to face the same direction.
  • the battery pack may include a plurality of bus bars connecting the plurality of cylindrical secondary batteries in series and in parallel.
  • the plurality of bus bars may be disposed on the plurality of cylindrical secondary batteries.
  • each of the bus bars may include a body portion extending between terminals of adjacent cylindrical secondary batteries; a plurality of first bus bar terminals extending in one direction of the body part and electrically coupled to terminals of the cylindrical secondary battery located in the one direction; and a plurality of second bus bar terminals extending in the other direction of the body part and electrically coupled to the outer surface of the closing part of the cylindrical secondary battery positioned in the other direction.
  • a vehicle according to an embodiment of the present invention includes a battery pack according to an embodiment of the present invention.
  • welding spatter does not occur in performing laser welding for bonding between the electrode assembly and the current collecting plate constituting the cylindrical secondary battery, and thus the performance degradation of the cylindrical secondary battery can be prevented. And, it is possible to prevent the safety of the cylindrical secondary battery from being impaired.
  • electrical wiring for serial and/or parallel connection of the cylindrical secondary battery may be performed on one side of the cylindrical secondary battery.
  • the wide surface of the closing part of the battery can be used as an electrode terminal, thereby making it possible to use a bus for manufacturing a battery pack It is possible to secure a sufficient area for welding electrical connection parts such as bars and electrode terminals of the cylindrical secondary battery.
  • 1 to 3 are diagrams illustrating sub-cells according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a current collecting plate for manufacturing a sub-cell according to an embodiment of the present invention and solder formed on one surface thereof.
  • FIG. 5 is a diagram illustrating a sub-cell according to another embodiment of the present invention.
  • FIG. 6 is a view illustrating a current collecting plate for manufacturing a sub-cell and solder formed on one surface thereof according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a sub-cell according to another embodiment of the present invention.
  • FIG. 8 is a view illustrating a current collecting plate for manufacturing a sub-cell and solder formed on one surface thereof according to another embodiment of the present invention.
  • FIG. 9 is a plan view illustrating an electrode structure according to a preferred embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the longitudinal direction (Y) of an electrode assembly in which the uncoated segmental structure of the first electrode is also applied to the second electrode according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along the longitudinal direction (Y) of the electrode assembly in which the uncoated region is bent according to an embodiment of the present invention.
  • FIG. 12 is a perspective view of an electrode assembly in which an uncoated region is bent according to an embodiment of the present invention.
  • FIG. 13 is a view showing the appearance of a cylindrical secondary battery according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating an internal structure of a cylindrical secondary battery according to an embodiment of the present invention.
  • FIG. 15 is a top plan view showing a state in which a plurality of cylindrical secondary batteries according to an embodiment of the present invention are connected in series and in parallel using a bus bar.
  • 16 is a schematic diagram illustrating a battery pack according to an embodiment of the present invention.
  • 17 is a conceptual diagram illustrating a vehicle according to an embodiment of the present invention.
  • a sub cell 1 includes an electrode assembly 10 , a current collecting plate (first current collecting plate) 20 , and an electrode assembly. Solder (S) for coupling the (10) and the current collecting plate (20) is included.
  • the sub-cell 1 may further include a current collecting plate (second current collecting plate) 60 in addition to the current collecting plate (first current collecting plate) 20 .
  • the electrode assembly 10 includes a first electrode having a first polarity, a second electrode having a second polarity, and a separator interposed between the first electrode and the second electrode.
  • the electrode assembly 10 may be a jelly-roll type electrode assembly. That is, the electrode assembly 10 may be manufactured by winding a stack formed by sequentially stacking a first electrode, a separator, and a second electrode at least once based on the winding center C as a reference. In this case, a separator may be provided on the outer peripheral surface of the electrode assembly 10 to insulate it from the battery can 30 (see FIGS. 13 and 14 ).
  • the first electrode is an anode or a cathode
  • the second electrode corresponds to an electrode having a polarity opposite to that of the first electrode.
  • the first electrode includes a first electrode current collector and a first electrode active material coated on one or both surfaces of the first electrode current collector.
  • An uncoated region to which the first electrode active material is not applied is present at one end of the first electrode current collector in the width direction (parallel to the Z-axis).
  • the uncoated region functions as the first electrode tab 11 .
  • the first electrode tab 11 may be a positive electrode tab or a negative electrode tab.
  • the second electrode includes a second electrode current collector and a second electrode active material coated on one or both surfaces of the second electrode current collector.
  • An uncoated region to which the second electrode active material is not applied is provided at the other end of the second electrode current collector in the width direction (parallel to the Z-axis).
  • the uncoated region functions as the second electrode tab 12 .
  • the second electrode tab 12 has a polarity opposite to that of the first electrode tab 11 .
  • the first electrode tab 11 and the second electrode tab 12 may extend in opposite directions.
  • the present invention is not limited thereto. That is, either one of the first current collecting plate 20 and the second current collecting plate 60 may not be provided.
  • the coupling structure of the first current collecting plate 20 and the first electrode tab 11 is illustrated in FIGS. 1 to 3 and FIG. 7 of the present invention, this is only exemplary and for convenience of explanation. only for this purpose, and the coupling structure shown in these drawings is for coupling of the first current collecting plate 20 and the first electrode tab 11 and/or the coupling of the second current collecting plate 60 and the second electrode tab 12 . that can be applied.
  • the current collecting plate 20 is coupled to one side in the height direction (parallel to the Z axis) of the electrode assembly 10 .
  • the current collecting plate 20 is made of a conductive metal material, and is electrically connected to the first electrode tab 11 .
  • the current collecting plate 20 may include a tab coupling portion coupled to the first electrode tab 11 .
  • the current collecting plate 20 may include a terminal coupling portion coupled to a component capable of functioning as an electrode terminal in the cylindrical secondary battery.
  • the current collecting plate (first current collecting plate) 20 may include, for example, a plurality of sub-plates 20 radially extending from the center.
  • the sub-plates 20 may function as tab coupling parts.
  • the plurality of sub-plates 20 may be disposed to be spaced apart from each other. This is because when the current collecting plate 20 is coupled to the upper or lower portion of the electrode assembly 10, the current collecting plate 20 only partially covers the upper surface or the lower surface of the electrode assembly 10, thereby impregnating the electrolyte during injection. This is to improve the efficiency, and also to secure the ease of gas discharge when gas is generated inside the electrode assembly 10 .
  • the current collecting plate 20 may further include a lead plate 22 .
  • the lead plate 22 may function as a terminal coupling part.
  • the current collecting plate 20 may not include the lead plate 22 , and in this case, for example, the central portion of the current collecting plate 20 may function as a terminal coupling portion.
  • the current collecting plate (second current collecting plate) 60 is coupled to the other side in the height direction (parallel to the Z axis) of the electrode assembly 10 .
  • the current collecting plate 60 is made of a conductive metal material and is electrically connected to the second electrode tab 12 .
  • the current collecting plate (second current collecting plate) 60 may include a tab coupling portion coupled to the second electrode tab 12 .
  • the current collecting plate 20 may include a terminal coupling portion coupled to a component capable of functioning as an electrode terminal in the cylindrical secondary battery.
  • the solder S is interposed between the electrode tab 11 and the current collecting plate 20 to couple the electrode tab 11 and the current collecting plate 20 .
  • the solder S is made of a metal material having a lower melting point than that of the electrode tab 11 and the current collecting plate 20 . This is to lower the welding temperature by forming the melting point of the solder S lower than the melting point of the base material, thereby preventing welding spatter from occurring during welding.
  • the solder S may be provided in a soldering type or a brazing type.
  • the soldering type means providing the solder S by applying a solder paste having a low melting point on one surface of the current collecting plate 20 .
  • the brazing type means that the current collecting plate 20 and the solder S are integrally provided by cladding an alloy layer having a low melting point on one surface of the current collecting plate 20 .
  • soldering type for example, a ternary alloy including Sn, Ag, and Bi may be used as the solder (S).
  • solder S may have a melting point of approximately 290 degrees.
  • brazing type for example, an Al 40-based alloy (to lower the melting point by adding silicon to Al) may be used as the solder (S). In this case, the solder S may have a melting point of approximately 510 degrees.
  • the electrode tab 11 corresponds to a region in which the electrode active material is not applied among the electrode current collectors made of foil. Accordingly, the electrode tab 11 may be made of copper or aluminum.
  • the current collecting plate 20 may also be a plate made of aluminum or copper. In both the soldering type and the brazing type, the alloy constituting the solder S has a sufficiently low melting point compared to aluminum and copper, which are metals commonly used for the electrode tab 11 and the current collector plate 20 .
  • a plurality of electrode tabs 11 spaced apart from each other extend side by side to one side of the electrode assembly 10, and the solder S is adjacent to each other due to penetration due to capillary action during melting by welding. It is interposed between (11).
  • the gap between the electrode tabs 11 adjacent to each other is shown to be sufficiently wide in order to show the shape in which the solder S is interposed, but in reality, between adjacent electrodes in a jelly-roll type electrode assembly. And only a very fine gap exists between the electrode tabs 11 adjacent to each other. Therefore, the solder S temporarily melted by welding penetrates into the gap between the adjacent electrode tabs 11 due to the capillary phenomenon.
  • the solder S comes into contact with the electrode active material formed on the electrode current collector.
  • the electrode active material may be damaged, and the electrodes of opposite polarities adjacent to each other may be electrically connected to each other, resulting in a short circuit. Accordingly, the distance D through which the solder S penetrates between the adjacent electrode tabs 11 is shorter than the extended length L of the electrode tab 11 .
  • the thickness T of the solder S formed on the current collecting plate 20 is greater than the extension length L of the electrode tab 11 , the solder S is adjacent to the electrode tab by welding. (11) is adjusted so that the penetrating distance (D) can be formed shorter.
  • the electrode tab 11 has a longitudinal end bent in a direction parallel to the current collecting plate 20 (parallel to the X-axis).
  • the solder S is interposed between the current collecting plate and the plane formed by the bending of the electrode tab 11 .
  • the electrode tab 11 has a bent shape, the space occupied by the electrode tab 11 may be reduced, thereby improving energy density.
  • the sub-cell 1 according to another embodiment of the present invention shown in FIG. 5 is different from the embodiment shown in FIG. 2 in the penetration form of the solder S, and other elements are substantially same. Therefore, in describing the sub-cell 1 according to another embodiment of the present invention, the description overlapping with the previous embodiment will be omitted, and the penetration shape of the solder S will be intensively described.
  • the solder S penetrates according to a capillary phenomenon and is interposed between the electrode tabs 11 adjacent to each other.
  • the distances D1 and D2 through which the solder S penetrates are gradually shorter from the outer circumferential surface of the electrode assembly 10 toward the winding center C. That is, the distance D1 is formed to be longer than the distance D2, and the penetration distance of the solder S decreases approximately constantly from D1 to D2.
  • the penetration distance of the solder S is differentially formed, variations in electrical resistance and calorific value over the entire bonding area between the electrode tab 11 and the solder S can be minimized.
  • the area of the electrode wound in a single circle increases as the distance from the winding center C increases.
  • the area of the electrode in contact with the solder (S) region located far from the winding center (C) becomes larger than the area of the electrode in contact with the solder (S) region located close to the winding center (C). Therefore, it is advantageous that the area in contact with the electrode is relatively larger in the area of the solder (S) located far from the winding center (C) compared to the area of the solder (S) located close to the center of the winding (C).
  • the thickness (T1, T2) of the solder (S) formed on the current collecting plate (20) is the distance through which the solder (S) penetrates between the electrode tabs 11 by welding ( D1 and D2 are adjusted to be formed shorter and shorter from the outer circumferential surface of the electrode assembly 10 toward the winding center C. That is, the thickness ( T1 , T2 ) of the solder S formed on one surface of the current collecting plate 20 before welding is gradually decreased from the outside to the center of the current collecting plate 20 . That is, the thickness T1 is formed to be larger than the thickness T2, and the thickness of the solder S decreases approximately constantly from T1 to T2.
  • the sub-cell 1 according to another embodiment of the present invention shown in FIG. 7 has only a difference in the shape of the current collecting plate 20 compared to the previous embodiments, and other elements are substantially the same. . Therefore, in describing the sub-cell 1 according to another embodiment of the present invention, a description overlapping with the previous embodiments will be omitted, and the shape of the current collecting plate 20 and the shape of the solder S accordingly. will be focused on.
  • the sub-plate 21 of the current collecting plate 20 has a shape in which the width becomes narrower from the outer circumferential surface of the electrode assembly 10 toward the winding center. Accordingly, the solder S formed on one surface of the sub-plate 21 also has a shape in which the width becomes narrower from the outer circumferential surface of the electrode assembly 10 toward the winding center.
  • This structure is for obtaining the same advantages as those of the structure shown in FIG. 5 .
  • the structure of the sub-cell 1 shown in FIGS. 7 and 8 is combined with the structure of the sub-cell 1 shown in FIGS. 5 and 6, so that the entire junction area of the electrode tab 11 and the solder S is It is possible to further reduce the variation in electrical resistance and calorific value.
  • the first electrode 110 includes a first electrode current collector 111 having a substantially sheet shape made of a conductive foil, and at least one surface of the first electrode current collector 111 .
  • the formed first active material layer 112 , the first active material layer 112 formed on at least one surface of the first electrode current collector 111 , and the long side end of the first electrode current collector 111 are not coated with an active material and a first uncoated region (first electrode tab) 11 formed by
  • the first uncoated region 11 may include a plurality of notched fragments 11a.
  • the plurality of segment pieces 11a form a plurality of groups, and the segment pieces 11a belonging to each group may have the same height (length in the Z direction) and/or width (length in the X direction) and/or the spacing pitch.
  • the number of segments 11a belonging to each group may be increased or decreased than illustrated.
  • the segment 11a has a geometric shape in which at least one straight line and/or at least one curved line are combined.
  • the segment 11a may have a trapezoidal shape, and may be deformed into a quadrangle, a parallelogram, a semicircle, or a semiellipse.
  • the height of the segment 11a may be increased step by step along one direction parallel to the winding direction of the electrode assembly 10 , for example, from the core side to the outer circumferential side.
  • the core-side uncoated region 11-1 adjacent to the core side of the electrode assembly 10 may not include the segment 11a, and the height of the core-side uncoated region 11-1 may be different from that of the other region. may be lower than wealth.
  • the outer uncoated region 11 - 2 adjacent to the outer periphery of the electrode assembly 10 may not include the segment 11a , and the height of the outer uncoated region 11 - 2 is different from that of the uncoated region. may be lower.
  • the first electrode 110 may include an insulating coating layer E covering the boundary between the active material layer 112 and the first uncoated region 11 .
  • the insulating coating layer (E) includes an insulating polymer resin, and may optionally further include an inorganic filler.
  • the insulating coating layer (E) prevents the end of the active material layer 112 from contacting the opposite polarity active material layer through the separator, and structurally supports the bending of the fragment 11a. .
  • a pattern in which the height of the uncoated regions 11 and 12 changes is schematically illustrated. That is, the heights of the uncoated areas 11 and 12 may vary irregularly depending on the position at which the cross-section is cut. For example, when the side portion of the trapezoidal segment 11a is cut, the height of the uncoated region in the cross section is lower than the height of the segment 11a. Accordingly, it should be understood that the heights of the uncoated areas 11 and 12 shown in the drawing showing the cross-section of the electrode assembly 10 correspond to the average of the heights of the uncoated areas included in each winding turn.
  • the uncoated regions 11 and 12 may be bent along the radial direction of the electrode assembly 10 , for example, from the outer periphery to the core.
  • a region where bending occurs is indicated by a dotted line box in FIG. 10 .
  • the curved surfaces 102 are formed on the upper and lower portions of the electrode assembly 10 as the radially adjacent segments overlap in multiple layers.
  • the core-side uncoated region 11-1 in FIG. 9 is not bent due to its low height, and the height h of the innermost bent segment 11a is the core-side uncoated region 11 without the segment structure.
  • the hole formed in the core of the electrode assembly 10, that is, the winding center C is not closed. If the hole is not closed, there is no difficulty in the electrolyte injection process, and the electrolyte injection efficiency may be improved. In addition, by inserting a welding tool through the hole, it is possible to easily perform welding of the terminal 40 and the current collecting plate 20 (refer to FIG. 14 ).
  • the first electrode tab (first uncoated region) 11 and/or the second electrode tab (second uncoated region) 12 are respectively provided.
  • the electrode assembly 10 has a structure in which the number of overlapping layers of the fragments is in the radial direction. It may be provided with a welding target area, which is an area maintained substantially constant along the . In this region, the number of overlapping layers is maintained approximately at a maximum.
  • the welding between the current collecting plate 20 , 60 and the electrode tabs 11 , 12 may be performed within this region.
  • This is, for example, in the case of applying laser welding, to prevent the laser beam from penetrating the electrode tabs 11 and 12 and damaging the electrode assembly 10 when the output of the laser is increased to improve welding quality. it is for In addition, this is to effectively prevent foreign substances such as welding spatter from being introduced into the electrode assembly 10 .
  • the step (S1) is a step of preparing a jelly-roll type electrode assembly 10 by winding a laminate including an electrode and a separator.
  • the step (S2) is a step of providing the current collecting plate 20 on which the solder S is formed on one surface.
  • the step (S2) includes applying a solder paste on the current collecting plate 20 or cladding an alloy layer on one surface of the current collecting plate 20 .
  • the solder (S) formed on one surface of the current collecting plate 20 so that the penetration distance of the solder S is shorter than the extension length of the electrode tab 11 when the step (S4) is performed. It may further include the step of adjusting the thickness of S) (see FIGS. 2 and 4). In the step (S2), the distance at which the solder S penetrates between the electrode tabs 11 adjacent to each other becomes shorter and shorter from the outer circumferential surface of the electrode assembly 10 toward the winding center C of the current collecting plate 20. The method may further include adjusting the thickness of the solder S formed on one surface (see FIGS. 5 and 6 ).
  • the solder S is melted and welding is performed so that the electrode tab 11 of the electrode assembly 10 and the current collecting plate 20 are coupled to each other.
  • the step (S4) is a step of performing welding at a temperature lower than the melting points of the current collecting plate 20 and the electrode tab 11 .
  • the welding may be, for example, laser welding.
  • the step (S4) is a step of melting the solder S so that the solder S penetrates between the electrode tabs 11 adjacent to each other by capillary action (refer to FIGS. 2 and 5).
  • the cylindrical secondary battery 2 according to an embodiment of the present invention includes a sub-cell 1 according to an embodiment of the present invention and a battery can 30 accommodating the same.
  • the cylindrical secondary battery 2 further includes a terminal 40 electrically connected to the electrode assembly 10 and/or a cap 50 closing an opening formed on one side of the battery can 30 . can do.
  • the battery can 30 is a substantially cylindrical container having an opening on one side, and is made of, for example, a conductive material such as metal.
  • the battery can 30 may have a closing part located opposite to the opening part, and the outer surface 30a of the closing part may have a substantially flat shape.
  • the battery can 30 accommodates the electrode assembly 10 through the opening, and also accommodates the electrolyte.
  • the battery can 30 may include a beading part 31 and a crimping part 32 formed adjacent to the opening side.
  • the beading part 31 is formed by press-fitting the outer peripheral surface of the battery can 30 .
  • the beading part 31 may function as a fixing part that prevents the electrode assembly 10 accommodated in the battery can 30 from being separated toward the opening part.
  • the crimping part 32 is formed under the beading part 31 when viewed with reference to FIGS. 13 and 14 .
  • the crimping part 32 has a shape extended and bent from the beading part 31 so as to surround the outer peripheral surface of the cap 50 and a portion of the lower surface of the cap 50 .
  • a sealing gasket G2 may be provided in the region where the crimping part 32 is formed.
  • the sealing gasket G2 may be interposed between the inner surface of the battery can 30 and the cap 50 .
  • the battery can 30 may be electrically connected to the second electrode tab 12 of the electrode assembly 10 . Electrical connection between the battery can 30 and the second electrode tab 12 may be made through a current collecting plate (second current collecting plate) 60 .
  • the terminal coupling portion of the current collecting plate 60 may be electrically coupled to, for example, a sidewall of the battery can 30 .
  • the present invention is not limited thereto, and the second electrode tab 12 may be directly coupled to the battery can 30 .
  • the terminal 40 is electrically connected to the first electrode tab 11 .
  • the connection between the terminal 40 and the first electrode tab 11 may be made through a current collecting plate (first current collecting plate) 20 .
  • the terminal 40 may be coupled to a terminal coupling portion of the current collecting plate 20 , and may be exposed to the outside through an approximately central portion of the closing portion of the battery can 30 .
  • An insulating gasket (G1) may be interposed between the (40).
  • the cap 50 seals the opening formed on one side of the battery can 30 .
  • the cap 50 may not have a polarity even if it is made of a conductive metal material. That the cap 50 has no polarity means that the cap 50 is not electrically connected to the electrode assembly 10 .
  • the cap 50 does not function as an electrode terminal. That is, in the present invention, the cap 50 does not necessarily need to be electrically connected to the electrode assembly 10 and the battery can 30 , and the material does not necessarily have to be a conductive metal.
  • the terminal 40 and the first electrode terminal are electrically connected to the first electrode tab 11 to function as a first electrode terminal.
  • the outer surface 30a of the closing part of the battery can 30 that is electrically connected to the second electrode tab 12 and can function as a second electrode terminal is located in the same direction. According to this structure, the operation of electrically connecting the cylindrical secondary batteries 2 using a bus bar can be facilitated.
  • the plurality of cylindrical secondary batteries 2 are electrically connected to each other.
  • An example is shown.
  • the plurality of cylindrical secondary batteries 2 may be connected in series and in parallel at the top of the cylindrical secondary battery 2 using a bus bar 150 .
  • the number of cylindrical secondary batteries 2 may be increased or decreased in consideration of the capacity of the battery pack.
  • the terminal 40 may have a positive polarity and the outer surface 30a of the closed portion of the battery can 30 may have a negative polarity.
  • the reverse is also possible.
  • the plurality of cylindrical secondary batteries 2 may be arranged in a plurality of columns and rows. 15 , columns are in a vertical direction, and rows are in a left-right direction.
  • the cylindrical secondary batteries 2 may be arranged in a closest packing structure. The tightest packing structure is formed when an equilateral triangle is formed when the centers of the upper surfaces of each of the terminals 40 exposed to the outside of the battery can 30 are connected to each other.
  • the bus bar 150 may be disposed above the plurality of cylindrical secondary batteries 2 , more preferably between adjacent rows. Alternatively, the bus bars 150 may be disposed between adjacent rows.
  • the bus bar 150 connects the cylindrical secondary batteries 2 arranged in the same row in parallel with each other, and connects the cylindrical secondary batteries 2 arranged in two adjacent rows in series with each other.
  • the bus bar 150 may include a body portion 151 , a plurality of first bus bar terminals 152 , and a plurality of second bus bar terminals 153 for serial and parallel connection.
  • the body part 151 may extend between terminals 40 of adjacent cylindrical secondary batteries 2 , preferably between rows of cylindrical secondary batteries 2 . Alternatively, the body part 151 may extend along a row of cylindrical secondary batteries 2 and may be regularly bent like a zigzag shape.
  • the plurality of first bus bar terminals 152 may protrude from one side of the body portion 151 toward the terminal 40 of each cylindrical secondary battery 2 , and may be electrically coupled to the terminal 40 . Electrical coupling between the first bus bar terminal 152 and the terminal 40 may be performed by laser welding, ultrasonic welding, or the like.
  • the plurality of second bus bar terminals 153 may be electrically coupled to the outer surface 20a of each cylindrical secondary battery 2 from the other side of the body portion 151 . The electrical coupling between the second bus bar terminal 153 and the outer surface 20a may be performed by laser welding, ultrasonic welding, or the like.
  • the body portion 151, the plurality of first bus bar terminals 152 and the plurality of second bus bar terminals 153 may be formed of one conductive metal plate.
  • the metal plate may be, for example, an aluminum plate or a copper plate, but the present invention is not limited thereto.
  • the body portion 151, the plurality of first bus bar terminals 152 and the second bus bar terminals 153 may be manufactured as separate pieces and then coupled to each other through welding or the like.
  • the terminal 40 having a positive polarity and the outer surface 20a of the closing part of the battery can 30 having a negative polarity are located in the same direction, the bus bar 150 ), it is possible to easily implement the electrical connection of the cylindrical secondary batteries (2).
  • the coupling area of the bus bar 150 can be sufficiently secured, thereby providing a cylindrical secondary battery.
  • the resistance of the battery pack including the cell 2 can be sufficiently lowered.
  • a battery pack 4 includes a secondary battery assembly in which a plurality of cylindrical secondary batteries 2 according to an embodiment of the present invention as described above are electrically connected, and the same. and a pack housing (3) for accommodating it.
  • components such as a bus bar and a power terminal for electrical connection are omitted for convenience of illustration.
  • a specific example of the electrical connection structure of the plurality of cylindrical secondary batteries 2 is as described above with reference to FIG. 15 .
  • a vehicle 5 may be, for example, an electric vehicle, and includes a battery pack 4 according to an embodiment of the present invention.
  • the vehicle 5 operates by receiving power from the battery pack 4 according to an embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 서브 셀은, 전극 탭을 구비하는 젤리-롤 타입의 전극 조립체; 상기 전극 조립체의 일 측에 결합되며 상기 전극 탭과 전기적으로 연결되는 집전 플레이트; 및 상기 전극 탭과 상기 집전 플레이트 사이에 개재되어 상기 전극 탭과 집전 플레이트를 결합시키며, 상기 전극 탭 및 집전 플레이트와 비교하여 더 낮은 융점을 갖는 솔더; 를 포함한다.

Description

서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차
본 발명은, 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 배터리 팩 및 자동차에 관한 것이다. 좀 더 구체적으로는, 본 발명은 전극 조립체의 무지부와 집전 플레이트 간의 전기적 연결을 위한 용접 시에 모재의 융점보다 낮은 온도에서 용접이 수행될 수 있도록 함으로써 용접 스패터가 발생하는 것을 방지할 수 있도록 하는 구조를 갖는 서브 셀에 관한 것이다. 또한, 본 발명은 이러한 서브 셀의 제조 방법, 그리고 이러한 서브 셀을 포함하는 원통형 이차전지, 그리고 이러한 원통형 이차전지를 포함하는 배터리 팩 및 자동차에 관한 것이다.
본 출원은, 2021년1월19일자로 출원된 한국 특허출원 번호 제10-2021-0007282호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
원통형 이차전지에 있어서, 전지 캔 내에 수용되는 젤리-롤(jelly-roll) 타입의 전극 조립체에 구비된 무지부(전극 탭)는 용접에 의해 집전 플레이트와 결합된다. 이처럼 전극 조립체 및 집전 플레이트를 포함하는 서브 셀을 제조함에 있어서 이용되는 용접 기술로는 레이저 용접이 이용될 수 있다.
레이저 용접을 통해 집전 플레이트와 무지부를 결합시키기 위해서는, 전극 조립체 상에 놓여진 집전 플레이트의 모재의 융점 이상의 온도로 용접이 진행되어야 집전 플레이트의 일부가 용융되어 무지부와 결합될 수 있다.
집전 플레이트로는, 예를 들어 알루미늄 재질의 플레이트가 이용될 수 있으며 그 밖에 구리 재질의 플레이트도 이용되는 경우가 있다. 그러나, 이러한 알루미늄이나 구리 재질로 이루어진 통상적인 집전 플레이트를 직접 용융시켜 무지부와 접합시키는 용접 방식의 경우, 알루미늄이나 구리의 높은 융점으로 인해 매우 큰 에너지를 갖는 레이저를 조사하여 용접이 진행될 수 밖에 없다.
이처럼, 용접을 위해 조사되는 레이저의 에너지가 매우 높고 레이저가 직접 조사되는 대상물인 집전 플레이트의 융점 이상에서 용접이 이루어지는 경우, 용접 스패터(spatter)가 발생된다. 용접 스패터는, 전극 조립체 내부에 금속 이물질로서 잔존하게 되며, 전극 간의 불필요한 전기적 연결에 의한 미세 쇼트(short)를 발생시킬 수 있다. 이러한 미세 쇼트는, 원통형 이차전지의 성능 저하 및 안전성의 저해 등의 부정적 영향을 미칠 수 있는 요소이다.
따라서, 원통형 이차전지를 구성하는 전극 조립체 및 집전 플레이트 간의 결합을 위한 레이저 용접을 수행함에 있어서 이러한 용접 스패터가 발생하지 않도록 하는 구조를 갖는 서브 셀 및 이러한 서브 셀을 제조 방법을 개발하는 것이 요구된다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 원통형 이차전지를 구성하는 전극 조립체 및 집전 플레이트 간의 결합을 위한 레이저 용접을 수행함에 있어서 용접 스패터가 발생하지 않도록 하는 것을 목적으로 한다.
다른 측면에서, 본 발명은, 일 방향에서 복수의 원통형 이차전지를 전기적으로 연결하고자 하는 경우에 있어서, 전지 캔의 폐쇄부의 넓은 면을 전극 단자로 활용할 수 있도록 함으로써 배터리 팩 제조를 위한 버스바 등의 전기적 연결 부품과 원통형 이차전지의 전극 단자가 용접될 수 있는 충분한 면적을 확보하는 것을 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 서브 셀은, 전극 탭을 구비하는 젤리-롤 타입의 전극 조립체; 상기 전극 조립체의 일 측에 결합되며 상기 전극 탭과 전기적으로 연결되는 집전 플레이트; 및 상기 전극 탭과 상기 집전 플레이트 사이에 개재되어 상기 전극 탭과 집전 플레이트를 결합시키며, 상기 전극 탭 및 집전 플레이트와 비교하여 더 낮은 융점을 갖는 솔더; 를 포함한다.
상기 솔더는, 용접에 의한 용융 시 모세관 현상에 따른 침투로 인해 서로 인접한 전극 탭 사이에 개재될 수 있다.
상기 솔더의 침투 거리는, 상기 전극 탭의 연장 길이보다 짧게 형성될 수 있다.
상기 전극 탭은 그 길이 방향 단부가 상기 집전 플레이트와 나란한 방향으로 절곡된 형태를 가질 수 있고, 상기 솔더는 상기 전극 탭의 절곡에 의해 형성된 평면과 집전 플레이트 사이에 개재될 수 있다.
상기 솔더가 서로 인접한 전극 탭 사이로 침투한 거리는, 상기 전극 조립체의 외주면으로부터 권취 중심부를 향할수록 점점 더 짧아질 수 있다.
상기 집전 플레이트는, 중심부로부터 방사상으로 연장되며 상호 이격된 복수의 서브 플레이트를 구비할 수 있다.
상기 서브 플레이트는, 상기 전극 조립체의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 가질 수 있다.
상기 솔더는, 상기 전극 조립체의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 가질 수 있다.
상기 전극 조립체는 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가질 수 있으며, 상기 제1 전극 및 제2 전극은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막의 외부로 노출된 제1 무지부 및 제2 무지부를 구비할 수 있다.
상기 제1 무지부 및 제2 무지부 중 적어도 어느 하나는 상기 전극 탭으로서 기능할 수 있다.
상기 제1 무지부 및 제2 무지부 중 적어도 어느 하나의 무지부는 전극 조립체의 권취 방향을 따라 분할된 복수의 분절편을 포함할 수 있고, 상기 복수의 분절편은, 상기 전극 조립체의 반경 방향을 따라 밴딩될 수 있다.
밴딩된 상기 복수의 분절편은, 상기 반경 방향을 따라서 여러 겹으로 중첩될 수 있다.
상기 전극 조립체는, 상기 무지부에 구비된 상기 분절편의 중첩 수가 상기 전극 조립체의 반경 방향을 따라 일정하게 유지되는 영역인 용접 타겟 영역을 구비할 수 있다.
상기 집전 플레이트는, 상기 용접 타겟 영역 내에서 상기 무지부와 결합될 수 있다.
본 발명의 일 실시예에 따른 서브 셀의 제조 방법은, (S1) 젤리-롤 타입의 전극 조립체를 마련하는 단계; (S2) 일 면 상에 솔더가 형성된 집전 플레이트를 마련하는 단계; (S3) 상기 전극 조립체 상에 상기 집전 플레이트를 안착시키는 단계; 및 (S4) 상기 솔더가 용융되어 상기 전극 조립체의 전극 탭과 상기 집전 플레이트가 상호 결합되도록 용접을 수행하되, 상기 전극 탭의 융점 및 상기 집전 플레이트의 융점보다 더 낮은 온도로 용접을 수행하는 단계; 를 포함한다.
상기 (S4) 단계는, 상기 솔더를 용융시켜 모세관 현상에 의해 서로 인접한 전극 탭 사이로 상기 솔더가 침투하도록 하는 단계일 수 있다.
상기 (S2) 단계는, 상기 솔더의 침투 거리가 상기 전극 탭의 연장 길이보다 더 짭게 형성되도록 상기 집전 플레이트의 일 면 상에 형성되는 상기 솔더의 두께를 조절하는 단계를 포함할 수 있다.
상기 (S2) 단계는, 상기 솔더가 서로 인접한 전극 탭 사이로 침투한 거리가 상기 전극 조립체의 외주면으로부터 권취 중심부를 향할수록 점점 더 짧아지도록 상기 집전 플레이트의 일 면 상에 형성되는 상기 솔더의 두께를 조절하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 원통형 이차전지는, 본 발명의 일 실시예에 따른 서브 셀; 및 일 측에 구비된 개방부를 통해 상기 서브 셀을 수용하고, 상기 전극 조립체와 전기적으로 연결되는 전지 캔; 을 포함한다.
상기 원통형 이차전지는, 상기 전극 조립체와 전기적으로 연결되고, 상기 전지 캔과 반대 극성을 가지며, 상기 전지 캔과 절연되는 단자를 더 포함할 수 있다.
상기 단자는, 상기 전지 캔의 개방부의 반대편에 구비되는 폐쇄부를 통해 외측으로 노출될 수 있다.
상기 원통형 이차전지는, 상기 개방부를 밀폐하는 캡 플레이트를 더 포함할 수 있다.
상기 캡 플레이트는, 극성을 갖지 않을 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 팩은, 본 발명의 일 실시예에 따른 복수의 원통형 이차전지 및 이를 수용하는 팩 하우징을 포함한다.
이 경우, 상기 복수의 원통형 이차전지 각각은, 상기 전극 조립체와 전기적으로 연결되고, 상기 전지 캔과 반대 극성을 가지며, 상기 전지 캔과 절연되는 단자를 포함할 수 있다.
상기 복수의 원통형 이차전지 각각의 상기 전지 캔의 폐쇄부의 외부면과 상기 전지 캔의 상기 단자는 동일한 방향을 향하도록 배치될 수 있다.
상기 배터리 팩은, 복수의 상기 원통형 이차전지를 직렬 및 병렬로 연결하는 복수의 버스바를 포함할 수 있다.
상기 복수의 버스바는, 상기 복수의 원통형 이차전지들의 상부에 배치될 수 있다. 이 경우, 각각의 상기 버스바는, 인접하는 원통형 이차전지들의 단자들 사이에서 연장되는 바디부; 상기 바디부의 일측 방향으로 연장되어 상기 일측 방향에 위치한 원통형 이차전지의 단자에 전기적으로 결합되는 복수의 제1 버스바 단자; 및 상기 바디부의 타측 방향으로 연장되어 상기 타측 방향에 위치한 원통형 이차전지의 상기 폐쇄부의 외부면에 전기적으로 결합되는 복수의 제2 버스바 단자; 를 포함할 수 있다.
본 발명의 일 실시예에 따른 자동차는, 본 발명의 일 실시예에 따른 배터리 팩을 포함한다.
본 발명의 일 측면에 따르면, 원통형 이차전지를 구성하는 전극 조립체 및 집전 플레이트 간의 결합을 위한 레이저 용접을 수행함에 있어서 용접 스패터가 발생하지 않게 되며, 이에 따라 원통형 이차전지의 성능 저하를 방지할 수 있고, 원통형 이차전지 사용 상의 안전성이 저해되는 것을 방지할 수 있다.
본 발명의 다른 측면에 따르면, 원통형 이차전지의 직렬 및/또는 병렬 연결을 위한 전기적 배선 작업을 원통형 이차전지의 한 쪽에서 수행할 수 있다.
본 발명의 또 다른 측면에 따르면, 일 방향에서 복수의 원통형 이차전지를 전기적으로 연결하고자 하는 경우에 있어서, 전지 캔의 폐쇄부의 넓은 면을 전극 단자로 활용할 수 있게 되며, 이로써 배터리 팩 제조를 위한 버스바 등의 전기적 연결 부품과 원통형 이차전지의 전극 단자가 용접될 수 있는 충분한 면적을 확보할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 서브 셀을 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 서브 셀을 제조하기 위한 집전 플레이트 및 그 일 면에 형성된 솔더를 나타내는 도면이다.
도 5는 본 발명의 다른 실시예에 따른 서브 셀을 나타내는 도면이다.
도 6은 본 발명의 다른 실시예에 따른 서브 셀을 제조하기 위한 집전 플레이트 및 그 일 면 상에 형성된 솔더를 나타내는 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 서브 셀을 나타내는 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 서브 셀을 제조하기 위한 집전 플레이트 및 그 일 면 상에 형성된 솔더를 나타내는 도면이다.
도 9는 본 발명의 바람직한 실시예에 따른 전극 구조를 예시적으로 나타낸 평면도이다.
도 10은 본 발명의 실시예에 따른 제1 전극의 무지부 분절구조가 제2 전극에도 적용된 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 11은 본 발명의 실시예에 따라 무지부가 절곡된 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 12는 본 발명의 실시예에 따라 무지부가 절곡된 전극 조립체의 사시도이다.
도 13은 본 발명의 일 실시예에 따른 원통형 이차전지의 외관을 나타내는 도면이다.
도 14는 본 발명의 일 실시예에 따른 원통형 이차전지의 내부 구조를 나타내는 단면도이다.
도 15는 본 발명의 실시예에 따른 복수의 원통형 이차전지를 버스바를 이용하여 직렬 및 병렬로 연결한 모습을 나타낸 상부 평면도이다.
도 16은 본 발명의 일 실시예에 따른 배터리 팩을 나타내는 개략도이다.
도 17은 본 발명의 일 실시예에 따른 자동차를 나타내는 개념도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1 내지 도 3, 그리고 도 13 및 도 14를 참조하면, 본 발명의 일 실시예에 따른 서브 셀(1)은 전극 조립체(10), 집전 플레이트(제1 집전 플레이트)(20) 및 전극 조립체(10)와 집전 플레이트(20)를 결합시키는 솔더(S)를 포함한다. 상기 서브 셀(1)은, 집전 플레이트(제1 집전 플레이트)(20) 외에 집전 플레이트(제2 집전 플레이트)(60)를 더 포함할 수도 있다.
상기 전극 조립체(10)는, 제1 극성을 갖는 제1 전극, 제2 극성을 갖는 제2 전극 및 제1 전극과 제2 전극 사이에 개재되는 분리막을 포함한다. 상기 전극 조립체(10)는, 젤리-롤(jelly-roll) 타입의 전극 조립체일 수 있다. 즉, 상기 전극 조립체(10)는, 제1 전극, 분리막, 제2 전극을 순차적으로 적어도 1회 적층하여 형성된 적층체를 권취 중심부(C)를 기준으로 하여 권취시킴으로써 제조될 수 있다. 이 경우, 상기 전극 조립체(10)의 외주면 상에는 전지 캔(30)(도 13 및 도 14 참조)과의 절연을 위해 분리막이 구비될 수 있다. 상기 제1 전극은 양극 또는 음극이고, 제2 전극은 제1 전극과 반대되는 극성을 갖는 전극에 해당한다.
상기 제1 전극은, 제1 전극 집전체 및 제1 전극 집전체의 일 면 또는 양 면 상에 도포된 제1 전극 활물질을 포함한다. 상기 제1 전극 집전체의 폭 방향(Z축에 나란한 방향) 일 측 단부에는 제1 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 무지부는, 제1 전극 탭(11)으로서 기능한다. 상기 제1 전극 탭(11)은, 양극 탭 또는 음극 탭일 수 있다.
상기 제2 전극은, 제2 전극 집전체 및 제2 전극 집전체의 일 면 또는 양 면 상에 도포된 제2 전극 활물질을 포함한다. 상기 제2 전극 집전체의 폭 방향(Z축에 나란한 방향) 타 측 단부에는 제2 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 무지부는, 제2 전극 탭(12)으로서 기능한다. 상기 제2 전극 탭(12)은, 제1 전극 탭(11)과 반대의 극성을 갖는다.
상기 제1 전극 탭(11) 및 제2 전극 탭(12)은 서로 반대방향으로 연장될 수 있다. 본 발명의 도면에서는, 제1 집전 플레이트(20)와 제2 집전 플레이트(60)와 제2 전극 탭(12)이 모두 구비되는 경우만을 도시하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 즉, 상기 제1 집전 플레이트(20) 및 제2 집전 플레이트(60) 중 어느 하나는 구비되지 않을 수도 있다. 또한, 본 발명의 도 1 내지 도 3, 그리고 도 7에서는 상기 제1 집전 플레이트(20)와 제1 전극 탭(11)의 결합 구조에 대해서만 도시하고 있으나, 이는 예시적인 것일 뿐이고 또한 설명의 편의를 위한 것일 뿐이며, 이들 도면에 도시된 결합 구조는 제1 집전 플레이트(20)와 제1 전극 탭(11)의 결합 및/또는 제2 집전 플레이트(60)와 제2 전극 탭(12)의 결합에 적용될 수 있는 것이다.
도 1 및 도 14를 참조하면, 상기 집전 플레이트(20)는, 전극 조립체(10)의 높이 방향(Z축에 나란한 방향) 일 측에 결합된다. 상기 집전 플레이트(20)는 도전성을 갖는 금속 재질로 이루어지며, 제1 전극 탭(11) 과 전기적으로 연결된다. 상기 집전 플레이트(20)는, 제1 전극 탭(11)과 결합되는 탭 결합부를 포함할 수 있다. 또한, 상기 집전 플레이트(20)는, 원통형 이차전지에 있어서 전극 단자로서 기능할 수 있는 부품과 결합되는 단자 결합부를 포함할 수 있다.
상기 집전 플레이트(제1 집전 플레이트)(20)는, 예를 들어 중심부로부터 방사상으로 연장되는 복수의 서브 플레이트(20)를 구비할 수 있다. 이 경우, 상기 서브 플레이트(20)들은 탭 결합부로서 기능할 수 있다. 상기 복수의 서브 플레이트(20)는 서로 이격되어 배치될 수 있다. 이는, 집전 플레이트(20)가 전극 조립체(10)의 상부 또는 하부에 결합되었을 때, 집전 플레이트(20)가 전극 조립체(10)의 상면 또는 하면을 부분적으로만 가리도록 함으로써 전해질 주입시의 함침성을 향상하고, 또한 전극 조립체(10) 내부에서 가스 발생 시에 가스 배출 용이성을 확보하기 위함이다.
상기 집전 플레이트(20)는, 추가적으로 리드 플레이트(22)를 더 포함할 수 있다. 상기 리드 플레이트(22)는, 단자 결합부로서 기능할 수 있다. 물론, 이와는 달리, 상기 집전 플레이트(20)는 리드 플레이트(22)를 구비하지 않을 수도 있고, 이 경우 예를 들어 집전 플레이트(20)의 중심부가 단자 결합부로서 기능할 수 있다.
상기 집전 플레이트(제2 집전 플레이트)(60)는, 전극 조립체(10)의 높이 방향(Z축에 나란한 방향) 타 측에 결합된다. 상기 집전 플레이트(60)는 도전성을 갖는 금속 재질로 이루어지며, 제2 전극 탭(12)과 전기적으로 연결된다. 상기 집전 플레이트(제2 집전 플레이트)(60)는, 제2 전극 탭(12)과 결합되는 탭 결합부를 포함할 수 있다. 또한, 상기 집전 플레이트(20)는, 원통형 이차전지에 있어서 전극 단자로서 기능할 수 있는 부품과 결합되는 단자 결합부를 포함할 수 있다.
도 2 및 도 3을 참조하면, 상기 솔더(S)는, 전극 탭(11)과 집전 플레이트(20) 사이에 개재되어 전극 탭(11)과 집전 플레이트(20)를 결합시킨다. 상기 솔더(S)는, 전극 탭(11) 및 집전 플레이트(20)보다 더 낮은 융점을 갖는 금속 재질로 이루어진다. 이는, 솔더(S)의 융점을 모재의 융점보다 낮게 형성함으로써 용접 온도를 낮추고, 이에 따라 용접 시에 용접 스패터(welding spatter)가 발생되는 것을 방지하기 위함이다.
상기 솔더(S)는, 솔더링 타입 또는 브레이징 타입으로 제공될 수 있다. 여기서 솔더링 타입이란, 집전 플레이트(20)의 일 면 상에 저융점을 갖는 솔더 페이스트를 도포하는 방식으로 솔더(S)를 제공하는 것을 의미한다. 또한, 브레이징 타입이란, 집전 플레이트(20)의 일 면 상에 저융점을 갖는 합금 층을 클래딩(cladding) 하여 집전 플레이트(20)와 솔더(S)가 일체로 제공되는 것을 의미한다.
상기 솔더링 타입의 경우, 예를 들어 Sn, Ag 및 Bi를 포함하는 3원계 합금이 솔더(S)로 이용될 수 있다. 이 경우, 상기 솔더(S)는 대략 290도의 융점을 가질 수 있다. 상기 브레이징 타입의 경우, 예를 들어 Al 40 계열(Al에 실리콘을 첨가하여 융점을 낮춤)의 합금이 솔더(S)로 이용될 수 있다. 이 경우, 상기 솔더(S)는 대략 510도의 융점을 가질 수 있다.
상기 전극 탭(11)은, 포일(foil)로 이루어지는 전극 집전체 중 전극 활물질이 도포되지 않은 영역에 해당한다. 따라서, 상기 전극 탭(11)은, 구리 또는 알루미늄으로 이루어질 수 있다. 상기 집전 플레이트(20) 역시 알루미늄 또는 구리 재질의 플레이트가 이용될 수 있다. 상기 솔더링 타입 및 브레이징 타입의 경우 모두, 솔더(S)를 구성하는 합금은 전극 탭(11) 및 집전 플레이트(20)에 통상적으로 이용되는 금속인 알루미늄 및 구리와 비교하여 충분히 낮은 융점을 갖는다.
도 2를 참조하면, 서로 이격된 복수의 전극 탭(11)들은 전극 조립체(10)의 일 측으로 나란히 연장되며, 솔더(S)는 용접에 의한 용융 시 모세관 현상에 따른 침투로 인해 서로 인접한 전극 탭(11) 사이에 개재된다. 본 발명의 도면에서는 상기 솔더(S)가 개재된 형태가 나타나도록 하기 위해 서로 인접한 전극 탭(11) 사이의 간격을 충분히 넓게 도시하였으나, 실제로는 젤리-롤 타입의 전극 조립체에 있어서 서로 인접한 전극 사이 및 서로 인접한 전극 탭(11) 사이에는 매우 미세한 틈새만이 존재한다. 따라서, 용접에 의해 일시적으로 용융되는 솔더(S)는 모세관 현상에 의해 인접한 전극 탭(11) 사이의 틈새로 침투하게 된다.
상기 솔더(S)의 침투 거리(D)가 전극 탭(11)의 연장 길이(L)보다 길어지는 경우 솔더(S)가 전극 집전체 상에 형성된 전극 활물질과 접촉하게 된다. 이러한 현상이 발생되는 경우, 전극 활물질이 손상될 수 있으며, 서로 인접한 반대 극성의 전극 사이가 전기적으로 연결되어 단락이 발생될 수 있다. 따라서, 상기 솔더(S)가 인접한 전극 탭(11) 사이로 침투한 거리(D)는 전극 탭(11)의 연장 길이(L)보다 더 짧게 형성된다.
도 4를 참조하면, 상기 집전 플레이트(20) 상에 형성되는 솔더(S)의 두께(T)는, 전극 탭(11)의 연장 길이(L)보다 용접에 의해 솔더(S)가 인접한 전극 탭(11) 사이로 침투하는 거리(D)가 더 짧게 형성될 수 있도록 조절된다.
도 3을 참조하면, 상기 전극 탭(11)은, 그 길이 방향 단부가 집전 플레이트(20)와 나란한 방향(X축에 나란한 방향)으로 절곡된 형태를 갖는다. 이 경우, 상기 솔더(S)는, 전극 탭(11)의 절곡에 의해 형성된 평면과 집전 플레이트 사이에 개재된다. 이처럼 전극 탭(11)이 절곡된 형태를 갖는 경우, 전극 탭(11)이 차지하는 공간이 축소되어 에너지 밀도 향상을 가져올 수 있다.
도 5에 도시된 본 발명의 다른 실시예에 따른 서브 셀(1)은, 도 2에 도시된 실시예와 비교하여 솔더(S)의 침투 형태에 있어서 차이가 있을 뿐, 그 밖의 요소들은 실질적으로 동일하다. 따라서, 본 발명의 다른 실시예에 따른 서브 셀(1)을 설명함에 있어서는 앞선 실시예에서와 중복되는 설명은 생략하기로 하며, 솔더(S)의 침투 형태에 대해서 집중적으로 설명하기로 한다.
도 5를 참조하면, 상기 솔더(S)는, 모세관 현상에 따라 침투하여 서로 인접한 전극 탭(11) 사이에 개재된다. 이 때, 상기 솔더(S)가 침투한 거리(D1, D2)는 전극 조립체(10)의 외주면으로부터 권취 중심부(C)를 향할수록 점점 더 짧아진다. 즉, 거리 D1은 거리 D2보다 더 길게 형성되며, 솔더(S)의 침투 거리는 D1에서부터 D2까지 대략 일정하게 감소한다. 이처럼 솔더(S)의 침투 거리가 차등적으로 형성됨으로써, 전극 탭(11)과 솔더(S)가 접합 영역 전체에 걸쳐 전기저항 및 발열량의 편차를 최소화 할 수 있다.
도 1을 참조하면, 젤리-롤 타입의 전극 조립체(10)를 상부에서 바라봤을 때, 권취 중심부(C)로부터 멀어질수록 하나의 원을 그리며 감겨진 전극의 면적은 커진다. 상기 권취 중심부(C)로부터 멀리 위치하는 솔더(S) 영역과 접하는 전극의 면적은 권취 중심부(C)로부터 가까이 위치하는 솔더(S) 영역과 접하는 전극의 면적보다 더 커지게 된다. 따라서, 권취 중심부(C)로부터 멀리 위치하는 솔더(S) 영역은 권취 중심부(C)로부터 가까이 위치하는 솔더(S) 영역과 비교하여 전극과 접촉하는 면적이 상대적으로 더 큰 것이 유리하다.
도 5 및 도 6을 참조하면, 상기 집전 플레이트(20) 상에 형성되는 솔더(S)의 두께(T1, T2)는, 용접에 의해 전극 탭(11) 사이로 솔더(S)가 침투한 거리(D1, D2)가 전극 조립체(10)의 외주면으로부터 권취 중심부(C)를 향할수록 점점 더 짧게 형성되도록 조절된다. 즉, 용접 수행 이 전에 집전 플레이트(20)의 일 면 상에 형성된 솔더(S)의 두께(T1, T2)는 집전 플레이트(20)의 외측으로부터 중심부를 향할수록 점점 더 작아진다. 즉, 두께 T1은 두께 T2보다 더 크게 형성되며, 솔더(S)의 두께는 T1에서부터 T2까지 대략 일정하게 감소한다.
도 7에 도시된 본 발명의 또 다른 실시예에 따른 서브 셀(1)은, 앞선 실시예들과 비교하여 집전 플레이트(20)의 형상에 있어서 차이가 있을 뿐, 그 밖의 요소들은 실질적으로 동일하다. 따라서, 본 발명의 또 다른 실시예에 따른 서브 셀(1)을 설명함에 있어서는 앞선 실시예들과 중복되는 설명은 생략하기로 하며, 집전 플레이트(20)의 형상 및 그에 따른 솔더(S)의 형태에 대해서 집중적으로 설명하기로 한다.
도 7 및 도 8을 참조하면, 상기 집전 플레이트(20)의 서브 플레이트(21)는, 전극 조립체(10)의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 갖는다. 이에 따라, 상기 서브 플레이트(21)의 일 면 상에 형성된 솔더(S) 역시 전극 조립체(10)의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 갖는다. 이러한 구조는, 도 5에 도시된 구조가 갖는 장점과 동일한 장점을 얻기 위한 것이다. 또한, 도 7 및 도 8에 도시된 서브 셀(1)의 구조는 도 5 및 도 6에 도시된 서브 셀(1)의 구조와 조합되어 전극 탭(11)과 솔더(S)의 접합 영역 전체에 걸쳐 전기저항 및 발열량의 편차를 더욱 감소시킬 수 있다.
도 9 내지 도 12를 참조하면, 본 발명의 일 실시예에 따른 전극 조립체(10)의 구체적인 구조가 나타나 있다. 이하의 설명에서는 앞서 설명한 바 있는 제1 전극 및 제2 전극 중 제1 전극을 예로 들어 설명을 하지만, 이러한 제1 전극의 구조는 제2 전극에도 동일하게 적용될 수 있다.
도 9 및 도 10을 참조하면, 상기 제1 전극(110)은 도전성 재질의 포일로 이루어진 대략 쉬트 형상의 제1 전극 집전체(111)와, 제1 전극 집전체(111)의 적어도 일 면에 형성된 제1 활물질 층(112)과, 제1 전극 집전체(111)의 적어도 일 면에 형성된 제1 활물질 층(112)과, 제1 전극 집전체(111)의 장변 단부에 활물질이 코팅되지 않음으로써 형성되는 제1 무지부(제1 전극 탭)(11)을 포함한다.
바람직하게, 상기 제1 무지부(11)는, 노칭 가공된 복수의 분절편(11a)을 포함할 수 있다. 복수의 분절편(11a)은 복수의 그룹을 이루며, 각 그룹에 속한 분절편(11a)들은 높이(Z방향 길이) 및/또는 폭(X 방향 길이) 및/또는 이격 피치가 동일할 수 있다. 각 그룹에 속한 분절편(11a)들의 수는 도시된 것보다 증가 또는 감소될 수 있다. 상기 분절편(11a)은, 적어도 하나의 직선 및/또는 적어도 하나의 곡선이 조합된 기하학적 도형의 형상을 가진다. 바람직하게, 분절편(11a)은 사다리꼴 모양일 수 있는데, 사각형, 평행사변형, 반원형 또는 반타원형 등으로 변형될 수 있다.
바람직하게, 상기 분절편(11a)의 높이는 전극 조립체(10)의 권취 방향과 평행한 일 방향을 따라, 예를 들어 코어측으로부터 외주측으로 가면서 단계적으로 증가할 수 있다. 또한, 전극 조립체(10)의 코어측과 인접한 코어측 무지부(11-1)는, 분절편(11a)을 포함하지 않을 수 있고, 코어측 무지부(11-1)의 높이는 다른 영역의 무지부보다 낮을 수 있다. 또한, 전극 조립체(10)의 외주측과 인접한 외주측 무지부(11-2)는, 분절편(11a)을 포함하지 않을 수 있고, 외주측 무지부(11-2)의 높이는 다른 무지부 영역보다 낮을 수 있다.
선택적으로, 상기 제1 전극(110)은, 활물질 층(112)과 제1 무지부(11) 사이의 경계를 덮는 절연 코팅층(E)을 포함할 수 있다. 상기 절연 코팅층(E)은 절연성이 있는 고분자 수지를 포함하며, 무기물 필러를 선택적으로 더 포함할 수 있다. 상기 절연 코팅층(E)은 활물질 층(112)의 단부가 분리막을 통해 대향하고 있는 반대 극성의 활물질 층과 접촉하는 것을 방지하고, 분절편(11a)의 절곡을 구조적으로 지지하는 기능을 할 수 있다. 이를 위해, 상기 제1 전극(110)이 권취되어 전극 조립체(10)를 형성했을 때, 절연 코팅층(E)은 적어도 일부가 분리막으로부터 외부로 노출되는 것이 바람직하다.
상기 무지부(11, 12)의 높이가 변화하는 패턴은 개략적으로 도시하였다. 즉, 단면이 잘리는 위치에 따라서 무지부(11, 12)의 높이는 불규칙하게 변화할 수 있다. 일 예로, 사다리꼴의 분절편(11a)의 사이드 부분이 잘리면 단면에의 무지부 높이는 분절편(11a)의 높이보다 낮아진다. 따라서, 전극 조립체(10)의 단면을 나타낸 도면에 도시된 무지부(11, 12)의 높이는 각 권취 턴에 포함된 무지부 높이의 평균에 대응한다고 이해하여야 한다.
도 9 내지 도 12를 참조하면, 무지부(11, 12)는 전극 조립체(10)의 반경 방향을 따라, 예를 들어 외주측으로부터 코어측으로 절곡될 수 있다. 무지부(11, 12)에 있어서, 절곡이 발생되는 부위는 도 10에서 점선 박스로 표시하였다. 무지부(11, 12)가 절곡될 때, 반경 방향으로 인접하고 있는 분절편들이 여러 겹으로 중첩되면서 전극 조립체(10)의 상부와 하부에 절곡면(102)이 형성된다. 이 때, 코어측 무지부(도 9의 11-1)는 높이가 낮아서 절곡되지 않으며, 가장 안쪽에서 절곡되는 분절편(11a)의 높이(h)는 분절편 구조가 없는 코어측 무지부(11-1)에 의해 형성된 권취 영역의 반경 방향 길이(r)와 같거나 이보다 더 작다. 따라서, 전극 조립체(10)의 코어, 즉 권취 중심(C)에 형성된 홀이 폐쇄되지 않는다. 상기 홀이 폐쇄되지 않으면, 전해액 주액 공정에 어려움이 없고, 전해액 주액 효율이 향상될 수 있다. 또한, 상기 홀을 통해 용접 도구를 삽입하여 단자(40)와 집전 플레이트(20)(도 14 참조)의 용접을 용이하게 수행할 수 있다.
한편, 도 9 내지 도 12와 함께 도 14를 참조하면, 상술한 바와 같이 제1 전극 탭(제1 무지부)(11) 및/또는 제2 전극 탭(제2 무지부)(12)이 각각 분절편들을 갖고 분절편들이 대략 전극 조립체(10)의 반경 방향을 따라 내측 또는 외측으로 절곡되어 여러 겹으로 중첩된 구조를 갖는 경우에 있어서, 전극 조립체(10)는 분절편들의 중첩 레이어 수가 반경 방향을 따라 대략 일정하게 유지되는 영역인 용접 타겟 영역을 구비할 수 있다. 이 영역에서는 중첩 레이어 수가 대략 최대로 유지된다. 따라서, 집전 플레이트(20, 60)와 전극 탭(11, 12) 간의 용접이 이 영역 내에서 이루어지는 것이 유리할 수 있다. 이는, 예를 들어 레이저 용접을 적용하는 경우에 있어서, 용접 품질의 향상을 위해 레이저의 출력을 높이는 경우 레이저 빔이 전극 탭(11, 12)을 관통하여 전극 조립체(10)를 손상시키는 것을 방지하기 위함이다. 또한, 이는 용접 스패터 등의 이물질이 전극 조립체(10)의 내부로 유입되는 것을 효과적으로 방지할 수 있도록 하기 위함이다.
도 1 내지 도 8을 참조하면, 상술한 바와 같은 본 발명의 서브 셀(1)의 제조 방법은, (S1) 전극 조립체(10)를 마련하는 단계, (S2) 집전 플레이트(20)를 마련하는 단계, (S3) 전극 조립체(10) 상에 집전 플레이트(20)를 안착시키는 단계, 및 (S4) 용접을 수행하는 단계를 포함한다. 상기 (S1) 단계와 (S2)단계는 어느 하나의 단계가 먼저 수행될 수도 있고, 두 가지 단계가 동시에 수행될 수도 있다.
상기 (S1) 단계는, 전극과 분리막을 포함하는 적층체를 권취하여 젤리-롤 타입의 전극 조립체(10)를 마련하는 단계이다.
상기 (S2) 단계는, 일 면 상에 솔더(S)가 형성된 집전 플레이트(20)를 마련하는 단계이다. 상기 (S2) 단계는, 집전 플레이트(20) 상에 솔더 페이스트를 도포하는 단계 또는 집전 플레이트(20)의 일 면 상에 합금 층을 클래딩(cladding) 하는 단계를 포함한다.
상기 (S2) 단계는, (S4) 단계의 수행 시에 솔더(S)의 침투 거리가 전극 탭(11)의 연장 길이보다 더 짧게 형성되도록 집전 플레이트(20)의 일 면 상에 형성되는 솔더(S)의 두께를 조절하는 단계를 더 포함할 수도 있다(도 2 및 도 4 참조). 상기 (S2) 단계는, 솔더(S)가 서로 인접한 전극 탭(11) 사이로 침투한 거리가 전극 조립체(10)의 외주면으로부터 권취 중심부(C)를 향할수록 점점 더 짧아지도록 집전 플레이트(20)의 일 면 상에 형성되는 솔더(S)의 두께를 조절하는 단계를 더 포함할 수도 있다(도 5 및 도 6 참조).
상기 (S4) 단계는, 솔더(S)가 용융되어 전극 조립체(10)의 전극 탭(11)과 집전 플레이트(20)가 상호 결합되도록 용접을 수행하는 단계이다. 상기 (S4) 단계는, 집전 플레이트(20)와 전극 탭(11)의 융점보다 더 낮은 온도로 용접을 수행하는 단계이다. 상기 용접은 예를 들어 레이저 용접일 수 있다. 상기 (S4) 단계는, 솔더(S)를 용융시켜 모세관 현상에 의해 서로 인접한 전극 탭(11) 사이로 솔더(S)가 침투하도록 하는 단계이다(도 2 및 도 5 참조).
도 13 및 도 14를 참조하면, 본 발명의 원통형 이차전지(2)의 예시적 형태가 나타나 있다. 본 발명의 일 실시예에 따른 원통형 이차전지(2)는 본 발명의 일 실시예에 따른 서브 셀(1) 및 이를 수용하는 전지 캔(30)을 포함한다. 상기 원통형 이차전지(2)는, 그 밖에도 전극 조립체(10)와 전기적으로 연결되는 단자(40) 및/또는 전지 캔(30)의 일 측에 형성되는 개방부를 마감하는 캡(50)을 더 포함할 수 있다.
상기 전지 캔(30)은, 일 측에 개방부가 구비된 대략 원통형의 수용체로서, 예를 들어 금속과 같은 도전성을 갖는 재질로 이루어진다. 상기 전지 캔(30)은, 개방부의 반대편에 위치하는 폐쇄부를 구비하며, 상기 폐쇄부의 외부면(30a)은, 대략 플랫한 형태를 가질 수 있다. 상기 전지 캔(30)은, 개방부를 통해 전극 조립체(10)를 수용하며, 전해질도 함께 수용한다. 상기 전지 캔(30)은, 개방부 측에 인접 형성되는 비딩부(31) 및 클림핑부(32)를 구비할 수 있다. 상기 비딩부(31)는, 전지 캔(30)의 외주면 둘레를 압입하여 형성된다. 상기 비딩부(31)는, 전지 캔(30) 내에 수용된 전극 조립체(10)가 개방부쪽으로 이탈하지 않도록 하는 고정부로서 기능할 수 있다. 상기 클림핑부(32)는, 도 13 및 도 14를 기준으로 볼 때, 비딩부(31)의 하부에 형성된다. 상기 클림핑부(32)는, 캡(50)의 외주면, 그리고 캡(50)의 하면의 일부를 감싸도록 비딩부(31)로부터 연장 및 절곡된 형태를 갖는다. 이 경우, 상기 클림핑부(32)가 형성된 영역에는, 실링 가스켓(G2)이 구비될 수 있다. 상기 실링 가스켓(G2)은, 전지 캔(30)의 내측면과 캡(50) 사이에 개재될 수 있다.
상기 전지 캔(30)은, 전극 조립체(10)의 제2 전극 탭(12)과 전기적으로 연결될 수 있다. 상기 전지 캔(30)과 제2 전극 탭(12) 간의 전기적 연결은 집전 플레이트(제2 집전 플레이트)(60)을 통해 이루어질 수 있다. 이 경우, 상기 집전 플레이트(60)의 단자 결합부는, 예를 들어 전지 캔(30)의 측벽에 전기적으로 결합될 수 있다. 다만, 이로써 본 발명이 한정되는 것은 아니며, 제2 전극 탭(12)이 직접 전지 캔(30)과 결합될 수도 있다.
상기 단자(40)는, 제1 전극 탭(11)과 전기적으로 연결된다. 상기 단자(40)와 제1 전극 탭(11) 간의 결합은 집전 플레이트(제1 집전 플레이트)(20)을 통해 이루어질 수 있다. 상기 단자(40)는, 집전 플레이트(20)의 단자 결합부와 결합될 수 있으며, 전지 캔(30)의 폐쇄부의 대략 중심부를 통해 외측으로 노출될 수 있다. 이 경우, 상기 단자(40)와 전지 캔(30)은 서로 다른 극성을 가지므로, 이들 사이의 접촉을 방지하고 단자(40)의 노출 부위에서의 밀폐성을 강화하기 위해 전지 캔(30)과 단자(40) 사이에는 절연 가스켓(G1)이 개재될 수 있다.
상기 캡(50)은, 전지 캔(30)의 일 측에 형성된 개방부를 밀폐한다. 본 발명의 원통형 이차전지(2)가 도 13 및 도 14에 도시된 형태를 갖는 경우, 상기 캡(50)은 전도성을 갖는 금속 재질인 경우라도 극성을 갖지 않을 수도 있다. 상기 캡(50)이 극성을 갖지 않는다는 것은 캡(50)이 전극 조립체(10)와 전기적으로 연결되지 않음을 의미한다. 이처럼 상기 캡(50)이 전극 조립체(10)와 전기적으로 연결되지 않는 경우, 캡(50)은 전극 단자로서 기능하지 않는다. 즉, 본 발명에 있어서 캡(50)은, 전극 조립체(10) 및 전지 캔(30)과 반드시 전기적으로 연결될 필요는 없으며, 그 재질이 반드시 전도성 금속이어야 하는 것도 아니다.
본 발명의 원통형 이차전지(2)가 도 13 및 도 14에 도시된 구조를 갖는 경우, 제1 전극 탭(11)과 전기적으로 연결되어 제1 전극 단자로서 기능할 수 있는 단자(40)와 제2 전극 탭(12)과 전기적으로 연결되어 제2 전극 단자로서 기능할 수 있는 전지 캔(30)의 폐쇄부의 외부면(30a)이 동일한 방향에 위치하고 있다. 이러한 구조에 따르면, 버스바를 이용하여 원통형 이차전지(2)들을 전기적으로 연결하는 작업이 용이해질 수 있다.
도 15를 참조하면, 상술한 바와 같이 원통형 이차전지(2)의 제1 전극 단자와 제2 전극 단자가 동일 방향에 위치하는 경우에 있어서, 복수의 원통형 이차전지(2)들이 전기적으로 연결된 구조의 예시가 나타나 있다. 복수의 원통형 이차전지(2)들은 버스바(150)를 이용하여 원통형 이차전지(2)의 상부에서 직렬 및 병렬로 연결될 수 있다. 원통형 이차전지(2)들의 수는 배터리 팩의 용량을 고려하여 증감될 수 있다.
각 원통형 이차전지(2)에 있어서, 예를 들어 단자(40)는 양의 극성을 가지고 전지 캔(30)의 폐쇄부의 외부면(30a)은 음의 극성을 가질 수 있다. 물론, 그 반대도 가능하다.
바람직하게, 복수의 원통형 이차전지(2)들은 복수의 열과 행으로 배치될 수 있다. 도 15를 기준으로 볼 때, 열은 상하 방향이고, 행은 좌우 방향이다. 또한, 공간 효율성을 최대화 하기 위해, 원통형 이차전지(2)들은 최밀 팩킹 구조(closest packing structure)로 배치될 수 있다. 최밀 팩킹 구조는, 전지 캔(30)의 외부로 노출된 단자(40)들 각각의 상면의 중심을 서로 연결했을 때 정삼각형이 만들어지는 경우에 형성된다. 바람직하게, 버스바(150)는 복수의 원통형 이차전지(2)의 상부, 보다 바람직하게는 인접하는 열들 사이에 배치될 수 있다. 대안적으로, 버스바(150)는 인접하는 행 사이에 배치될 수 있다.
바람직하게, 버스바(150)는, 동일 열에 배치된 원통형 이차전지(2)들을 서로 병렬로 연결시키고, 인접하는 2개의 열에 배치된 원통형 이차전지(2)들을 서로 직렬로 연결시킨다.
바람직하게, 버스바(150)는, 직렬 및 병렬 연결을 위해 바디부(151), 복수의 제1 버스바 단자(152) 및 복수의 제2 버스바 단자(153)를 포함할 수 있다.
상기 바디부(151)는, 인접하는 원통형 이차전지(2)들의 단자(40)들 사이에서, 바람직하게는 원통형 이차전지(2)들의 열들 사이에서 연장될 수 있다. 대안적으로, 상기 바디부(151)는, 원통형 이차전지(2)들의 열을 따라 연장되되, 지그재그 형상과 같이 규칙적으로 절곡될 수 있다.
복수의 제1 버스바 단자(152)는, 바디부(151)의 일측으로부터 각 원통형 이차전지(2)의 단자(40)를 향해 돌출 연장되고, 단자(40)에 전기적으로 결합될 수 있다. 제1 버스바 단자(152)와 단자(40) 간의 전기적 결합은 레이저 용접, 초음파 용접 등으로 이루어질 수 있다. 또한, 복수의 제2 버스바 단자(153)는 바디부(151)의 타측으로부터 각 원통형 이차전지(2)의 외부면(20a)에 전기적으로 결합될 수 있다. 상기 제2 버스바 단자(153)와 외부면(20a) 간의 전기적 결합은 레이저 용접, 초음파 용접 등으로 이루어질 수 있다.
바람직하게, 상기 바디부(151), 복수의 제1 버스바 단자(152) 및 복수의 제2 버스바 단자(153)는 하나의 도전성 금속판으로 이루어질 수 있다. 금속판은, 예를 들어 알루미늄 판 또는 구리 판일 수 있는데, 본 발명이 이에 한정되는 것은 아니다. 변형 예에서, 상기 바디부(151), 복수의 제1 버스바 단자(152) 및 제2 버스바 단자(153)는 별개의 피스 단위로 제작한 후 서로 용접 등을 통해 결합될 수도 있다.
본 발명에 따른 원통형 이차전지(2)는, 양의 극성을 가진 단자(40)와 음의 극성을 가진 전지 캔(30)의 폐쇄부의 외부면(20a)이 동일한 방향에 위치하고 있으므로 버스바(150)를 이용하여 원통형 이차전지(2)들의 전기적 연결을 용이하게 구현할 수 있다.
또한, 원통형 이차전지(2)의 단자(40)와 전지 캔(30)의 폐쇄부의 외부면(20a)은 면적이 넓으므로 버스바(150)의 결합 면적을 충분히 확보할 수 있으며, 이로써 원통형 이차전지(2)를 포함하는 배터리 팩의 저항을 충분히 낮출 수 있다.
도 16을 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(4)은, 상술한 바와 같은 본 발명의 일 실시예에 따른 복수의 원통형 이차전지(2)가 전기적으로 연결된 이차전지 집합체 및 이를 수용하는 팩 하우징(3)을 포함한다. 본 발명의 도 16에서는, 도면 도시의 편의상 전기적 연결을 위한 버스바, 전력 단자 등의 부품은 생략되었다. 복수의 원통형 이차전지(2)들의 전기적 연결 구조의 구체적인 예시에 대해서는 앞서 도 15를 참조하여 설명한 바와 같다.
도 17을 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는, 예를 들어 전기 자동차일 수 있으며, 본 발명의 일 실시예에 따른 배터리 팩(4)을 포함한다. 상기 자동차(5)는, 본 발명의 일 실시예에 따른 배터리 팩(4)으로부터 전력을 공급 받아 동작한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (29)

  1. 전극 탭을 구비하는 젤리-롤 타입의 전극 조립체;
    상기 전극 조립체의 일 측에 결합되며 상기 전극 탭과 전기적으로 연결되는 집전 플레이트; 및
    상기 전극 탭과 상기 집전 플레이트 사이에 개재되어 상기 전극 탭과 집전 플레이트를 결합시키며, 상기 전극 탭 및 집전 플레이트와 비교하여 더 낮은 융점을 갖는 솔더;
    를 포함하는 것을 특징으로 하는 서브 셀.
  2. 제1항에 있어서,
    상기 솔더는,
    용접에 의한 용융 시 모세관 현상에 따른 침투로 인해 서로 인접한 전극 탭 사이에 개재되는 것을 특징으로 하는 서브 셀.
  3. 제2항에 있어서,
    상기 솔더의 침투 거리는,
    상기 전극 탭의 연장 길이보다 짧은 것을 특징으로 하는 서브 셀.
  4. 제1항에 있어서,
    상기 전극 탭은, 그 길이 방향 단부가 상기 집전 플레이트와 나란한 방향으로 절곡된 형태를 가지며,
    상기 솔더는, 상기 전극 탭의 절곡에 의해 형성된 평면과 집전 플레이트 사이에 개재되는 것을 특징으로 하는 서브 셀.
  5. 제3항에 있어서,
    상기 솔더가 서로 인접한 전극 탭 사이로 침투한 거리는, 상기 전극 조립체의 외주면으로부터 권취 중심부를 향할수록 점점 더 짧아지는 것을 특징으로 하는 서브 셀.
  6. 제1항에 있어서,
    상기 집전 플레이트는, 중심부로부터 방사상으로 연장되며 상호 이격된 복수의 서브 플레이트를 구비하는 것을 특징으로 하는 서브 셀.
  7. 제6항에 있어서,
    상기 서브 플레이트는,
    상기 전극 조립체의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 갖는 것을 특징으로 하는 서브 셀.
  8. 제7항에 있어서,
    상기 솔더는,
    상기 전극 조립체의 외주면으로부터 권취 중심부를 향하는 방향으로 갈수록 그 폭이 점점 더 좁아지는 형태를 갖는 것을 특징으로 하는 서브 셀.
  9. 제1항에 있어서,
    상기 전극 조립체는 제1 전극 및 제2 전극과 이들 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지며,
    상기 제1 전극 및 제2 전극은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막의 외부로 노출된 제1 무지부 및 제2 무지부를 구비하는 것을 특징으로 하는 서브 셀.
  10. 제9항에 있어서,
    상기 제1 무지부 및 제2 무지부 중 적어도 어느 하나는 상기 전극 탭으로서 기능하는 것을 특징으로 하는 서브 셀.
  11. 제9항에 있어서,
    상기 제1 무지부 및 제2 무지부 중 적어도 어느 하나의 무지부는 전극 조립체의 권취 방향을 따라 분할된 복수의 분절편을 포함하고,
    상기 복수의 분절편은, 상기 전극 조립체의 반경 방향을 따라 밴딩되는 것을 특징으로 하는 서브 셀.
  12. 제11항에 있어서,
    밴딩된 상기 복수의 분절편은,
    상기 반경 방향을 따라서 여러 겹으로 중첩되는 것을 특징으로 하는 서브 셀.
  13. 제12항에 있어서,
    상기 전극 조립체는,
    상기 무지부에 구비된 상기 분절편의 중첩 수가 상기 전극 조립체의 반경 방향을 따라 일정하게 유지되는 영역인 용접 타겟 영역을 구비하는 것을 특징으로 하는 서브 셀.
  14. 제13항에 있어서,
    상기 집전 플레이트는,
    상기 용접 타겟 영역 내에서 상기 무지부와 결합되는 것을 특징으로 하는 서브 셀.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 서브 셀; 및
    일 측에 구비된 개방부를 통해 상기 서브 셀을 수용하고, 상기 전극 조립체와 전기적으로 연결되는 전지 캔;을 포함하는 원통형 이차전지.
  16. 제15항에 있어서,
    상기 전극 조립체와 전기적으로 연결되고, 상기 전지 캔과 반대 극성을 가지며, 상기 전지 캔과 절연되는 단자를 더 포함하는 것을 특징으로 하는 원통형 이차전지.
  17. 제16항에 있어서,
    상기 단자는,
    상기 전지 캔의 개방부의 반대편에 구비되는 폐쇄부를 통해 외측으로 노출되는 것을 특징으로 하는 원통형 이차전지.
  18. 제15항에 있어서,
    상기 개방부를 밀폐하는 캡 플레이트를 더 포함하는 것을 특징으로 하는 원통형 이차전지.
  19. 제18항에 있어서,
    상기 캡 플레이트는,
    극성을 갖지 않는 것을 특징으로 하는 원통형 이차전지.
  20. 제15항에 따른 복수의 원통형 이차전지; 및
    상기 복수의 원통형 이차전지를 수용하는 팩 하우징;
    을 포함하는 배터리 팩.
  21. 제20항에 있어서,
    상기 복수의 원통형 이차전지 각각은,
    상기 전극 조립체와 전기적으로 연결되고, 상기 전지 캔과 반대 극성을 가지며, 상기 전지 캔과 절연되는 단자를 포함하는 것을 특징으로 하는 배터리 팩.
  22. 제21항에 있어서,
    상기 복수의 원통형 이차전지 각각의 상기 전지 캔의 폐쇄부의 외부면과 상기 전지 캔의 상기 단자는 동일한 방향을 향하도록 배치되는 것을 특징으로 하는 배터리 팩.
  23. 제22항에 있어서,
    상기 배터리 팩은, 복수의 상기 원통형 이차전지를 직렬 및 병렬로 연결하는 복수의 버스바를 포함하는 것을 특징으로 하는 배터리 팩.
  24. 제23항에 있어서,
    상기 복수의 버스바는, 상기 복수의 원통형 이차전지들의 상부에 배치되고,
    각각의 상기 버스바는,
    인접하는 원통형 이차전지들의 단자들 사이에서 연장되는 바디부;
    상기 바디부의 일측 방향으로 연장되어 상기 일측 방향에 위치한 원통형 이차전지의 단자에 전기적으로 결합되는 복수의 제1 버스바 단자; 및
    상기 바디부의 타측 방향으로 연장되어 상기 타측 방향에 위치한 원통형 이차전지의 상기 폐쇄부의 외부면에 전기적으로 결합되는 복수의 제2 버스바 단자;
    를 포함하는 것을 특징으로 하는 배터리 팩.
  25. 제20항에 따른 배터리 팩을 포함하는 자동차.
  26. (S1) 젤리-롤 타입의 전극 조립체를 마련하는 단계;
    (S2) 일 면 상에 솔더가 형성된 집전 플레이트를 마련하는 단계;
    (S3) 상기 전극 조립체 상에 상기 집전 플레이트를 안착시키는 단계; 및
    (S4) 상기 솔더가 용융되어 상기 전극 조립체의 전극 탭과 상기 집전 플레이트가 상호 결합되도록 용접을 수행하되, 상기 전극 탭의 융점 및 상기 집전 플레이트의 융점보다 더 낮은 온도로 용접을 수행하는 단계;
    를 포함하는 서브 셀 제조 방법.
  27. 제26항에 있어서,
    상기 (S4) 단계는,
    상기 솔더를 용융시켜 모세관 현상에 의해 서로 인접한 전극 탭 사이로 상기 솔더가 침투하도록 하는 단계인 것을 특징으로 하는 서브 셀 제조 방법.
  28. 제27항에 있어서,
    상기 (S2) 단계는,
    상기 솔더의 침투 거리가 상기 전극 탭의 연장 길이보다 더 짭게 형성되도록 상기 집전 플레이트의 일 면 상에 형성되는 상기 솔더의 두께를 조절하는 단계를 포함하는 것을 특징으로 하는 서브 셀 제조 방법.
  29. 제28항에 있어서,
    상기 (S2) 단계는,
    상기 솔더가 서로 인접한 전극 탭 사이로 침투한 거리가 상기 전극 조립체의 외주면으로부터 권취 중심부를 향할수록 점점 더 짧아지도록 상기 집전 플레이트의 일 면 상에 형성되는 상기 솔더의 두께를 조절하는 단계를 포함하는 것을 특징으로 하는 서브 셀 제조 방법.
PCT/KR2022/001004 2021-01-19 2022-01-19 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차 WO2022158856A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22742832.3A EP4254643A1 (en) 2021-01-19 2022-01-19 Sub-cell, manufacturing method therefor, and cylindrical secondary battery, battery pack, and automobile comprising sub-cell
US18/270,971 US20240063423A1 (en) 2021-01-19 2022-01-19 Sub cell and its manufacturing method, and cylindrical secondary battery, battery pack and vehicle comprising the sub cell
JP2023529993A JP2023550097A (ja) 2021-01-19 2022-01-19 サブセル及びその製造方法、並びに、サブセルを含む円筒型二次電池、バッテリーパック及び自動車
CN202280008278.6A CN116636058A (zh) 2021-01-19 2022-01-19 子电芯、子电芯的制造方法、以及包括子电芯的圆柱形二次电池、电池组和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0007282 2021-01-19
KR20210007282 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158856A1 true WO2022158856A1 (ko) 2022-07-28

Family

ID=82548877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001004 WO2022158856A1 (ko) 2021-01-19 2022-01-19 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차

Country Status (6)

Country Link
US (1) US20240063423A1 (ko)
EP (1) EP4254643A1 (ko)
JP (1) JP2023550097A (ko)
KR (1) KR20220105149A (ko)
CN (1) CN116636058A (ko)
WO (1) WO2022158856A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425365A (zh) * 2022-09-29 2022-12-02 厦门海辰储能科技股份有限公司 集流组件、电池、电池包及用电设备
CN116914278A (zh) * 2023-09-14 2023-10-20 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112330A (ja) * 1996-10-08 1998-04-28 Nissan Motor Co Ltd 円筒型電池および該円筒型電池を用いた組電池
JP4401634B2 (ja) * 2002-09-04 2010-01-20 パナソニック株式会社 蓄電池およびその製造方法
JP5055809B2 (ja) * 2006-04-06 2012-10-24 パナソニック株式会社 円筒型蓄電池
JP5447656B2 (ja) * 2010-04-02 2014-03-19 トヨタ自動車株式会社 積層電極体型電池とその製造方法及び車両及び機器
KR20170025074A (ko) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 배터리 팩
KR20170101653A (ko) * 2016-02-29 2017-09-06 주식회사 엘지화학 개선된 고정성으로 젤리롤 전극조립체를 포함하는 이차전지
CN111446386A (zh) * 2020-03-03 2020-07-24 珠海冠宇电池股份有限公司 扣式电池以及电子产品
KR20210007282A (ko) 2019-07-10 2021-01-20 엘지전자 주식회사 유기용액 건조 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112330A (ja) * 1996-10-08 1998-04-28 Nissan Motor Co Ltd 円筒型電池および該円筒型電池を用いた組電池
JP4401634B2 (ja) * 2002-09-04 2010-01-20 パナソニック株式会社 蓄電池およびその製造方法
JP5055809B2 (ja) * 2006-04-06 2012-10-24 パナソニック株式会社 円筒型蓄電池
JP5447656B2 (ja) * 2010-04-02 2014-03-19 トヨタ自動車株式会社 積層電極体型電池とその製造方法及び車両及び機器
KR20170025074A (ko) * 2015-08-27 2017-03-08 삼성에스디아이 주식회사 배터리 팩
KR20170101653A (ko) * 2016-02-29 2017-09-06 주식회사 엘지화학 개선된 고정성으로 젤리롤 전극조립체를 포함하는 이차전지
KR20210007282A (ko) 2019-07-10 2021-01-20 엘지전자 주식회사 유기용액 건조 장치
CN111446386A (zh) * 2020-03-03 2020-07-24 珠海冠宇电池股份有限公司 扣式电池以及电子产品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425365A (zh) * 2022-09-29 2022-12-02 厦门海辰储能科技股份有限公司 集流组件、电池、电池包及用电设备
CN115425365B (zh) * 2022-09-29 2023-09-26 厦门海辰储能科技股份有限公司 集流组件、电池、电池包及用电设备
CN116914278A (zh) * 2023-09-14 2023-10-20 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN116914278B (zh) * 2023-09-14 2024-02-23 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
EP4254643A1 (en) 2023-10-04
US20240063423A1 (en) 2024-02-22
CN116636058A (zh) 2023-08-22
KR20220105149A (ko) 2022-07-26
JP2023550097A (ja) 2023-11-30

Similar Documents

Publication Publication Date Title
WO2022158856A1 (ko) 서브 셀 및 그 제조 방법, 그리고 서브 셀을 포함하는 원통형 이차전지, 배터리 팩 및 자동차
WO2022145910A1 (ko) 원통형 배터리 셀, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2021020743A1 (ko) 이차 전지
WO2018056562A1 (ko) 엠보싱 처리된 안전벤트를 갖는 이차 전지
WO2018074842A1 (ko) 이차 전지 및 그 모듈
WO2019074198A1 (ko) 이차 전지
WO2021145624A1 (ko) 전극 탭 절곡 장치 및 방법
WO2021125504A1 (ko) 이차 전지
WO2020235916A1 (ko) 이차 전지
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2020153570A1 (ko) 혼 및 용접 장치
WO2019050147A1 (ko) 전극탭의 용접 특성을 개선한 전극 및 이를 포함하는 이차전지
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2019212164A1 (ko) 이차 전지
WO2022177371A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2020171372A1 (ko) 이차 전지 및 그의 제조 방법
WO2023018154A1 (ko) 원통형 이차전지, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024106989A1 (ko) 전극 조립체 및 이를 포함하는 배터리, 그리고 이러한 배터리를 포함하는 배터리 팩 및 자동차
WO2020130595A1 (ko) 전지 케이스, 이차 전지 및 그의 제조 방법
WO2022182144A1 (ko) 이차전지, 배터리 팩 및 자동차
WO2023146069A1 (ko) 이차전지
WO2022203469A1 (ko) 배터리 팩, 그리고 이를 포함하는 자동차
WO2023033391A1 (ko) 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2022182143A1 (ko) 이차전지, 이차전지 제조방법, 배터리 팩 및 자동차
WO2023090952A1 (ko) 이차 전지 및 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529993

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008278.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18270971

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022742832

Country of ref document: EP

Effective date: 20230628

NENP Non-entry into the national phase

Ref country code: DE